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ABSTRACT

Large language models (LLMs) exhibit varying strengths and weaknesses across
different tasks, prompting recent studies to explore the benefits of ensembling
models to leverage their complementary advantages. However, existing LLM en-
sembling methods often overlook model compatibility and struggle with ineffi-
cient alignment of probabilities across the entire vocabulary. In this study, we
empirically investigate the factors influencing ensemble performance, identify-
ing model performance, vocabulary size, and response style as key determinants,
revealing that compatibility among models is essential for effective ensembling.
This analysis leads to the development of a simple yet effective model selection
strategy that identifies compatible models. Additionally, we introduce the UNIon
Top-k Ensembling (UNITE), a novel approach that efficiently combines models
by focusing on the union of the top-k tokens from each model, thereby avoid-
ing the need for full vocabulary alignment and reducing computational overhead.
Extensive evaluations across multiple benchmarks demonstrate that UNITE sig-
nificantly enhances performance compared to existing methods, offering a more
efficient framework for LLM ensembling.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable performance across a wide range of
tasks and have shown promising results in real-world applications (OpenAI, 2023; Yang et al., 2024;
Dubey et al., 2024). Given the diversity in data sources, model architectures, and training methods,
LLMs exhibit varying strengths and weaknesses depending on the task at hand. Consequently,
rather than relying solely on training an LLM from scratch, an alternative approach is to create an
ensemble of LLMs. This method allows for leveraging the complementary advantages of different
LLMs (Jiang et al., 2023b; Lu et al., 2024; Yu et al., 2024b).

Existing model ensembling methods can be broadly categorized into three types: output-level,
probability-level, and training-level approaches. Output-level methods (Jiang et al., 2023b; Lu
et al., 2024; Shnitzer et al., 2023) aggregate the complete outputs of multiple candidate models.
Probability-level methods (Huang et al., 2024; Yu et al., 2024b), integrate outputs based on prob-
ability distributions at each generation step through the intersection or union of the vocabulary.
Training-level methods (Wan et al., 2024a; Xu et al., 2024) utilize output probability vectors as la-
bels for richer information extraction during training. While output-level methods are constrained
by the limitations of existing outputs, and training-level methods introduce additional computational
overhead, probability-level methods have garnered particular attention.

Existing methods for ensembling LLMs, such as DEEPEN (Huang et al., 2024) and GAC (Yu et al.,
2024b), grapple with two significant challenges. First, these approaches concentrate solely on the en-
sembling technique, sidestepping the crucial discussion of which types of models can be effectively
combined. This oversight is critical because LLMs with substantial differences in architecture, size,
and tokenizer may be inherently incompatible, leading to potential incompatibilities that undermine
the benefits of ensembling(Dong et al., 2023; Lee et al., 2023). Second, these methods tend to align
the probabilities across the entire vocabulary at each generation step. Such a strategy introduces
substantial computational overhead during inference, which hinders performance and efficiency.

To address these challenges, we conduct a thorough investigation into the factors that truly influence
ensembling performance. Our empirical analysis identifies three key factors: model performance,
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vocabulary size, and response process. We evaluate multiple widely recognized LLMs across various
benchmarks to explore ensembling from these perspectives. Our findings reveal several important
insights: 1) Variations in performance levels among base LLMs significantly affect their compati-
bility for ensembling; 2) The impact of vocabulary size is marginal; and 3) Even when performance
and vocabulary size are aligned across LLMs, substantial differences in the reasoning process in the
response can hinder successful ensembling.

Building on this analysis, we adopt a determine-then-ensemble strategy by starting with the best-
performing LLM for target tasks, then iteratively selecting the next best-performing LLMs that
meets ensembling criteria until the maximum number of models is reached or no further suitable can-
didates exist. Additionally, we seek to improve the efficiency and performance of ensembling. In-
stead of aligning the entire vocabulary of different LLMs, we propose the Union Top-k Ensembling
(UNITE). UNITE constructs a union of the top-k tokens from each model and expands this set us-
ing each model’s tokenizer. This is followed by probability aggregation to determine the next token.
UNITE avoids the need for auxiliary mapping matrices and full vocabulary alignment, respecting
the unique tokenization of each base LLM. Extensive experiments demonstrate the effectiveness of
UNITE across various tasks, consistently outperforming state-of-the-art LLM ensemble methods.

Overall, our key contributions are: 1) We conduct an extensive analysis of existing model ensem-
bling approaches and derive three significant insights. Building on these findings, we introduce
a general model selection strategy for model ensembling; 2) We propose a well-motivated model
ensembling method that efficiently operates on the top-k candidate tokens rather than the entire vo-
cabulary. 3) Experiments demonstrate significant performance improvements, reduced operational
tokens to less than 0.04% of current methods, and minimized latency to only 10 ms longer than the
individual model, validating the effectiveness of our proposed approach.

2 RELATED WORKS

Based on the sequence of inference and fusion processes, multiple model collaboration methods can
be broadly classified into two categories: model ensembling (Jiang et al., 2023b; Yu et al., 2024b)
and model merging (Yu et al., 2024a; Akiba et al., 2024). Model ensembling follows an inference-
then-fusion approach, aiming to integrate the outputs of various models to achieve a more refined
response. Conversely, model merging adopts a fusion-then-inference strategy, wherein different
models are combined into a single model before inference. While model merging is typically appli-
cable only to homologous models, our focus in this study is on the more general approach, namely
model ensembling. We discuss different model ensembling methods as follows:

Output-Level Model Ensembling methods involve selecting multiple candidate models and uti-
lizing their complete outputs for aggregation. For instance, Jiang et al. (2023b) developed PAIR-
RANKER, an additional ranking model, to evaluate and select the best candidate output. Similarly,
Lu et al. (2024) and Shnitzer et al. (2023) designed a router that determines the most appropriate
candidate model based on the given question. However, these approaches are restricted by the exist-
ing outputs and become ineffective if all options are incorrect. Some studies have addressed this by
training fusion models to combine outputs (Jiang et al., 2023b; Wang et al., 2024b), which alleviates
the limitation of relying solely on available candidates and often yields improved results. Neverthe-
less, achieving generalization with fusion models remains a significant challenge, as they may not
fully utilize the probability information generated at each step.

