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ABSTRACT

Test-time prompt tuning (TPT) has emerged as a powerful technique for adapt-
ing pre-trained vision-language models (VLMs) to diverse downstream tasks,
including image classification and visual reasoning. With the rise of text-driven
object detectors, we extend TPT to object detection, unlocking new capabilities
for cross-domain adaptation. However, a critical challenge in TPT is the inher-
ent miscalibration caused by entropy minimization: domain shifts often lead to
incorrect predictions, and enforcing high confidence exacerbates miscalibration,
ultimately degrading performance. To tackle this, we introduce InsCal, a novel
framework designed to enhance cross-domain object detection through three key
innovations: (1) extending TPT to a multi-source paradigm, enabling knowledge
aggregation across diverse domains; (2) reducing domain gaps via a novel text-
driven style transfer strategy that aligns features to the source domain without
requiring reference images; and (3) refining the entropy minimization objective
with instance-specific calibration, ensuring robust and well-calibrated adaptation.
Our approach not only mitigates miscalibration but also significantly improves
cross-domain object detection performance, setting a new benchmark for test-time
adaptation in VLMs.

1 INTRODUCTION

By encoding a wide range of visual concepts after training on millions of noisy image-text pairs,
pre-trained vision-language models (VLMs) have shown great promise for the development of
foundational models applicable to various downstream vision tasks Radford et al. (2021); Zhou et al.
(2022b). Built upon VLMs’ joint embedding space of images and text, text-driven object detectors
aim to detect objects that go beyond predefined categories by leveraging large-scale image-text
datasets. They frame open-vocabulary object detection as a task of image-text matching, allowing
the model to recognize and locate objects that may not have been explicitly included in the training
categories Zareian et al. (2021); Phoo & Hariharan (2022); Yao et al. (2022); Feng et al. (2022); Liu
et al. (2024a); Yao et al. (2023).

Despite the remarkable generalization ability from base classes to novel classes, the performance of
text-driven object detectors suffers when the target domain displays drastically different distributions.
For example, GDINO Liu et al. (2024a) is the latest transformer-based object detection with large
scale grounded pre-training for zero-shot transfer. As shown in Figure 1a, we tested the cross-domain
performance using pre-trained GDINO model on the Diverse Weather Dataset (DWD) dataset Wu
& Deng (2022). DWD is a semantic urban scene understanding dataset designed to capture urban
environments under a variety of weather and time conditions. DWD contains five distinct domains,
each representing a different combination of weather and time conditions: DayClear, NightClear,
NightRainy, DuskRainy and DayFoggy. The zero-shot performance is obtained by using pre-trained
GDINO without any adaptation. The fine-tune performance is obtained with fine-tuning pre-trained
GDINO models on corresponding datasets. From Figure 1a, we observed a noticeable performance
gap between the fine-tune and zero-shot transfer of GDINO. Especially in NightRainy and DuskRainy
domain, GDINO fails to give proper predictions. This degradation in average precision (AP) when
using zero-shot transfer highlights the limitations of directly applying pre-trained object detectors
on out-of-domain data. The results illustrate that without fine-tuning, pre-trained models struggle
to generalize effectively to new, unseen domains, leading to less accurate predictions and overall
reduced performance.
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(a) Cross-domain performance (mAP) of
GDINO on DWD dataset w/ and w/o fine-
tuning.

(b) Cross-domain performance
using TPT w/o calibration (D-
ECE: 19.5%)

(c) Cross-domain performance
using TPT w/ calibration (D-
ECE: 13.2%)

Figure 1: Experimental Illustrations.

Test-time adaptation (TTA) aims to adapt a pre-trained model during testing under distribution
shifts Wang et al. (2020); Liang et al. (2020); Yang et al. (2021); Karani et al. (2021); Wang et al.
(2021c); Liu et al. (2024b). Only a few previous works have leveraged TTA for object detection Chen
et al. (2023); Ruan & Tang (2024); Cao et al. (2024). However, these methods can not generalize
well to text-driven object detectors. In this work, we explore TTA for text-driven object detectors
with test-time prompt tuning (TPT). Prompt tuning proposes to directly learn prompts using training
data from downstream tasks by treating prompt embeddings as trainable parameters differentiate with
respect to the loss function, which requires training data with annotations Du et al. (2022); Zhou
et al. (2022a). Test-time prompt tuning (TPT) address this problem by tuning the prompt on the
fly using only the given test sample Shu et al. (2022). The tuned prompt is adapted to each task by
minimizing the entropy of the top confident samples which are obtained using different augmented
views, making it suitable for zero-shot generalization without requiring any task-specific training data
or annotations. Subsequent works such as DART Liu et al. (2024b), DiffTPT Feng et al. (2023) build
on the entropy minimization scheme and utilize techniques such as incorporating image prompt or
data generation using diffusion models. However, this line of work poses a potential risk of over-trust
on the model, that is, generating incorrect predictions with high confidence Ma et al. (2024). In
Figure 1b, we conduct experiment on cross domain dataset (DayClear to NightClear) with TPT. The
huge gap between the output confidence and the actual accuracy in in the left figure of Section 1
shows that directly applying TPT on cross-domain task lead to overconfident results. In the right
figure, we show that after applying our proposed calibrated learning objective, the miscalibration
issue is greatly reduced.

In this work, we propose the instance-specific calibrated test-time prompt tuning for object detection
(InsCal), designed toward addressing the risk of miscalibration during test-time adaptation. To our
best knowledge, model calibration poses a novel challenge in object detection that has not been
addressed by any existing work due to the potential domain shift coupled with the lack of labeled
target samples. To achieve reliable object detection when deploying a model to a new test domain
with potential domain gap and no label information, InsCal integrates three key innovations: First,
we extend Test-Time Prompt Tuning (TPT) to a multi-source setting, enabling the model to leverage
knowledge from multiple pre-trained source models, thereby enhancing its robustness across diverse
domains. Second, we introduce text-guided image augmentation, a technique aimed at explicitly
reducing the domain gap between source and target domains, which helps to mitigate performance
degradation caused by domain shifts. Finally, we propose a calibrated entropy minimization objective,
which incorporates a calibration factor based on the largest and second-largest logits for each instance,
effectively addressing the issue of overconfidence in predictions and improving the model’s reliability
during test-time adaptation, which is essential for many critical domains (e.g., autonomous driving
and military operations).

