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Abstract

Standard training metrics like loss fail to explain the emergence of complex ca-
pabilities in large language models. We take a spectral approach to investigate
the geometry of learned representations across pretraining and post-training, mea-
suring effective rank (RankMe) and eigenspectrum decay (αReQ). With OLMo
(1B-7B) and Pythia (160M-12B) models, we uncover a consistent non-monotonic
sequence of three geometric phases during autoregressive pretraining. The initial
“warmup” phase exhibits rapid representational collapse. This is followed by an
“entropy-seeking” phase, where the manifold’s dimensionality expands substantially,
coinciding with peak n-gram memorization. Subsequently, a “compression-seeking”
phase imposes anisotropic consolidation, selectively preserving variance along
dominant eigendirections while contracting others, a transition marked with signif-
icant improvement in downstream task performance. We show these phases can
emerge from a fundamental interplay of cross-entropy optimization under skewed
token frequencies and representational bottlenecks (d ≪ |V|). Post-training fur-
ther transforms geometry: SFT and DPO drive “entropy-seeking” dynamics to
integrate specific instructional or preferential data, improving in-distribution perfor-
mance while degrading out-of-distribution robustness. Conversely, RLVR induces
“compression-seeking” , enhancing reward alignment but reducing generation di-
versity.

1 Introduction

Loss curves during training offer an incomplete account of how large language models (LLMs)
learn specific behaviors [Wei et al., 2022, Ganguli et al., 2022]. While training loss typically
decreases monotonically [Kaplan et al., 2020, Hoffmann et al., 2022], model capabilities and internal
representational structures exhibit significant qualitative shifts [Singh et al., 2023, Brown et al., 2023,
Singh et al., 2024]. This disconnect highlights a fundamental challenge: How do high-dimensional
distributed representations within LLMs evolve during training, and how do these representational
transformations give rise to emergent capabilities?

We answer this question by using spectral analysis to quantify the geometric evolution of LLM
representations. We discover that this evolution is not a smooth progression but a consistent, three-
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Figure 1: Spectral framework reveals three universal phases in LLM training. (A) LLM
representations analyzed via empirical feature covariance Σ̂(fθ) of last-token hidden states fθ(xi).
(B) Two complementary spectral metrics: αReQ measures eigenspectrum decay rate (variance
concentration), while RankMe quantifies effective rank (utilized dimensionality). (C) Pretraining
exhibits three phases: “warmup” (rapid collapse), “entropy-seeking” (2-3× expansion coinciding with
n-gram memorization), and “compression-seeking” (anisotropic consolidation enabling long-context
understanding). Post-training continues these dynamics: SFT/DPO induce “entropy-seeking” while
RLVR induces “compression-seeking” .

phase dynamic. Our method centers on the spectral properties of the covariance matrix of last-token
representations, which capture rich information about the model’s internal representations, especially
when using causal attention. To measure this geometric structure, we compute two metrics from
the eigenspectrum of these matrices: the effective rank ("RankMe"), and the power-law decay rate
("αReQ") of the eigenvalues [Garrido et al., 2023, Agrawal et al., 2022]. These spectral measures
of representation geometry have been linked theoretically and experimentally to generalization in
downstream tasks [Bartlett et al., 2020, Thilak et al., 2023]. Intuitively, representation geometry tells
us about the model’s expressive capacity, utilization, and amount of data compression.

Our analysis shows that LLM pretraining unfolds through a consistent sequence of distinct geometric
phases marked by non-monotonic evolution of spectral properties. These phases correlate with
significant shifts in the model’s expressive power and information compression ability (c.f. Figure 1):

• An initial “warmup” phase, coinciding with learning rate ramp-up, where there is a rapid
collapse of representations onto dominant data manifold directions.

• An “entropy-seeking” phase marked by manifold expansion in many directions, which
correlates with an increase in n-gram distributional memorization.

• A “compression-seeking” phase with anisotropic consolidation along principal feature
eigenvectors shows enhanced learning of long-range dependencies and robust generalization.

We further develop mechanistic insights from analytically tractable toy models, demonstrating that
these geometric phase transitions are influenced by the interplay of cross-entropy optimization,
information bottlenecks, and skewed data distributions.

Our investigation of post-training stages reveals analogous geometric shifts: Supervised fine-tuning
(SFT) produces an “entropy-seeking” -like expansion with concomitant assimilation of specific
instructions. Reinforcement Learning from Verifiable Rewards (RLVR) produces a “compression-
seeking” -like contraction, which can consolidate reward-aligned behaviors at the cost of curtailing
generative novelty and exploration. Together, our findings present a more granular view of LLM
training, and offer practical implications for optimizing LLM training and adaptation pipelines based
on desired downstream outcomes.
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2 Methods

2.1 Spectral Analysis, Matrix Entropy, and Effective Rank

Last token representations in autoregressive language models: A rigorous understanding of LLM
capabilities necessitates a precise characterization of the geometry of their learned representations.
An autoregressive language model processes an input sequence of discrete tokens s = (t1, t2, . . . , tN ),
transforming each token tk through its l layers (conditioned on preceding tokens t<k) into a sequence
of high-dimensional continuous vectors f (l)θ (tk|t<k). For autoregressive models, the representation
of the final token (tN ) at the last layer, yN := f

(L)
θ (tN |t<N ), is particularly pivotal. Its significance

stems from different factors: (i) it directly parameterizes the predictive distribution for the subsequent
tokens P (tN+1|t1, ..., tN ); (ii) it synthesizes information from the entire context t≤N to inform this
prediction, meaning it inherently reflects the model’s capacity for contextual understanding; and (iii)
is often used as input to task-specific layers in downstream applications.

High-dimensional representation complexity metrics: To quantitatively measure representation
geometry, we perform spectral analysis of the feature covariance matrix. Given a set of M input
sequences, we form a feature matrix F ∈ RM×d; each row is a feature vector of the last token yN for
each input. Assuming the features are centered, the empirical covariance matrix is Σ̂ := 1

MFTF. The
eigenspectrum of Σ̂, denoted by eigenvalues {σi(Σ̂)}di=1, measures the concentration of information
along the principal axes of variation. The distribution of {σi}di=1 provides a quantitative description
of feature geometry: a sharp decay indicates information compressed in a lower-dimensional subspace
(anisotropic geometry), while a slow decay indicates a high-dimensional subspace is utilized.

This spectral perspective motivates using matrix entropy to measure the uniformity of the eigenvalue
distribution. If pi = σi/(

∑
j σj) is the proportion of variance along the i-th principal axis, the Von

Neumann entropy-based effective rank [Roy and Vetterli, 2007, Garrido et al., 2023] is defined as:

RankMe := exp
(
S(Σ̂)

)
= exp

(
−

d∑
i=1

pi ln pi

)
∈ (0, d]. (1)

Low entropy indicates a skewed eigenvalue distribution, i.e. low-dimensional (anisotropic) representa-
tions, while high entropy implies a uniform spread, i.e. high-dimensional (isotropic) representations.

Our empirical studies also show that LLM activation matrices exhibit heavy-tailed eigenvalue spectra,
i.e., a power law distribution where σi ∝ i−αReQ, where αReQ > 0 [Ghosh et al., 2022]. Slower
decay or smaller αReQ implies a more uniform spread of σi’s (higher dimensional), and thus higher
S(Σ̂) and RankMe. Conversely, faster decay or larger αReQ implies representations are compactly
packed along fewer principal directions [Stringer et al., 2019, Agrawal et al., 2022], yielding lower
entropy and smaller RankMe. αReQ and RankMe thus provide related metrics of representation
geometry, though unlike RankMe, αReQ does not change with the model’s feature dimensionality, d.

2.2 Quantifying Distributional Memorization and Generalization via n-gram Alignment

To dissect how LLMs utilize their pretraining corpus D, we differentiate distributional memorization,
i.e. how aligned are LLM output probabilities with n-gram frequencies in D, from distributional
generalization, i.e. LLM capabilities beyond such statistics [Liu et al., 2024]. To quantify the
alignment with n-gram statistics, we use the ∞-gram language model (LM) which uses the largest
possible value of n for predicting the next token probability. Briefly, an ∞-gram LM can be viewed
as a generalized version of an n-gram LM which starts with n = ∞, and then performs backoff till
the n-gram count in D is non-zero [Liu et al., 2024]. Consequently, the output probability of the
∞-gram LM for each token is dependent on its longest existing prefix in D.

