
Analyzing (In)Abilities of SAEs via Formal Languages

Abhinav S Menon
IIIT Hyderabad

abhinav.m@research.iiit.ac.in

Manish Shrivastava
IIIT Hyderabad

m.shrivastava@iiit.ac.in

David Krueger
MILA

david.scott.krueger@gmail.com

Ekdeep Singh Lubana
CBS, Harvard University

ekdeeplubana@fas.harvard.edu

Abstract

Sparse autoencoders (SAEs) have been central to the effort of finding interpretable
and disentangled directions of representation spaces in neural networks, in both
image and text domains. While the efficacy and pitfalls of autoencoders in the vision
domain are well-studied, there is a lack of corresponding results, both qualitative
and quantitative, for the text domain. We address these gaps by testing the approach
on a synthetic testbed of formal languages, with easily controllable and definable
attributes in the input space. We define and train language models on a set of
formal grammars, and train SAEs on the latent representations of these models
under a wide variety of hyperparameter settings. We identify several interpretable
latents in the SAEs, and formulate a scaling law defining the relationship between
the reconstruction loss of SAEs and their hidden size. We show empirically that
the presence of latents correlating to certain features of the input does not imply
a causal function in the computation and that the performance of SAEs is highly
sensitive to inductive biases.

1 Introduction

In recent years, mechanistic interpretability (MI) has gained currency as an approach towards
understanding the functioning of deep neural models. One MI paradigm that has seen remarkable
progress across domains is sparse autoencoders (SAEs), which aims to disentangle data (usually either
real-world data or internal representations of models) into independent, interpretable components [1–
9] (see App. A for related work). In the vision domain, autoencoder-based interpretability methods
have been extensively studied [10–13], from both empirical and theoretical points of view. Results on
the (non-)identifiability of disentangled representations, the feasibility of the autoencoder paradigm,
and the necessity of inductive biases have been established, taking the perspective that autoencoders
are a method of dictionary learning. The objectives of training autoencoders have also been quantified
through a number of metrics. Many of these results have been arrived at through a comprehensive
evaluation of the method on a synthetic testbed [10]. We propose an analogous study for the text
domain, aiming to stress-test the SAE approach to interpretability of LM representations. Specifically,
we conduct a wide-ranging study of SAEs on a set of formal languages, which we propose as a
synthetic testbed for the text domain. Our contributions are as follows.

• We define formal languages of different complexities, train Transformers on these languages, and
then analyze SAEs trained on their representations under several different hyperparameter settings.
We identify several features occurring in these SAEs that correspond to variables central to
the data generating process (e.g. depth, part of speech). We also observe a scaling law in the
reconstruction losses of a particular class of SAEs with respect to hidden dimension size.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

• We demonstrate, in line with results from the vision domain, that the identifiability of disentan-
gled features is not robust. Results are highly sensitive to changes in normalization methods,
hyperparameters, and other such settings. For example, models trained under L1 regularization
consistently fail to find interpretable features; additionally, normalization has widely varying
effects on the reconstruction capabilities of the SAEs.

• We demonstrate that mere identification of disentangled features does not imply said features
will be causally relevant to the model’s computation. We believe that future approaches should
work towards integrating causality as a necessary property into the training objective of SAEs,
similar to prior work in vision [14].

2 Experiments

Figure 1: The autoencoder paradigm for
interpretability. Autoencoders have formed
the basis of approaches to disentanglement
via dictionary learning in the vision do-
main [10–12, 15]. They are incentivized
towards disentanglement via some form of
regularization. While SAEs have similarly
been used to disentangle latent representa-
tions of language models for interpretability,
few of the guarantees and assumptions of the
paradigm have been shown to transfer across
the domains.

Our experiments consist of training SAEs (of vari-
ous paradigms) on the intermediate representation of
Transformer models trained on our formal languages.
We explain the data generating process, model archi-
tectures, and autoencoder paradigms next.

2.1 Data and Models

The formal languages we work with are probabilis-
tic context-free grammars (PCFGs), which are gen-
erated by starting with a fixed ‘start’ symbol, and
probabilistically replacing nonterminals according to
production rules. We work with three PCFGs, in-
tended to represent levels of complexity (in parsing
and generation). In order of increasing complexity,
the languages we consider are Dyck-2 (the language
consisting of all matched bracket sequences with two
types of brackets), Expr (a language of prefix arith-
metic expressions), and English (a simple fragment
of English syntax with only subject-verb-object con-
structions). See App. B for precise details.

We train Transformer models on an autoregressive
language modelling task on each of the above lan-
guages (separately). This is implemented as next
token prediction and cross-entropy loss. The models
have 128-dimensional embeddings, with 4 attention
heads and MLPs, and 2 blocks. In all cases, the models achieve more than 99% validity (i.e., under
stochastic decoding, the strings generated belong to the language more than 99% of the time).