We conduct experiments with fully test-time adaptation on cross-domain object detection datasets.
InsCal reduces the expected calibration error (D-ECE) around 10%. The contributions of this paper
is summarized as follows: (1) We investigate that large pre-trained object detectors suffer from
performance degradation for fully test-time adaptation (FTTA). Test-time Prompt Tuning (TPT)
also suffers from miscalibration due to overconfidence. (2) We propose a principled method that
seamlessly integrates multiple source models, effectively bridging semantic gaps by text-guide
feature augmentation. Additionally, we design a calibrated entropy minimization technique to address
miscalibration, ensuring more accurate test-time adaptation for object detection. (3) Experiments
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conducted on multiple cross-domain object detection datasets verify that our method effectively
reduce domain gaps and miscalibration.

2 RELATED WORKS

Test-time Adaptation Test-time Adaptation (TTA) aims to adapt model weights pre-trained on the
source domain to a unseen domain. During adaptation, TTA only has access to the pre-trained models
and unlabeled target data. TTA can be categorized into test-time (source-free) domain adaptation
(SFDA), test-time batch adaptation (TTBA), online test-time adaptation (OTTA) and fully test-time
adaptation (FTTA) Liang et al. (2024). SFDA Liang et al. (2020); Yang et al. (2021); Tian et al.
(2021); Nayak et al. (2021); Liang et al. (2021) is able to utilize all unlabeled test data from the
target domain during a multi-round adaptation before generating final predictions. TTBA Schneider
et al. (2020); Sun et al. (2020); Park et al. (2020); Karani et al. (2021); Wang et al. (2021c) only
has access to one or a few instances (a batch) during this process. For OTTA Ioffe (2015); Wang
et al. (2020); Boudiaf et al. (2022), the adaptation is conducted in an online manner, where where
each batch is only observed once. FTTA Shu et al. (2022); Liu et al. (2024b); Ruan & Tang (2024)
adapts the pre-trained model on-the-fly with a single test sample. Test-time adaptation for object
detection is a relatively under-explored field. STFAR Chen et al. (2023) generates pseudo labels via
a regularized feature alignment self-training paradigm for the adaptation of source object detector.
CTAOD Cao et al. (2024) addresses continual test-time adaptation (CTTA) where the target domain
distribution undergoes temporal changes with object-level contrastive learning, dynamical skips and
stochastic restoration. IOUFilter Ruan & Tang (2024) studies fully test-time adaptation which adapts
pre-trained source detectors with only a single test-image by acquiring high-quality pseudo labels. In
this work, we mainly focus on the application of FTTA on text-drive object detectors.

Test-Time Prompt Tuning Test-time prompt tuning (TPT) provides a solution for FTTA on pre-
trained vision-language models (VLMs) via learnable prompts. TPT is first proposed to address
image classification and visual reasoning by Shu et al. (2022), which aims to learn text prompts using
an entropy minimization objective with consistency constraints across different augmented views of
the single test image. DART Liu et al. (2024b) extends TPT by further incorporating the learning
of image prompt during test-time. Instead of using traditional augmentation techniques, such as
random cropping, or translation, DiffTPT Feng et al. (2023) leverages pre-trained diffusion models
to generate augmented views. PromptAlign Samadh et al. (2023) handles domain shift explicitly
minimizing the feature distribution shift. SwapPrompt Ma et al. (2024) employs a framework with
an online prompt and a target prompt to better retain historical information. VPA Sun et al. (2023)
focus on generalizing visual prompting with test-time adaptation. UPT He et al. (2023a) adopts a
mean-teacher mechanism to learn text-prompt in a zero-shot manner for object detection tasks. While
effective, UPT only utilize a single source model trained from a single source domain, struggles with
diverse unknown target domains. In this work, we aim to address the overconfidence issue induced
by the entropy minimization objective in test-time prompt tuning. We first extend test-time prompt
tuning with multiple pre-trained source models to integrate knowledge from different domains; to
reduce domain gaps, we propose text-guide image generation to generate augmented views with
source domain styles; we then design a calibrated entropy minimization objective for the calibrating
the instance specific weights.

3 PRELIMINARIES

Calibration for object detection. Given a dataset D = {(xi, yi,b)}Ni=1, where xi ∈ RH×W×C

is the i-th image, and yi ∈ {1, ...K} is the corresponding ground truth label, where K denotes
the number of classes, H, W and C are the width, height, and number of channels of the image.
bi ∈ [0, 1]4 denotes the bounding box annotation. Given the predicted object label ŷ and the predicted
object location b̂ with a confidence score ŝconf, a perfect calibration of a object detector is defined
as Kuppers et al. (2020)

P (ŷ = y, b̂ = b, ŝconf = sconf) = sconf ∀sconf ∈ [0, 1] (1)

where P (ŷ = y, b̂ = b, ŝconf = sconf) is the prediction performance with a confidence score sconf,
indicating that the object class is correctly labeled ŷ = y and the intersection-over-union (IOU) is
larger than a predefined threshold γ IoU(b̂,b) > γ.
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Figure 2: Overall Framework: Given a streamline of test examples, each test image is augmented
with source domain styles using Text-Guide Image Augmentation (TGIA). Multi-source Test-time
Prompt Tuning (MSTPT) extracts TGIA image features with multiple source image encoders. Given
the prompted text features, InsCal outputs prediction probability for each augmentation. The InsCal
entropy loss is computed by filtering out high entropy predictions and assigning proper instance-
specific calibration weights. The InsCal entropy loss is then back-propagated to update the prompt.

The quantification the miscalibration is measured by the detection expectation of calibration error
(D-ECE) Kuppers et al. (2020):

E[|P (ŷ = y, b̂ = b, ŝconf = sconf)− sconf|] (2)

To approximate D-ECE, the continuous space of the confidence ŝconf, and the box property space in
each dimension are equally divided into M bins, and

D-ECE =

M∑
m=1

|I(m)|
|D|

|prec(m)− conf(m)| (3)

where I(m) is the set of all samples in a single bin, |D| is the number of samples, prec(m) and
conf(m) denote the average precision and confidence in each bin, respectively.

4 METHODOLOGY

Overview. The overall pipeline of InsCal is illustrated in Figure 2. Given textual style descriptions
of each domain, the target image is augmented through TGIA, and the resulting views are used to
construct an instance-specific calibrated entropy. This entropy guides the update of the learnable
prompts, effectively mitigating the overconfidence issue.

Problem definition. We consider the multi-source test-time prompt-tuning setting. Given S source
model fs

θ , each pre-trained on a different source domain Ds, where each domain s is accompanied by
a short text description of its style domains

sty. Each source model fs
θ is explicitly represented as an

image encoders ENCs
I and the text encoder ENCT . At test time, given a single target-domain image

xtest ∈ DT , our objective is to learn an optimal prompt p∗ that maximizes adaptation performance to
the target domain DT .