The distributional memorization metric is defined as the spearman rank correlation (ρs) between the
∞-gram LM outputs and the LLM outputs for all tokens in a target sequence [Wang et al., 2025].
Formally, consider a concatenated sequence of instructions, u, question, x and target, y, from a
question-answering task, T . Then, the distributional memorization is computed as:

Mem∞(LLM,D, T ) := ρs
(
P̄∞,D(y|u⊕ x), P̄LLM (y|u⊕ x)

)
(2)

where P̄.(y|u⊕ x) :=
∏

ti∈y P.(ti|u⊕ x⊕ y[t0:ti−1]) denotes the joint likelihood of all tokens in y

and P.() is the next token prediction distribution, as described above.
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2.3 Post-Training Methodologies and Evaluation

Supervised Fine-Tuning (SFT) adapts pre-trained LLMs by further training on a curated dataset
DSFT = {(xi, yi)}NSFT

i=1 typically consisting of instruction-response pairs. The standard objective is
to minimize the negative log-likelihood of the target responses, effectively maximizing Pθ(y|x) for
examples in DSFT. We evaluate the robustness of the SFT model by contrasting its performance on
held-out examples from DSFT (In-Distribution, ID) with its performance on examples from a related
but distinct dataset DOOD (Out-of-Distribution, OOD), which may vary in task, style, or complexity
not present in DSFT [Springer et al., 2025].

Preference Alignment and Reasoning : For alignment beyond SFT, we consider Direct Preference
Optimization (DPO) [Rafailov et al., 2023] and Reinforcement Learning from Verifiable Rewards
(RLVR). DPO refines an LLM policy πθ based on a static dataset of human preferences Dpref =
{(x, yw, yl)}, where the response yw is preferred over yl for prompt x. It directly optimizes for
preference satisfaction by minimizing the loss:

LDPO(πθ;πref) = −E(x,yw,yl)∼Dpref [log σ (r̂θ(x, yw)− r̂θ(x, yl))] , (3)

where r̂θ(x, y) = β log(πθ(y|x)/πref(y|x)) represents the implicit log-ratio of probabilities scaled
by β against a reference policy πref, and σ(.) is the logistic function. Reinforcement Learning
from Verifiable Rewards (RLVR), as applied in works like Lambert et al. [2024] and Shao et al.
[2024], optimizes the LLM’s policy πθ to maximize the expected discounted cumulative reward,
J(θ) = Eτ∼πθ

[∑T
t=0 γ

tRt

]
, where τ = (s0, a0, . . . , sT , aT ) is a trajectory generated by actions

at ∼ πθ(·|st) in states st, γ ∈ [0, 1] is a discount factor, and Rt = R(st, at) is the reward at time t.
This optimization is typically performed using policy gradient algorithms (e.g., PPO). Critically, the
reward Rt in RLVR is derived from verifiable properties of the LLM’s outputs, e.g. correctness on
mathematical problems or passing unit tests.

Performance with pass@k: To evaluate problem-solving efficacy and generative exploration,
particularly for RLVR-tuned models, we employ the pass@k metric [Kulal et al., 2019]. For a given
problem, k independent responses are stochastically generated from the model; the problem is deemed
solved if at least one response constitutes a verifiable solution. Since direct estimation of pass@k can
exhibit high variance, we utilize the unbiased estimator Chen et al. [2021], Yue et al. [2025]:

pass@k = EPi

[
1−

(
N−ci

k

)(
N
k

) ]
(4)

where, N samples are generated for each problem Pi , and ci denotes the count of correct solutions
among them (parameters for this work are N=512 and k ≤ 256).

3 Probing the representation geometry of language models

To study LLM representation geometry at intermediate stages of the training lifecycle, we analyze
checkpoints from three publicly released model suites. For all experiments, we used 15000 sequences
from the the FineWeb sample-10BT dataset to probe the geometry of model representations. We
defer additional details on the model architecture, dataset and training run to Appendix A.

• OLMo framework Groeneveld et al. [2024], OLMo et al. [2024], Lambert et al. [2024]:
Developed by AI2, OLMo & OLMo-2 family of models provide intermediate checkpoints
across different model sizes – 1B, 7B and 13B. We focused on intermediate checkpoints
available for the OLMo-2 7B and 1B models throughout their ∼ 4T token training run.

• Pythia suite Biderman et al. [2023]: Developed by EleutherAI, this suite consists of models
ranging from 70M to 12B parameters, all trained on the Pile dataset [Gao et al., 2020] using
the same data ordering and hyperparameters across scales. We analyzed the intermediate
checkpoints available at various intermediate training steps for 1B+ models.

• Tülu-3.1 models [Wang et al., 2024]: Developed by AI2, this suite contains instruction
following 8B LLaMA-based models parameters, that were post-trained with state-of-the-art
recipes. We analyzed checkpoints from all post-training stages of the model.
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Figure 2: Loss decreases monotonically, but representation geometry does not. (A) Schematic
from Fig 1, for the pretraining stage. (B) Cross-entropy loss, gradient norm and learning rate
schedule during OLMo-2 7B model pretraining. (C, D) RankMe and αReQ, respectively, for OLMo-2
7B model vary non-monotonically across pretraining, demonstrating three key phases: “warmup”
, “entropy-seeking” , and “compression-seeking” . (E, F) Same as C,D, but for Pythia models,
demonstrating the consistent existence of the three phases across model families and scales.

3.1 Phases of pretraining: Non-monotonic changes in representation geometry

During the LLM pretraining stage, standard metrics used for identifying optimization instabilities,
e.g. loss or gradient norms, often decrease near-monotonically. While useful to practitioners while
determining successful recipes for pretraining large models, these metrics carry limited information
about the model capabilities and downstream behavior. We demonstrate, on the contrary, that the
high-dimensional representation geometry metrics undergo non-monotonic changes. (And, later we
demonstrate that these changes correlate with downstream performance).

Figure 2 illustrates this contrasting trend between the optimization metrics and representation geom-
etry metrics during the pretraining of aforementioned family of LLMs. Specifically, we measured
the RankMe [Garrido et al., 2023] and αReQ [Agrawal et al., 2022] metrics on the LLM’s last layer
representation of the last token while processing sequences from the FineWeb dataset [Penedo et al.,
2024], and observed that there exist three distinct phases during the pretraining stage. Initially, there
is a “warmup” phase, coinciding with the learning rate ramp-up, exhibiting a rapid collapse of the
representations along the dominant data manifold directions. This relatively short phase is followed
by an “entropy-seeking” phase characterized by a manifold expansion in several directions, and
then a “compression-seeking” phase that imposes an anisotropic consolidation of the representation
space along its principal eigenvectors. We observe these phases in both OLMo2 and Pythia family
of models across different model sizes, indicating the consistent nature of non-monotonic changes
in representation geometry during pretraining. It is worth noting that there could be emergence of
additional “entropy-seeking” and “compression-seeking” with more pretraining, as in later stages of
OLMo-2 7B model pretraining (c.f. Figure 2C). Notably, these phases persist even in smaller models
below 1B parameters (Appendix Fig. 11), demonstrating the fundamental nature of this geometric
evolution. Furthermore, these three-phase dynamics are consistently observed across intermediate
layers throughout the network depth (Appendix Figure 7), confirming that the geometric evolution is
not confined to just the final layer representations.

Key takeaway. Despite near-monotonic loss, representation geometry exhibits a consistent,
non-monotonic phase sequence (“warmup” ; “entropy-seeking” ; “compression-seeking” ).
These trends are stable across: (i) sample count M and sequence length L; (ii) dataset choice
within family; and (iii) layers (with last-layer sufficing for tracking), for both OLMo and Pythia.

