
Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

PROVABLY ROBUST DPO: ALIGNING LANGUAGE
MODELS WITH NOISY FEEDBACK

Sayak Ray Chowdhury*, Anush Kini* & Nagarajan Natarajan
Microsoft Research, India
{t-sayakr,t-anushkini,nagarajn}@microsoft.com

ABSTRACT

Learning from preference-based feedback has recently gained traction as a promis-
ing approach to align language models with human interests. While these aligned
generative models have demonstrated impressive capabilities across various tasks,
their dependence on high-quality human preference data poses a bottleneck in
practical applications. Specifically, noisy (incorrect and ambiguous) preference
pairs in the dataset might restrict the language models from capturing human intent
accurately. While practitioners have recently proposed heuristics to mitigate the
effect of noisy preferences, a complete theoretical understanding of their workings
remain elusive.
In this work, we aim to bridge this gap by introducing a general framework for
policy optimization in the presence of random preference flips. We focus on the
direct preference optimization (DPO) algorithm in particular since it assumes that
preferences adhere to the Bradley-Terry-Luce (BTL) model, raising concerns about
the impact of noisy data on the learned policy. We design a novel loss function,
which de-bias the effect of noise on average, making a policy trained by minimizing
that loss robust to the noise. Under log-linear parameterization of the policy class
and assuming good feature coverage of the SFT policy, we prove that the sub-
optimality gap of the proposed robust DPO (rDPO) policy compared to the optimal

policy is of the order O(1
1−2ε

√
d
n), where ε < 1/2 is flip rate of labels, d is policy

parameter dimension and n is size of dataset. Our experiments on IMDb sentiment
generation and Anthropic’s helpful-harmless dataset shows that rDPO is robust to
noise in preference labels compared to vanilla DPO and other heuristics proposed
by practitioners.

1 INTRODUCTION

Reinforcement Learning from Human Feedback (RLHF) has proven highly effective in aligning
Language Models (LLMs) with human preferences Christiano et al. (2017); Stiennon et al. (2020);
Ouyang et al. (2022). In the RLHF pipeline Kaufmann et al. (2023), an LLM is first pre-trained
using supervised fine tuning to obtain a reference or SFT policy. A reward model is fit to a dataset of
human preferences, and then, an LLM policy is trained using RL algorithms such as proximal policy
optimization (PPO) to generate high-reward responses while remaining “close” to the SFT policy.
An easier alternative is the direct preference optimisation (DPO) method (Rafailov et al. (2023)) —
optimize the LLM policy directly from human preferences, eschewing the need for learning a reward
model or RL algorithms. Notably, DPO implicitly optimizes the same objective as RLHF.

Crucial to the success of both RLHF and DPO is the quality of preference data Lambert et al. (2023);
Bai et al. (2022b), which is often inherently noisy (e.g., ambiguous preferences). We find empirical
evidence that these algorithms are robust to noise in some scenarios (as also demonstrated by Rafailov
et al. (2023); Ouyang et al. (2022)), even though they work under the assumption that the observed
preferences adhere to an underlying sampling model (see Section 2). On the other hand, as we
show via simple noise injection mechanisms on real-world datasets in Section B, the performance
of DPO drops significantly when the noise rates are high. In fact, Wang et al. (2024) demonstrate

*Equal Contribution

1

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

the sensitivity of reward training step in the RLHF pipeline to noisy preferences in real data; and
design heuristics to mitigate the impact (discussed in Section B). However, little is known about
theory behind these heuristics, which could justify their performance in practice.

In this work, we attempt to bridge the gap between theory and practice via a general theoretical
framework for learning from noisy preference data. We focus on the DPO algorithm in the presence
of random preference noise, where preferences are flipped with some (known) rate. We make the
following contributions.

(1) robust DPO (rDPO): We design robust DPO method that uses a a novel loss function by adapting
the binary cross entropy (BCE) loss of DPO with the rate of label flips.

(2) Convergence guarantees: Under log-linear parameterization of the policy class, we show that

estimation error of our rDPO policy compared to the optimal policy is at most O(1
1−2ε

√
d
n), where

ε∈ [0, 1/2) is flip rate, d is dimension of policy parameter and n is number of preference samples.

2 BACKGROUND AND PROBLEM SETUP

Let D = (si, aw,i, al,i)
n
i=1 be the preference dataset for aligning language models (LMs), where

s ∼ ρ is a prompt from a distribution ρ, and aw ≻ al|s denotes answer aw is preferred to al by
a labeling oracle given prompt s. The preference distribution is typically expressed using a latent
reward model r∗(s, a) as p∗s,a,a′ =P[a ≻ a′|s] = σ(r∗(s, a)−r∗(s, a′)), where σ(z)= 1

1+e−z is the
sigmoid function that converts reward differences into winning probabilities. This is called the
Bradley-Terry-Luce (BTL) model Bradley & Terry (1952); Luce (2012).

Policy Estimation. Given a prompt distribution ρ and an SFT policy πsft, the optimal LM
policy π∗ corresponding to the latent reward r∗ can be computed by maximizing J(π) =

Es∼ρ,a∼π(·|s)

[
r∗(s, a)− β log π(a|s)

πsft(a|s)

]
, which yields

π∗(a|s) = 1

Z∗(s)
πsft(a|s) exp(r∗(s, a)/β) =⇒ r∗(s, a) = β log

π∗(a|s)
π0(a|s)

+ β logZ∗(s), (1)

where Z∗(s) =
∑

a∈A πsft(a|s) exp(r∗(s, a)/β) denotes the log-partition (normalizing) function.
Here β > 0 is a parameter that governs the balance between exploitation and exploration. Then
the true preference probabilities under the BTL model can be expressed using the optimal and SFT
policies as p∗s,a,a′ =σ

(
β log π∗(a|s)

πsft(a|s)−β log π∗(a′|s)
πsft(a′|s)

)
Rafailov et al. (2023). In this work, we consider

parameterized policies πθ, where θ ∈ Θ ⊂ Rd, and practical policy classes of the form

Π =

{
πθ(a|s) =

exp(fθ(s, a))∑
a′∈A exp(fθ(s, a′))

}
, (2)

where fθ is a real-valued differentiable function, such as a linear function or a neural network. Let
θ∗ and θ0 denote the parameters corresponding to the optimal and SFT policies, respectively. Now,
define the preference score of an action a relative to another one a′ given prompt s under policy
πθ as hθ(s, a, a

′) = log πθ(a|s)
πθ0

(a|s) − log πθ(a
′|s)

πθ0
(a′|s) . Then, for any θ ∈ Θ, the predicted preference

probabilities (we omit dependence on θ, θ0 for brevity) are ps,a,a′ =Pθ[a ≻ a′|s]=σ(βhθ(s, a, a
′)).

In this notation, we have the true preference probabilities p∗s,a,a′ = σ(βhθ∗(s, a, a′)). The DPO
algorithm Rafailov et al. (2023) finds the maximum likelihood estimate (MLE) by minimizing the
empirical BCE loss 1

n

∑n
i=1 L(θ; s, aw,i, al,i), where

L(θ; s, aw, al) = − log σ(βhθ(s, aw, al)) . (3)

Preference Noise. In this work, we model noise in the preferences via the standard random noise
model Natarajan et al. (2013); Wang et al. (2024); Mitchell (2023), where the revealed preferences are
true preferences flipped with a small probability ε ∈ (0, 1/2), i.e. Pε

[
(ãl,i, ãw,i) = (aw,i, al,i)|si

]
=

ε. Let D̃ = (si, ãw,i, ãl,i)
n
i=1 denote the dataset of potentially noisy samples the learning algorithm

sees, i.e., ãw,i is seen to be preferred to ãl,i.We will assume that the flip rate ε is known to the learner.
In practice, we will tune the flip rate through cross-validation.
Performance Measure. Our goal is to learn a policy π̂n(a|s) (i.e., policy parameter θ̂n), from

2

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

noisy data D̃, that yields maximum expected reward r∗(π) = Es∼ρ,a∼π(·|s) [r
∗(s, a)]. We measure

performance of the learned policy using a sub-optimality gap Zhu et al. (2023); Qiao & Wang (2022);
Agarwal et al. (2021) from the optimal policy π∗, namely r∗(π∗)− r∗(π̂n).