2.2 SAEs

Broadly, we use the conventional SAE architecture, which consists of two linear layers (an encoder
and a decoder transform) with an activation function in between. More explicitly, if the sizes of the
input and hidden state are d and h respectively, then our SAEs implement functions of the type

SAE(x) = Wdec(σ(Wenc(x) + benc)) + bdec,

where Wenc ∈ Rd×h, Wdec ∈ Rh×d, and benc ∈ Rd, bdec ∈ Rh. We pick h from {d, 2d, 4d, 8d}
and set σ = ReLU. We optimize on the MSE between x and SAE(x). The input x to the SAEs is
taken from end of the first block of the Transformer model. We allow for two main modifications to
this architecture: the normalization method and pre_bias. There are three parts of the operation
of the SAE that can be normalized – the input, the reconstruction, and the decoder directions. We
allow for four settings: no normalization (I), input and decoder with pre_bias (II), input alone
(III), and input and reconstruction (IV). By pre_bias, we refer to the addition of a learnable vector
bpre ∈ Rd to the input before applying the encoder transform, which is then subtracted after the
decoder transform. Sparsity is enforced via two main methods. The first (and most common in

2

existing work) is an L1-regularization term added to the loss, which encourages latent representations
to have low L1-norm. The hyperparameter for this method is the weight of the regularization term.
We also use, following Gao et al. [7], top-k regularization – at the SAE hidden layer, after the
activation function, we select the highest k latents, and zero out the rest. Effectively, we force the L0

norm of the latents to be at most k, i.e., the hyperparameter is k itself.

3 Results

Opening Closing
0

20

40

60

80

100

Ac
tiv

at
io

n

Depth 0
Depth 1
Depth > 1

Figure 2: A feature matching corre-
sponding opening and closing brackets.
Each line represents a pair of brackets,
and joins the opening bracket’s activa-
tion (left) to the closing bracket’s (right).
We note that the depth and opening ac-
tivation are sufficient to determine the
closing activation, and that the opening
and closing activations are sufficient to
determine the depth.

Features. Qualitatively, we observe that top-k-regularized
SAEs tend to have more interpretable features than L1-
regularized ones. The former results in interpretable fea-
tures across all languages – we find features representing
fundamental aspects of the corresponding grammars, as
discussed next briefly. See App. C for further results,
including other features we are able to identify and how
strongly features correlate with their claimed explanations.

In the case of Dyck-2, we expect the depth (the number of
brackets yet to be closed) to be represented. We find fea-
tures that threshold the depth of tokens, i.e., they activate
on tokens with depth above a certain threshold depth D.
Usually, D is greater than the mean; for instance, when
mean depth is 8.3, we find D = 11. We also find features
that match corresponding pairs of opening and closing
brackets, usually at lower depths (Fig. 2). These features
take values from only a few small ranges, and their values
at an opening bracket determine those they take at the
matching closing bracket. These features, even though
they are binary, indicate that the token representations do
maintain some form of stack counting (which aligns with results from prior work [16]).

In Expr, an analogue of depth thresholding is maintaining a counter that indicates how many more
expressions are needed to complete the sequence (see App. B). We find a feature that activates exactly
when this counter’s value is 1, i.e., when exactly one expression is required (Fig. 3). This provides
strong evidence of a counter process being implemented—in fact, generation without this process
would be rather convoluted (see Alg. 1).

An inference we can make from the Expr features is that there is an implicit “type” feature in the
representations, distinguishing operators of different valences. A natural place to look for this is the
parts of speech in our English grammar, and we find that k-regularized SAEs do contain features
corresponding to each part of speech. For example, we illustrate the ‘adjective’ feature in Fig. 4.

Further, we note a scaling law in the accuracy of the top-k-regularized autoencoders. The reconstruc-
tion loss they achieve (after a fixed number of iterations) decreases according to a power law with the
size of the autoencoder’s hidden layer; similar results were seen by Sharkey et al. [2], relating the
reconstruction loss to the L1 penalty coefficient.

Figure 4: A feature that activates only on adjectives, at any position. Here, depth is represented by
the y-axis and position by the x-axis; the lines connect nonterminals to their productions (see App. B
for the production rules). The cell color represents the activation magnitude.

3

Table 1: Reconstruction Accuracy (%) averaged over regularization values and hidden size. We
present the accuracies for SAEs with no normalization (I); with inputs and decoder normalized, and
pre_bias (II); with inputs normalized (III); and with inputs and reconstructions normalized (IV).

Language L1 top-k

I II III IV I II III IV

Dyck-2 0.01 0.0 0.01 0.0 49.27 3.48 50.02 0.06
Expr 33.31 6.50 0.06 0.49 99.88 69.14 99.76 0.0
English 0.29 1.13 0.01 0.01 92.46 50.12 80.79 0.37

-19
2.4

9

-15
3.9

9

-11
5.5

0
-77

.00
-38

.500.0
0
38

.50
77

.00
11

5.5
0

15
3.9

9
19

2.4
9

Clamp Value

0.0

0.2

0.4

0.6

0.8

1.0

-19
2.4

9

-15
3.9

9

-11
5.5

0
-77

.00
-38

.500.0
0
38

.50
77

.00
11

5.5
0

15
3.9

9
19

2.4
9

Clamp Value

0.90

0.92

0.94

0.96

0.98

1.00

Figure 5: We intervene on the model, replacing its hidden representations with the SAE’s reconstruc-
tions, clamping a single latent (in this case, the one corresponding to adjectives) to fixed value. These
fixed values are selected at uniform intervals from [−vmax, vmax], where vmax is the maximum value
taken by that latent. For each value of the clamp (x-axis), we plot the fraction of each part of speech
(nouns, pronouns, adjectives, verbs, adverbs, and conjunctions) in the generated text (left) and the
fraction of generations that are grammatical (right). We see that the clamp has no effect.