3.2 Memorization & beyond: Distributional memorization happens in entropy-seeking phase

In this section, we seek to associate the different geometric phases to specific LLM behaviors.
Downstream tasks that test the LLM’s factual reasoning and language understanding abilities seem
to improve with more pretraining. However, it is unclear to what extent this increase is due to an
improvement in the model’s memorization ability, i.e. how good is the model in “regurgitating”
short-context phrases from the pretraining dataset, as opposed to a general language understanding,
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Figure 3: Distinct learning phases are linked to different LLM capabilities. (A) Memorization
metric, i.e. spearman correlation between LLM and ∞-gram outputs, and representation geometry
metric, αReQ, across Pythia models’ (1–12B parameters) pretraining. Memorization peaks late in
the “entropy-seeking” phase before plateauing or degrading slightly in the “compression-seeking”
phase, suggesting that the former prioritizes capturing short-context n-gram statistics. (B) 0-shot
performance on multiple-choice (SciQ) and factual question-answering (TriviaQA) tasks across
pretraining. While accuracy on SciQ benefits from learning in both phases, accuracy on TriviaQA
groks once the model learns long-context statistics, primarily in the “compression-seeking” phase.

i.e. leveraging long-context dependencies to generate reasonable output. We disentangle these two
factors by using the distributional memorization metric Wang et al. [2025] presented in eq. (2) for
Pythia models when processing sequences from the TriviaQA dataset [Joshi et al., 2017]. Notably, the
∞-gram model predominantly utilizes short- to medium-length suffixes (Appendix Table 7), making
it an ideal baseline for measuring short-context memorization capabilities.

Figure 3 illustrates the memorization metric and task performance over the course of pretraining for
Pythia models of 5 different sizes – ranging from 1B to 12B. Across all models, the distributional
memorization metric increased during the “entropy-seeking” phase and peaked towards the end of
this phase. Intuitively, this result suggests that the “entropy-seeking” phase is particularly important
for learning short-context statistics, e.g. high-frequency n-grams, present in the pretraining corpus.
This intuition is also supported by Wang et al. [2025] (c.f. Fig 12). Following this peak in the
memorization metric, it plateaued (or slightly decreased) during the “compression-seeking” phase,
suggesting that the model’s output in this phase is guided by factors beyond n-gram statistics. Notably,
the 0-shot accuracy on multiple-choice question-answering tasks, e.g. SciQ [Welbl et al., 2017],
consistently improved throughout both the “entropy-seeking” and “compression-seeking” phases,
potentially benefiting from both short- and long-context information learned in the respective phases.

However, 0-shot performance on factual question-answering tasks, e.g. TriviaQA [Joshi et al.,
2017], demonstrate a sudden and dramatic rise in accuracy closely aligned with the saturation of
the memorization metric. Consequently, most of the improvement in task accuracy happens during
the “compression-seeking” phase, potentially benefiting from the long-context statistics learned
in this phase, which are crucial for this task. The requirement of long-context dependencies for
TriviaQA (and not SciQ) [Lou et al., 2024] seems to be – at least in part – responsible for the distinct
performance on these tasks in the “entropy-seeking” and “compression-seeking” phases. Taken
together, these findings outline a distinct association between each phase and the emergence of
different LLM capabilities: short-context n-gram modeling during the “entropy-seeking” phase and
long-context information aggregation during the “compression-seeking” phase.

Key takeaway. “entropy-seeking” expands utilized dimensions (RankMe ↑, αReQ ↓), aligning
with increased alignment to ∞-gram statistics (short-context distributional memorization). In
contrast, “compression-seeking” anisotropically concentrates information (RankMe ↓, αReQ ↑),
aligning with improvement in long-context QA accuracy even as memorization saturates.

3.3 Role of learning objective and optimization in learning dynamics

Having demonstrated the existence and salience of distinct learning phases, we now seek to understand
the role of loss and optimization frameworks used in LLM pretraining in engendering these phases.
Specifically, we studied the gradient descent dynamics while optimizing the cross-entropy loss in
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Figure 4: Learning dynamics of cross-entropy loss replicate multiphase learning dynamics.
(A) Schematic of a model with feature extractor fθ(∈ Rd), linear classifier W (∈ Rn×d) and
cross-entropy loss LCE . Skewed class distribution and information bottleneck (d < n) are critical
to replicate all three phases observed in LLM pretraining. (B, C) Classifier weights (Wi) and
feature representations (fθ(x)) demonstrate distinctive trajectories analogous to “warmup” (dotted),
“entropy-seeking” (solid), and “compression-seeking” (dashed) phases. (D) Quantitative spectral
metrics RankMe and eigenvalues, σ1, σ2.

an analytically-tractable setting — the model fθ(x) is linear, i.e. fθ(x) = θx ∈ Rd, and logits
are obtained (like in LLM models) as z = W fθ(x) = Wθx ∈ R|V|. The outputs are obtained by
applying a softmax operation on z (see Figure 4A). We extended the results of Pezeshki et al. [2021]
to study how W and fθ(.) change when optimizing the loss using gradient descent. Notably, we found
two key properties of gradient descent that contribute to the emergent geometric properties of the
representation space (see Appendix B for formal statements):

• Primacy bias: Representations and weights corresponding to high-frequency tokens are
learned earlier in training, compared to low-frequency tokens.

• Selection bias: Dominant directions in the representation space are more likely to be used
for encoding new information, i.e. ∆σi ∝ σi

We demonstrate (c.f. Figure 4) that two conditions are necessary (see supplementary for controls)
for replicating the multiphase learning dynamics in our toy-model, as observed within LLMs: (1)
non-uniform class distribution, i.e. some tokens (or classes) occur more frequently than others in
the training data, and (2) information bottleneck, i.e. number of feature dimensions (d) is less than
the vocabulary size (|V|). Note that these two conditions are common in LLM pretraining setups.
We defer the reader to Appendix Figures 12 and 13 for control experiments that ablate each of these
conditions and demonstrate a monotonic, saturating expansion of the representation space.

In the analytically tractable setup that satisfies the above conditions, we found that fθ(.) and W for
frequently-occurring classes are separated during the initial “warmup” phase (Figure 4B & C, dotted
lines). The corresponding eigenvectors of the weight and feature spaces also become aligned during
this phase. Following this initial eigenvector-alignment phase, there is an overall expansion in the
representation space that leads to higher confidence predictions for frequently-occurring classes.
This phase of volume expansion in the fθ(.) and W spaces is associated with an increasing effective
rank, akin to the “entropy-seeking” phase (Figure 4B & C, solid lines). Following this phase, the
infrequently-occurring classes start to separate into their own clusters in both spaces (Figure 4B & C,
dashed lines). Constrained by the information bottleneck condition, the system resorts to reusing the
feature space eigenvectors and more information is selectively encoded in the dominant direction (note
σ1 grows faster compared to σ2 after 200 steps in Figure 4D). This phase of anisotropic information
encoding leads to a reduction in RankMe, akin to the “compression-seeking” phase. Taken together,
these results suggest that gradient-based cross-entropy optimization dynamics under specific training
conditions may result in non-monotonic changes in representation geometry we observed in LLMs.

Key takeaway. Gradient descent on cross-entropy with (i) skewed token frequencies and
(ii) a representation bottleneck (d ≪ |V|) suffices to produce expansion → compression via
eigenvector alignment and singular-value growth proportional to magnitude.

These mechanistic insights from simplified models establish fundamental principles governing
representation geometry evolution. We now turn to examining how these geometric transformations
manifest during post-training stages, where different loss functions further sculpt the representations.
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Figure 5: Post-training induces distinct geometric transformations in model representations,
aligned with specific behavioral changes. (A) Conceptual overview of post-training (SFT, DPO and
RLVR) (top), corresponding RankMe metrics from intermediate checkpoints of Llama-3.1-Tülu-
3.1-8B (bottom) highlighting distinct progression for each stage. (B) Impact of pretraining on OLMo-
2-1B SFT (Anthropic-HH): (top) longer pretraining improves in-distribution (ID) performance, while
out-of-distribution (OOD) generalization (Alpaca farm) saturates (bottom) Overtrained models
with higher RankMe exhibit markedly distinct outputs on AlpacaEval after undergoing SFT on two
different datasets (Anthropic-HH and Alpaca farm). (C) RLVR post-training narrows base model’s
(Llama-3.1-8B-Tülu-3-DPO) exploratory behavior on AMC-23 (particularly at higher sampling
counts e.g. k = 256), suggesting higher effective-rank facilitates better search.