3 OUR APPROACH: ROBUST DPO
Given corrupted dataset D̃, we design an unbiased estimator of the loss (3) as follows

L̂ε(θ; s, ãw, ãl) =
(1− ε)L(θ; s, ãw, ãl)− εL(θ; s, ãl, ãw)

1− 2ε
. (4)

It holds that Eε

[
L̂ε(θ; s, ãw, ãl)|aw, al

]
= L(θ; s, aw, al). This way, we learn a good estimate of the

policy parameter in the presence of label noise by minimizing the sample average of the above robust
(w.r.t. preference flips) loss:

θ̂n ∈ argminθ∈Θ

1

n

∑n

i=1
L̂ε(θ; s, ãw,i, ãl,i) . (5)

We call our method robust-DPO (or rDPO in short). Note that when preferences are clean (i.e. flip
rate ε = 0), the rDPO loss (4) reduces to the DPO loss (3), and hence our trained rDPO policy (5)
coincides with the DPO policy of Rafailov et al. (2023). In contrast, Mitchell (2023) proposes a
conservative DPO (cDPO) loss

L̄ε(θ; s, ãw, ãl)=(1− ε)L(θ; s, ãw, ãl) + εL(θ; s, ãl, ãw) , (6)

which is simply a weighted sum of the DPO loss (3) under noisy preferences. However, unlike rDPo,
cDPO introduces preference bias in the DPO loss (3). Wang et al. (2024) use exactly the same loss
function to train the reward model for RLHF, and empirically show its superior performance over
vanilla RLHF in the presence of noisy data. In our experiments, we call this method (when coupled
with PPO for policy training) conservative PPO (cPPO). Notably, our robust loss also generalizes to
reward training in RLHF and we call this method rPPO (discussed in Appendix D).

3.1 GRADIENTS OF RDPO LOSS

To further understand the mechanism of rDPO, let’s now look at the gradients of its loss (4) and
contrast that with that of DPO loss (3). The gradients of L̂ε with respect to the parameters θ are

∇θL̂ε(θ; s, ãw, ãl) = −βζ̂θ,ε
(
∇θ log πθ(ãw|s)−∇θ log πθ(ãl|s)

)
, (7)

where the weights in the gradients are given by

ζ̂θ,ε=
1− ε

1− 2ε
σ(βhθ(s, ãl, ãw))+

ε

1− 2ε
σ(βhθ(s, ãw, ãl)). (8)

In contrast, the weights for the DPO loss gradients, if run on noisy preferences, are

ζθ = σ(βhθ(s, ãl, ãw)) = σ (βr̂θ(s, ãl)− βr̂θ(s, ãw)) ,

where r̂θ(s, a) = log πθ(a|s)
πθ0

(a|s) is an implicit reward defined by trained and SFT policies πθ, πθ0 .
Hence, the first term in (8) puts higher weight when the implicit reward model r̂θ orders observed
preferences incorrectly and scales it proportionally with probability of no-flip. The second term puts
higher weight when the implicit reward model r̂θ orders observed preferences correctly and scales it
proportionally with probability of flip. Both terms together de-bias the effect of noise on average.

Comparison with DPO and cDPO. The weights in the gradients of cDPO loss L̄ε are

ζ̄θ,ε = (1− ε)σ(βhθ(s, ãl, ãw))− εσ(βhθ(s, ãw, ãl)) .

Lemma 3.1 (Gradient weights). For any ε ∈ (0, 1/2), it holds that ζ̂θ,ε = ζθ+
ε

1−2ε and ζθ = ζ̄θ,ε+ε.

When there is no-flip, (ãw, ãl) = (aw, al). Observe from (7) that rDPO (also cDPO and DPO)
gradients increase the likelihood of preferred answers and decreases that of dis-preferred ones. Since
weights are higher for rDPO compared to DPO & cDPO (Lemma 3.1), this makes the parameter
update for rDPO more aggressive than DPO & cDPO in the desired direction. Now, for the case
of preference flips, i.e., (ãw, ãl)=(al, aw), the gradients are not in the desired direction (increase
likelihood of dis-preferred answers). Hence, rDPO updates will be more aggressive in the wrong

3

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

direction than DPO & cDPO. However, as preferences are flipped with probability < 1/2, rDPO
gradients will push parameter updates in the correct direction faster than DPO & cDPO on average.
This behavior is reflected in our experiments too - latent rewards of rDPO policy converges to that of
the optimal policy much faster than DPO & cDPO policies.

3.2 THEORETICAL RESULTS

To keep the presentation simple, we consider log-linear policies, where fθ can be expressed as
fθ(s, a) = ϕ(s, a)⊤θ using a feature map ϕ(s, a) ∈ Rd. In case of language model policies, the
feature map ϕ can be constructed by removing the last layer of the model, and θ correspond to the
weights of the last layer. We impose an identifiability constraint on the set of policy parameters Θ,
namely Θ={θ ∈ Rd|

∑d
i=1 θi = 0}. We also assume ∥θ∥ ≤ B, ∀θ ∈ Θ and ∥ϕ(s, a)∥ ≤ L. We let

Σ̂ = 1
n

∑n
i=1 xix

⊤
i , where xi = ϕ(si, aw,i)− ϕ(si, al,i), to denote the covariance matrix of feature

differences. The following result gives a guarantee on the estimation error.

Theorem 3.2 (Estimation error of θ̂n). Let δ ∈ (0, 1], ε ∈ [0, 1/2), λ > 0. Then, for log-linear policy
class (2), with probability at least 1− δ, we have∥∥∥θ̂n−θ∗

∥∥∥
Σ̂+λI

≤ C

γβ(1− 2ε)
·
√

d+ log(1/δ)

n
+ C ′ ·B

√
λ ,

where γ= 1
2+e−4βLB+e4βLB , C,C ′ are absolute constants.

When the feature covariance matrix Σ̂ is invertible, the above result holds for λ = 0. If this is not the
case, one might set λ = O(d/n) to achieve a vanishing error in the semi-norm Σ̂. However, the error
will not vanish for Neural policies. See Appendix C for the estimation error for neural policies.

Setting ε = 0 in the above result, we get an error bound of order O
(
1
γ

√
d/n

)
for the DPO policy

of Rafailov et al. (2023) when preferences are clean, which could be of independent interest. When
preferences are noisy, our rDPO policy achieves an error bound of order O

(
1

γ(1−2ε)

√
d/n

)
. Hence

the cost of preference flips is a multiplicative factor of the order 1
1−2ε – the higher the (expected)

number of preference flips, the higher the estimation error. Now, using the estimation error bound on
θ̂n, we can bound sub-optimality gap of our learned policy π̂n = πθ̂n

compared to optimal policy π∗.

Lemma 3.3 (Sub-optimality gap of π̂n (informal)). Let r∗(s, a) ≤ rmax for all (s, a). Then, for
log-linear policy class and assuming Σ̂ to be invertible, we have with high probability

r∗(π∗)− r∗(π̂n) ≤ O
(rmax

√
κ

γβ(1− 2ε)

√
d

n

)
,

where κ = maxπ∈Π
λmax(Σπ)
λmin(Σπsft

) and Σπ=Eπ

[
ϕ(s, a)ϕ(s, a)⊤

]
− Eπ[ϕ(s, a)]Eπ[ϕ(s, a)]

⊤ .

A small value of κ (relative condition number between Σπ and Σπsft
) helps to keep the ratio of

maximum feature coverage of policy to be evaluated and minimum coverage of starting policy in
check. Thus, it is important to have a good starting policy πsft to ensure a small condition number.
Roughly speaking, we desire an SFT policy which provides good coverage over the features. See
Appendix C for more details on κ and for the general result when Σ̂ is not invertible.