Sensitivity to Hyperparameters. As already remarked, top-k-regularized SAEs consistently reveal
more interpretable features in our languages than L1-regularized SAEs. We also measure the
reconstruction accuracy, or the percentage of valid generations of the model after the latents are
substituted with the SAE reconstructions. Table 1 shows the average reconstruction accuracy for
each regularization-pre_bias-normalization combination (averaged across regularization values
and hidden sizes). We see that top-k-regularized SAEs usually (but not always) outperform L1-
regularized ones if all other settings are kept the same. We also note from this table the high
sensitivity to hyperparameter settings that SAEs exhibit – no clear trend is visible across languages,
regularization methods, or normalization settings.

Figure 3: A feature that activates when
exactly one more expression is required.
Here, the x-axis is token depth, and the
y-axis is token index. The lines connect
the operators to their operands.

Causality. An interesting aspect of the features we iden-
tify is that despite strongly correlating with the discussed
explanation (see Table 2), they do not have the expected
causal effects. For example, we intervene on the part-
of-speech features in English and the counter features in
Dyck-2 models, and they do not change the output distri-
butions in an expected manner. We present an example in
Fig. 5; more examples are shown in App. D.

4 Conclusion

Inspired by studies in vision [10, 13], we propose a min-
imalistic setup to assess challenges in use of SAEs for
model interpretability. We validate our setup by identify-
ing semantically meaningful features and demonstrating
the sensitivity of said features’ extraction to inductive

4

biases. We further demonstrate a lack of causality, i.e., in-
terventions on these features do not yield intended effects.
We expect these results to bear out at scale as well, e.g.,
we find it likely that features identified by SAEs will not
always be causally relevant to model computation. Explicit tools for identifying causal graphs based
on SAE features will thus be needed [6]. Looking forward, we argue causality should be modeled as
a constraint within the SAE training pipeline itself, similar to prior work in vision [14].

References
[1] Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat,

Vikrant Varma, János Kramár, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open
sparse autoencoders everywhere all at once on gemma 2. arXiv preprint arXiv:2408.05147,
2024.

[2] Lee Sharkey, Dan Braun, and Beren Millidge. [interim research report] taking features
out of superposition with sparse autoencoders. https://www.lesswrong.com/posts/
z6QQJbtpkEAX3Aojj, 2024.

[3] Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly,
Nicholas L. Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu,
Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Alex Tamkin, Karina
Nguyen, Brayden McLean, Josiah E. Burke, Tristan Hume, Shan Carter, Tom Henighan, and
Chris Olah. Towards monosemanticity: Decomposing language models with dictionary learning.
https://transformer-circuits.pub/2023/monosemantic-features, 2023.

[4] Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
coders find highly interpretable features in language models. arXiv preprint arXiv:2309.08600,
2023.

[5] Aleksandar Makelov, George Lange, and Neel Nanda. Towards principled evaluations of sparse
autoencoders for interpretability and control. arXiv preprint arXiv:2405.08366, 2024.

[6] Samuel Marks, Can Rager, Eric J Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.
Sparse feature circuits: Discovering and editing interpretable causal graphs in language models.
arXiv preprint arXiv:2403.19647, 2024.

[7] Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. arXiv
preprint arXiv:2406.04093, 2024.

[8] Samyak Jain, Ekdeep Singh Lubana, Kemal Oksuz, Tom Joy, Philip HS Torr, Amartya Sanyal,
and Puneet K Dokania. What makes and breaks safety fine-tuning? mechanistic study. arXiv
preprint arXiv:2407.10264, 2024.

[9] Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma,
János Kramár, Rohin Shah, and Neel Nanda. Improving dictionary learning with gated sparse
autoencoders. arXiv preprint arXiv:2404.16014, 2024.

[10] Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard
Schölkopf, and Olivier Bachem. Challenging common assumptions in the unsupervised learning
of disentangled representations. In international conference on machine learning, pages 4114–
4124. PMLR, 2019.

[11] Frederik Träuble, Elliot Creager, Niki Kilbertus, Francesco Locatello, Andrea Dittadi, Anirudh
Goyal, Bernhard Schölkopf, and Stefan Bauer. On disentangled representations learned from
correlated data. In International conference on machine learning, pages 10401–10412. PMLR,
2021.

[12] Sébastien Lachapelle, Tristan Deleu, Divyat Mahajan, Ioannis Mitliagkas, Yoshua Bengio,
Simon Lacoste-Julien, and Quentin Bertrand. Synergies between disentanglement and sparsity:
Generalization and identifiability in multi-task learning. In International Conference on Machine
Learning, pages 18171–18206. PMLR, 2023.

5

https://www.lesswrong.com/posts/z6QQJbtpkEAX3Aojj
https://www.lesswrong.com/posts/z6QQJbtpkEAX3Aojj
https://transformer-circuits.pub/2023/monosemantic-features

[13] Francesco Locatello, Ben Poole, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem, and
Michael Tschannen. Weakly-supervised disentanglement without compromises. In International
Conference on Machine Learning, pages 6348–6359. PMLR, 2020.