3.4 Representation geometric changes during Post-Training stages

While pretraining establishes the initial structure of LLM representations, subsequent post-training is
instrumental for refining model capabilities and aligning them with downstream objectives. Here, we
investigate the geometric changes that occur during each post-training stage. Our analysis centers on
the Tülu-3.1 models [Wang et al., 2024], which utilize a sequential three-stage post-training recipe —
Supervised Fine-tuning (SFT), Direct Preference Optimization (DPO), and Reinforcement Learning
with Verifiable Rewards (RLVR) applied to the LLaMA-3.1-8B [Grattafiori et al., 2024] base model.

SFT exhibits “entropy-seeking” : We find that SFT is associated with a monotonic increase in the
RankMe, indicating an increase in the underlying representation manifold complexity. We hypothesize
that the manifold expansion is related to instruction memorization on in-distribution (ID) examples,
while reducing robustness to out-of-distribution (OOD) samples. To test this, we perform SFT with
Anthropic-HH dataset on OLMo2-1B intermediate checkpoints. As shown in Figure 5 B, we find that
with more pretraining the ID loss on Anthropic-HH improves monotonically, while the OOD loss
(on Alpaca farm data) increases (see detailed ID/OOD loss in Appendix Figure 14). To understand
the role of base-model geometry on the generalization gap, we perform SFT on Anthropic-HH (AH)
and Alpaca farm (AF) datasets across checkpoints of OLMo2-1B, and measure chat winrates for AH
using AF as reference on the AlpacaEval dataset. Strikingly, we find ( Figure 5B bottom) that while
more pretraining coincides with an increase in RankMe, the winrates decrease for AH. Notably, a
drop in winrate from 14% to 9% suggests that the LLM judge is better able to distinguish between
the outputs of the two instruction-tuned models. This reinforces that “overtrained” base models,
exhibiting higher RankMe, are more sensitive to distribution shifts under SFT [Springer et al., 2025].

DPO exhibits “entropy-seeking” : Prior works in self-supervised vision pretraining [Zhai et al., 2024,
Ghosh et al., 2024] have established that contrastive learning objectives, e.g. SimCLR, are associated
with an increase in representation complexity, as the network progressively learns the relevant
eigenfunctions [Simon et al., 2023] to separate the positive and negative examples. We observe a
similar trend in the DPO stage, notably a monotonic increase (decrease) in the RankMe (αReQ), c.f.
fig. 5A. This parallel between the two settings can be attributed to the analogous formulations in the
objective function. Note below that eq. (3) can be written as the Noise Contrastive Estimation (NCE)
loss [Gutmann and Hyvärinen, 2010], often used in contrastive vision and multimodal pretraining
[Oord et al., 2018, Chen et al., 2020, Radford et al., 2021], with one negative example.

LDPO = −Ex,yw,yl
[log(σ(r̂θ(x, yw)− r̂θ(x, yl)))] = −Ex,yw,yl

[
log

er̂θ(x,yw)

er̂θ(x,yw) + er̂θ(x,yl)

]
(5)
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RLVR exhibits “compression-seeking” : In sharp contrast to SFT and DPO, we observe that
RLVR is associated with a monotonic decrease in RankMe (cf. Figure 5A). To probe the implications
of this “compression-seeking” stage, we evaluate the unbiased pass@k performance on AMC-23
math benchmark. Figure 5C shows that while RLVR-training for 2400 steps outperforms the base
(post-DPO) model at pass@16, the base model as well as an intermediate checkpoints outperform the
RLVR-trained model at pass@256. This decline in pass@256 performance as training progresses,
reinforces prior work [Yue et al., 2025] suggesting that RLVR constraints the exploratory behavior of
base models while amplifying some pre-existing behaviors of the base model [Zhao et al., 2025].

Key takeaway. SFT/DPO (RankMe ↑, αReQ ↓) enhance in-distribution fit but increase sensitiv-
ity to dataset idiosyncrasies; RLVR (RankMe ↓, αReQ ↑) consolidates reward-aligned behaviors
and narrows high-k exploration (pass@k), consistent with reduced solution diversity.

4 Related Work
Dynamics of Knowledge Acquisition and Representation Learning A central theme in under-
standing neural networks is that learning is a dynamic, often phased process rather than a monolithic
one. Recent work by Zucchet et al. [2025] identified distinct stages in how LLMs learn factual
information, highlighting the formation of critical internal structures like attention circuits during
performance plateaus. This notion of staged learning is further supported by the "Distributional
Simplicity Bias" (DSB) established by Refinetti et al. [2023], Belrose et al. [2024], which posits
that networks learn simpler statistical properties of data (e.g., lower-order moments) before more
complex ones. Our work provides a geometric lens on these phenomena, using spectral measures to
track how the effective dimensionality of representations evolve non-monotonically. Furthermore,
Michaud et al. [2023] proposed that scaling laws and emergent abilities arise from learning discrete
"quanta" of knowledge. DeMoss et al. [2024] explained grokking [Power et al., 2022] as a transition
from high-complexity memorization to low-complexity generalization, measured via algorithmic
information theory. Our spectral geometric phases offer a complementary perspective that could
underpin these observed emergent jumps in performance and the dynamics of grokking.

Post-Training Alignment and Reasoning The adaptation of pretrained LLMs through fine-tuning
is critical for aligning them with specific tasks and user preferences. Ren and Sutherland [2024]
provided an empirical-NTK based framework to decompose the influence of fine-tuning updates,
explaining complex behaviors such as hallucination amplification in SFT and the "squeezing effect"
in DPO, where confidence in desired outputs can paradoxically decrease. Concurrently, Springer
et al. [2025] identified "catastrophic overtraining," showing that excessive pretraining can make
models overly sensitive to parameter changes, thereby degrading performance after SFT. Our work
contributes to this area by demonstrating that different post-training strategies (SFT, DPO, RLVR)
induce distinct transformations in the geometry and it’s influence model capabilities.

5 Discussions
Geometry of Pretraining: Memorization vs Generalization. We show that LLM pretraining is
multiphasic rather than monotonic, characterized mainly by “entropy-seeking” and “compression-
seeking” phases. The observed geometric phases provide a quantitative framework for examining the
relationship between memorizing short-context statistics and generalizing long-context information.
The “entropy-seeking” phase expands the representational space to capture various short-context
patterns, including n-gram memorization. Conversely, the “compression-seeking” phase promotes a
more structured manifold and is likely to incentivize generalizable long-range language understanding.
This geometric refinement process is consistent with and may offer an explanation for phenomena
like grokking, where generalization capabilities can emerge after an initial period of fitting.

Our preliminary analysis further reveals the importance of full-spectrum information for model per-
formance. When we ablate eigenvectors to retain only the top-k principal components, SciQ accuracy
degrades dramatically (Appendix Table 8). For instance, retaining only the top 10 eigen-directions
reduces Pythia-1B’s accuracy from 0.838 to 0.225, while OLMo-2-7B drops from 0.970 to 0.155.
Interestingly, removing the top eigen-directions has minimal impact, suggesting that information
is distributed across the full spectrum rather than concentrated solely in dominant directions. This
finding validates our use of full-spectrum metrics like RankMe and αReQ rather than top-k proxies,
and underscores that effective language understanding requires the entire representational mani-

9



fold—not just its principal components. The necessity of preserving full spectral information aligns
with the “compression-seeking” phase’s anisotropic consolidation, which selectively strengthens
certain directions while maintaining distributed representations across the manifold.