4 EXPERIMENTS

We empirically evaluate rDPO on two open-ended generation tasks similar to Rafailov et al. (2023):
(i) Controlled Sentiment Generation using the IMDb dataset Maas et al. (2011) and (ii) Single-turn
Dialogue using Anthropic helpful and harmless dataset Bai et al. (2022a). We compare rDPO with
vanilla DPO and cDPO in both tasks. In the sentiment generation task, we also include SLiC Zhao
et al. (2023) and IPO Azar et al. (2023) as baselines. Furthermore, we compare rPPO with vanilla
PPO (RLHF), cPPO in the sentiment generation task. Details on both experiments can be found in
Appendix B.

4

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

Controlled Sentiment Generation. In this experiment, each prompt s represents the prefix of a
movie review from the IMDb dataset Maas et al. (2011), and the task is to generate a review (action)
a ∼ π(·|s) with a positive sentiment. The results for this experiment are presented in Table 1 for the
DPO family and in Table 2 for the PPO family. For reference, we also train DPO and PPO on clean
data without any noise. We observe that the performance of DPO degrades with the introduction
of high noise (ε = 0.4) in data. IPO and SLiC also suffers significantly due to noisy preferences.
However, rDPO maintains performance across steps, which indicates its robustness to noise. We
also observe that cDPO is not able to mitigate the effect of noise confirming the conclusions of
Lemma 3.1. Similar observations are noticed for the PPO family. In Figure 1, we evaluate average
rewards fetched by generations at different sampling temperatures. It is observed that rDPO and
rPPO achieve the best reward by a significant margin compared to peers in their families.

Table 1: Mean reward ± Standard Deviation of actions generated by different methods after several
steps of policy training on the IMDb dataset under noise level 0.4.

Steps DPO (On clean data) DPO cDPO IPO SLiC rDPO

200 0.99 ± 0.03 0.93 ± 0.26 0.84 ± 0.36 0.85 ± 0.35 0.94 ± 0.22 0.99 ± 0.00
400 0.99 ± 0.02 0.72 ± 0.43 0.82 ± 0.37 0.83 ± 0.37 0.88 ± 0.31 0.99 ± 0.00
600 0.99 ± 0.00 0.88 ± 0.32 0.82 ± 0.38 0.84 ± 0.36 0.90 ± 0.29 0.99 ± 0.00
800 0.99 ± 0.00 0.88 ± 0.32 0.83 ± 0.36 0.83 ± 0.37 0.89 ± 0.30 0.99 ± 0.00

1000 0.99 ± 0.02 0.88 ± 0.32 0.83 ± 0.37 0.82 ± 0.38 0.90 ± 0.29 0.99 ± 0.00

Table 2: Mean reward ± Standard Deviation on IMDb dataset after policy optimization. The reward model is
trained on 1000 steps for all baselines, followed by running PPO for 1 epoch.

Step PPO (On clean data) PPO cPPO rPPO

1000 0.99 ± 0.00 0.78 ± 0.41 0.87 ± 0.33 0.94 ± 0.23

Single-turn Dialogue. In this experiment, each prompt s is a human query and each action a is a
helpful response to s. We use the Anthropic helpful and harmless dataset Bai et al. (2022a) as the
preference data. In this experiment, as we do not have access to any latent reward model, we employ
meta-llama/Llama-2-13b-chat-hf* to compute the win rate of policy generations against the chosen
preferences on a representative subset of the test dataset. Next, to demonstrate that of our method
generalizes to bigger models, we repeat this experiment with Llama-2-7b as the policy model and
GPT-4 as the evaluation model. The win-rates for both experiments are tabulated in Table 2. In both
cases, we observe that rDPO performs significantly better than DPO and cDPO.

It remains open to see how our method performs compared to other heuristics proposed in Wang et al.
(2024) e.g. flipping some labels or adding an adaptive margin in the loss.

Figure 1: Mean reward on IMDb dataset (ε = 0.4) at dif-
ferent sampling temperatures. For DPO family, we train
policy for 1000 steps. For PPO family, we train reward
for 1000 steps and then optimize policy for 1 epoch.

Method Improvement over SFT (%)
gpt2-large Llama-2-7b

DPO 22.20 45.78
cDPO (ε = 0.1) 18.34 39.16
rDPO (ε = 0.1) 24.32 51.20

Figure 2: Percentage Improvement on
win-rate vs chosen response over the initial
SFT policy

*huggingface.co/meta-llama/Llama-2-13b-chat-hf

5

https://huggingface.co/meta-llama/Llama-2-13b-chat-hf

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

REFERENCES

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy
gradient methods: Optimality, approximation, and distribution shift. The Journal of Machine
Learning Research, 22(1):4431–4506, 2021.

Mohammad Gheshlaghi Azar, Mark Rowland, Bilal Piot, Daniel Guo, Daniele Calandriello, Michal
Valko, and Rémi Munos. A general theoretical paradigm to understand learning from human
preferences. arXiv preprint arXiv:2310.12036, 2023.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson
Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez,
Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario
Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann, and Jared Kaplan.
Training a helpful and harmless assistant with reinforcement learning from human feedback, 2022a.
URL https://arxiv.org/pdf/2204.05862.pdf.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022b.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Xiaoyu Chen, Han Zhong, Zhuoran Yang, Zhaoran Wang, and Liwei Wang. Human-in-the-loop:
Provably efficient preference-based reinforcement learning with general function approximation.
In International Conference on Machine Learning, pp. 3773–3793. PMLR, 2022.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

Daniel Hsu, Sham Kakade, and Tong Zhang. A tail inequality for quadratic forms of subgaussian
random vectors. Electronic Communications in Probability, 17(none):1 – 6, 2012. doi: 10.1214/
ECP.v17-2079. URL https://doi.org/10.1214/ECP.v17-2079.

Timo Kaufmann, Paul Weng, Viktor Bengs, and Eyke Hüllermeier. A survey of reinforcement
learning from human feedback. arXiv preprint arXiv:2312.14925, 2023.

Nathan Lambert, Thomas Krendl Gilbert, and Tom Zick. The history and risks of reinforcement
learning and human feedback. arXiv e-prints, pp. arXiv–2310, 2023.

Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman, Mohammad Saleh, Peter J Liu, and Jialu Liu.
Statistical rejection sampling improves preference optimization. arXiv preprint arXiv:2309.06657,
2023.

R Duncan Luce. Individual choice behavior: A theoretical analysis. Courier Corporation, 2012.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Dekang Lin, Yuji Matsumoto, and Rada Mihalcea
(eds.), Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, pp. 142–150, Portland, Oregon, USA, June 2011. Association for
Computational Linguistics. URL https://aclanthology.org/P11-1015.

Eric Mitchell. A note on dpo with noisy preferences and relationship to ipo, 2023. URL https:
//ericmitchell.ai/cdpo.pdf.

Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. When does label smoothing help? Advances
in neural information processing systems, 32, 2019.

Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Ravikumar, and Ambuj Tewari. Learning with
noisy labels. Advances in neural information processing systems, 26, 2013.

6

https://arxiv.org/pdf/2204.05862.pdf
https://doi.org/10.1214/ECP.v17-2079
https://aclanthology.org/P11-1015
https://ericmitchell.ai/cdpo.pdf
https://ericmitchell.ai/cdpo.pdf

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Aldo Pacchiano, Aadirupa Saha, and Jonathan Lee. Dueling rl: reinforcement learning with trajectory
preferences. arXiv preprint arXiv:2111.04850, 2021.

Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and Lizhen Qu. Making
deep neural networks robust to label noise: A loss correction approach. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 1944–1952, 2017.

Robin L Plackett. The analysis of permutations. Journal of the Royal Statistical Society Series C:
Applied Statistics, 24(2):193–202, 1975.

Dan Qiao and Yu-Xiang Wang. Offline reinforcement learning with differential privacy. arXiv
preprint arXiv:2206.00810, 2022.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. arXiv
preprint arXiv:2305.18290, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances in
Neural Information Processing Systems, 33:3008–3021, 2020.

Louis L Thurstone. A law of comparative judgment. Psychological review, 34(4):273, 1927.

Joel A Tropp et al. An introduction to matrix concentration inequalities. Foundations and Trends® in
Machine Learning, 8(1-2):1–230, 2015.