4.1 TEXT-GUIDE IMAGE AUGMENTATION

As shown in the left of Figure 3, given a test image xtest, a target style text tgtsty and a source style
text srcsty , TGIA Aθ(·) generates an augmented view Aθ(z) of the target image in the corresponding
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Figure 3: Left: Overview of TGIA. TGIA leverages textual descriptions of source and target domain
styles to transfer a target image into the style of the source domain. Right: Overview of InsCal.
InsCal extends TPT to the multi-source setting by integrating multiple source models and addressing
miscalibration through an instance-specific calibration entropy loss.

source style by minimizing the following regularized directional contrastive loss:

θ∗ = min
θ

∑
z

1− |∆Iz|
|∆T |

· ∆Iz ·∆T

|∆Iz||∆T |
+ λ∥Aθ(z)− z∥22,

∆Iz = ENCI(Aθ(z))− ENCI(z), (4)
∆T = ENCT (tgtsty)− ENCT (srcsty),

where z = ENCI(x
crop
test ) is the image embedding of a patch obtained by randomly taking multiple

crops from the test image xtest. The first term aims to align the direction of the image style transfor-
mation (induced by TGIA) with the textual style transformation (from target style to source style) in
the latent space. ∆Iz represents the change in the image embedding due to TGIA applied to the test
image. It’s computed as the difference between the embeddings of the augmented image, Aθ(z) , and
the original image patch embedding, z. ∆T represents the direction of the style transformation from
the target to the source, based on the text encodings of the target style tgtsty and source style srcsty.
By minimizing the cosine similarity between ∆Iz and ∆T , the loss encourages ∆Iz (the change in
image style) to align with ∆T (the intended style direction in text). This alignment effectively guides
the test image’s style toward the source domain style described in text. The magnitude scaling factor
|∆Iz|
|∆T | encourages the augmentation’s transformation magnitude to closely match that of the desired
text-guided shift, making alignment stronger. The second term is a L2 regularization encourages
the augmented image Aθ(z) to remain close to the original image patch z in terms of content. This
term enforces content similarity in feature space, allowing flexibility in low-level style features while
keeping the main content of the test image.λ is a hyperparameter that controls the relative importance
of the perceptual content preservation.

The textual description of the domain style is a straightforward sentence summarizing the overall
style of the dataset. For example, for dataset Watercolor2k Inoue et al. (2018), the textual description
is “a drawing in watercolor style". TGIA does not require access to the source data and adheres to the
FTTA requirement because it relies solely on a high-level textual description of the source domain
style, rather than any specific source images. For simplicity, we use A(·) instead of Aθ(·) in the
following sections.

4.2 MULTI-SOURCE TEST-TIME PROMPT TUNING

In the multi-source test-time prompt-tuning (MSTPT) setting, we are provided with S pre-trained
source models. In this work, we adopt GDINO Liu et al. (2024a) as the base model. GDINO is a
text-driven object detector pre-trained on large-scale datasets. To obtain multiple source models,
we fine-tune GDINO on datasets {Ds}Ss=1 from different source domains, , resulting in a set of
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source image encoders {ENCs
I}Ss=1. Since the semantic representation of text (e.g., object labels,

descriptions) remains relatively domain-agnostic, we use the same text encoder ENCT together with
all source image encoders. We then generate augmented views of the test image {{As

j(xtest)}Nj=1}Ss=1
using TGIA given the source style description, where N augmented views are obtained for each
source domain.

Built upon the pre-trained source models and the augmented views, we propose enhancing the cali-
bration of test-time prompt-tuning for object detection in three key ways: (1) integrating information
from multiple sources to fully leverage the knowledge of multiple pre-trained source models; (2)
explicitly reducing domain gaps between source models and target images to achieve highly accurate,
confident predictions; and (3) introducing a novel calibrated objective to overcome overconfidence in
entropy minimization. As shown on the right of Figure 3, both the text encoder and image encoders
remain frozen during adaptation, while the augmented views in each source style are passed through
their corresponding image encoder. To encourage consistency, the prompt prompt p ∈ RL×D is opti-
mized in the text embedding space by minimizing the entropy of the averaged prediction distribution
across all S ×N augmented views, where L is the number of tokens, and D is the embedding size.

p∗ = min
p

−
K∑
i=1

p̃p(yi|xtest) log p̃p(yi|xtest) (5)

p̃p(yi|xtest) =
1

SN

S∑
s=1

N∑
j=1

pp(yi|As
j(xtest)) (6)

pp(yi|As
j(xtest)) =

exp(SIMi/τ)∑K
k=1 exp(SIMk/τ)

(7)

where pp(yi|As
j(xtest)) is the vector of class probabilities produced by the s-th source model when

provided with prompt p and the j-th augmented view with s-th source style of the test image.
SIMi = cos(ENCs

I(As
j(xtest)),ENCT (pi)) is the cosine similarity between the prompted text

feature ENCT (pi) and the augmented image feature of j-th view of s-th source image encoder
ENCs

I(As
j(xtest)). Given a confidence selection threshold σ, we filter out views with high entropy

prediction in each source s:

p̃p(yi|xtest) =
1

ρSN

S∑
s=1

N∑
j=1

1[H(pi) ≤ σ]pp(yi|As
j(xtest)) (8)

where ρ is the cutoff percentile on SN total views, 1[·] is a indicator function which assigns 1 when
H(pi) ≤ σ and 0 otherwise. H(pi) measures the self-entropy of the prediction on an augmented
view.

4.3 CALIBRATED ENTROPY MINIMIZATION

A key drawback of minimizing average prediction entropy is that it promotes high-confidence (low-
entropy) predictions across all augmentations, even for incorrect ones, leading to overly confident
results Tao et al. (2023); Tan et al. (2024); Yang et al. (2024). To reduce overconfidence in entropy
minimization while preserving the benefits of enhanced prediction precision, we propose calibrated
test-time prompt tuning leveraging the highest-ranked prediction along with the next best prediction.
The probability of class yi among K classes is denoted as pi = pp(yi|As

j(xtest)). We further define
p1st = pp(y

1st|As
j(xtest)) as the highest prediction and p2nd = pp(y

2nd|As
j(xtest)) as the second

highest prediction following p1st. Based on these definitions, the calibrated multi-source test-time
prompt-tuning objective is formulated as

p∗ = min
p

1

SN

K∑
i=1

S∑
s=1

N∑
j=1

H̃[p̃p(yi|xtest)] (9)

H̃[p̃p(yi|xtest)] = −(1 + (p1st − p2nd)α)pi log pi (10)

The term 1 + (p1st − p2nd)α serves as a calibration factor. It adapts to the specific confidence of the
prediction, influencing how much weight is assigned to each augmented view. When p1st is much
larger than p2nd (indicating high confidence), the calibration factor becomes larger. This increases the
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Table 1: mAP (%) and D-ECE (%) on different sub-dataset of the Art Image Dataset. FR and UDA
are pre-trained on PASCAL VOC dataset. GDINO is pre-trained on O365, GoldG, and Cap4M. FTTA
methods are fine-tuned on corresponding source data with the pre-trained GDINO. More details of
the baselines are presented in the Appendix.