[14] Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner,
Anirudh Goyal, and Yoshua Bengio. Towards causal representation learning. arXiv preprint
arXiv:2102.11107, 2021.

[15] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. International Conference on Learning Representations,
2017.

[16] Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the ability and limitations of trans-
formers to recognize formal languages. arXiv preprint arXiv:2009.11264, 2020.

[17] Aapo Hyvärinen and Petteri Pajunen. Nonlinear independent component analysis: Existence
and uniqueness results. Neural networks, 12(3):429–439, 1999.

[18] Chandler Squires, Anna Seigal, Salil S Bhate, and Caroline Uhler. Linear causal disentanglement
via interventions. In International Conference on Machine Learning, pages 32540–32560.
PMLR, 2023.

[19] Anna Sepliarskaia, Julia Kiseleva, and Maarten de Rijke. How to not measure disentanglement.
arXiv preprint arXiv:1910.05587, 2019.

[20] Rui Shu, Yining Chen, Abhishek Kumar, Stefano Ermon, and Ben Poole. Weakly supervised
disentanglement with guarantees. arXiv preprint arXiv:1910.09772, 2019.

[21] Michael Sipser. Introduction to the theory of computation. ACM Sigact News, 27(1):27–29,
1996.

6

Appendix

A Related Work

Prior work that has influenced the SAE approach to interpretability can be organized into four main
directions: disentanglement, inductive biases, evaluation and metrics, and the nature of SAE features.

A.1 Disentanglement

Locatello et al. [10], working in the image domain, carry out a wide-ranging empirical and theoretical
study of VAEs on synthetic image data, and prove a non-identifiability result on the learnt latent
representations. In other words, infinitely many possibilities for disentangled latent representations
exist if only the data is given, and so the disentanglement of the actual representations learnt is
extremely sensitive to the inductive biases of the autoencoder being used. Thus, no guarantees about
the interpretability or task-specific usefulness of the learnt representations can be assumed. Locatello
et al. [10] note also that identifiability results are in general not obtainable for the nonlinear case [17].
Furthermore, Träuble et al. [11] observe that real-world data can only be generated from highly
correlated latents, possibly with a complex causal relationship. They prove also that disentangled
representations do not represent an optimum in this case, and so entangled representations are
learnt. However, they also note that supervision can be leveraged to achieve true disentanglement –
supplementary data linking priors to observations can be used for weak supervision during training
to resolve latent correlations. Later works outlined settings in which identifiability results can in
fact be proven. For example, Lachapelle et al. [12] propose a bi-level optimization problem, where
the representations are optimized for reconstruction as well as performance on downstream tasks
via sparse classifiers, and Squires et al. [18] demonstrate how to achieve disentanglement with
interventional data (data from observations with individual latents ablated).

A.2 Scaling Laws and Inductive Biases in SAEs

Locatello et al. [10] highlight the importance of drawing attention to the inductive biases of au-
toencoders while using them to achieve disentanglement. They show that the objective function
and random seed together are responsible for roughly 80% of the performance of VAE encoders,
demonstrating the lack of robustness in the method. Many works have also obtained empirical
results on the relationship between the dictionary size (i.e., the latent size of the autoencoder) and the
features learnt. For example, Sharkey et al. [2] (working with numerical data) note that recovering
the ground-truth features requires a dictionary size of 1-8x the number of latents, and that if sparsity
is enforced by L1-regularization, then larger dictionary sizes need larger penalties. Other studies
have found that "dead" features (i.e., features that don’t activate on any sample) begin to occur from
a dictionary size of about 4x [4], that a single feature in small SAEs "splits" into several features
(whose union represents the former feature) in larger SAEs [3, 5], and that several features are simply
the same token in various contexts, like a physics "the" and a mathematics "the" [3].

A.3 Metrics

Many aspects of SAEs have been identified as important for evaluation, and many metrics exist for
each of these. Mainly, they can be classified along two axes: interpretability vs. disentanglement, and
supervised vs. unsupervised. Supervised metrics require some ground-truth dictionary of features to
evaluate against, which is generally assumed to be human-interpretable. Therefore, interpretability
and disentanglement are tied together in these metrics. For example, BetaVAE uses the accuracy
of a classifier trained to predict ground-truth features from learned ones [10, 19]; consistency and
restrictiveness measure the sensitivity of ground-truth features to learned ones [20]; and maximum
mean cosine similarity (MMCS) maps the two sets of features using the cosine similarity [2]. However,
when no ground-truth is available, a feature set may be disentangled but not interpretable, or vice
versa. Thus, unsupervised metrics evaluate interpretability and disentanglement separately. Examples
of metrics for interpretability are controllability, which evaluates how ‘easy’ it is to control the model
output by intervening on a feature set [5], and next logit attribution, where the causal role of the
feature in the model’s final logit output is examined [3]. Notably, Makelov et al. [5] find that SAEs

7

trained on task-specific data (IOI in their case study) learn meaningful directions, while those trained
on full data perform on par with those that have random directions kept frozen through training.