Probability-Level Model Ensembling methods focus on integrating outputs from different mod-
els by utilizing the probability distribution at each generation step. COOL-FUSION (Liu et al.,
2024) let each source LLM generate tokens until reaching common word boundaries, then jointly
reranks the segments. However, this method relies on common word boundaries, limiting generation
flexibility and diversity. Additionally, managing multiple source models can increase complexity.
DEEPEN (Huang et al., 2024), based on the principles of relative representation theory, transforms
each model’s probability distribution from its individual space into a common relative space for ag-
gregation, which is determined through the intersection of the models’ vocabularies. On the other
hand, GAC (Yu et al., 2024b) constructs a mapping matrix that projects the probability vectors of
multiple LLMs into the dimensional space of their union vocabulary, aggregating outputs to select
the next token at each generation step. It is worth noting that all of these existing approaches operate
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Figure 1: The impact of performance disparity among models on ensemble effectiveness across dif-
ferent datasets and methods is examined. We compare these methods to the individual performances
of LLaMA2 and Mistral, indicated by dashed lines.

on the entire vocabulary at every single step, resulting in significant computational overhead. In this
work, we focus on the probability-level model ensembling without the need for additional training.

Training-Level Model Ensembling methods exemplified by FUSELLM (Wan et al., 2024a), lever-
age output probability vectors from various models during the training process, using these vectors
as labels instead of one-hot representations. This technique serves as a unique form of distillation,
enabling the trained model to extract richer information from the probability outputs of the ensem-
ble of teacher models. FUSECHAT (Wan et al., 2024b) extends the framework of FUSELLM to
fuse multiple chat LLMs with diverse architectures and scales. However, distillation is predomi-
nantly aimed at enhancing smaller models, which limits its effectiveness in further advancing larger
models. On the other hand, EVA (Xu et al., 2024) addresses vocabulary discrepancies by learning
token alignment across different vocabularies, utilizing overlapping tokens for assistance. However,
vocabulary alignment should involve both output embedding alignment and weight alignment, EVA
achieves vocabulary alignment solely by solving the mapping matrix of output embeddings.

3 UNDERSTANDING MODEL ENSEMBLING FROM MODEL CAPACITY,
VOCABULARY SIZE AND TASK

Existing model ensembling approaches (Huang et al., 2024; Yu et al., 2024b) only focus on de-
signing the model ensembling method, offering limited discussion on the selection of base models
for ensembling. However, insights from prior research (Dong et al., 2023; Lee et al., 2023), indi-
cate that not all model pairs are compatible to be combined, particularly when there are significant
differences in size, vocabulary, and performance. In our preliminary experiments, we explored var-
ious factors that might affect the performance of model ensembling, including model size (e.g.,
3B/7B/8B/13B/70B), model architecture (dense/sparse), performance discrepancies, tokenization
strategies (BPE/WordPiece), vocabulary size (e.g., 102K/64K/32K) and tasks variations (e.g., text
generation/QA/multiple choices). Finally, we identified three representative factors for further anal-
yses, including performance discrepancy, vocabulary size, and tasks variations.

3.1 IMPACT OF MODEL PERFORMANCE DISCREPANCY

To investigate the impact of performance disparity on model ensembling, we select LLaMA2-13B-
Chat and Mistral-7B-Instruct-v0.3 as base models, which show a significant performance gap across
various tasks. We evaluated the GSM8K (Cobbe et al., 2021), PIQA (Bisk et al., 2020), ARC-
C (Clark et al., 2018), and NQ (Kwiatkowski et al., 2019) datasets with three comparative methods.

As shown in Fig. 1, we found that when there is a significant performance disparity between mod-
els, LLM-BLENDER, which selects the optimal response from model candidates, is not suitable for
model ensembling. Similarly, for methods like DEEPEN and GAC, which are achieved through to-
ken probability averaging, a substantial performance gap also leads to certain performance drops.
This observation is straightforward and easily understood, as lower-performing models may intro-
duce noise and bias, adversely affecting overall effectiveness. Nonetheless, it has been observed that
DEEPEN and GAC consistently enhance the performance of less effective models when combined
with a superior model. Although the resultant performance does not surpass that of the superior
model, these methods can also serve as an alternative way for training-free knowledge distillation.
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Figure 2: The impact of performance differences on model ensembling effectiveness on GSM8K
dataset. OOM represents out of memory issue.

Methods
Dataset

GSM PIQA

DeepSeek-7B(102K) 59.67 72.66
Mistral-7B(32K) 56.48 80.63

LLM-BLENDER
61.16 76.54

(+1.49) (-4.09)

DEEPEN(DeepSeek-7B)
55.00 77.65
(-4.67) (+4.99)

DEEPEN(Mistral-7B)
61.28 76.32

(+4.80) (-4.31)

Ours(DeepSeek-7B)
62.77 81.81

(+3.10) (+9.15)

Ours(Mistral-7B)
58.88 81.81

(+2.40) (+1.18)

Methods
Dataset

MMLU ARC-C

DeepSeek-7B(102K) 46.97 58.73
LLaMA2-13B(32K) 49.61 51.53

LLM-BLENDER
48.86 57.84
(-0.75) (-0.89)

DEEPEN(DeepSeek-7B)
52.81 60.00

(+5.84) (+1.27)

DEEPEN(LLaMA2-13B)
54.09 62.39

(+4.48) (+10.86)

Ours(DeepSeek-7B)
48.90 60.16

(+1.93) (+1.43)

Ours(Mistral-7B)
48.90 60.16
(-0.71) (+8.63)

Methods
Dataset

NQ ARC-C

Mistral-7B(32K) 24.25 74.49
Yi-6B(64K) 22.55 73.21

LLM-BLENDER
22.97 72.48
(-1.28) (-2.01)

DEEPEN(Mistral-7B)
25.26 76.50

(+1.01) (+1.01)

DEEPEN(Yi-6B)
22.80 77.86

(+0.25) (+4.65)