Geometry of Post-Training: Alignment vs Exploration. Different post-training recipes induce
distinct shifts in LLM representation geometry, potentially explaining the model’s behavioral changes.
Supervised Fine-Tuning (SFT) typically drives an “entropy-seeking” dynamic, expanding the rep-
resentational manifold for specific instruction-response examples. This manifold expansion can be
seen as evidence for lazy-regime learning [Ren and Sutherland, 2024] during SFT, and points to
a near-diagonal empirical NTK that results in an instance-level learning dynamics. Consequently,
this dynamic improves in-distribution performance but risks overfitting due to higher representa-
tional capacity. In contrast, Reinforcement Learning from Verifiable Rewards (RLVR) promotes a
“compression-seeking” dynamic, refining representations towards reward-aligned directions. This
geometric compression may explain how RLVR amplifies and refines existing capabilities [Zhao
et al., 2025], potentially by constraining representations to a more structured subspace while reducing
its exploration ability [Yue et al., 2025]. In summary, SFT/DPO-induced rank expansion may foster
preference memorization and exploratory behavior, while RLVR-induced consolidation amplifies
model-capabilties towards reward-oriented, less diverse generation (c.f. Figure 5C).

Limitations and Future Work Tracing a model’s geometry, whether “entropy-seeking” or
“compression-seeking” , could inform more effective interventions for LLM development and evalua-
tion, such as the selection of optimal pretraining checkpoints for targeted fine-tuning or designing
training strategies that deliberately navigate these geometric phases. Our findings have several
limitations: (i) computational constraints limited our analysis to models up to 12B parameters, though
the phases persist across scales from 160M to 12B; (ii) spectral metric computation requires ∼10K
samples and scales quadratically with hidden dimension (iii) our theoretical analysis assumes simpli-
fied linear feature extractors, leaving the extension to full transformer architectures as future work;
(iv) we focused on English-language models trained with standard objectives, and whether similar
phases emerge in multilingual or alternatively-trained models remains unexplored. Furthermore, our
findings are primarily correlational; establishing causal connections between geometric dynamics
and emergent capabilities requires additional investigation.

6 Conclusion

We show that LLMs undergo non-monotonic representation geometry changes, often masked by
steadily decreasing training loss. By employing spectral metrics of feature covariates (RankMe and
αReQ), we delineate three distinct pretraining phases: “warmup” , “entropy-seeking” (correlating with
n-gram memorization), and “compression-seeking” (correlating with long-context generalization).
We further demonstrate that post-training recipes induce specific geometric changes: SFT/DPO
exhibit “entropy-seeking” dynamics, whereas RLVR exhibit “compression-seeking” dynamics. These
results provide a quantitative framework for guiding future advancements in LLM development.

Impact Statement The goal of our work is to advance the understanding of internal representations
of LLMs. Although there are potential downstream societal consequences of this technology, we feel
there are no direct consequences that must be specifically highlighted here.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have emphasized the main contribution of this paper in both the abstract
and instruction sections—namely, that large language models exhibit distinct geometric
phases throughout pretraining and post-training.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have discussed the limitations of our work in Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide an informal version of our theoretical results in Section 3.3 and
the corresponding formal versions and proofs in Appendix B.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a detailed description of the methods used in our work in Section 2
and experimental setups in Section 3. We provide further details of individual experiments,
including specific model architecture, datasets used and training run configurations in the
Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We used open-access datasets and models and plan to release our code base on
Github in the near future.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Answer:[Yes]
Justification: We provide a detailed description of our experimental setups in Section 3.
We provide further details of individual experiments, including specific model architecture,
datasets used and training run configurations in the Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: To ensure the reliability of our findings, we repeated our experiments on
multiple subsets of data and reported the standard error as shaded error bars in the figures.
Since our work leverages open-access large models, we are unable to run experiments across
several seeds to account for randomness in model training.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We present rough details about our compute infrastructure in the Appendix.
Due to the double-blind policy, we refrain from providing exact details of the compute
infrastructure used in our experiments. However, this information will be added to the
Appendix upon acceptance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our study (1) does not involve any interaction with human subjects, and
(2) utilizes datasets that do not contain personally identifiable information, have not been
withdrawn by their authors, and are not included on the NeurIPS list of deprecated datasets.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: An impact statement has been included in the conclusions.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We did not train any large-scale models or curate datasets for public release in
this work.
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Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the datasets and models used in this work.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No assets are released.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: This work neither involves crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No LLMs usage.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Model and Dataset Details

A.1 Model Architecture and training configurations

Table 1: Comparison of model architectures and training setups.
Pythia OLMo-2

Position Embedding Learned Rotary (RoPE)
Norm Type LayerNorm RMSNorm
Norm Position Pre-layer Pre-layer
Dataset The Pile (825 GB) OLMoStack (4T tokens)
Optimizer AdamW AdamW
LR Scheduler Cosine decay Linear decay w/ warmup
Loss Function Cross-Entropy Cross-Entropy

Table 2: Tülu Model Architecture and Training Setup
Component Tülu
Base Models Llama 3 base models
Position Embedding Inherited from base model
Normalization Type Inherited from base model (LayerNorm)
Normalization Position Pre-layer
Instruction Datasets Tulu3 Mixture(FLAN V2, OpenAssistant, WildChat GPT-4)
Training Techniques SFT, DPO, RLVR
Optimizer AdamW
Learning Rate Scheduler Linear decay with warmup
Loss Function Cross-Entropy

A.2 Dataset Details

In this section, we provide an overview of the datasets used in our experiments.

FineWeb: The FineWeb dataset [Penedo et al., 2024] consists of more than 15T tokens of
cleaned and deduplicated english text obtained from the web using CommonCrawl. While
the full dataset contains 15T tokens, we use the smallest subset, i.e. a subsampled ver-
sion of the dataset consisting of 10B tokens. The dataset is accessible on HuggingFace at
https://huggingface.co/datasets/HuggingFaceFW/fineweb.

WikiText: The Wikitext dataset [Merity et al., 2016] is a collection of over 100 million tokens
extracted from the set of verified Good and Featured articles on Wikipedia. We use only a subset of
the dataset to perform early evaluations of RankMe and αReQ, before running our final experiments
using FineWeb.

SciQ: The SciQ dataset [Welbl et al., 2017] contains over 13K crowdsourced science exam
questions about physics, chemistry and biology, among many others. The questions are in
multiple-choice format with 4 answer options each. The dataset is accessible on HuggingFace
at https://huggingface.co/datasets/allenai/sciq.

TriviaQA: The TriviaQA dataset [Joshi et al., 2017] is a reading comprehension dataset containing
over 650K question-answer-evidence triples. We use the TriviaQA dataset to evaluate a model’s
ability to incorporate long-context information from the question in order to correctly answer it. The
dataset is accessible on HuggingFace at https://huggingface.co/datasets/mandarjoshi/trivia_qa.

LAMBADA OpenAI: This dataset [Radford et al., 2019] is comprised of the LAMBADA test split,
pre-processed by OpenAI, and contains machine translated versions of the split in German, Spanish,
French and Italian. We use this dataset to evaluate the model’s text understanding capabilities. The
dataset is accessible on HuggingFace at https://huggingface.co/datasets/EleutherAI/lambada_openai.

Anthropic Helpful-Harmless (HH): The Anthropic-HH dataset provides human preference data
about helpfulness and harmlessness, and is meant to be used for training preference models in a
Reinforcement Learning with Human Feedback (RLHF) setting. However, we use a variant of
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this dataset for SFT. Specifically, we generate a human-assistant chat dataset of ∼ 161K samples
by parsing the “chosen” responses for each instruction from the original dataset and using it to
finetune a base model by treating the “chosen” response as the target (similar to Springer et al.
[2025]). While such a use of this dataset is discouraged in practical settings, we use this modified
dataset as a testbed for our SFT experiments. The original dataset is accessible on HuggingFace at
https://huggingface.co/datasets/Anthropic/hh-rlhf.

AlpacaFarm Human-ANN chat (AlpacaFarm): This dataset is created by following a similar
procedure as mentioned above for the Anthropic-HH dataset, but for the Human Evaluation dataset
of the AlpacaFarm evaluation set [Dubois et al., 2023]. As a result, this dataset consists of ∼ 17.7K
samples, and is used as a positive control in our SFT experiments. Models that are finetuned on
this dataset are expected to perform well on the AlpacaEval chat task (see below), compared to
models that are finetuned on a different dataset. This positive control is essential to disentangle the
in-distribution vs out-of-distribution abilities of a SFT-model. The original dataset is accessible on
HuggingFace at https://huggingface.co/datasets/tatsu-lab/alpaca_farm.