Kristi Tsukida, Maya R Gupta, et al. How to analyze paired comparison data. Department of
Electrical Engineering University of Washington, Tech. Rep. UWEETR-2011-0004, 1, 2011.

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
Lambert, and Shengyi Huang. Trl: Transformer reinforcement learning. https://github.
com/huggingface/trl, 2020.

Binghai Wang, Rui Zheng, Lu Chen, Yan Liu, Shihan Dou, Caishuang Huang, Wei Shen, Senjie Jin,
Enyu Zhou, Chenyu Shi, et al. Secrets of rlhf in large language models part ii: Reward modeling.
arXiv preprint arXiv:2401.06080, 2024.

Ruosong Wang, Dean P Foster, and Sham M Kakade. What are the statistical limits of offline rl with
linear function approximation? arXiv preprint arXiv:2010.11895, 2020.

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang, Songfang Huang, and Fei Huang. Rrhf:
Rank responses to align language models with human feedback without tears. arXiv preprint
arXiv:2304.05302, 2023.

Wenhao Zhan, Masatoshi Uehara, Nathan Kallus, Jason D Lee, and Wen Sun. Provable offline
reinforcement learning with human feedback. arXiv preprint arXiv:2305.14816, 2023.

Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, Mohammad Saleh, and Peter J Liu. Slic-hf:
Sequence likelihood calibration with human feedback. arXiv preprint arXiv:2305.10425, 2023.

Banghua Zhu, Jiantao Jiao, and Michael I Jordan. Principled reinforcement learning with human
feedback from pairwise or k-wise comparisons. arXiv preprint arXiv:2301.11270, 2023.

Banghua Zhu, Michael I Jordan, and Jiantao Jiao. Iterative data smoothing: Mitigating reward
overfitting and overoptimization in rlhf. arXiv preprint arXiv:2401.16335, 2024.

7

https://github.com/huggingface/trl
https://github.com/huggingface/trl

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

A RELATED WORK

Recognizing the storage and computational challenges in RLHF, several alternatives have been
proposed. Each of these method work with different loss functions. While DPO optimizes BCE loss
to learn the policy Rafailov et al. (2023), SLiC uses hinge loss plus a regularization loss Zhao et al.
(2023), IPO uses square-loss Azar et al. (2023), RRHF uses ranking loss plus SFT loss Yuan et al.
(2023) and RSO uses BCE loss plus a rejection sampling Liu et al. (2023). While they have their own
intricacies and differences, all are competitive with RLHF on standard language tasks.

A recent line of work provides theoretical guarantees on the performance of policy learned using
preference-based RL algorithms Pacchiano et al. (2021); Chen et al. (2022); Zhu et al. (2023); Zhan
et al. (2023). All these works focus on guarantees in terms of regret bounds in the standard bandit or
RL setting and they do not deal with the practical algorithms like RLHF or DPO. Zhu et al. (2024)
considers the problem of reward overfitting in RLHF by replacing hard labels with soft ones. They
do not consider model overfitting in the presence of noisy data.

There is a line of work in supervised (deep) learning literature that considers learning in the presence
of label noise. Müller et al. (2019) study the effect of label smoothing to mitigate the overfitting
problem under noisy data. Natarajan et al. (2013) consider binary classification with noisy labels,
while Patrini et al. (2017) work on multi-label classification problems. They focus on bounding the
excess population risk of trained classifiers under the clean distribution. In contrast, we aim to bound
the estimation error of the trained policy, which brings out additional challenges in analysis.

B DETAILS ON EXPERIMENTS

Controlled Sentiment Generation. We extract the first 20 tokens from each review in the IMDb
dataset as a prefix. Subsequently, we generate reviews using a gpt2-large model supervised fine-
tuned on the IMDb dataset. We generate four reviews resulting in six preference pairs for each prefix.
We employ siebert/sentiment-roberta-large-english† as the latent (ground-truth) reward model
r∗(s, a). To ensure that we have a clean dataset, we only retain preference triplets (s, aw, al) where
r∗(s, aw)− r∗(s, al) > τ where τ = 0.1 is a threshold chosen for this task. This resulted in a dataset
with 12000 preference triplets of which 10000 were used to train the policy, and 2000 for evaluation.

We then introduce noise into this dataset by randomly flipping preferences with a probability of
ε = 0.4. For all methods, gpt2-large is employed as the initial policy. For methods in the DPO
family (vanilla DPO, rDPO, cDPO), we optimized the policy for 1000 steps with batch size 16. We
do the same for IPO and SLiC. For methods in the PPO family (vanilla PPO, rPPO, cPPO), we
trained a reward model on preference data for 1000 steps with batch size 16 and performed policy
optimization for 1 epoch over the entire train dataset.

For evaluation, we generate reviews using the final policy and computed rewards using the ground-
truth reward model r∗.

Single-turn Dialogue. We first perform policy optimization using rDPO. As the true noise level in
the dataset is unknown, we experiment with different values of ε ∈ {0.1, 0.2, 0.3, 0.4}. We plot the
evaluation accuracy of the policy on a subset of the test set across different training steps. This is
given by 1

m

∑
i∈Dtest

1(r̂θ(si, aw,i) > r̂θ(si, al,i)), where r̂θ is the implicit reward defined by policy
πθ. We observed the best results with ε = 0.1. Subsequently, we train DPO and cDPO (with
label-smoothing ε = 0.1) on the same data.

B.1 HYPERPARAMETER DETAILS

The hyperparameters for the experiments are outlined in Table 3 and Table 4. Any hyperparameters
not explicitly mentioned use the default values in the TRL‡ library.

†huggingface.co/siebert/sentiment-roberta-large-english
‡huggingface.co/docs/trl/index

8

https://huggingface.co/siebert/sentiment-roberta-large-english
https://huggingface.co/docs/trl/index

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

Table 3: Hyperparameters used for methods in the DPO Family

Parameter Value
beta 0.1

learning rate 0.001
batch size 16

max length 512
max prompt length 128

Table 4: Hyperparameters used for methods in the PPO Family

Model Parameter Value

Reward Model learning rate 1.41 x 10−5

batch size 16

PPO
learning rate 1.41 x 10−5

batch size 16

C DETAILS ON THEORETICAL RESULTS

Our method enjoys certain theoretical properties. By unbiasedness of L̂ε, we know that, for any fixed
θ ∈ Θ, the empirical rDPO loss (4) converges to the population DPO loss Es,aw,al

[
L(θ; s, aw, al)

]
even though the former is computed using noisy preferences whereas the latter depends on clean
preferences. But the rDPO policy π̂n = πθ̂n

won’t necessarily converge to the optimal policy π∗ as
preference pairs are sampled from the SFT policy πsft, but not form π∗ - an issue also shared by DPO
policy Liu et al. (2023). However, our end goal is to bound the sub-optimality gap of π̂n. For this,
we only need to characterize the estimation error of the learned policy parameter θ̂n as function of
number of samples n and flip rate ε.

C.1 ESTIMATION ERROR

Under the BTL model, two reward functions from the same equivalence class§ induce the same
preference distribution and the same optimal policy Rafailov et al. (2023). Due to this model under-
specification and reward re-parameterization (1), we need to impose an identifiability constraint on
the set of policy parameters Θ, namely Θ= {θ ∈ Rd|

∑d
i=1 θi = 0} to achieve any guarantee on

the estimation error. We also assume ∥θ∥ ≤ B, ∀θ ∈ Θ. We give guarantees for Neural policy
class of the form (2), i.e., when fθ is a neural network parameterized by θ. We make a smoothness
assumption on the policy class:

Assumption C.1 (Smoothness). For any θ∈Θ and (s, a),

|fθ(s, a)|≤α0, ∥∇fθ(s, a)∥≤α1,∇2fθ(s, a)≼α2I .

The assumption ensures that implicit reward differences hθ(s, aw, al) are bounded, Lipschitz, and
their gradients are also Lipschitz. This is quite common for establishing convergence for policy
gradient methods Agarwal et al. (2021). Log-linear policies (fθ(s, a) = θ⊤ϕ(s, a)), satisfy this
assumption with α0 = LB,α1 = L,α2 = 0, where L is an upper bound on ℓ2-norm of features
ϕ(s, a).