Domains Comic Clipart Watercolor
Methods mAP D-ECE mAP D-ECE mAP D-ECE

with access to source data

UDA

FR 25.0 18.2 29.8 16.3 52.0 17.3
UAN 25.5 - 30.3 - 53.3 -
CMU 30.1 - 32.1 - 53.9 -
DAF 28.3 - 31.3 - 49.3 -
MAF 29.3 - 32.2 - 49.2 -
HTCN 24.0 - 34.7 - 52.1 -
CAD 28.8 - 34.2 - 52.8 -
IDF 24.8 - 32.7 - 52.5 -
USDAF 32.6 - 38.4 - 55.2 -
CODE 33.8 17.5 39.4 17.1 55.8 17.3

target data are presented in an online manner

FTTA

GDINO 25.9 17.2 30.5 16.9 52.8 17.0
Tent 25.5 16.8 30.3 16.3 52.5 16.5
TPT 25.9 16.2 30.6 15.5 53.0 16.0
IOUFilter 20.2 17.5 29.6 17.4 35.8 17.5
C-TPT 28.4 16.9 32.9 17.2 49.7 17.3
ZS-Norm 29.2 16.5 33.4 16.8 50.4 17.0
Penalty 29.7 16.6 33.8 16.9 50.9 17.2
SaLS 29.8 16.5 34.0 16.6 51.2 16.9
O-TPT 30.4 16.2 34.5 15.6 51.9 16.1
InsCal 34.3 15.4 39.9 14.7 56.3 15.2

importance of this confident prediction. When p1st and p2nd are close, the model is less confident, and
the calibration factor reduces the importance of this prediction. This down-weights the prediction,
thus preventing overconfident but inaccurate predictions. α is a hyperparameter that controls how
strongly the model should adjust its confidence based on the difference between the top two logits. A
larger α makes the calibration more sensitive to the difference between p1st and p2nd, leading to more
drastic adjustments. A smaller α results in more gradual adjustments.

5 EXPERIMENTS
Datasets. Diverse Weather Dataset (DWD) Wu & Deng (2022) is a cross-domain object detection
dataset focuses on semantic understanding of urban street scenes with instance-level annotations.
DWD consists of five domains: Daytime Clear, Daytime Foggy, Dusk Rainy, Night Rainy and Night
Clear. Each domains collects urban street scenes dataset with a specific weather conditions (i.e., clear,
foggy, or rainy) at a time (i.e., day, dusk, or night). All the datasets contain bounding box annotations
within 7 classes objects: bus, bike, car, motorbike, person, rider, and truck. The dataset size for DWD
is 27708, 3775, 3501, 2494, and 26158 for Daytime Clear, Daytime Foggy, Dusk Rainy, Night Rainy
and Night Clear, respectively. Another cross-domain dataset we use is the Art Image dataset with
different artistic styles including Clipart1k, Comic2k, and Watercolor2k Inoue et al. (2018), where
Clipart1k contains 1000 clipart images, Comic2k contains 2000 comic images.

Metrics Mean Average Precision with threshold 0.5 (mAP@0.5) is used to measure the performance
of all experiments. mAP@0.5 considers a prediction as a true positive if it matches the ground-truth
label and has an intersection over union (IOU) score of more than 0.5 with ground-truth bbox.

5.1 MAIN RESULTS

Art Image Dataset In Table 1, we present the mAP and D-ECE results for the Art Image dataset.
For each domain, we use the rest two as source. For certain baselines, we directly report the results
from their respective papers, where D-ECE values are not available. Notably, InsCal surpasses UDA
methods despite their advantage of accessing source data, as these methods fail to address the issue
of model overconfidence. In general, FTTA baselines underperform compared to UDA methods
due to the inherent limitation of lacking source data access. Calibrated TPT methods outperforms
other FTTA method since they address the overconfidence issue. Our method InsCal effectively
leverages knowledge from multiple source domains, achieving superior performance over UDA
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approaches. Furthermore, our calibrated entropy minimization strategy significantly reduces D-ECE,
demonstrating its effectiveness in improving model calibration. The detailed analysis of each class is
presented in the Appendix.

DWD Dataset. In Table 2, we present the main results for DWD dataset, including mAP and
D-ECE for each domain. We categorize the comparative baselines into UDA, SFDA, and FTTA
based on source and target data availability, with the best performance in each category highlighted
in bold. Our method consistently achieves the lowest D-ECE across all categories and sub-domains,
highlighting that traditional UDA, SFDA, and FTTA methods suffer from severe miscalibration.
While calibrated TPT methods partially alleviate this issue, our approach notably reduces D-ECE
from approximately 20% to 10%, demonstrating the effectiveness of calibrated entropy minimization.
In terms of mAP, InsCal outperforms competing methods in Dusk Rainy, Night Rainy, and Night
Clear domains. On the Day Foggy benchmark, our method performs competitively, trailing only
slightly behind two UDA methods, despite their significant advantage of full access to both source
data and unlabeled target data. Additionally, in Figure 4, we observe that our method effectively
aligns confidence scores with actual prediction accuracy, leading to more reliable and well-calibrated
detections. The detailed analysis for each class in presented in the Appendix.

(a) Night Rainy w/o cali-
bration. (D-ECE: 13.25%)

(b) Night Rainy w/ calibra-
tion. (D-ECE: 12.18%)

(c) Dusk Rainy w/o calibra-
tion. (D-ECE: 15.12%)

(d) Dusk Rainy w/ calibra-
tion. (D-ECE: 14.48%)

Figure 4: Multi-source TPT fine-tuned on Night Rainy and Dusk Rainy from the DWD dataset Wu &
Deng (2022) w/ and w/o calibration loss in training.

(a) EM (b) TPT (c) MS (d) InsCal

Figure 5: Qualitative analysis on different components from our model to object detection perfor-
mance on one image of Night Clear.