AlpacaEval: AlpacaEval is an LLM-based automatic evaluation setup for comparing chat models
in a fast, cheap and replicable setting. We use AlpacaEval as a test bench to study the behavior of
models after undergoing SFT. Models that are finetuned on the AlpacaFarm dataset are expected to
produce better chat models and generate responses more aligned to human-preferred responses to
instructions in the AlpacaEval setup. We defer the reader to the corresponding github repository for
further details of the evaluation setup.

AMC23: The AMC23 benchmark refers to a specific set of evaluations based on the American
Mathematics Competitions. This benchmark is designed to assess the mathematical reasoning
capabilities of advanced AI models using problems characteristic of the AMC series. For the
evaluation of AMC23, we utilize the resources and methodologies found in the Qwen2.5-Math
repository. This repository is accessible at https://github.com/QwenLM/Qwen2.5-Math and
provides the framework for our assessment process.

A.3 Compute and hyperparameter configuration details

Compute resources: All of our LLM inference experiments were run either on a single 80GB
A100 or a 40GB L40S GPU. The finetuning experiments (SFT and DPO) were run on a single node
consisting of 4 A100 GPUs.

Codebase: All code and data will be released at https://github.com/melodylizx/
Tracing-the-representation-geometry-of-language-models .

Hyperparameter Value
Dataset FineWeb sample-10BT
Max sequence length 512
Number of sequences 15000
Batch size 16

Table 3: Hyperparameter configurations used for computing RankMe and αReQ in Figure 2.

A.4 Reproducing Tülu-3-8B SFT and DPO

We follow instructions from [https://github.com/allenai/open-instruct] for reproducing and gathering
the intermediate stage checkpoints (both for SFT and DPO) without changing any hyperparamters.
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Hyperparameter Value
SFT dataset Anthropic-HH or AlpacaFarm

Human-ANN chat (train split)
Max sequence length 4096
Batch size 16
Gradient accumulation steps 16
Learning rate 1e-5
Learning rate schedule Linear decay with 10% warmup
Number of epochs 2
Loss reduction sum
Seeds 0, 7, 8, 42, 420

Table 4: Hyperparameter configurations used for Supervised FineTuning (SFT).

Hyperparameter Value
Base model OLMo2-1B
In-distribution dataset Anthropic-HH (test split)
Out-of-distribution dataset AlpacaFarm Human-ANN chat (train split)
Max sequence length 1024
Number of sequences 10000
Batch size 32
Table 5: Hyperparameter configurations used for ID and OOD loss eval.

Hyperparameter Value
Base model OLMo2-1B
Dataset AlpacaEval (test split)
Max new tokens 1024
LM judge Cohere Command A

Table 6: Hyperparameter configurations used for chat winrate on AlpacaEval.
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B Gradient Descent and Cross-entropy theory

B.1 Setup

Let s denote an individual instance (or input token sequence of language), with its true class identity
(or the next token’s index in vocabulary) given by y(s). An (LLM) encoder, parameterized by
θ, processes s to produce its contextualized embedding, fθ(s) ∈ Rd, where d is the embedding
dimension. For a batch, S, of b such instances, the encoder outputs a matrix fθ(S) ∈ Rb×d.
Subsequently, predictions ŷ ∈ Rb×|V| are generated by multiplying this batch embedding with a
weight matrix W ∈ Rd×|V|, where |V| is the vocabulary size (or number of classes):

ŷ = fθ(S)W

To simplify the setting such that it is analytically-tractable, we assume the embedding function fθ(s)
to be modeled as a linear transformation of the input, i.e. fθ(s) = θT s, where θ ∈ Rdin×d is a
parameter matrix. For a batch, of b such instances, represented as a matrix S ∈ Rb×din whose row
vectors are orthonormal (i.e., SST = I). The batch embedding is, therefore, fθ(S) = Sθ ∈ Rb×d.
Here, din is the input feature dimension and d is the embedding dimension.

Note: By imposing this i.i.d. assumption, we ensure that learning on one sample does not change
the output of another sample, i.e. no inter-sample interference. While we admit that this assumption
is unrealistic, and learning to predict the next token of one sequence in an autoregressive setup
affects the output of another sequence, we believe that this assumption enables a first step towards
understanding the implicit effect of cross-entropy loss optimization using gradient descent. We note
that our results do not strictly depend on this assumption, and can be extended to non-i.i.d. samples.
We leave this to future work.

Note 2: Note that our assumption of a linear embedding model, fθ, is also an aberration from the
transformer-based LLMs. However, we focus on the effect of loss and optimization in this section
and leave further investigation into the implicit bias of architecture to future studies.

B.2 Linear approximation of Cross-entropy loss: Legendre Transform

Let us start by defining the cross-entropy loss for one example, s, which belongs to class c as:

LCE(s) = − log

(
eŷc∑
j e

ŷj

)
= −ŷc + log

∑
j

eŷj

 (6)

Note that eq. (6) is nonlinear in ŷ, thereby making it harder to analyze the dynamical system in the
parameter space that is imposed by gradient descent. In order to arrive at an analytical understanding
of the gradient-induced dynamics when optimizing eq. (6), we will do a linear approximation of LCE

using Legendre Transform, similar to Pezeshki et al. [2021]. Specifically, we will derive the Legendre
transform of the nonlinear term, log(

∑
j e

ŷj ).

Intuitively, we want to approximate eq. (6) such that it changes linearly with changes in ŷ. The key
motivation for using Legendre transform is to ignore the second (and higher) order effects of a “small”
change in ŷ on LCE . Formally, we want the following:

L̂CE(s) = −ŷc + αT ŷ + g(α) (7)

where α is the slope of the nonlinear term at x = ŷ.

α = ∇xlog(
∑
j

exj )
∣∣∣
x=ŷ

=⇒ αi =
∂

∂xi
log(

∑
j

exj )
∣∣∣
xj=ŷj

=
eŷi∑
j e

ŷj
(8)

Note that:
∑
i

αi = 1
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To simplify things, let us denote C =
∑

j e
ŷj . Substituting this in eq. (8), ŷi = log(αi) + log(C).

Now we need to find g(α) such that f(ŷ) = αT ŷ + g(α).

g(α) = f(ŷ)− αT ŷ = log(
∑
j

eŷj )− αtŷ = log(
∑
j

eŷj )−
∑
j

αj ŷj

= log(C)−
∑
j

αj log(αj)−
∑
j

αj log(C)

= log(C)−
∑
j

αj log(αj)− log(C) [Using
∑
j

αj = 1]

= −
∑
j

αj log(αj) = H(α) (9)

where H(α) denotes the Shannon entropy of a probability distribution defined by αi’s.

Substituting eq. (9) in eq. (7), we get the expression for the linearized cross-entropy loss:

L̂CE(s) = −ŷc + αT ŷ +H(α) (10)

B.3 Gradient descent dynamics of linearized cross-entropy loss

L̂CE(s) = −ŷc + αT ŷ +H(α) = −ŷc +
∑
j

αj ŷj +H(α)

= −fθ(s)
Twc +

∑
j

αjfθ(s)
Twj +H(α)

∇fθ(s)L̂CE(s) = −wc +
∑
j

αjwj =
∑
j

(αj − δj=c)wj

∇wi
L̂CE(s) = −fθ(s)δi=c + αifθ(s) = (αi − δi=c)fθ(s)

where δ(.) is the Dirac-delta function, i.e. its value is 1 when the condition in subscript is true and 0
otherwise.