The following result gives a guarantee on the estimation error in terms of the parameter dimension
and flip rate. The main idea in the proof is to use strong convexity of rDPO loss L̂ε in the semi-norm
∥·∥Σ̂θ

. Here, for any θ ∈ Rd, Σ̂θ =
1
n

∑n
i=1xix

⊤
i is the sample covariance matrix of gradients of

implicit reward differences under true preferences, where xi=∇hθ(si, aw,i, al,i)=∇fθ(si, aw,i)−
∇fθ(si, al,i).

§Two reward functions r1, r2 are equivalent iff r1(s, a)−r2(s, a)=g(s) for some function g.

9

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

The error scales inversely with γβ(1 − 2ε), where γ ≤ σ′(βhθ(s, aw, al)) for all θ ∈ Θ and for
all preference samples (s, aw, al). Here γ lower bounds the first derivative of the logistic function
σ(zθ;β, z0) =

1
1+e−β(zθ−z0) , where zθ=fθ(s, aw)−fθ(s, al) and z0=zθ0 .

Theorem C.2 (Estimation error of θ̂n). Let δ ∈ (0, 1], ε ∈ [0, 1/2), λ > 0. Then, for Neural policy
class (2) and under Assumption C.1, with probability at least 1− δ, we have∥∥∥θ̂n−θ∗

∥∥∥
Σ̂θ∗+λI

≤ C

γβ(1− 2ε)
·
√

d+ log(1/δ)

n
+ C ′ ·B

√
λ+

α2

γβ(1− 2ε)
+ α1α2B ,

where γ= 1
2+e−4βα0+e4βα0

, C,C ′ are absolute constants.

Several remarks are in order with this result. To keep the presentation simple, we consider log-linear
policies in the following.

In this case α2 = 0 and xi = ϕ(si, aw,i) − ϕ(si, al,i). In this case, Σ̂θ is the covariance matrix of
feature differences and independent of θ. We denote this by Σ̂ and get a high-probability error bound
for log-linear policy class (see Theorem 3.2 in the main paper):∥∥∥θ̂n−θ∗

∥∥∥
Σ̂+λI

= O
(1

γβ(1− 2ε)

√
d

n
+B

√
λ
)
. (9)

Choice of Regularizer λ. When the feature covariance matrix Σ̂ is invertible, the above result holds
for λ = 0. In this case, we will get a vanishing error-rate in the ℓ2-norm∥∥∥θ̂n−θ∗

∥∥∥ = O
(1√

λmin(Σ)

1

γβ(1− 2ε)

√
d

n

)
. (10)

If this is not the case, θ̂n won’t necessarily converge to θ∗. But one might set λ = O(d/n) to achieve
a vanishing error in the semi-norm Σ̂ for log-linear policies. However, the error will not vanish for
Neural policies (as α2 ̸= 0).

Estimation Error of DPO Policy. As already mentioned, our rDPO policy (5) recovers the DPO
policy under clean preferences. Thus, setting ε = 0 in Theorem C.2, we get an error bound of order
O
(
1
γ

√
d/n

)
for the DPO policy. Therefore, as a by-product of our approach, we get the first error

bound for the trained DPO policy of Rafailov et al. (2023), which could be of independent interest.

Effect of Noisy Preferences. When preferences are noisy (i.e. flip rate ε > 0), our rDPO policy
achieves an error bound of order O

(
1

γ(1−2ε)

√
d/n

)
. Comparing this with the above error bound for

DPO policy under clean preferences, we see that the cost of preference flips is a multiplicative factor
of the order 1

1−2ε – the higher the (expected) number of preference flips, the higher the estimation
error.

Effect of KL regularizer. Since γ = O(1/eβ), the dependence of estimation error on the KL
regularizer β is of the order g(β) = O(eβ/β). Hence our result won’t no longer hold true when
β = 0 (no regularization). In this case preference probabilities are exactly equal to 1/2 (both
actions are equally preferred), making learning impossible. Same is the case when β → ∞ (full
regularization) since one action will always be preferred over the other with probability 1, making
the loss function degenerate. This points out the need for tuning β properly.

C.2 PERFORMANCE BOUNDS OF LEARNED POLICY

In this Section, we discuss how the estimation error of θ̂n relates to the sub-optimality gap of the
policy π̂n. We will consider log-linear policy class for ease of presentation.

It is well known that learning a near-optimal policy from an offline batch of data cannot be sample
efficient without assuming the behavior policy (SFT in our case) has a good coverage over the feature
space Wang et al. (2020). To begin with, we define the population covariance matrix of centered
features under a policy π:

Σπ=E
[
ϕ(s, a)ϕ(s, a)⊤

]
− E[ϕ(s, a)]E[ϕ(s, a)]⊤ , (11)

10

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

where the expectation is over random draws from s ∼ ρ, a ∼ π(·|s). Now, we define the condition
number of Σπ relative to Σπsft

(covariance matrix under SFT policy):

∀π ∈ Π : κπ = sup
v∈Rd

v⊤Σπv

v⊤Σπsft
v
=

λmax(Σπ)

λmin(Σπsft
)
.

A small relative condition number helps to keep the ratio of maximum feature coverage of policy to
be evaluated and minimum coverage of starting policy in check. Thus, it is important to have a good
starting policy πsft to ensure a small condition number. Roughly speaking, we desire an SFT policy
which provides good coverage over the features.
Assumption C.3 (Feature coverage). The SFT policy satisfies the minimum eigenvalue condition:
λmin(Σπsft

) > 0.

Let κ=maxπ∈Π κπ. The assumption ensures κ<∞. The result below shows how estimation error
and condition number determine the final performance of our learned policy.
Theorem C.4 (Sub-optimality gap of π̂n). Let δ ∈ (0, 1] and r∗(s, a) ≤ rmax for all (s, a). Then,
for log-linear policy class, we have with probability at least 1− δ:

r∗(π∗)− r∗(π̂n) ≤ rmax

√
κ/2

∥∥∥θ̂n−θ∗
∥∥∥
Σ̂+λI

for λ≥C
√
d log(4d/δ)/n, where C is a universal constant.

Dimension dependence in κ. It is reasonable to expect κ to be dimension dependent, but it doesn’t
necessarily depend on the size of the vocabulary. To see this, consider log-linear policies with
bounded features ∥ϕ(s, a)∥ ≤ L. In this case λmax(Σπ) ≤ L2 and thus κπ ≤ L2

λmin(Σπsft
) . Now,

λmin(Σπ) depends implicitly on the dimension d of features ϕ(s, a) and it is reasonable to assume
λmin(Σπsft

) = Θ(L2/d) (Wang et al., 2020). Thus it is always possible to have κ = O(d) Agarwal
et al. (2021).

Now, plugging in the bound on estimation error (9) in Theorem C.4, we get a sub-optimality gap of

order O
(√

κ
γβ(1−2ε)

√
d
n+

√
κd1/4

n1/4

)
. However, when sample feature covariance matrix Σ̂ is invertible,

i.e. observed samples from SFT policy provide good coverage of the feature space, then we get

O
(√

κ
γβ(1−2ε)

√
d
n

)
suboptimality gap (Lemma 3.3 in the main paper).

Margin Gap. A related performance measure is the margin under clean distribution. The margin of a
policy πθ is defined to be the average difference of implicit rewards r̂θ(s, a)=log πθ(a|s)

πsft(a|s) of chosen
and rejected actions, i.e.,

M(πθ) = Es∼ρ,(yw,yl)∼πsft
[r̂θ(aw|s)− r̂θ(al|s)] .

Then M(π∗)−M(π̂n) defines the margin gap of learned policy π̂n from the optimal policy π∗. This
metric is quite commonly used by practitioners to demonstrate performance of learned policy von
Werra et al. (2020).

Lemma C.5 (Margin gap). Assuming Σ̂ to be invertible for log-linear policy class, the margin gap of
π̂n satisfies

M(π∗)−M(π̂n) = O
(1

λmin(Σ̂1/2)

1

γβ(1− 2ε)

√
d

n

)
.