Ours(Mistral-7B)
24.76 76.54

(+0.51) (+2.05)

Ours(Yi-6B)
23.28 76.54

(+0.73) (+3.33)

Table 1: The influence of vocabulary size on model ensembling effectiveness

To further figure out how performance discrepancy impacts the ensembling, we then identify model
pairs based on the GSM8K dataset with performance gaps of approximately 40% (LLaMA2-7B-
Chat and Mistral-7B-Instruct-v0.3), 25% (LLaMA2-13b-Chat and Mistral-7B-Instruct-v0.3), 15%
(OpenChat-3.5 and Mistral-7B-Instruct-v0.3), and less than 10% (LLaMA3-8B-Instruct and Qwen2-
7B-Instruct). Fig. 2 shows that as the performance gap increases, the improvement from ensembling
inferior models becomes more pronounced. In contrast, for superior models, the ensembling effect
consistently falls below the baseline performance. When the performance difference is within 10%,
ensembling may yield better results.

Moreover, it was observed that with the increase in vocabulary size, as exemplified by models such
as LLaMA3 and Qwen2, whose vocabulary size exceeds 120K, approaches like DEEPEN, which
depend on high-dimensional matrix operations, encounter heavy memory limitations that diminish
their effectiveness.

TAKEAWAY I: Smaller performance gaps lead to greater gains from model ensembling.

3.2 INFLUENCE OF VOCABULARY SIZE

Yu et al. (2024b) found that large models employing different tokenization methods, such as BPE
and BBPE, exhibit over 90% overlap in tokenizing Oxford 5000 common words. This indicates that
tokenization methods have a marginal impact on model ensembling, leading us to focus on the effect
of vocabulary size on ensemble performance. To this end, we selected four models with varying
vocabulary sizes that exhibit similar performance on certain datasets, namely LLaMA2-13B-Chat
(vocabulary size: 32,000), Mistral-7B-Instruct-v0.3 (vocabulary size: 32,768), Yi-6B (vocabulary
size: 64,000), and DeepSeek-LLM-7B-Chat (vocabulary size: 102,400).

As presented in Table 1, existing methods demonstrate consistent performance irrespective of the
gap in vocabulary size, thereby indicating that vocabulary size does not significantly influence the
efficacy of model ensembling. To elucidate the underlying causes, we conducted a manual analysis
of 100 responses generated by various LLMs. Our investigation revealed that approximately 80%
of the words in the responses were common words while the tokenization of these common words
exhibited no discernible differences across the different LLMs. Therefore, the vocabulary size, as
well as the tokenization strategy, exerts minimal influence on the performance of model ensembling.
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Figure 3: Token distribution of different models. We extract the top 15 words from the vocabulary
of each model and apply a softmax processing to their corresponding logits.

Question
who wrote he ain’t heavy he’s my brother lyrics
who was the ruler of england in 1616

Gold answer
Bob Russell
James I

LLaMA3 response
Bob Russell
James I

Qwen2 response

He Ain’t Heavy, He’s My Brother was written by Mike D’Abo.
The song was originally recorded by the British singer-songwriter and released as a single in 1969.
It became a hit and has since been covered by numerous artists.
· · ·
The ruler of England in 1616 was King James I.
He was the first monarch of the Stuart dynasty and reigned from March 24, 1603, until his death on July 19, 1625.
· · ·

LLM-Blender response

He Ain’t Heavy, He’s My Brother was written by Mike D’Abo.
The song was originally recorded by the British singer-songwriter and released as a single in 1969.
It became a hit and has since been covered by numerous artists.
· · ·
The ruler of England in 1616 was King James I.
He was the first monarch of the Stuart dynasty and reigned from March 24, 1603, until his death on July 19, 1625.
· · ·

Table 2: Responses of different methods on NQ dataset.

Notably, despite significant variations in vocabulary size, the ensembling results of models with
similar performance suggest that when the performance gap between base models is within 10%,
model ensembling may achieve better results than the baseline model, which is aligned with findings
in Section 3.1. More interestingly, results of evaluating DEEPPEN on the ARC-C dataset indicate
that when model performances are comparable, ensembling inferior models can even outperform
superior ones. This might imply that when performance differences are minimal, the selection of
main base models does not necessarily need to prioritize those with superior performance. Besides,
it is important to note that these findings related to the vocabulary and tokenization consistently
apply to LLM-BLENDER, DEEPEN and our method, with the exception of GAC. We will detail the
reason in Section 4.2.

TAKEAWAY II: The influence of vocabulary size for model ensembling is marginal.

3.3 TASK-SPECIFIC CHALLENGES IN MODEL ENSEMBLING

In the aforementioned experiments, we identified an interesting phenomenon: Even when perfor-
mance and vocabulary size are aligned across models, substantial differences in the response style
can also hinder successful ensembling on specific tasks. For example, LLaMA3-8B and Qwen2-
7B exhibit comparable performance across various tasks. Existing ensembling approaches such as
LLM-BLENDER have been shown to enhance outcomes on GSM8K and PIQA tasks when utilizing
these two base models. However, ensembling these models to address the questions in TriviaQA and
NQ datasets proves to be impractical due to the significant discrepancies in their response styles.

As shown in Table 2, under identical prompting conditions, LLaMA3 tends to directly return the
answers, whereas Qwen2 is inclined to conduct analysis. In voting-based LLM-BLENDER, re-
sponse length significantly influences judgments, with PAIRRANKER consistently favoring longer
responses. For instance, in our analysis of 100 randomly selected NQ and TriviaQA responses, the
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PAIRRANKER favored the longer response as the answer in approximately 80% and 70% of cases
accordingly, possibly due to its training data characteristics. More detailed analysis of TriviaQA and
more experimental results are in appendix A. Similarly, probability-based ensembling methods like
DEEPEN and GAC are also affected by the differences in the reasoning process, leading to signif-
icant deviations in vocabulary probability distributions. Figure 3 reveals a significant disparity in
top token distributions between LLaMA3 and Qwen2 for the first two tokens. Averaging the prob-
abilities directly could result in an excessively smoothed distribution, which is inappropriate. The
underlying reason for this phenomenon may be the differences in LLMs’ training data. Therefore,
caution is warranted in specific tasks to avoid substantial disparities, despite effective ensembling in
most other tasks.