5.2 ABLATION STUDIES

Effectiveness of each component. In this ablation, we study the effectiveness of each component in
InsCal. As shown in Table 3, using entropy minimization (EM) has little transferability to extremely
different target domains. By using augmented views and constraining them to with low entropy, TPT
improve the performance over EM by 1.6. Utilizing multi-source models during training has the
advantage of aggregating information from multiple domains, thus further improve the performance.
TGIA improve the performance by reducing domain gaps. And using calibrated loss improve the
performance by preventing overconfidence. In Figure 5, we provide some qualitative results for
InsCal. We observe that EM misclassifies multiple objects including car, bus, rider and person. TPT
correctly identifies some cars and person, but misclassifies truck and bus. MS can identify more
cars, but mistakenly identify some other objects as trucks. InsCal correctly identifies all the objects
without mistakes.
Extension to open vocabulary object detection. We extend our method to open-vocabulary object
detection (OVOD) on the DWD dataset. The results for the Day Foggy scenario are presented in
Table 4, where the novel category Traffic Light is highlighted in gray. Our approach achieves the
highest mAP across all categories except Car, where FR attains the best performance. However, FR
exhibits the worst performance on the novel category, highlighting the effectiveness of our method in
seamlessly adapting to OVOD. Furthermore, the lowest D-ECE score demonstrates that our approach
mitigates overconfidence issues, enhancing robustness in open-vocabulary settings.
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Table 2: mAP (%) and D-ECE (%) results. For each target domain, Day Clear and the rest three
domains are used as the source domains for the multi-source methods. For single-source UDA and
SFDA, Day Clear is used as the source following the typical setting Wu & Deng (2022); Vidit et al.
(2023); Fahes et al. (2023).

Domain Day Foggy Dusk Rainy Night Rainy Night Clear
Methods mAP D-ECE mAP D-ECE mAP D-ECE mAP D-ECE

with access to source data

UDA

FR 32.0 - 26.0 - 12.4 - 34.4 -
SW 30.8 - 26.3 - 13.7 - 33.4 -
IBNNet 29.6 - 26.1 - 14.3 - 32.1 -
IterNorm 28.4 - 22.8 - 12.6 - 29.6 -
ISW 31.8 - 25.9 - 14.1 - 33.2 -
SDGOD 33.5 18.8 27.9 18.7 16.6 18.5 36.6 19.0
CLIPAug 38.5 18.4 28.2 18.5 18.7 18.2 36.9 18.3
PODA 38.9 17.5 27.5 17.9 19.5 17.7 37.4 17.8

with access to all target data

SFDA

SED 29.4 14.2 21.1 15.4 15.1 14.6 33.4 15.5
MSMT 36.8 14.5 32.0 15.6 16.5 14.6 37.7 15.7
MixUp 31.5 14.8 30.8 15.7 15.5 14.5 35.0 15.6
HCL 30.2 14.5 26.9 15.4 15.3 14.3 30.8 15.5
IRG 35.2 15.1 30.5 15.6 15.8 14.1 36.7 15.1

target data are presented in an online manner

FTTA

GDINO 34.1 13.9 29.0 14.8 13.6 14.2 29.2 14.8
Tent 32.4 13.3 28.9 14.8 15.8 13.7 32.2 14.2
TPT 34.9 12.8 30.5 14.7 16.5 12.5 33.7 13.4
DART 30.1 13.2 27.4 14.8 13.4 13.8 33.5 14.3
IOUFilter 28.6 15.5 25.5 16.2 12.7 13.5 31.4 14.1
C-TPT 35.4 12.5 30.8 14.6 16.6 12.1 34.1 13.0
ZS-Norm 36.0 12.3 31.2 14.5 16.6 11.9 35.2 12.7
Penalty 36.2 12.4 31.5 14.7 16.8 12.0 35.5 12.9
SaLS 36.3 12.6 31.4 14.7 16.7 12.1 35.3 13.1
O-TPT 36.5 12.7 31.8 14.6 16.9 12.3 37.5 13.3
InsCal (Ours) 37.1 10.6 33.2 14.5 20.8 12.2 38.5 13.2

Table 3: Class-wise AP with different components enabled. EM stands for entropy minimization.
MS means using multiple source training. And CEM is short for calibrated entropy minimization.
We show the comparison results on data set Night Clear.

AP mAP

EM TPT MS TGIA CEM Bus Bike Car Motor Person Rider Truck All

✓ ✗ ✗ ✗ ✗ 31.8 30.6 32.5 33.7 34.6 34.2 32.8 33.1
✓ ✓ ✗ ✗ ✗ 32.6 31.8 33.8 35.4 35.8 35.5 33.8 34.7
✓ ✓ ✓ ✗ ✗ 33.5 34.4 35.1 35.7 36.7 37.8 35.1 37.5
✓ ✓ ✓ ✓ ✗ 34.6 35.0 36.2 36.7 37.8 38.0 35.0 36.1
✓ ✓ ✓ ✓ ✓ 36.2 37.2 37.7 38.5 39.6 40.8 37.9 38.5

Table 4: Open-vocabulary object detection over Day Foggy, novel category is masked with gray.

Method Bus Bike Car Motor Person Rider Traffic Light mAP D-ECE%
FR 28.1 29.7 49.7 26.3 33.2 35.5 19.8 32.0 14.7
GDINO 33.2 33.4 33.8 35.7 36.9 37.5 31.8 34.1 12.9
TPT 34.4 33.3 34.2 36.7 37.9 38.8 32.4 34.9 13.2
C-TPT 35.1 33.6 35.5 38.0 39.2 39.1 33.1 35.4 12.5
ZS-Norm 35.7 36.1 38.8 40.3 39.9 40.3 33.9 36.0 12.3
Penalty 36.0 36.4 38.8 40.6 40.3 40.5 33.8 36.2 12.4
SaLS 36.1 36.3 38.6 40.7 40.4 40.7 33.7 36.3 12.6
O-TPT 36.2 36.5 38.9 40.7 40.5 40.9 34.0 36.5 12.7
InsCal (Ours) 36.5 36.8 38.8 40.7 42.4 39.7 33.7 37.1 10.6

6 CONCLUSION

In this work, we present InsCal, a fully test-time adaptation (FTTA) solution for object detection. We
investigate the miscalibration issues in entropy minimization within FTTA and propose extending Test-
time Prompt Tuning (TPT) to a multi-source setting with text-guided feature augmentation. To address
the miscalibration problem, we introduce a novel learning objective that assigns instance-specific
weights. Experiments conducted on various cross-domain object detection datasets demonstrate that
InsCal effectively reduces miscalibration. Further extensions would include multi-modal adaptation,
opening up to other modalities like audio, video, or sensor data; and scalable multi-source integration
with meta-learning or federated learning.
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7 REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure the reproducibility of our work. A detailed description of
our proposed method and training objectives is provided in Section 4 of the main paper. Additional
implementation details, hyperparameter settings, and dataset information are included in Appendix C.
To further facilitate reproducibility, we provide an anonymous link to the source code and scripts for
training and evaluation in Appendix E. All datasets used in our experiments are publicly available,
and their references are properly provided.
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A NOTATIONS

The notations and their corresponding descriptions used in the main paper are presented in Table 5.