Since κ = O(1/λmin(Σπsft
)), comparing this result with sub-optimality bound from the above

paragraph, we see that both margin and sub-optimality gaps are roughly of the same order when Σ̂
has good coverage. This is also reflected in our experiments, where we see strong correlation between
evaluation accuracy (on clean data) and average reward performance for any policy; see Section B.

Generalizing to Neural Policy Class. A similar reasoning as the above can be also used to establish
a sub-optimality bound for neural policy class (2). Here the relative condition number needs to be
defined using the covariance matrix for the features fθ(s, a), which depend on θ, as opposed to the
feature map ϕ(s, a) in the log-linear case. The rest follows with an appropriate adaptation of the
results above.

11

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

D GENERALIZATIONS AND EXTENSIONS

Our approach to mitigate the effect of noisy preferences in data is not limited to DPO algorithm
and BTL preference model. It is a general framework that can be adapted to other preference
optimizations methods (e.g. SLiC, IPO) and other preference models (e.g. probit, Placket-Luce).
More importantly, since DPO implicitly learns a reward function r̂θ as we have discussed above, our
method seamlessly extends to the reward training stage of the RLHF pipeline, showing versatility of
our proposed approach.

Reward training in RLHF. Let us consider parameterized reward models rξ(s, a), where ξ ∈ Rd

is a parameter vector. Let ξ∗ be the parameter of the latent reward model r∗(s, a). Then, the true
preference probabilities following BTL model are given by

p∗s,a,a′ =Pξ∗ [a ≻ a′|s]=σ(rξ∗(s, a)− rξ∗(s, a
′)) .

Similar to (3), for any ξ ∈ Rd, this yields the BCE loss for a preference pair (s, aw, al):

L(ξ; s, aw, al) = − log σ(rξ(s, aw)− rξ(s, al)) . (12)

Under our random noise model with flip rate ε, for a potentially noisy data (s, ãw, ãl), one can define
a loss L̂ε(ξ; s, ãw, ãl) using (4), which will be an unbiased estimate of (12). Thus, using a similar
argument as in Section 3, a reward model trained by minimizing this loss will be robust to noisy
preferences. This trained reward model can be then directly plugged into (1) to train a language
model policy. In practice (1) is solved using PPO algorithm Schulman et al. (2017). Thus, we call
this entire procedure robust PPO (or rPPO in short).

Other Optimization Methods. Instead of the BCE loss (3), SLiC Zhao et al. (2023) minimizes a
hinge loss:

Lhinge(θ; s, aw, al) = max{0, 1− βhθ(s, aw, al)}
where 1/β acts as the margin (of miss-classification). IPO Azar et al. (2023) minimizes square loss:

LIPO(θ; s, aw, al) = (βhθ(s, aw, al)− 1/2)2 .

A potential advantage of IPO and SLiC over DPO is that these methods don’t assume any preference
model like BTL and could work with general preference probabilities. Under our random noise
model, one can define robust counterparts of both Lhinge and LIPO using (4). This will ensure these
losses under noisy data (ãw, ãl) are unbiased estimates of those under clean data (aw, al), and will
help one learn a robust policy for these loss functions.

Other Preference Models. Our results can be extended to any preference model of the form p∗s,a,a′ =

P[a ≻ a′|s] = g(r∗(s, a)−r∗(s, a′)), if g is strongly log-concave, i.e., − d2

dz2 log g(z) ≥ γ > 0 in a
closed interval around z = 0. For example, in the probit (also known as Thurstone) model (Thurstone,
1927), g is the CDF of standard Gaussian distribution. Thus, for any θ, the preference probabilities
are Pθ[a ≻ a′|s]=Φ(βhθ(s, a, a

′)). Since Φ is strongly log-concave in Θ (Tsukida et al., 2011), one
can derive similar performance bounds under probit model too.

For the Placket-Luce (PL) model (Plackett, 1975; Luce, 2012) for K-wise comparisons between
actions. Let Π be the set of all permutations π : [K] → [K], that denotes a ranking given by an oracle
over all K actions, where aπ(j) denotes the j-th ranked action. Under the PL model, we define the
loss of a permutation π ∈ Π for a question s as

L(θ; s, π) = − log
(K∏

j=1

exp(r̂θ(s, aπ(j)))∑K
k′=j exp(r̂θ(s, aπ(k′)))

)
.

Noisy preferences are obtained by perturbing the true ranking π to some other ranking π̃ with
probability ε

N−1 , where N is the number of possible rankings (can be at most K!). Then, if we define
the robust-loss for noisy ranking π̃ as

L̂ε(θ; s, π̃)=

(
N−1−ε

)
L(θ; s, π̃)−ε

∑
π′ ̸=π̃ L(θ; s, π′)

(1− ε)N − 1
,

it will be an unbiased estimate of L(θ; s, π). This would help us to learn a robust policy under PL
feedback model.

12

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

E PROOFS

E.1 PROOF OF UNBIASEDNESS OF RDPO LOSS

It is easy to see that

Eε

[
L̂ε(θ; s, ãw, ãl)|aw, al

]
=

(1− ε)2L(θ; s, aw, al)− ε(1− ε)L(θ; s, al, aw)
1− 2ε

+
ε(1− ε)L(θ; s, al, aw)− ε2L(θ; s, aw, al)

1− 2ε

= L(θ; s, aw, al) .

E.2 PROOF OF LEMMA 3.1

The gradients of the rDPO loss L̂ε with respect to the parameters θ can be written as

∇θL̂ε(θ; s, ãw, ãl) =
(1− ε)∇θL(θ; s, ãw, ãl)− ε∇θL(θ; s, ãl, ãw)

1− 2ε

= −β · ζ̂θ,ε ·
(
∇θ log πθ(ãw|s)−∇θ log πθ(ãl|s)

)
,

where the weights ζ̂θ,ε are given by

ζθ,ε =
1− ε

1− 2ε
σ(βhθ(s, ãl, ãw))+

ε

1− 2ε
σ(βhθ(s, ãw, ãl))

=
1−ε

1−2ε
−σ(βhθ(s, ãw, ãl))=

ε

1−2ε
+σ(βhθ(s, ãl, ãw)) = ζθ +

ε

1− 2ε
.

The gradient of cDPO loss is given by

∇θL̄ε(θ; s, ãw, ãl) = (1− ε)∇θL(θ; s, ãw, ãl) + ε∇θL(θ; s, ãl, ãw)
= −β · ζ̄θ,ε ·

(
∇θ log πθ(ãw|s)−∇θ log πθ(ãl|s)

)
,

where the weights are ζ̄θ,ε = (1− ε)σ(βhθ(s, ãl, ãw))− εσ(βhθ(s, ãw, ãl)). It holds that

ζ̄θ,ε = σ(βhθ(s, ãl, ãw))− ε = ζθ − ε = ζ̂θ,ε −
2ε(1− ε)

1− 2ε
.

E.3 PROOF OF THEOREM C.2

For the neural policy of the form (2), we have

hθ(s, a, a
′) = [fθ(s, a)− fθ(s, a

′)]− [fθ0(s, a)− fθ0(s, a
′)] .

Then from Assumption C.1, we have

|hθ(s, a, a
′)| ≤ |fθ(s, a)− fθ0(s, a)|+ |fθ(s, a′)− fθ0(s, a

′)| ≤ 2α0,

∥∇hθ(s, a, a
′)∥ = ∥∇fθ(s, a)−∇fθ(s, a

′)∥ ≤ 2α1 ,∥∥∇2hθ(s, a, a
′)
∥∥ =

∥∥∇2fθ(s, a)−∇2fθ(s, a
′)
∥∥ ≤ 2α2 .

Now, we express the population DPO loss Es,aw,al

[
L(θ; s, aw, al)

]
by incorporating preference

probabilities p∗s,a,a′ as

L(θ) = −Es,a,a′,y

[
− y log σ(βhθ(s, a, a

′)) + (1− y) log(1− σ(βhθ(s, a, a
′))

]
,

where y is a Bernoulli random variable with mean p∗s,a,a′ = σ(βhθ∗(s, a, a′).