A.4 Correlational and Causal Features

A number of studies demonstrate the causal effects of SAE features. For example, Bricken et al. [3]
show that the features representing Arabic-language text can be clamped to a high value, increasing
the probability of generating Arabic text. Most notably, Marks et al. [6] use SAE directions to identify
circuits in models (across layers) responsible for specific tasks, like subject-verb agreement across
relative clauses. However, as shown in our results, a bulk of features have no causal effects on the
model computation. We claim similar results can be easily demonstrated in natural settings as well.

B Formal Grammars

We use, as mentioned in Sec. 2, three formal grammars on which we train transformer-based language
models. The exact specification of these grammars, in terms of a context-free grammar (CFG) is
presented below. Note that the actual data generation process is defined by a probabilistic CFG,
which requires probabilities to be assigned to each of the productions of a nonterminal. We omit
these probabilities for legibility here, but readers can refer to our codebase (https://github.com/
Abhinav271828/pcfg-sae-mint) for details.

B.1 Dyck-2

Given n types of brackets (that is, 2n symbols consisting of n opening and the matching n closing
brackets), the Dyck-n consists of all the valid sequences of brackets. Algorithmically, a string
belonging to Dyck-n can be parsed by maintaining a stack of opening brackets, and popping the
topmost one when the corresponding closing bracket is encountered. If a closing bracket that does
not match the topmost opening bracket is encountered, the string is rejected. The production rules
that express the generation of strings from Dyck-2, then, are as follows.

S → S S | B1 | B2

B1 → (S) | ()
B2 → [S] | []

B.2 Expr

The Expr language is the set of prefix arithmetic expressions, in which operands are single digits
from 0 to 9, and operators may be unary, binary or ternary. There are three operators of each type.
Note that it is possible to view the vocabulary as being organized according to arity, or number of
arguments needed. Thus digits are symbols of arity 0; unary operators of arity 1; binary operators of
arity 2; and ternary operators of arity 3.

Since the syntax is prefix, there is no need to define precedence for unambiguous parsing. For parsing,
it is sufficient to maintain a counter that keeps track of how many more expressions are needed to
complete the sequence – this counter starts at 1 (as the whole sequence, which is pending, represents
one expression), and is incremented by n−1 when we encounter a token of arity n. Thus, for instance,
if 3 more expressions are needed to complete the sequence and a binary operator is encountered, we
now need 4 more expressions – two to complete the binary operator, and two more to satisfy the
original three. Parsing succeeds if this value reaches 0 at the end of the string, and fails if it becomes
negative at any point during the parse.

The production rules for this language are as follows.
S → O | D
D → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
O → U S | B S S | T S S S

U → un1 | un2 | un3

B → bin1 | bin2 | bin3
T → tern1 | tern2 | tern3

8

https://github.com/Abhinav271828/pcfg-sae-mint
https://github.com/Abhinav271828/pcfg-sae-mint

Algorithm 1 Identify points in the sequence where exactly one more expression is expected, without
maintaining an explicit counter.

Require: Tokens t1, . . . , tn
i = 1
while i ≤ n do

if ti is a unary operator then
mark ti
i← i+ 1

else if ti is a binary operator then
i← the position of the last token of the first operand of ti
mark ti

else if i is a ternary operator then
i← the position of the last token of the second operand of ti
mark ti

else
i← i+ 1

end if
end while

As we note in Sec. 2, SAEs trained on Expr models find a feature that activates on tokens where
exactly one more expression is needed to complete the sequence, i.e., where the counter above has a
value of 1. We consider it reasonable to assume the implicit computation of such a counter based on
the existence of this feature, since the algorithm required to identify these tokens (Algorithm 1) is
much more convoluted if we forbid explicitly computing this counter.

B.3 English

We define a simple fragment of English, intended to capture major parts of speech and bridge the gap
between parsing languages like Dyck-2 and Expr above, and natural language parsing. We retain
the two most common sentence constructions, but ignore more complicated syntactic features like
agreement and relative clauses, and morphological features, like conjugations and declensions. This
grammar can be parsed using any standard CFG parsing algorithm, like Earley or CKY parsing [21].

The rules for the grammar are as follows.

S → NP VP
NP→ Pro | N | NP Conj NP | Adj N
VP→ V | V NP | VP Conj VP | VP Adv

Each part of speech – nouns (N), verbs (V), pronouns (Pro), conjunctions (Conj), adjectives (Adj) and
adverbs (Adv) – have ten tokens each. We omit the production rules listing these for brevity, but refer
readers to the codebase (https://github.com/Abhinav271828/pcfg-sae-mint) for details.

9

https://github.com/Abhinav271828/pcfg-sae-mint

C Features

We describe here several other features we were able to identify in our SAEs. Results are shown in
Table 2. Note that all the SAEs listed here are trained without pre_bias and without normalization.
Thus, the hyperparameters specified in column 3 are the expansion factor (ratio between hidden
size and input size) and, according to the regularization method, either the L1 coefficient or k. For
each feature, we note the hyperparameter settings of the SAE, our hypothesized explanation, and the
correlation (Pearson coefficient) between the feature’s activation and the explanation.