TAKEAWAY III: Even though the performance and vocabulary size are aligned across models,
substantial differences in response style could also hinder successful ensembling.

4 METHODOLOGY

4.1 MODEL SELECTION STRATEGY

Given the aforementioned insights, we present a strategy to assess the compatibility of two models
for ensembling and offer guidance for selecting base models from the candidate model pool.

When ensembling two models, we begin by comparing their performance on the target tasks. An
overall performance gap within 10% is desirable, as it indicates the potential compatibility for suc-
cessful ensembling. If the performance gap falls within this range, it is crucial to compare the
response styles of different models. This comparison is relatively subjective, with differences often
identifiable through superficial features such as text length and BLEU score.

In this work, we use text length as a guiding metric by constraining the length of longer responses to
not exceed twice the length of the shorter ones. When the response manner is also consistent across
models, it is highly probable that these two models can be successfully ensembled to produce a
superior response. We exclude discrepancies in vocabulary size from consideration, as prior analyses
have demonstrated its insignificance in affecting ensembling outcomes.

To select base models from the pool, we recommend initially choosing the best-performing model
for the target tasks. Subsequently, select the next best-performing model that satisfies the criteria
for successful ensembling with the first chosen model, continuing this process iteratively until the
maximum number of base models is reached or no further suitable models can be found.

4.2 UNION TOP-k ENSEMBLING

Apart from the model selection strategy, we also endeavor to improve the efficiency and performance
of model ensembling. Existing probability-level model ensembling methods, e.g. DEEPEN and
GAC, attempt to combine the models through full vocabulary alignment. We argue this approach
is sub-optimal since the candidate next token typically resides within the top-k tokens. Conversely,
incorporating tokens of lower probability may introduce unnecessary noise, thereby diminishing the
overall accuracy and effectiveness of the ensemble. Motivated by this, we propose the UNION Top-k
Ensembling (UNITE), a novel and efficient ensembling approach that only aligns the top-k tokens
in each decoding step.

Given the base models for ensembling, denoted as LLMi with their respective tokenizer T i and vo-
cabulary V i, we feed the input text prompt into LLMi and obtain the probability distribution. Instead
of aligning the probability distributions across different models, we only focus on the subset of top-
k tokens since the candidate next token is highly likely to be within the subset. The selected top-k
tokens of LLMi is presented as TopKi = (ti1, ti2, ..., tik) with corresponding probability distribution
P i = (pi1, pi2, ..., pik).

Next, we aim to construct the union set V u of TopKi across the base models. The most straightfor-
ward solution to obtain the union set is to directly remove the duplicate tokens and retain all other
distinct tokens. For the token in V u but not in V i, the probability of this token in LLMi is assigned
to 0. This strategy is adopted by GAC (Yu et al., 2024b). However, we contend that this strategy
is not entirely reasonable since it is heavily influenced by the tokenizer and vocabulary. For exam-
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Algorithm 1 Union top-k ensembling

Require: LLMi, Vocabulary Vi, Tokenizer Ti, Demonstration prompt, Stop condition stop(*)
1: while not stop(*) do ▷ Stopping criteria
2: TopKi, P i← LLMi(prompt) ▷ Generate top-k tokens and their probabilities
3: for each model do
4: if token w ∈ V u and w ∈ TopKi then
5: P i

{w} and TopKi remains unchanged.
6: else if token w ∈ V u and w ∈ V i and w /∈ TopKi then
7: TopK̂i← w, P̂ i← piw
8: else if token w ∈ V u and w /∈ V i then
9: w1, . . . , wm← T i(w)

10: TopK̂i← w1, P̂ i← piw1

11: end if
12: end for
13: P̂ i

norm = softmax(P̂ i), P̂avg = 1
n

∑n
i=1 P̂

i
norm

14: w = argmax
w∈TopK̂i

(P̂avg) ▷ Predict the next token

15: prompt← prompt + w ▷ Update input sequence
16: end while

ple, the candidate token “James” is within the top-k subset of LLM1 but not in V 2 while the token
“Jam” appears in TopK2. The word “James” can be tokenized into “Jam” and “es” by LLM2. If the
token probabilities p1{Jam} and p2{James} are set to 0, the overall probability of generating the word
“James” should be inherently reduced, even if both base models exhibit a preference for this word.
Therefore, we present a new token probability alignment strategy on the union set. Firstly, we obtain
the top-k union vocabulary V u by directly merging the TopKi subsets. Then, the token distribution
P i and TopKi are updated according to following criteria:

1. If the token w appears in both V u and TopKi, P i
{w} and TopKi remains unchanged.

2. If the token w in V u is absent in TopKi but present in V i, it will be appended to TopKi. P i

also updates accordingly.
3. If the token w in V u does not exist in V i, it should be tokenized by T i. The first token of

the result along with its token probability is then updated to TopKi and P i.

Up to now, we can obtain the aligned top tokens TopK̂i and the token distributions P̂ i of based
models. Consequently, we normalize P̂ i as: P̂ i

norm = softmax(P̂ i).

Since our method eliminates the need for full vocabulary alignment, it is essential to designate one
model as the primary base model. As discussed in Section 3.2, the selection of primary base model
is flexible when the candidate models exhibit comparable performance. To simplify the process, we
directly employ the best-performing model as the primary base model. Then, the primary base model
employs the average token probability P̂avg to predict the next token, where P̂avg = 1

n

∑n
i=1 P̂

i
norm.

The next token is determined using the maximization-based greedy strategy (Li et al., 2016). The
chosen token will be appended to the input text. This process is iteratively repeated until the pre-
determined stopping criterion is met, such as generating an end-of-sentence token or reaching the
maximum length.