Similarly, under the random noise model, let each ỹi be Bernoulli distributed with probability
Pθ∗,ε[ãw,i ≻ ãl,i|si], where Pθ,ε[a ≻ a′|s] is given by

Pθ,ε[a ≻ a′|s] = (1− ε) · Pθ[a ≻ a′|s] + ε · Pθ[a
′ ≻ a|s]

= (1− ε) · σ(βhθ(s, a, a
′)) + ε · σ(βhθ(s, a

′, a)) . (13)

13

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

Denote zi = (si, ãw,i, ãl,i). Then, our de-biased loss function (4) can be re-written as

L̂ε(θ) = − 1

n

n∑
i=1

[
1(ỹi = 1)

(
(1− ε) log σ(βhθ(zi))− ε log(1− σ(βhθ(zi))

)
+ 1(ỹi = 0)

(
(1− ε) log(1− σ(βhθ(zi))− ε log σ(βhθ(zi))

)]
.

The gradient of the loss function is given by ∇L̂ε(θ) = −β
n

∑n
i=1 Vθ,i∇hθ(zi) = −β

nZ
⊤
θ Vθ, where

Vθ,i = 1(ỹi = 1)

(
σ′(βhθ(zi))

σ(βhθ(zi))
(1− ε) +

σ′(βhθ(zi))

1− σ(βhθ(zi))
ε

)
− 1(ỹi = 0)

(
σ′(βhθ(zi))

1− σ(βhθ(zi))
(1− ε) +

σ′(βhθ(zi))

σ(βhθ(zi))
ε

)
.

It holds that for θ = θ∗:

Eθ[Vθ,i|zi] =
(
σ(βhθ(zi))(1− ε) + (1− σ(βhθ(zi)))ε

)(
σ′(βhθ(zi))

σ(βhθ(zi))
(1− ε) +

σ′(βhθ(zi))

1− σ(βhθ(zi)
ε

)
−
(
(1− σ(βhθ(zi)))(1− ε) + σ(βhθ(zi))ε

)(
σ′(βhθ(zi))

1− σ(βhθ(zi))
(1− ε) +

σ′(βhθ(zi))

σ(βhθ(zi))
ε

)
= 0 .

Furthermore, we have

|Vθ,i|ỹi=1 = (1− σ(βhθ(zi)))(1− ε) + σ(βhθ(zi))ε =: p̃i,0 ≤ 1,

|Vθ,i|ỹi=0 = σ(βhθ(zi))(1− ε) + (1− σ(βhθ(zi)))ε =: p̃i,1 ≤ 1 .

Therefore, it holds that Vθ∗,i is zero-mean and v = 1 sub-Gaussian under the conditional distribution
Pθ∗ [·|zi] .

Now the Hessian of the loss function is given by

∇2L̂ε(θ) =
1

n

n∑
i=1

[
1(ỹi = 1)

(
ε∇2 log(1− σ(βhθ(zi)))− (1− ε)∇2 log σ(βhθ(zi))

)
+ 1(ỹi = 0)

(
ε∇2 log σ(βhθ(zi))− (1− ε)∇2 log(1− σ(βhθ(zi)))

)]
,

where

∇2 log σ(βhθ(zi)) = β2σ
′′(βhθ(zi))σ(βhθ(zi))− σ′(βhθ(zi))

2

σ(βhθ(zi))2
∇hθ(zi)∇hθ(zi)

⊤

+ β(1− σ(βhθ(zi)))∇2hθ(zi),

∇2 log(1− σ(βhθ(zi))) = −β2σ
′′(βhθ(zi))(1− σ(βhθ(zi))) + σ′(βhθ(zi))

2

(1− σ(βhθ(zi)))2
∇hθ(zi)∇hθ(zi)

⊤

− βσ(βhθ(zi))∇2hθ(zi).

Using σ′′(z) = σ′(z)(1− 2σ(z)), we get

∇2 log σ(βhθ(zi)) = −β2σ′(βhθ(zi))∇hθ(zi)∇hθ(zi)
⊤ + β(1− σ(βhθ(zi))))∇2hθ(zi)

∇2 log(1− σ(βhθ(zi))) = −β2σ′(βhθ(zi))∇hθ(zi)∇hθ(zi)
⊤ − βσ(βhθ(zi))∇2hθ(zi) .

14

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

Hence, the Hessian of the loss function takes the form

∇2L̂ε(θ) = (1− 2ε)β2 1

n

n∑
i=1

σ′(βhθ(zi))∇hθ(zi)∇hθ(zi)
⊤

− β

n

n∑
i=1

1(ỹi = 1)
(
σ(βhθ(zi))ε+ (1− σ(βhθ(zi)))(1− ε)

)
∇2hθ(zi)

+
β

n

n∑
i=1

1(ỹi = 0)
(
σ(βhθ(zi))(1− ε) + (1− σ(βhθ(zi)))ε

)
∇2hθ(zi)

= β2(1− 2ε)
1

n

n∑
i=1

σ′(βhθ(zi))∇hθ(zi)∇hθ(zi)
⊤ − β

n

n∑
i=1

1(ỹi = 1)p̃i,0∇2hθ(zi)

+
β

n

n∑
i=1

1(ỹi = 0)p̃i,1∇2hθ(zi)

⩾ γβ2(1− 2ε)
1

n

n∑
i=1

∇hθ(zi)∇hθ(zi)
⊤ − 2βα2I ,

which holds by Assumption C.1 and observing that σ′(βhθ(zi)) ≥ γ for all θ ∈ Θ, where γ =
1

2+exp(−4βα0)+exp(4βα0)
, and due to the fact that ε < 1/2.

Then, from Assumption C.1 and using simple algebra, we have for all u ∈ Rd:

u⊤∇2L̂ε(θ)u ⩾
γβ2(1− 2ε)

n
∥Zθ∗u∥2 − 2α2(β + 2γβ2(1− 2ε)α1B) ∥u∥2 .

Since θ∗ ∈ Θ, introducing the error vector ∆ = θ̂n − θ∗, we conclude that

γβ2(1− 2ε) ∥∆∥2Σθ∗
⩽

∥∥∥∇L̂ε(θ
∗)
∥∥∥
(Σ̂θ∗+λI)−1

∥∆∥(Σ̂θ∗+λI) + 2α2β(1 + 2βγ(1− 2ε)α1B) ∥∆∥2

for some λ > 0. Introducing Mθ∗ = 1
n2Zθ∗(Σ̂θ∗ + λI)−1Z⊤

θ∗ , we now have∥∥∥∇L̂ε(θ
∗)
∥∥∥2
(Σ̂θ∗+λI)−1

= β2V ⊤
θ∗Mθ∗Vθ∗ . Then, the Bernstein’s inequality for sub-Gaussian random

variables in quadratic form (see e.g. Hsu et al. (2012, Theorem 2.1)) implies that with probability at
least 1− δ,∥∥∥∇L̂ε(θ

∗)
∥∥∥2
(Σ̂θ∗+λI)−1

= β2V ⊤
θ∗Mθ∗Vθ∗ ⩽ β2

(
tr(Mθ∗) + 2

√
tr(M⊤

θ∗Mθ∗) log(1/δ) + 2 ∥Mθ∗∥ log(1/δ)
)

⩽ C1 · β2 · d+ log(1/δ)

n

for some C1 > 0. This gives us

γβ2(1− 2ε) ∥∆∥2Σ̂θ∗+λI

⩽
∥∥∥∇L̂ε(θ

∗)
∥∥∥
(Σθ∗+λI)−1

∥∆∥(Σ̂θ∗+λI) + 4(λγβ2(1− 2ε) + 2α2β(1 + 2βγ(1− 2ε)α1B))B2

⩽

√
C1 · β2 · d+ log(1/δ)

n
∥∆∥(Σ̂θ∗+λI) + 4(λγβ2(1− 2ε) + 2α2β(1 + 2βγ(1− 2ε)α1B))B2.