Table 5: Notations

Notation Description
Lcls classification loss of object detection
Lreg regression loss of object detection
x image
y ground truth class label
b ground truth bounding box coordinates

sconf confidence score
ŷ predicted class label
b̂ predicted bounding box coordinates

ŝconf predicted confidence score
γ IoU threshold

ECE expected calibration error
D-ECE detection expected calibration error
I(m) the set of all samples in bin m

prec(m) average precision in bin m
conf(m) average confidence in bin m

Ds s-th source dataset
xtest test image from the target dataset

ENCs
I pre-trained s-th source image encoder

ENCT pre-trained s-th text encoder
S number of source domains
p learnable test-time prompt
θ weight parameters for TGIA

Aθ(·) TGIA augmentation
A(·) TGIA augmentation
srcsty source style text
tgtsty target style text
z image patch embedding
∆I difference between augmented image embedding and original image embedding
∆T difference between source style and target style
λ hyperparameter

SIM(·) cosine similarity
N number of augmentations for each view
ρ cutoff percentile of augmented views
y1st class with highest prediction normalized logit
y2nd class with second highest prediction normalized logit
p1st highest prediction normalized logit
p2nd second highest prediction normalized logit

B DISCUSSION OF UNSUPERVISED CALIBRATION

It is extremely challenging for unsupervised domain adaptation (UDA) models to provide calibrated
results due to the lack of labels in the target domain and semantics shift between the source and target
domains. Despite its significance, miscalibrated UDA remains largely under-explored. PseudoCal Hu
et al. (2024) provides a post-hoc solution for miscalibrated UDA through inference-stage mixup
synthesis, which aim to turn unsupervised UDA into supervised one. Specifically, it first generates a
set of pseudo labeled target set by taking convex combinations of multiple pairs of real target samples
and their pseudo labels. Then they perform supervised calibration such as temperature scaling Guo
et al. (2017) based on the pseudo-labeled target set.
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However, this pseudo calibration method requires access to unlabeled target dataset, making it not
directly applicable to FTTA where only a single test image is available. Instead, we propose a
unsupervised calibration method for FTTA by utilizing the predictive probability vector. Without
requiring access to labeled target dataset, we design a instance-specific weight based on the divergence
between the largest logit and the second largest logit to calibrate the pre-trained source model. Despite
the limited resources, we have achieved an improvement of ECE on DWD dataset of 6.3%.

C EXPERIMENTAL DETAILS

Implementation details. The default prompt fine-tuning step is set to 10. We increase tuning
steps on Night Clear to 15 and decrease the steps on Day Foggy and Dusk Rainy to 5, base on the
data domain similarity and difficulty. In bounding box prediction, we remove box of low maximum
confidence, i.e. last 30%. We only average the logit prediction of those box with larger than 65%
IoU. The training is conducted with 2 A100.

Art Image Dataset The Art Image dataset is proposed by Inoue et al. (2018), it includes three
types of art images, 1k clipart with 20 classes, 2k watercolor with 6 classes, and 2k comic with 6
classes. We only evaluate the common classes in the three datasets, that is, bike, bird, car, cat, dog,
and person.

Comparison baselines Our method is compared with the following methods: (1) without adaptation
(w/o adpt): Faster RCNN Ren et al. (2015) (FR), GDINO Liu et al. (2024a); (2) Unsupervised domain
adaptation (UDA): Universal Adaptation Network (UAN) You et al. (2019) and Calibrated Multiple
Uncertainties (CMU) Fu et al. (2020), Domain Adaptive Faster RCNN (DAF) Chen et al. (2018),
Multi-adversarial Faster RCNN (MAF) He & Zhang (2019), Asymmetric Triway Faster Rcnn
(ATF) He & Zhang (2020), Hierarchical Transferability Calibration Network (HTCN) Chen et al.
(2020), Strong Weak Domain Adaptation (SWDA) Saito et al. (2019), Augmented Feature Alignment
Network (AFAN) Wang et al. (2021a), Channel-wise Alignment for Adaptive Object Detection
(CAD) Yang et al. (2020), Partial Alignment Asymmetric Tri-way Faster RCNN (PAATF) He et al.
(2021), Paradigm Teacher Multi-Adversarial Faster RCNN (PTMAF) He et al. (2023b), Implicit
Domain-invariant Faster-RCNN (IDF) Lang et al. (2022), Sequence Feature Alignment (SFA) Wang
et al. (2021b). Universal Scale-Aware Domain Adaptive Faster RCNN (USDAF) Shi et al. (2022),
Confused and Disentangled Extraction (CODE) Shi et al. (2024). (3) Fully test-time adaptation
(FTTA) method:Tent Wang et al. (2020), TPT Shu et al. (2022), DART Liu et al. (2024b), and
IOUFilter Ruan & Tang (2024); (4)Calibrated test-time prompt-tuning methods: C-TPTYoon et al.
(2024), ZS-NormMurugesan et al. (2024), PenaltyMurugesan et al. (2024), SaLSMurugesan et al.
(2024), and O-TPTSharifdeen et al. (2025).

D ADDITIONAL EXPERIMENT RESULTS

In this section, we present some additional experimental results and details including some ablation
studies in Appendix D.1, some qualitative result for TGIA and its corresponding detection results in
Appendix D.2, and the class-specific analysis for the DWD and Art Image datasets in Appendix D.3.

D.1 ABLATION STUDIES

Impact of Hyperparameter α. For Dusk Rainy and Night Rainy data sets, because of the difficulty
due to the combination the rainy effect and less lighting and the inborn complexity of unsupervised
calibration, the ECE improvement is marginal. For relative simpler Day Foggy dataset where we
have better lighting conditions, we achieve prominent improvement through calibration balance
hyperparameter fine-tuning. As shown in Figure 6, we tested different α values ranging from 0.1 to 1,
and the D-ECE is minimized when α = 1.

Calibration metrics. We have tested the calibration performance with other calibration metrics
including ACE, and SCE for both the comparative baselines and our method. The results, as shown
in evaluated on Day Foggy, show that our method outperforms the baselines across all metrics.
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(a) α=0.1 (D-ECE:
14.54%)

(b) α=0.5 (D-ECE:
14.07%)

(c) α=0.8 (D-ECE:
10.64%)

(d) α=1.0 (D-ECE:
12.80%)

Figure 6: Comparison of TPT fine-tuned performance on Day Foggy from the DWD dataset Wu &
Deng (2022) with different calibration balance factors α in training.