In the Expr model, the SAEs identify features relating to a counter variable (based on the parsing
process described in Section D.3) and position. Of the former kind, we find a feature that activates
exactly when there is one more expression left to complete the sequence; as an example of the latter,
there are features that activate only on the last token of a sequence.

In the model trained on a fragment of English, we find features representing several parts of speech
– adjectives, verbs, adverbs, and conjunctions. Each of these activate to varying degrees on tokens
belonging to the respective part of speech.

In the Dyck-2 model, as in the case of Expr, we see features that correspond to an intuitive stack-based
parsing process. In Section 3, we present a feature that ‘matches’ corresponding opening and closing
trends. There are also features that threshold the depth of (number of unclosed brackets that appear
before) a token, i.e., they activate when the depth is above a certain value (11 in this case). We also
find features that identify a combination of depth and whether a bracket is opening or closing.

Table 2: Features Identified by SAEs. We give a description of each feature, with the language it is
found in, and the correlation (Pearson coefficient) between the activations and the explanation. All the
SAEs are trained without pre_bias or normalization; we therefore identify them by their expansion
factor and regularization factor (α in the case of L1- and k in the case of top-k regularization).

Explanation Language Settings Correlation

One more expression required to
complete the sequence.

Expr (2, k = 16) 0.972

Last token. Expr (8, α = 10−3) 0.984

Verbs. English (8, k = 128) 0.964

Adjectives. English (8, k = 128) 0.985

Adverbs. English (8, k = 128) 0.999

Conjunctions. English (8, k = 128) 0.932

Stack depth 11 or more. Dyck (8, k = 128) 0.924

All brackets at depth 0, and the first
opening and all closing brackets at
depth 1.

Dyck (8, k = 128) 0.912

10

D Causality of Features

We present here a detailed outline of our experimental protocols in the causality experiments. We
also examine other features for causal effects, particularly part-of-speech features (for English) and
the counter feature (for Expr, described in Sec. 3).

D.1 Experimental Protocols

In order to examine the causal effects of a feature identified by an SAE, we rely on interventions that
replace this feature by some fixed value, and continue the computation of the larger model. In other
words, consider a computational graph of the language model. The node corresponding to the layer
that is being examined, i.e., the first hidden layer, is replaced by three nodes:

i. the actual representations generated by the previous layer, which form the input to the SAE;

ii. the hidden layer of the SAE, which consists of the features identified by the SAE;

iii. the output, or the reconstruction, of the SAE.

The last node feeds back into the larger model, where the original input should have been used. Thus,
we effectively replace the model activations with SAE reconstructions of those activations. We then
intervene on node (ii) above – we select a single element in the SAE representation, set it to our value,
and recompute the modified reconstruction, which is then used in the rest of the LM’s forward pass.

The exact intervention that we carry out is defined in terms of the maximum value vmax that the
feature attains across a sample of 1280 sequences. We then select the values for the intervention by
spacing 10 intervals across the range [−vmax, vmax], i.e., the intervention values are

vi = −vmax +
i

10
· 2vmax,∀i ∈ {0, 1, . . . , 10}.

Note that the above leads to 11 possible values for the interventions. As recorded in Fig. 5, we then
measure the distribution of parts of speech in the generations of the model under this intervention,
and the percentage of the generations that remain grammatical.

D.2 English: Parts of Speech

The results of interventions on various features are shown in Fig. 6. For each part of speech that we
show, we follow the same process as in the case of adjectives (Fig. 5):

• determine the maximum value vmax taken by a certain latent;

• pick clamp values at uniform intervals in the range [−vmax, vmax];

• examine (i) the distribution of parts of speech and (ii) the grammaticality of the generations after
clamping the latent to each value.

We observe that, similar to the adjectives feature in the main paper (see Fig. 5), the features for other
parts of speech do not show causal effects either.

D.3 Expr: Counter

We examine the feature, described in Sec. 3, that activates when one more expression is required to
complete the sequence. We pass an incomplete sequence to the model, and intervene on this feature
by clamping it to one of {−vmax, 0, vmax}. We then examine the generations that result in each case.
We expect that high clamp values will cause the model to generate only one more expression (even if
more may be required); and low values will cause it to generate more than one (even if exactly one
is needed). Table 3 presents the results of this experiment; for each input sample, we mention the
number of expressions it requires to complete it, and the number of expressions actually generated by
the model under each intervention. As is the case with the English model, we observe that there is no
causal effect of this feature.

11

-16
8.7

7

-13
5.0

2

-10
1.2

6
-67

.51
-33

.75 0.0
0

33
.75

67
.51

10
1.2

6
13

5.0
2
16

8.7
7

Clamp Value

0.0

0.2

0.4

0.6

0.8

1.0

(a)

-16
8.7

7

-13
5.0

2

-10
1.2

6
-67

.51
-33

.75 0.0
0

33
.75

67
.51

10
1.2

6
13

5.0
2

16
8.7

7

Clamp Value

0.90

0.92

0.94

0.96

0.98

1.00

(b)

-11
1.8

0
-89

.44
-67

.08
-44

.72
-22

.36 0.0
0

22
.36

44
.72

67
.08

89
.44

11
1.8

0

Clamp Value

0.0

0.2

0.4

0.6

0.8

1.0

(c)