Solving for the above inequality, we get

∥∆∥(Σ̂θ∗+λI) ⩽ C2 ·

√
1

γ2β2(1− 2ε)2
· d+ log(1/δ)

n
+ (λ+

α2

γβ(1− 2ε)
+ α1α2B)B2

for some constant C2 > 0. Hence, we get∥∥∥θ̂n − θ∗
∥∥∥
(Σ̂θ∗+λI)

⩽
C

γβ(1− 2ε)
·
√

d+ log(1/δ)

n
+ C ′ ·B

√
λ+

α2

γβ(1− 2ε)
+ α1α2B,

for some C,C ′ > 0. This completes our proof.

15

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

E.4 PROOF OF THEOREM C.4

Define the population covariance matrix of centered gradients of the function fθ(s, a) under policy π:

Σπ=Es∼ρ,a∼π(·|s)
[
gθ(s, a)gθ(s, a)

⊤] ,
where gθ(s, a) =∇fθ(s, a) − Ea′∼π(·|s)[∇fθ(s, a

′)] denotes the centered features. For log-linear
policies, ∇fθ(s, a)=ϕ(s, a) and gθ(s, a)=ϕ(s, a)−Eθ[ϕ(s, a

′)], which gives

Σπ=Es∼ρ,a∼π(·|s)
[
ϕ(s, a)ϕ(s, a)⊤

]
− Es∼ρ,a∼π(·|s)

[
ϕ(s, a)

]
Es∼ρ,a∼π(·|s)

[
ϕ(s, a)

]⊤
.

Define sample covariance and population matrix of feature differences under clean data D;

Σ̂ =
1

n

n∑
i=1

(ϕ(si, aw,i)− ϕ(si, al,i)) (ϕ(si, aw,i)− ϕ(si, al,i))
⊤
,

Σπ,diff = Es∼ρ,a,a′∼π(·|s)

[
(ϕ(s, a)− ϕ(s, a′)) (ϕ(s, a)− ϕ(s, a′))

⊤
]
.

Since a, a′ are indpendent samples from policy π(·|s), it holds that

Σπ,diff = 2Σπ

Since (aw,i, ali,i) are independent samples from SFT policy πsft(·|s), by matrix concentration
inequality Tropp et al. (2015), we have the following lemma.

Lemma E.1. With probability at least 1− δ, for some universal constant C, we have∥∥∥Σ̂− Σπsft,diff

∥∥∥
2
≤ C

√
d log(4d/δ)/n .

This implies, for λ ≥ C
√
d log(4d/δ)/n, with probability at least 1− δ:

Σ̂ + λI ⪰ Σπsft,diff + λI − C
√
d log(4d/δ)/n ⪰ Σπsft,diff = 2Σπsft

. (14)

Now, we bound the sub-optimality gap conditioned on this high-confidence event. Since r∗(s, a) ≤
rmax for all (s, a), we have the sub-optimality gap:

r∗(π∗)− r∗(π̂n) = Es∼ρ,a∼π∗(·|s) [r
∗(s, a)]− Es∼ρ,a∼π̂n(·|s) [r

∗(s, a)]

≤ rmaxEs∼ρ [TV (π
∗(·|s), π̂n(·|s))]

≤ rmax

[
Es∼ρ

√
2KL (π∗(·|s), π̂n(·|s))

]
≤ rmax

√
2Es∼ρ [KL (π∗(·|s), π̂n(·|s))] ,

where the second step follows from Pinsker’s inequality and the last step is due to Jensen’s inequality.

Since the neural policy class (2) belongs to the exponential family of distributions, it holds that
KL (πθ(·|s), πθ′(·|s)) = BL(θ

′, θ), where BL is the Bregman divergence with potential function
Ls(θ) = log

∑
a′∈A fθ(s, a

′). It is defined as

BLs
(θ′, θ)

def
= Ls(θ

′)− Ls(θ)− ⟨θ′ − θ,∇Ls(θ)⟩ .
Therefore, we get

KL (π∗(·|s), π̂n(·|s)) = Ls(θ̂n)− Ls(θ
∗)− ⟨θ̂n − θ∗,∇Ls(θ

∗)⟩ = 1

2
(θ̂n − θ∗)⊤∇2Ls(θ)(θ̂n − θ∗)

for some θ ∈ {tθ∗ + (1− t)θ̂n : t ∈ [0, 1]} using Taylor’s approximation.

16

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

Now, for log-linear policy, we have Es∼ρ

[
∇2Ls(θ)

]
= Σπθ

. Then, we can upper bound the
sub-optimality gap using relative condition number κ as

r∗(π∗)− r∗(π̂n) = rmax

∥∥∥θ̂n − θ∗
∥∥∥
Σπθ

= rmax

∥∥∥θ̂n − θ∗
∥∥∥
Σ̂+λI

√
(θ̂n − θ∗)⊤Σπθ

(θ̂n − θ∗)

(θ̂n − θ∗)⊤(Σ̂ + λI)(θ̂n − θ∗)

≤ rmax√
2

∥∥∥θ̂n − θ∗
∥∥∥
Σ̂+λI

√
(θ̂n − θ∗)⊤Σπθ

(θ̂n − θ∗)

(θ̂n − θ∗)⊤Σπsft
(θ̂n − θ∗)

≤ rmax√
2

∥∥∥θ̂n − θ∗
∥∥∥
Σ̂+λI

√
sup
v∈Rd

v⊤Σπθ
v

v⊤Σπsft
v

=
rmax

√
κπθ√
2

∥∥∥θ̂n − θ∗
∥∥∥
Σ̂+λI

≤ rmax
√
κ√

2

∥∥∥θ̂n − θ∗
∥∥∥
Σ̂+λI

.

Here, the third step follows from (14), the fifth step holds by definition of (relative) condition number
and in the final step, we use that κ = maxπ∈Π κπ . This completes our proof.

E.5 PROOF OF LEMMA C.5

Recall that r̂θ(s, a)=log πθ(a|s)
πsft(a|s) denotes the implicit reward defined by trained and SFT policies πθ

and πsft. Then, we have the expected margin gap under clean distribution

M(π∗)−M(π̂n) = Es∼ρ,(yw,yl)∼πsft

[
[r̂θ⋆(aw|s)− r̂θ⋆(al|s)]− [r̂θ̂n(aw|s)− r̂θ̂n(al|s)]

]
= Es∼ρ,(yw,yl)∼πsft

[
log

πθ∗(aw|s)
πθ∗(al|s)

− log
πθ̂n

(aw|s)
πθ̂n

(al|s)

]
= Es∼ρ,(yw,yl)∼πsft

[
[fθ∗(s, yw)− fθ∗(s, yl)]− [fθ̂n(s, yw)− fθ̂n(s, yl)]

]
= Es∼ρ,(yw,yl)∼πsft

[
[fθ∗(s, yw)− fθ̂n(s, yw)]− [fθ∗(s, yl)− fθ̂n(s, yl)]

]
≤ Es∼ρ,(yw,yl)∼πsft

[∣∣∣fθ∗(s, yw)− fθ̂n(s, yw)
∣∣∣+ ∣∣∣fθ∗(s, yl)− fθ̂n(s, yl)

∣∣∣]
≤ 2α1

∥∥∥θ∗ − θ̂n

∥∥∥ ,

where the final step follows from Assumption C.1. Now, assuming Σ̂ to be invertible for log-linear
policies, we get from (9):∥∥∥θ̂n−θ∗

∥∥∥
Σ̂
= O

(1√
λmin(Σ̂)

1

γβ(1− 2ε)

√
d

n

)
.

Setting α1 = LB for log-linear policies, we obtain

M(π∗)−M(π̂n) = O
(1√

λmin(Σ̂)

2LB

γβ(1− 2ε)

√
d

n

)
,

which completes our proof.

17

	Introduction
	Background and Problem Setup
	Our Approach: Robust DPO
	Gradients of rDPO Loss
	Theoretical Results

	Experiments
	Related Work
	Details on Experiments
	Hyperparameter Details

	Details on Theoretical Results
	Estimation Error
	Performance Bounds of Learned Policy

	Generalizations and Extensions
	Proofs
	Proof of Unbiasedness of rDPO Loss
	Proof of Lemma 3.1
	Proof of Theorem C.2
	Proof of Theorem C.4
	Proof of Lemma C.5