(a) Day Foggy w/o calibration. (D-ECE: 15.32%) (b) Day Foggy w/ calibration. (D-ECE: 12.80%)

Figure 7: Comparison of TPT fine-tuned on Day Foggy from the DWD dataset Wu & Deng (2022)
w/ and w/o calibration loss in training.

Table 6: Calibration performance by ACE and SCE.

Methods ACE (%) SCE (%)
SED 26.2 25.5
MSMT 27.5 26.8
MixUp 27.9 27.2
HCL 27.8 27.1
IRG 30.5 29.7
GDINO 22.0 21.2
Tent 23.1 22.2
TPT 23.2 22.0
C-TPT 22.9 21.6
ZS-Norm 23.0 21.6
Penalty 23.1 21.7
SaLS 23.2 21.8
O-TPT 23.4 21.9
DART 20.9 19.8
IOUFilter 34.3 33.5
InsCal(Ours) 18.5 17.8
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Figure 8: T-SNE results w/ and w/o calibrated test-time prompt.

Interpretability. To demonstrate interpretability, we present T-SNE results comparing calibrated
test-time prompt tuning (CTPT) and the uncalibrated version in Figure 8. In the left figure, Truck,
Car, and Person are blended, whereas in the right figure, they are clearly separated, highlighting the
effectiveness of CTPT.

Aggregation of multiple source models. In this ablation, we study the aggregation of multiple
pre-trained source models. Results show that directly aggregate information from multiple source
models is not always useful, sometimes may even have a negative impact on the adaptation to the
target domain. As shown in Figure 9, we use different combinations of source models, and adapt to
the unseen target models on DWD dataset. The results on Night Clear show that using Night Rainy
achieve best performance, while incorporating other domains such as Dusk Rainy or Day Foggy
harm the performance. Similar results can be observed from Day Foggy and Dusk Rainy domains.
For Night Rainy, incorporating sources such as Dusk Rainy, Day Foggy improve the performance.
The reason is that, Night Rainy show similar semantic with Night Clear. For example, they are
both night images. Using Night Rainy as source will lead to a good performance on Night Clear
dataset. However, there is a huge domain gap between other domains and Night Clear, including
Dusk Rainy and Day Foggy. Incorporation of these domain as sources will induce negative transfer,
further degrade the transferring from Night Rainy to Night Clear.

(a) Night Clear (b) Night Rainy (c) Day Foggy (d) Dusk Rainy

Figure 9: mAP results on DWD domains 9a-9d. In each domain we use different combination of
source models as multi-source models, each number stands for a specific domain: 1-Day Clear,
2-Night Clear, 3-Day Foggy, 4-Night Rainy, and 5-Dusk Rainy.

Computational Complexity Analysis. Table 7 presents the time and memory analysis of our
method compared to baseline approaches. InsCal incurs a slight increase in inference time and
parameter size compared to TPT while outperforming other FTTA methods.

Table 7: Time and Memory Complexity

Tent TPT CTPT O-TPT DART IOUFilter InsCal
Inference Time (FPS) 0.18 0.25 0.25 0.24 0.29 0.28 0.24
Parameter Size (M) 75 84 85 85 92 93 85
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D.2 QUALITATIVE RESULTS OF TGIA

We present some augmented images using TGIA on the art images dataset in Figure 10. In Table 8,
we presented the text-based style description for the corresponding source domain. We formulate
the source domain style description by simply prepending the template “A photo of" to the dataset
name, which requires no extra information and no access to the source domain images. As shown in
Figure 10, TGIA manages to transfer the source domain styles to the target images while preserving
the details of the original content. The corresponding detection results are shown in Figure 11, where
we present the detection performance using entropy minimization (EM), TPT, multiple source (MS)
and our method InsCal. The detection results show that EM and TPT both fail to detect multiple
people in the figure. And utilizing multiple source and InsCal improve the detection performance.

Table 8: Source domains and its corresponding descriptions.

Source Description
Clipart A photo of clipart
Comic A photo of comic
Watercolor A photo of watercolor
Day Foggy A photo of foggy day

(a) Comic Original Image (b) Clipart (c) Watercolor (d) Day Foggy

(e) Clipart Original Image (f) Comic (g) Watercolor (h) Day Foggy

(i) Watercolor Original Image (j) Clipart (k) Comic (l) Day Foggy

Figure 10: Images from Comic (a), Clipart (e) and Watercolor (i) are transfer to clipart, comic,
watercolor and day foggy style with source description in Table 8, respectively.

(a) EM (b) TPT (c) MS (d) InsCal

Figure 11: Ablative model components cross-domain detection results on Art Watercolor datasets
using different comparative baselines.
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D.3 CLASS-SPECIFIC RESULTS ANALYSIS

In this section, we provide the class-specific results analysis for each domain in DWD and the Art
Image datasets. Since some UDA and SFDA methods mentioned in Table 2 do not provide the details
of class-specific results, we remove them from the per-class analysis in this section.

Day Foggy. In Table 9, we observe that InsCal has outperform all the FTTA methods in every
category. Some categories such as Motor, Person, and Truck achieve the highest performance across
UDA, SFDA and FTTA.

Dusk Rainy. As shown in Table 10, in UDA, CLIPAug performs better than other methods in
every category. For SFDA, MixUp performans consistently better than other methods. In FTTA, our
method outperforms other methods in every category. In addition, our methods performs better than
CLIPAug and MixUp in most of the categories, showing a better overall mAP across UDA, SFDA
and FTTA.

Night Rainy. As presented in Table 11, CLIPAug provides consistently better performance than
other methods, resulting a 18.7 mAP, outperforming the rest of the UDA methods. The lack of
lighting (Night) and the raining effect makes the overall detection on night rainy domain very difficult.
In SFDA, MSMT performs consistently better than the others. The utilization of multiple source
models and the unlabeled target images lead to the stable performance of 29.1 mAP. In FTTA, our
methods outperform the rest of the methods in every category, leading to the highest mAP, which is
better than UDA but inferior to SFDA due to the lack of utilization of the unlabeled target images.

Night Clear. In Table 12, we present the class-wise results for Night Clear. In UDA, SDGOD
and CLIPAug have the best performance in different categories, and their mAP are very close. In
SFDA, MSMT performs consistently better than the others. In FTTA, our method performs better
than others across all the categories. However, the base model GDINO has difficulty adapting to the
night domain, making the overall performance consistently worse than UDA and SFDA.