5 EXPERIMENTS

5.1 SETUP

Models All of our experiments are conducted with the following commonly used models, includ-
ing LLaMA2-7B-Chat (Touvron et al., 2023), LLaMA2-13B-Chat (Touvron et al., 2023), LLaMA3-
8B-Instruct (Dubey et al., 2024), LLaMA3.1-8B-Instruct (Dubey et al., 2024), Mistral-7B-Instruct-
v0.3 (Jiang et al., 2023a), DeepSeek-LLM-7B-Chat (Bi et al., 2024), Yi-6B (Young et al., 2024),
OpenChat-3.5 (Wang et al., 2024a), Qwen2-7B-Instruct (Yang et al., 2024), Mixtral-8×7B (Jiang
et al., 2024) and Qwen1.5-72B (Bai et al., 2023).
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Method
Dataset

Avg.
GSM8K PIQA MMLU ARC-C TriviaQA NQ

Mistral 56.48 80.63 59.28 74.49 64.30 24.25 59.91
DeepSeek 59.67 72.66 46.97 58.73 47.63 11.37 49.51

OpenChat 73.46 87.10 60.80 78.05 61.77 31.08 65.38

LLM-BLENDER 70.79(-2.67) 83.28(-3.82) 60.10(-0.70) 76.29(-1.76) 56.35(-5.42) 25.57(-5.51) 62.06(-3.32)

DEEPEN 73.06(-0.40) 76.04(-11.06) 61.91(+1.11) 72.14(-5.91) 67.24 (+5.47) 28.26(-2.82) 63.11(-2.27)
GAC 62.85(-10.61) 67.85(-19.25) 55.15(-5.65) 73.04(-5.01) 62.22(+0.45) 20.72(-10.36) 56.97(-8.41)

UNITE 73.31(-0.15) 87.50 (+0.40) 62.13 (+1.33) 78.70 (+0.65) 65.80(+4.03) 31.78 (+0.70) 66.54 (+1.16)

Table 3: Results of ensembling on Mistral, DeepSeek, OpenChat. OpenChat is chosen as primary
model for these experiments.

Method
Dataset

Avg.
GSM8K PIQA ARC-C MMLU

LLaMA3 78.77 79.08 79.01 64.58 75.36
LLaMA3.1 80.83 82.86 79.49 66.69 77.47

Qwen2 80.78 84.57 84.92 64.96 78.81
Two-model ensembling (LLaMA3+Qwen2)

LLM-BLENDER 82.69 (+1.91) 82.53 (-2.04) 82.98 (-1.94) 62.07 (-2.89) 77.57 (-1.24)
DEEPEN - OOM -

GAC 80.67 (-0.11) 80.96 (-3.61) 84.93 (+0.01) 67.05 (+2.09) 78.40 (-0.41)

UNITE 84.17 (+3.39) 85.53 (+0.96) 85.07 (+0.15) 69.78 (+4.82) 81.14 (+2.33)
Three-model ensembling

LLM-BLENDER 83.30(+2.52) 83.47(-1.10) 83.48(-1.44) 62.55(-2.41) 78.20(-0.61)
DEEPEN - OOM -

UNITE 84.99 (+4.21) 84.98 (+0.41) 85.39 (+0.47) 69.12 (+4.16) 81.12 (+2.31)

Table 4: Results of ensembling on LLaMA3, LLaMA3.1, Qwen2. Qwen2 is chosen as primary
model for these experiments.
Baselines We selected three typical model ensembling methods for further analyses. 1) LLM-
BLENDER (Jiang et al., 2023b) includes a reward model, PAIRRANKER, to evaluate LLM responses,
and a fusion model, GENFUSER, to combine them. We only use PAIRRANKER due to significant
over-generation issues with GENFUSER. 2) DEEPEN (Huang et al., 2024) employs relative repre-
sentation theory to map each model’s probability distribution to a universal space for aggregation,
computed through the intersection of model vocabularies. 3) GAC (Yu et al., 2024b) projects mul-
tiple LLMs’ probability vectors into a unified vocabulary dimension using a mapping matrix and
aggregates outputs at each generation step to select the next token. Although GAC suggests the
importance of identifying keywords to improve latency, we still exclude it owing to its hindrance on
the ensembling performance.

Benchmarks We evaluate six benchmarks, which can be categorized into three main groups. 1)
Comprehensive Examination: MMLU (5-shot) (Hendrycks et al., 2021), covering 57 subjects that
humans typically learn; ARC-C (0-shot) (Clark et al., 2018), collected from standardized natural
science tests. 2) Reasoning Capabilities: GSM8K (Cobbe et al., 2021) (4-shot), a dataset of high-
quality problems at the grade school math level; PIQA (Bisk et al., 2020) (0-shot), a commonsense
reasoning dataset. 3) Knowledge Capacities: TriviaQA (5-shot) (Joshi et al., 2017), compiled by
Trivia enthusiasts; NaturalQuestion (NQ) (5-shot) (Kwiatkowski et al., 2019), a question-answering
corpus consisting of queries issued to the Google search engine.

For a comprehensive evaluation, we conduct two- and multi-model ensembling experiments on the
aforementioned benchmarks. We select base models following the strategy presented in Section
4.1. We choose two pairs from Mistral, Deepseek, and OpenChat for the two-model experiments.
For the closely performing LLaMA3, LLaMA3.1, and Qwen2, we select LLaMA3 and Qwen2 for
the two-model ensemble based on their release dates and subsequently employ all three models
for the multi-model ensembling evaluations. The hyper-parameter k is set to 10 in this work. All
experiments are conducted on 46G NVIDIA L40 GPUs.

5.2 MAIN RESULTS

As shown in Table 3 and Table 4, we have following observations:
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Figure 4: Impact of the choice of hyperparameter
k on the ARC and TriviaQA datasets. Increasing
k beyond a certain point leads to a slight decline
or no improvement in performance.

Figure 5: Latency comparison of different
methods. The darker the color, the greater
the latency.

(1) UNITE enhances individual model performance when the base models exhibit similar per-
formance levels. As demonstrated, the ensemble of models such as OpenChat achieved an average
improvement of approximately 1.2% across five benchmark tasks, including ARC-C and MMLU.
However, in the GSM8K task, a 15% performance gap between DeepSeek and OpenChat led to a
slight decline in overall performance, reinforcing our observation in Section 3.1 that ensemble meth-
ods are most effective when model performances are closely aligned. Furthermore, experiments
with LLaMA3 and Qwen2 validated our approach, resulting in performance increases of 3.39% and
4.82% on the GSM8K and MMLU tasks, respectively.