Denoting α̃i = (αi − δi=c), we arrive at the gradient equations for fθ(s) and wi’s:

∇fθ(s)L̂CE(s) =
∑
j

α̃jwj , ∇wiL̂CE(s) = α̃ifθ(s) (11)

We can easily extend eq. (11) to multiple examples {s1, s2 · · · sb} and write the gradient descent
update (using learning rate η) equations as:

ḟθ(sj) = −η
∑
i

α̃i(sj)wi , ẇi = −η
∑
j

α̃i(sj)fθ(sj)

=⇒ ḟθ = −ηAWT , Ẇ = −ηfT
θ A (12)

where

Aij =

{
αj(si)− 1 if ci = j

αj(si) else
(ith example, si, belongs to the class j)

B.4 A useful matrix algebra result

Lemma 1. Let W (t) be a time-varying matrix with singular value decomposition (SVD): W (t) =
U(t)S(t)V (t)T , where U(t) and V (t) are orthogonal matrices corresponding to the left and right
singular vectors, respectively, and S(t) = diag(σ1(t), σ2(t), . . . , σk(t)) contains the singular values
along its diagonal. Let uk(t) and vk(t) denote the kth column vectors of U(t) and V (t), respectively.
Then the time derivative of the kth singular value, σk(t), is given by:

σ̇k(t) = uk(t)
T Ẇ (t)vk(t)
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Proof. For sake of brevity, we will drop the explicit time-dependence of each matrix from the
notations. Let us write the singular vector decomposition (SVD) of matrix, W = USV T . Using the
product rule of differentiation:

Ẇ = U̇SV T + UṠV T + USV̇ T

=⇒ UT ẆV = UT U̇S + Ṡ + SV̇ TV

=⇒ Ṡ = UT ẆV − UT U̇S − SV̇ TV

=⇒ σ̇k = uT
k Ẇvk − uT

k u̇kσk − σkv̇k
T vk (13)

where the last line is the expression for the kth diagonal element of S. By definition of orthonormal
vectors, uT

k uk = 1. So, u̇k
Tuk + uT

k u̇k = 0. Since u̇k
Tuk is a scalar, u̇k

Tuk = uT
k u̇k. Therefore,

u̇k
Tuk = 0. Similarly, v̇kT vk = 0. Therefore,

σ̇k = uT
k Ẇvk

B.5 Formal versions of theoretical results and proofs

Theorem 1. Let fθ = U1S1V
T
1 and W = U2S2V

T
2 denote the respective singular value decomposi-

tions (SVDs) of non-degenerate matrices fθ and W , respectively. If the system is initialized such that
fT
θ fθ = WWT , then it holds that:

V1 = U2 , S2
1 = S2

2

Proof. Let us start from the learning dynamics imposed by gradient-descent:

ḟθ = −ηAWT , Ẇ = −ηfT
θ A (14)

Let us write fθ and W as their respective singular value decomposed form, i.e. say fθ = U1S1V
T
1

and W = U2S2V2. Consider the dynamics of fT
θ fθ and WWT :

d

dt
(fT

θ fθ) = ḟθ
T
fθ + fθḟθ = (−ηAWT )T fθ + fT

θ (−ηAWT )

= −ηWAT fθ − ηfT
θ AWT (15)

d

dt
(WWT ) = ẆWT +WẆT = (−ηfT

θ A)WT +W (−ηfT
θ A)T

= −ηfT
θ AWT − ηWAT fθ (16)

From eqs. (15) and (16), it is clear that d
dt (f

T
θ fθ) =

d
dt (WWT ), i.e. fT

θ fθ = WWT + C, for some
constant C. If we assume the initialization to be such that C = 0 and fθ and W are non-degenerate,
we have:

fT
θ fθ = WWT =⇒ V1S

2
1V

T
1 = U2S

2
2U

T
2

By uniqueness of SVD (for positive semi-definite matrices):

V1 = U2 =⇒ V T
1 U2 = I

S2
1 = S2

2

Theorem 2. Let fθ,W be the matrices whose dynamics are governed by the gradient-descent
equations as previously defined. Given the conditions from Theorem 1, the magnitude of the time
derivatives of the ith singular values of fθ and W are proportional to their respective singular
values:

∥σ̇1i∥ ∝ σ1i

∥σ̇2i∥ ∝ σ2i
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Furthermore, assuming uniform class prediction at initialization and that number of classes, |V| ≫ 1,
the time derivatives are bounded by the dominant class size:

∥σ̇1i∥, ∥σ̇2i∥ ∝ O(N (c(0)))

where N (c(0)) denotes the number of instances belonging to the dominant class c(0).

Proof. Let us start from the results of Theorem 1: S2
1 = S2

2 =⇒ σ2
1i = σ2

2i ∀i. So, σ1i = ±σ2i.
Using this relation, we can simplify the expression of σ1i dynamics. From Lemma 1,

σ̇1i = uT
1iḟθv1i = −ηuT

1iAWT v1i

= −ηuT
1iA(U2S2V

T
2 )T v1i = −ηuT

1iAV2S2U
T
2 v1i

= −ηuT
1iAV2S2V

T
1 v1i [Using Theorem 1]

= −η
∑
j

(uT
1iAv2j)σ2j(v1jv1i) = −η

∑
j

(uT
1iAv2j)σ2jδi=j

=⇒ σ̇1i = −η(uT
1iAv2i)σ2i (17)

Similarly, we can simplify the dynamics for σ2i:

σ̇2i = −η(uT
1iAv2i)σ1i (18)

For sake of brevity, let us denote (uT
1iAv2i) = gi. Using the relationship between σ1i and σ2i, we

can simplify eqs. (17) and (18) as:

σ̇1i = −ηgi(±σ1i) = ∓ηgiσ1i , σ̇2i = −ηgi(±σ2i) = ∓ηgiσ2i (19)

=⇒ ∥σ̇1i∥ ∝ σ1i , ∥σ̇2i∥ ∝ σ2i (20)

Also, note that gi = uT
1iAv2i =

∑
j,k u1ijAjkv2ik, where Ajk = {αk(sj)− 1, αk(sj)}. Therefore,

Ajk ∈ (−1, 1).

At initialization, WLOG αk(sj) ≈ 1
|V| ∀j, k, i.e. uniform class prediction. Additionally, assuming

|V| >> 1, we can estimate gi as the following:

gi =
∑
j,k

u1ijAjkv2ik =
∑
k

 ∑
j∈{cj=k}

u1ij(αk(sj)− 1)v2ik +
∑

j∈{cj ̸=k}

u1ijαk(sj)v2ik


=⇒ gi ≈

∑
k

(
1

|V|
− 1)

∑
j∈{cj=k}

u1ijv2ik +
1

|V|
∑

j∈{cj ̸=k}

u1ijv2ik


≈ −(

∑
k

v2ik)(
∑

j∈{cj=k}

u1ij) = O(N (c0)) (21)

where c(0) denotes the dominant class, i.e. the class with most number of instances. Combining
eq. (21) with eq. (19), we get the desired result:

∥σ̇1i∥, ∥σ̇2i∥ ∝ O(N (c0)) (22)
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C Additional Experimental results

C.1 Generative behavior of LLMs: Qualitative inspection

stage1-step1000-5B stage1-step920000-3895B

Sunlight filtered through dense canopy, dappling the forest floor
The first thing you can see is that the first thing 
you see in the first place is that you can see the 
first thing you see in the first place. The second 
thing you see in the first place is that you can see 
the first thing you see in the first place. The 
second thing you see in the second place is that you 
can see the first thing you see

An old, weathered map lay spread across the wooden table.