-11
1.8

0
-89

.44
-67

.08
-44

.72
-22

.36 0.0
0

22
.36

44
.72

67
.08

89
.44

11
1.8

0

Clamp Value

0.90

0.92

0.94

0.96

0.98

1.00

(d)

-12
0.5

2
-96

.42
-72

.31
-48

.21
-24

.10 0.0
0

24
.10

48
.21

72
.31

96
.42

12
0.5

2

Clamp Value

0.0

0.2

0.4

0.6

0.8

1.0

(e)

-12
0.5

2
-96

.42
-72

.31
-48

.21
-24

.10 0.0
0

24
.10

48
.21

72
.31

96
.42

12
0.5

2

Clamp Value

0.90

0.92

0.94

0.96

0.98

1.00

(f)

Figure 6: We examine the causality of features corresxponding to other parts of speech: verbs ((a)
and (b)), conjunctions ((c) and (d)), and adverbs ((e) and (f)).

12

Table 3: Behavior of the Expr model under interventions.

Input Sequence #Required Clamp
−vmax

Clamp
0

Clamp
vmax

un2 tern1 dig8 bin0 tern2 bin2 bin2 dig6
dig7 dig5

4 4 4 4

bin1 un1 tern1 bin2 dig0 dig7 dig0 bin1
dig3 dig7

1 1 1 1

un0 tern1 dig9 dig7 un0 tern1 un2 bin2
dig6 dig6

2 2 2 2

tern1 dig1 dig7 tern1 tern1 dig7 tern1
tern1 un0 un1

8 8 8 8

E Power Law in Reconstruction Loss

We noted in Sec. 3 that the top-k regularized SAEs reveal a power law in their reconstruction losses.
The trends for various runs are shown in Fig. 7.

1 2 4 8
Hidden size

3.2 × 104

3.4 × 104

3.6 × 104

3.8 × 104

4 × 104

Re
co

ns
tru

ct
io

n
Lo

ss
 (M

SE
)

y = 39939.2157 * x^-0.12
R² = 0.9700

(a)

1 2 4 8
Hidden size

2 × 10 3

3 × 10 3

Re
co

ns
tru

ct
io

n
Lo

ss
 (M

SE
)

y = 0.0029 * x^-0.24
R² = 0.9135

(b)

1 2 4 8
Hidden size

3.2 × 10 3

3.3 × 10 3

3.4 × 10 3

3.5 × 10 3

3.6 × 10 3

3.7 × 10 3

Re
co

ns
tru

ct
io

n
Lo

ss
 (M

SE
)

y = 0.0036 * x^-0.07
R² = 0.9357

(c)

1 2 4 8
Hidden size

10 4

Re
co

ns
tru

ct
io

n
Lo

ss
 (M

SE
)

y = 0.0002 * x^-0.38
R² = 0.9587

(d)

Figure 7: The power law we identify for each top-k regularized set of autoencoders. The four run sets
are (a) without pre_bias or normalization; (b) with pre_bias and normalized inputs and decoder
directions; (c) without pre_bias and normalized inputs; and (d) without pre_bias and normalized
inputs and reconstructions.

13

F Training Details

Figs. 8 to 15 show the details of the various hyperparameter settings we have considered, along with
plots of the losses during training. For convenience, we record these details in Table 4 as well. Note
that, in the case of L1-regularized SAEs, the training loss is the sum of the reconstruction loss (the
MSE loss between the SAE reconstructions and the inputs) and the regularization loss (the norm of
the hidden representation, multiplied by the L1 coefficient).

All the autoencoders were trained for 5000 steps, where each step consisted of the embeddings of
128 sequences of that language. The sequences were generated in an online fashion, by sampling
from a probabilistic CFG corresponding to the language that the transformer was trained on. The
mean sequence length for the languages are 14.03 (for Dyck), 3.90 (for Expr), and 8.26 (for English).
This corresponds to about 9 million, 2.5 million, and 5 million tokens respectively. We refer readers
to our codebase (https://github.com/Abhinav271828/pcfg-sae-mint) for details of the data
generation process, hyperparameter sweeps, etc.

Table 4: Hyperparameter Settings and Corresponding Figures.

Figure Regularization pre_bias Normalization

Fig. 8 L1 False none
Fig. 9 top-k False none
Fig. 10 L1 True input, decoder
Fig. 11 top-k True input, decoder
Fig. 12 L1 False input
Fig. 13 top-k False input
Fig. 14 L1 False input, reconstruction
Fig. 15 top-k False input, reconstruction

104

106

108

1010

Dyck

104

106

108

1010

Expr

0 100 200
h = 1

104

106

108

1010

English

0 100 200
h = 2

0 100 200
h = 4

0 100 200
h = 8

0.001 0.01 0.1 1 10 100

(a) Train Loss (sum of reconstruction and regular-
ization losses)

103

104

105

Dyck

103

104

105

Expr

0 100 200
h = 1

103

104

105

English

0 100 200
h = 2

0 100 200
h = 4

0 100 200
h = 8

0.001 0.01 0.1 1 10 100

(b) Reconstruction Loss

103

106

109

Dyck

103

106

109

Expr

0 100 200
h = 1

103

106

109

English

0 100 200
h = 2

0 100 200
h = 4

0 100 200
h = 8

0.001 0.01 0.1 1 10 100

(c) Regularization Loss

Figure 8: L1-regularized SAEs, without pre_bias and without normalization.