(2) UNITE demonstrates greater robustness and generality. Ensembling experiments with
LLaMA3 and Qwen2 indicate that while LLM-BLENDER improves performance on the GSM8K
dataset, it significantly underperforms compared to baseline models in the PIQA, ARC-C, and
MMLU benchmarks. Specifically, BLENDER demonstrates a decline of 2.89% in the MMLU task,
and this issue is exacerbated in ensembles with the baseline models OpenChat and Mistral, which
exhibit relatively low baseline performance, leading to an average performance drop of 3.32%. Ad-
ditionally, GAC fails to improve the performance of individual models across most tasks and exhibits
a significant decline of over 10% when combined with Mistral and OpenChat. Furthermore, due to
its intersection limitations, DEEPEN is ill-suited for ensembling with the LLaMA3 model, which
requires handling a large vocabulary. In contrast, across tasks with comparable performance levels,
UNITE achieves the highest improvements and overall performance across the board, with the ex-
ception of a slight under-performance relative to DEEPEN on TriviaQA. This outcome underscores
the effectiveness and robustness of UNITE.

(3) Collaborating with comparable LLMs does not necessarily yield better results. The ensem-
bling experiments conducted with three models, following the integration of LLaMA3.1, demon-
strate improved performance on the GSM8K and ARC-C benchmarks compared to the ensemble of
LLaMA3 and Qwen2. However, this approach results in suboptimal outcomes on PIQA and MMLU.
This observation is justified, as the analysis in Section 3.2 indicates that while combining models
with similar performance may enhance overall efficacy, such improvement is not guaranteed.

5.3 ABLATION STUDY

Effect of hyperparameter k selection To investigate the impact of the hyperparameter k, we con-
ducted experiments using the Mistral and OpenChat models on the TriviaQA and ARC-C datasets.
As illustrated in Fig. 4, increasing k from 5 to 10 enhances ensemble performance. However,
further increasing k beyond 10 leads to either a slight decline or no change in performance. This
finding supports our assertion that, in probability-level ensembling, aligning the entire vocabulary is
unnecessary for predicting the next token.

Effect of the next token selection strategy We also explored the impact of deterministic decoding
and top-k sampling (Fan et al., 2018) on the next token emission. It is important to clarify that our
UNITE focuses on the fact that, when predicting the next token, we only need to ensemble a subset
of tokens rather than the entire vocabulary. In contrast, greedy decoding and top-k sampling em-
phasize how to determine the next token’s ID after the ensemble process is complete. To investigate

9
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Base Model Method Tokens Manipulated Each Step
Mistral(32678)

+
OpenChat(32002)

DEEPEN 32000
GAC 32770

UNITE 14.46
LLaMA3(128256)

+
Qwen2(151646)

DEEPEN 109566
GAC 170336

UNITE 14.43

Table 5: Tokens manipulated at each
step. It’s noteworthy that DEEPEN encoun-
tered out-of-memory issues when conducting
LLaMA3 and Qwen2 ensembling.

Model ARC-C PIQA

Qwen1.5-72B(Dense) 69.03 73.83
Mixtral-8x7B(Sparse) 73.98 74.59

UNITE
78.84 81.88

(+4.86) (+7.29)

Table 6: Ensemble learning of the dense
LLM Qwen1.5-72B and the sparse MOE
model Mixtral-8x7B.

this, we conducted experiments using LLaMA3.1 and Mistral on the PIQA and ARC-C datasets cor-
respondingly. As shown in Figure 6, for these deterministic tasks, the maximization-based greedy
method outperforms the random sampling approach, which aligns with intuition.

5.4 FURTHER ANALYSIS

Figure 6: Comparison among different decoding meth-
ods. The greedy decoding strategy is more effective for
eliciting the next token in deterministic tasks.

Latency analysis Following the settings de-
tailed in GAC (Yu et al., 2024b), we recorded
the latency (ms/token) of different methods.
The data presented in Fig. 4 reveals significant
differences in latency among the various meth-
ods. Notably, the latency of UNITE is 87.78
ms/token, which is substantially lower than that
of DEEPEN and GAC, and only about 10 ms
longer than that of the individual models.

Tokens manipulated each step Table 5
presents tokens manipulated at each step. Com-
pared to DEEPEN and GAC, UNITE signifi-
cantly reduces the number of tokens manipu-
lated at each step, indicating its efficiency. As
the vocabulary of the base model expands, the
number of manipulated tokens of DEEPEN and
GAC increases significantly, which not only increases the computational burden but may also lead
to performance bottlenecks. Contrastly, UNITE is minimally affected, maintaining its effectiveness.

Ensemble of the dense model and the sparse model We evaluate our method on the ensemble
learning of the dense model and the sparse MoE model for reasoning and comprehensive examina-
tion tasks. Specifically, we utilize the widely-used large-scale dense model Qwen1.5-72B (Bai et al.,
2023) alongside the popular sparse MoE model Mixtral-8×7B (Jiang et al., 2024) as our base mod-
els. As shown in Tabel 6, our UNITE achieves +4.86% and +7.29% performance on the ARC-C and
PIQA datasets respectively, despite the base models already exhibiting high levels of performance.

6 CONCLUSION

In conclusion, our research highlights the effectiveness of ensemble methods in enhancing the per-
formance of LLMs. By examining existing techniques, we identified key factors influencing ensem-
bling success, such as model performance and response processes, while finding that vocabulary
size has a minimal impact. In addition, the issue of vocabulary redundancy exposed by existing
methods during ensembling lead us to propose UNITE, which efficiently aggregates a bunch of to-
kens from multiple LLMs without the computational overhead. Through extensive experimentation,
UNITE consistently outperformed state-of-the-art ensemble methods, demonstrating its effective-
ness in leveraging the strengths of diverse LLMs. Our contributions not only advance the under-
standing of model ensembling but also provide a practical framework for selecting and integrating
LLMs to achieve superior performance.
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Question
Who had a 70s No 1 hit with Kiss You All Over?
The flag of Libya is a plain rectangle of which color?