A lone ship sailed silently towards the crimson horizon

Intricate carvings covered the surface of the ancient stone tablet

A faint melody drifted from an open window down the cobblestone street

An unspoken tension filled the crowded room, heavy and palpable

A single drop of rain landed on the dusty, parched earth

The table was a large, large, and large, and the 
table was a large, large, and large, and the table 
was a large, and the table was a large, and the table 
was a large, and the table was a large, and the table 
was a large, and the table was a large, and the table 
was a large, and the table

The sky was a dark, dark, dark, dark, dark, dark, 
dark, dark, dark, dark, dark, dark, dark, dark, dark, 
dark, dark, dark, dark, dark, dark, dark, dark, dark, 
dark, dark, dark, dark, dark, dark, dark, dark, dark, 
dark, dark, dark

The first part of the 19th century was the first part 
of the 19th century. The first part of the 19th 
century was the first part of the 19th century. The 
first part of the 19th century was the first part of 
the 19th century. The first part of the 19th century 
was the first part of the

The two cars are the most expensive and the most 
expensive and the most expensive. The cars are the most 
expensive and the most expensive and the most expensive 
and the most expensive and the most expensive and the 
most expensive and the most expensive and the most 
expensive and the most expensive

The room was a large, heavy, and very large, very 
large, very large, very large, very large, very large, 
very large, very large, very large, very large, very 
large, very large, very large, very large, very large, 
very large, very large, very large, very large, very 
large, very large, very

The earth was a great, strong, strong, strong, strong, 
strong, strong, strong, strong, strong, strong, strong, 
strong, strong, strong, strong, strong, strong, strong, 
strong, strong, strong, strong, strong, strong, strong, 
strong, strong, strong, strong, strong, strong, strong, 
strong, strong, strong

The air was still and warm, and the only sound was 
the occasional chirp of a bird. The forest was quiet, 
and the only movement was the slow, steady sway of 
the trees.\n\nA small, furry creature scurried 
through the underbrush, its eyes darting from side to 
side. It was a squirrel, and it was looking for food. 
It had

The map was of the area around the town of Harken, 
and it was marked with a number of locations. The map 
was covered with notes, and the notes were covered 
with a number of different colored markers. The 
markers were of different shapes and sizes, and they 
were all labeled with names and numbers. The map was 
a mess, and it was obvious that it

The ship was a small, two-masted vessel, with a single 
mast on the stern. The ship was painted a dark blue, 
with a white stripe running along the hull. The ship 
was a pirate ship, and the captain was a pirate. The 
captain was a pirate, and the ship was a pirate ship. 
The captain was a pirate, and the ship was

The carvings were so intricate that they were almost 
impossible to decipher. The tablet was covered in a 
thick layer of dust and dirt. The dust and dirt had 
been there for so long that it had become a part of 
the stone. It was as if the dust and dirt had been 
there since the beginning of time.\n\nThe tablet was 
covered in a thick layer of dust

The music was soft and sweet, and it was enough to make 
the young man smile. He was a tall, handsome man with 
dark hair and eyes. He was dressed in a fine suit, and 
he carried a violin case in his hand. He walked with a 
confident stride, and he seemed to be in no hurry. He 
stopped in front of a small house and knocked

The air was thick with the scent of fear and the stench 
of death. The room was silent, save for the sound of the 
wind howling outside. The only light came from the 
flickering flames of the fire. The room was dark and 
cold, and the only warmth came from the bodies of the 
men and women huddled together in the corner. The smell 

It was the first rain in months. The earth drank it up 
greedily, and the thirsty plants and trees drank it up 
too. The thirsty animals drank it up. The thirsty people 
drank it up. The rain was a blessing. It was a gift from 
God. It was a gift of life.\n\nThe rain continued to 
fall. The earth drank it up. The plants

Figure 6: Evidence of echolalia: Generated text from early checkpoints (step-1000) of OLMo-2-7B
models, compared to that from later stages of pretraining (step-920000).

C.2 Examining Context Statistics and the Necessity of Full-Spectrum Information
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Suffix Length Frequency (%)
≤ 3 25.41

4 46.61
5 16.71
6 6.08
7 2.40
8 1.46

> 8 1.34

Table 7: ∞-gram context in TriviaQA. Suffix lengths reveal focus on short- to mid-context statistics.

Model Original Top-10 Top-50
Removed Retained Removed Retained

Pythia-1B 0.838 0.849 0.225 0.835 0.318
Pythia-1.4B 0.866 0.855 0.232 0.859 0.324
Pythia-2.8B 0.884 0.880 0.219 0.873 0.317
Pythia-6.9B 0.896 0.893 0.202 0.906 0.327

OLMo-2-1B 0.953 0.943 0.199 0.954 0.326
OLMo-2-7B 0.970 0.966 0.155 0.970 0.308

Table 8: Full-spectrum information is required. Retaining only top eigen-directions markedly
degrades SciQ accuracy.

C.3 Computing spectral metrics, RankMe and αReQ

Model αReQ (p-value) RankMe (p-value)
Pythia-1B 0.810 (1.50e-5) -0.759 (1.04e-4)
Pythia-1.4B 0.668 (1.29e-3) -0.713 (4.18e-4)
Pythia-2.8B 0.694 (6.88e-4) -0.635 (2.63e-3)
Pythia-6.9B 0.837 (4.20e-6) -0.885 (2.19e-7)
Pythia-12B 0.836 (4.42e-6) -0.839 (3.79e-6)
OLMo2-1B 0.540 (4.920e-7) -0.616 (3.201e-9)

Table 9: SciQ accuracy correlates with spectral geometry. Positive correlation with αReQ
(compactness) and negative correlation with RankMe (effective dimensionality) across Pythia (1–12B)
and OLMo2-1B models. The p-values in parentheses indicate high statistical significance for all
correlations.
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Figure 7: Layerwise evolution mirrors the three phases. Spectral metrics (RankMe and αReQ )
computed across intermediate layers during pretraining show that the three-phase pattern is consistent
across network depth, justifying the use of last-layer representations for tracking global geometric
dynamics. See Appendix for additional robustness analyses across samples, sequence lengths, and
datasets.

Figure 8: RankMe and αReQ computed for intermediate checkpoints of the OLMo-2-1B model using
(Left) different number of samples, and (Right) sequence length. Shaded error bars indicate standard
error about mean.

Figure 9: RankMe and αReQ computed for intermediate checkpoints of models from the Pythia
family on different datasets.
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Figure 10: OLMo spectral metrics are robust across datasets. RankMe and αReQ computed
for intermediate checkpoints of OLMo-2 1B model on different datasets, showing consistent phase
patterns across evaluation data.

Figure 11: RankMe and αReQ computed for intermediate checkpoints of smaller models (< 1B) from
the Pythia family on the FineWeb dataset.
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C.4 Control experiments verifying the necessity condition for multiphase learning dynamics

(a) Feature and weight dynamics in analytically-tractable model with uniform class
distribution, i.e. each class has equal number of samples. Here, each class has 2 samples
each.

(b) Feature and weight dynamics in analytically-tractable model with no information
bottleneck, i.e. feature dimensionality, d, is comparable to number of classes, |V|. Here,
d = 3 and |V| = 4. Note that we only plot the first two dimensions for ease and
consistency of visualization.

Figure 12: Negative control experiments analogous to Figure 4. Removing either the skewed class
distribution or the information bottleneck gets rid of the three distinct phases of learning. In each
case, the resulting dynamics is an initial “warmup” , followed by an “entropy-seeking” phase wherein
effective rank continues to grow monotonically.
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(a) Feature and weight dynamics in analytically-tractable model trained using MSE loss
on a uniform class distribution, i.e. each class has equal number of samples. Here, each
class has 2 samples each.

(b) Feature and weight dynamics in analytically-tractable model trained using MSE loss
on a skewed class distribution. Note that only information about the most frequently
occurring classes are learned.

Figure 13: Negative control experiments analogous to Figure 4, with mean squared error instead of
cross-entropy as the training loss. In both uniform and skewed label distribution settings, the resulting
dynamics is an initial “warmup” , followed by an “entropy-seeking” phase wherein effective rank
grows monotonically and quickly saturates.

33



C.5 Supervised finetuning

Figure 14: Loss and chat win rates after SFT on Anthropic-HH dataset. (Left) Cross-entropy
loss on in-distribution (Anthropic-HH) test set and out-of-distribution (Alpaca-Farm-human-ANN
chat) dataset. While in-distribution loss after SFT decreases monotonically, ood loss after SFT
saturates or gets slightly worse with longer pretraining. (Center) Length-controlled chat win rates for
Anthropic-SFT vs Alpaca-SFT version of a base model on AlpacaEval. Longer pretraining increases
the sensitivity of the model’s behavior to the SFT dataset. (Right) Length-controlled win rates for
Anthropic-SFT version of intermediate base models compared to the Anthropic-SFT version of the
final base model checkpoint. Models obtained from later in pretraining are equivalent chat models,
demonstrating nearly 50% win rate compared to the final checkpoint. Choosing the ideal checkpoint
to use for SFT requires navigating the tradeoff between an improvement in base model’s capability
(note an increased RankMe) and reduction in robustness with longer pretraining. Shaded bars indicate
standard deviation computed over 5 seeds.
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