14

https://github.com/Abhinav271828/pcfg-sae-mint

102

104
Dyck

102

104
Expr

0 100 200
h = 1

102

104
English

0 100 200
h = 2

0 100 200
h = 4

0 100 200
h = 8

16 32 64 128

(a) Train Loss (only reconstruction loss)

Figure 9: top-k-regularized SAEs, without pre_bias and without normalization.

100

103

106

Dyck

100

103

106

Expr

0 100 200
h = 1

100

103

106

English

0 100 200
h = 2

0 100 200
h = 4

0 100 200
h = 8

0.001 0.01 0.1 1 10 100

(a) Train Loss (sum of reconstruction and regular-
ization losses)

10 2

2 × 10 2

3 × 10 2

Dyck

10 2

2 × 10 2

3 × 10 2

Expr

0 100 200
h = 1

10 2

2 × 10 2

3 × 10 2

English

0 100 200
h = 2

0 100 200
h = 4

0 100 200
h = 8

0.001 0.01 0.1 1 10 100

(b) Reconstruction Loss

10 4

100

104

Dyck

10 4

100

104

Expr

0 100 200
h = 1

10 4

100

104

English

0 100 200
h = 2

0 100 200
h = 4

0 100 200
h = 8

0.001 0.01 0.1 1 10 100

(c) Regularization Loss

Figure 10: L1-regularized SAEs, with pre_bias and normalized inputs and decoder directions.

15

10 3

10 2

Dyck

10 3

10 2

Expr

0 100 200
h = 1

10 3

10 2

English

0 100 200
h = 2

0 100 200
h = 4

0 100 200
h = 8

16 32 64 128

(a) Train Loss (only reconstruction loss)

Figure 11: top-k-regularized SAEs, with pre_bias and normalized inputs and decoder directions.

100

104

108

Dyck

100

104

108

Expr

0 100 200
h = 1

100

104

108

English

0 100 200
h = 2

0 100 200
h = 4

0 100 200
h = 8

0.001 0.01 0.1 1 10 100

(a) Train Loss (sum of reconstruction and regular-
ization losses)

10 3

10 1

101

103

Dyck

10 3

10 1

101

103

Expr

0 100 200
h = 1

10 3

10 1

101

103

English

0 100 200
h = 2

0 100 200
h = 4

0 100 200
h = 8

0.001 0.01 0.1 1 10 100

(b) Reconstruction Loss

100

104

108

Dyck

100

104

108

Expr

0 100 200
h = 1

100

104

108

English

0 100 200
h = 2

0 100 200
h = 4

0 100 200
h = 8

0.001 0.01 0.1 1 10 100

(c) Regularization Loss

Figure 12: L1-regularized SAEs, without pre_bias and normalized inputs.

16

10 5

10 4

10 3

10 2

Dyck

10 5

10 4

10 3

10 2

Expr

0 100 200
h = 1

10 5

10 4

10 3

10 2

English

0 100 200
h = 2

0 100 200
h = 4

0 100 200
h = 8

16 32 64 128

(a) Train Loss (only reconstruction loss)

Figure 13: top-k-regularized SAEs, without pre_bias and normalized inputs.

100

103

106

109

Dyck

100

103

106

109

Expr

0 100 200
h = 1

100

103

106

109

English

0 100 200
h = 2

0 100 200
h = 4

0 100 200
h = 8

0.001 0.01 0.1 1 10 100

(a) Train Loss (sum of reconstruction and regular-
ization losses)

10 1

101

103

Dyck

10 1

101

103

Expr

0 100 200
h = 1

10 1

101

103

English

0 100 200
h = 2

0 100 200
h = 4

0 100 200
h = 8

0.001 0.01 0.1 1 10 100

(b) Reconstruction Loss

10 2

102

106

Dyck

10 2

102

106

Expr

0 100 200
h = 1

10 2

102

106

English

0 100 200
h = 2

0 100 200
h = 4

0 100 200
h = 8

0.001 0.01 0.1 1 10 100

(c) Regularization Loss

Figure 14: L1-regularized SAEs, without pre_bias and normalized inputs and reconstructions.

10 4

10 3

10 2

Dyck

10 4

10 3

10 2

Expr

0 100 200
h = 1

10 4

10 3

10 2

English

0 100 200
h = 2

0 100 200
h = 4

0 100 200
h = 8

16 32 64 128

(a) Train Loss (only reconstruction loss)

Figure 15: top-k-regularized SAEs, without pre_bias and normalized inputs and reconstructions.

17

	Introduction
	Experiments
	Data and Models
	SAEs

	Results
	Conclusion
	Related Work
	Disentanglement
	Scaling Laws and Inductive Biases in SAEs
	Metrics
	Correlational and Causal Features

	Formal Grammars
	Dyck-2
	Expr
	English

	Features
	Causality of Features
	Experimental Protocols
	English: Parts of Speech
	Expr: Counter

	Power Law in Reconstruction Loss
	Training Details