Gold answer
Sir Henry Campbell Bannerman
Green

LLaMA3 response
Henry Campbell-Bannerman
Green

Qwen2 Response

The hit song K̈iss You All Overẅas performed by the band Arrows, featuring vocalist Jim McCarty.
The song reached number one on the UK Singles Chart in 1976.
The song was written by Arrows’ lead singer Jim McCarty, along with the band’s guitarist, Steve P̈igḦarrison.
It was produced by Tony Visconti, who had previously worked with David Bowie and T. Rex.
K̈iss You All Overẅas released as a single from the band’s debut album, Ärrows,ẅhich was also released in 1976.
The song’s catchy chorus and upbeat tempo made it a popular hit of the 1970s,
and it remains a well-known and beloved track from that era.
The song’s success helped to establish Arrows as a popular band of the time,
and it continues to be played on classic rock and oldies radio stations today.
The flag of Libya is a plain rectangle of green color.
It was adopted in 1977 and features a green color field with no other symbols or designs.
The color green is significant in the country’s history and culture,
representing hope, fertility, and the country’s rich agricultural heritage.
The flag is rectangular in shape and is often flown vertically.
It is an important symbol of the Libyan state and is used in various official and ceremonial contexts.

LLM-Blender response

The hit song K̈iss You All Overẅas performed by the band Arrows, featuring vocalist Jim McCarty.
The song reached number one on the UK Singles Chart in 1976.
The song was written by Arrows’ lead singer Jim McCarty, along with the band’s guitarist, Steve P̈igḦarrison.
It was produced by Tony Visconti, who had previously worked with David Bowie and T. Rex.
K̈iss You All Overẅas released as a single from the band’s debut album, Ärrows,ẅhich was also released in 1976.
The song’s catchy chorus and upbeat tempo made it a popular hit of the 1970s,
and it remains a well-known and beloved track from that era.
The song’s success helped to establish Arrows as a popular band of the time,
and it continues to be played on classic rock and oldies radio stations today.
The flag of Libya is a plain rectangle of green color.
It was adopted in 1977 and features a green color field with no other symbols or designs.
The color green is significant in the country’s history and culture,
representing hope, fertility, and the country’s rich agricultural heritage.
The flag is rectangular in shape and is often flown vertically.
It is an important symbol of the Libyan state and is used in various official and ceremonial contexts.

Table 7: Responses of different methods on TriviaQA dataset

A APPENDIX

A.1 TASK CHALLENGES ANALYSIS ON TRIVIAQA

Table 7 provides a detailed comparison of the differences in response styles between LLaMA3
and Qwen2 on the TriviaQA dataset. It is easily observable that, regardless of correctness, LLM-
BLENDER consistently tends to choose longer responses as answers.

We try to address the response style issue via preprocessing steps. Specifically, we provide an
alternative simple solution by using the few-shot examples to standardize the response format. We
employed a new 5-shot prompt designed to elicit answers in the format: The answer is xxx. The
responses are presented in the Table 8.

As shown in Table 9, the original prompts elicit accuracy in the brackets. Since the tedious response
style illustrated in Table 7, Qwen incorporates answers into the analysis, we randomly sampled 100
instances from the 1500-test set to manually extract the predictions. After adjusting the prompt, we
can easily analyze the results for the entire test set. Consistent with our findings presented in the
main text, when the base model’s performance gap exceeds 10%, ensemble learning may yield little
to no improvement. Additionally, it is important to note that our UNITE approach still outperforms
its competitors.
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TriviaQA Question Which Lloyd Webber musical premiered in the US on 10th December 1993?

Original prompt (Response style referring to Table 2)

Question: In the 1971 Number One hit Ernie by Benny Hill,
what was the name of Ernie’s horse who was kicked by his rival,
Two-ton Ted from Teddington?
Answer: Triggers.
. . .

New Prompt

Question: In the 1971 Number One hit Ernie by Benny Hill,
what was the name of Ernie’s horse who was kicked by his rival,
Two-ton Ted from Teddington?
Answer: The answer is Triggers.
. . .

LLaMA3 response The answer is Sunset Boulevard.
Qwen2.5 response The answer is Sunset Boulevard.

Table 8: Case study of preprocessing on TriviaQA.

Method TriviaQA
LLaMA3-8b-instruct 70.68(67)
Qwen2.5-7b-instruct 57.85(52)
LLM-BLENDER 64.77
UNITE 67.45

Table 9: Results of ensembling LLaMA3 and Qwen2.5 on TriviaQA after preprocessing. LLaMA3
is chosen as primary model for these experiments.

Method BBH
LLaMA3-8b-instruct 73.00
Qwen2-7b-instruct 68.60
LLM-BLENDER 68.79
DEEPEN -OOM-
GAC 69.86
UNITE 73.52

Table 10: Results of ensembling LLaMA3 and Qwen2 on BBH. LLaMA3 is chosen as primary
model for these experiments.

A.2 GENERALIZATION EVALUATION ON BIG-BENCH HARD BENCHMARK

We conduct additional experiments using the BBH (BIG-Bench Hard) benchmark (Suzgun et al.,
2022), a diverse evaluation suite of 23 challenging tasks such as symbolic reasoning, to further
validate UNITE’s generalizability. Due to computational constraints and limited rebuttal time, we
randomly selected 10 subsets, and the results are presented below. Consistent with our main findings,
UNITE demonstrates superior performance compared to other methods, highlighting the effective-
ness and generalizability of our approach.

A.3 MULTILINGUAL TOKENIZATION CONSIDERATIONS

We also conducted experiments on the CMMLU (Li et al., 2024), a Chinese Multitask Language
Understanding Evaluation benchmark to validate our findings in section 3.2. We used Yi-6B (vo-
cabulary size: 64,000) and Qwen2-7b-instruct (vocabulary size: 152,064) as our base models, both
supporting the Chinese language. Qwen2-7b-instruct is the primary model, the results of various en-
semble approaches are presented in Table 11. Similar to the results listed in Section 3.2, irrespective
of the gap in vocabulary size, existing methods still demonstrate improvements, thereby indicating
that vocabulary size for model ensembling is marginal.
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Method CMMLU
Yi-6B 75.21
Qwen2-7b-instruct 83.22
LLM-BLENDER 79.08
DEEPEN -OOM-
GAC 75.88
UNITE 83.89

Table 11: Results of ensembling Yi and Qwen2 on CMMLU. Qwen2 is chosen as primary model
for these experiments.

Setting TriviaQA
Mistral 64.30
OpenChat 61.77
k = 5 64.52
k = 10 65.80
k = 20 65.77
k = 100 65.65
k = 1000 65.74
k = 10000 65.72

Table 12: Impact of the large hyperparameter k on TriviaQA dataset.

A.4 FURTHER ANALYSIS OF HYPERPARAMETER k

We clarify that the enhanced efficiency and effectiveness arise from reduced token options and our
specialized union mapping method, as outlined in Section 4.2. UNITE constructs a union of the top-
k tokens from each model and expands this set using each model’s tokenizer, followed by probability
aggregation to determine the next token. UNITE eliminates the need for auxiliary mapping matrices
and full vocabulary alignment, respecting the unique tokenization of each base LLM.

We further test k with extremely large values to validate our effectiveness. As shown in Table
12, further increasing k leads to either a slight decline or no change in performance. This finding
reinforces our assertion that, in probability-level ensembling, it is unnecessary to align the entire
vocabulary to predict the next token.

A.5 CASE STUDY OF UNITE

Table 13 presents the specific cases of UNITE and other ensembling approaches, showcasing the
validity and stability of our method.
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Question
Tom plants 10 trees a year. Every year he also chops down 2 trees a year.
He starts with 50 trees. After 10 years 30% of the trees die.
How many trees does he have left?

Gold Answer

He gets 10 − 2 =<< 10 − 2 = 8 >> 8 new trees a year.
After 10 years he has 8 ∗ 10 =<< 8 ∗ 10 = 80 >> 80 new trees
so he had 80 + 50 =<< 80 + 50 = 130 >> 130 trees
He lost 130 ∗ .3 =<< 130 ∗ .3 = 39 >> 39 trees

That means he had 130 − 39 =<< 130 − 39 = 91 >> 91 trees

LLaMA3 Response

Tom starts with 50 trees.
He plants 10 trees a year, so after 10 years he has 50+10*10= 150 trees.
However, he chops down 2 trees a year, so after 10 years he has 150-2*10= 140 trees.
30% of the trees die, which means 30/100*140= 42 trees die.
Tom is left with 140-42= 98 trees.

The answer is boxed{ 98 }

LLaMA3.1 Response

Tom starts with 50 trees and plants 10 trees a year, so after 10 years he will have 50+10*10= 150 trees.
However, he also chops down 2 trees a year, so after 10 years he will have 150-2*10= 140 trees.
After 10 years, 30% of the trees die, so 30% of 140 is 0.3*140= 42 trees die.
The number of trees Tom has left is 140-42= 98 trees.

The answer is boxed{ 98 }

Qwen2 Response

Tom starts with 50 trees and plants 10 trees a year, so after 10 years he will have 50+10*10= 150 trees.
However, he also chops down 2 trees a year, so after 10 years he will have 150-2*10= 140 trees.
After 10 years, 30% of the trees die, so 30% of 140 is 0.3*140= 42 trees die.
The number of trees Tom has left is 140-42= 98 trees.

The answer is boxed{ 98 }

2-models
LLM-Blender

Tom starts with 50 trees and plants 10 trees a year, so after 10 years he will have 50+10*10= 150 trees.
However, he also chops down 2 trees a year, so after 10 years he will have 150-2*10= 140 trees.
After 10 years, 30% of the trees die, so 30% of 140 is 0.3*140= 42 trees die.
The number of trees Tom has left is 140-42= 98 trees.

The answer is boxed{ 98 }

GaC

Tom plants 10 trees a year and chops down 2 trees a year,
so the net increase in trees each year is 10 - 2 = 8 trees.
After 10 years, the total number of trees planted is 10 * 10 = 100 trees.
The total number of trees chopped down is 2 * 10 = 20 trees.
So the total number of trees after 10 years is 50 + 100 - 20 = 130 trees.
If 30% of the trees die, then the number of trees that die is 30/100 * 130 = 39 trees.
The number of trees left is 130 - 39 = 91 trees.

The answer is boxed{ 91 }

UNITE

Tom plants 10 trees a year, so in 10 years he plants 10*10 = 100 trees.
He starts with 50 trees, so after planting 100 trees, he has 50+100 = 150 trees.
Every year he chops down 2 trees,
so in 10 years he chops down 2*10 = 20 trees.
So, after 10 years, he has 150-20 = 130 trees.
30% of the trees die, so 30% of 130 trees is 0.3*130 = 39 trees.
Therefore, after 30% of the trees die, he has 130-39 = 91 trees left.

The answer is boxed{ 91 }

3-models
LLM-Blender

Tom starts with 50 trees and plants 10 trees a year, so after 10 years he will have 50+10*10= 150 trees.
However, he also chops down 2 trees a year, so after 10 years he will have 150-2*10= 140 trees.
After 10 years, 30% of the trees die, so 30% of 140 is 0.3*140= 42 trees die.
The number of trees Tom has left is 140-42= 98 trees.

The answer is boxed{ 98 }

UNITE

Tom plants 10 trees a year and chops down 2 trees a year,
so he has 10-2=8 more trees each year.
After 10 years, he will have 8*10=80 more trees.
He starts with 50 trees, so he will have 50+80=130 trees after 10 years.
After 10 years, 30% of the trees die, so 30% of 130 trees die, which is 0.3*130=39 trees.
Therefore, he will have 130-39=91 trees left.

The answer is boxed{ 91 }

Table 13: Case study of UNITE and other ensembling methods on GSM8K
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