Table 9: Class-wise mAP on Day Foggy domain of DWD dataset.

Class Names Method Bus Bike Car Motor Person Rider Truck mAP

UDA
FR 28.1 29.7 49.7 26.3 33.2 35.5 21.5 32.0
SDGOD 32.9 28.0 48.8 29.8 32.5 38.2 24.1 33.5
CLIPAug 36.1 34.3 58.0 33.1 39.0 43.9 25.1 38.5

SFDA

SED 28.4 29.1 28.5 24.1 33.9 30.4 32.7 29.4
MSMT 35.4 37.9 40.2 39.2 31.5 33.4 32.9 36.8
MixUp 33.2 32.4 33.5 26.8 29.1 35.5 33.2 31.5
HCL 32.5 31.3 32.1 25.9 28.0 34.2 31.8 30.2
IRG 33.8 33.9 34.2 36.8 37.5 38.9 34.8 35.2

FTTA

GDINO 33.2 33.4 33.8 35.7 36.9 37.5 33.5 34.1
Tent 31.0 31.3 31.9 33.7 34.9 35.7 31.6 32.4
TPT 34.4 33.3 34.2 36.7 37.9 38.8 34.7 34.9
C-TPT 35.1 33.6 35.5 38.0 39.2 39.1 33.1 35.4
ZS-Norm 35.7 36.1 38.8 40.3 39.9 40.3 33.9 36.0
Penalty 36.0 36.4 38.8 40.6 40.3 40.5 33.8 36.2
SaLS 36.1 36.3 38.6 40.7 40.4 40.7 33.7 36.3
O-TPT 36.2 36.5 38.9 40.7 40.5 40.9 34.0 36.5
DART 28.8 27.2 28.9 31.4 32.6 32.9 29.2 30.1
IOUFilter 35.9 24.8 25.6 28.7 30.9 30.5 27.5 28.6
InsCal 36.5 36.8 38.8 40.7 42.4 39.7 33.7 37.1

Class-specific results on Comic In Table 13, we present the class-wise AP for Comic. As observed,
InsCal performs consistently better across different classes, resulting the highest mAP. GDINO
performs better then FR across all categories, thanks to the larger pre-trained datasets. UDA methods
perform better on some classes such as bike, car or dog, but InsCal has a better mAP due to the
advantages over the rest of the classes. By utilizing multiple source models and calibration, InsCal
achieve comparable performance with UDA methods.

Class-specific results on Watercolor In Table 14, we present the class-wise results for Watercolor
dataset. Similar results can be observed from Table 14 for the Watercolor dataset. Showing the
consist trend of our method and the comparison between InsCal and other methods. TPT performs
well in cat category, but InsCal still performs better on the rest classes, resulting a higher mAP.
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Table 10: Class-wise mAP on Dusk Rainy domain of DWD dataset.

Type Method Bus Bike Car Motor Person Rider Truck mAP
FR 28.5 20.3 58.2 6.5 23.4 11.3 33.9 26.0

UDA SDGOD 37.1 19.6 50.9 13.4 19.7 16.3 40.7 28.2
CLIPAug 27.8 28.8 28.7 27.2 27.9 28.3 28.4 28.2
SED 13.5 16.3 16.2 16.5 14.4 15.3 14.9 15.4
MSMT 34.1 33.6 31.9 31.4 31.7 32.3 32.3 32.0

SFDA MixUp 29.2 28.9 28.8 29.8 31.0 31.2 32.9 30.8
HCL 26.7 27.2 27.4 27.2 25.9 25.3 26.5 26.9
IRG 31.2 28.4 28.8 30.9 31.5 28.3 29.7 30.5
GDINO 27.1 25.8 29.2 29.4 30.1 31.5 28.5 29.0
Tent 26.8 25.9 29.5 29.2 27.3 30.4 28.7 28.9
TPT 28.8 27.6 30.8 31.2 31.5 32.9 30.1 30.5
C-TPT 29.2 27.8 30.9 31.4 31.6 33.4 30.6 30.8
ZS-Norm 29.8 28.0 31.2 31.6 31.9 33.7 31.2 31.2

FTTA Penalty 30.0 28.2 31.6 32.0 32.4 34.1 31.4 31.5
SaLS 29.9 28.3 31.8 31.6 32.5 33.8 31.2 31.4
O-TPT 30.4 28.8 32.3 31.9 32.7 34.3 31.5 31.8
DART 25.4 24.7 28.3 28.1 26.4 29.0 27.1 27.4
IOUFilter 23.5 22.9 26.5 26.4 24.8 27.2 24.9 25.5
InsCal 32.9 31.7 32.5 34.3 35.6 36.5 32.8 33.2

Table 11: Class-wise mAP on Night Rainy domain of DWD dataset.

Type Method Bus Bike Car Motor Person Rider Truck mAP
FR 16.8 6.9 26.3 0.6 11.6 9.4 15.4 12.4

UDA SDGOD 24.4 11.6 29.5 9.8 10.5 11.4 19.2 16.6
CLIPAug 28.6 12.1 36.1 9.2 12.3 9.6 22.9 18.7
SED 15.8 14.5 14.2 18.6 6.9 16.5 18.8 15.1
MSMT 16.9 16.8 16.4 16.6 16.2 16.8 16.7 16.5

SFDA MixUp 15.6 15.2 15.4 15.8 15.7 15.2 15.3 15.5
HCL 15.2 14.8 15.0 15.5 15.6 15.7 15.4 15.3
IRG 15.5 15.5 15.6 16.1 16.3 16.5 15.7 15.8
GDINO 12.5 12.3 13.9 14.2 14.5 14.8 13.2 13.6
Tent 13.7 13.4 14.5 16.3 17.1 17.2 15.0 15.8
TPT 14.5 14.1 15.8 17.2 18.0 17.8 15.8 16.5
C-TPT 14.6 14.4 15.9 17.0 17.9 17.9 16.0 16.6
ZS-Norm 14.8 14.3 16.0 17.2 17.8 17.8 16.1 16.6

FTTA Penalty 14.9 14.6 16.2 17.3 17.9 18.1 16.4 16.8
SaLS 14.8 14.4 16.3 17.4 17.8 18.0 16.2 16.7
O-TPT 14.7 14.3 16.2 17.7 17.9 18.2 16.5 16.9
DART 11.2 11.0 12.5 14.8 15.9 13.7 12.9 13.4
IOUFilter 10.8 10.5 12.0 14.2 15.5 13.1 12.4 12.7
InsCal 21.8 22.2 21.8 22.7 25.8 23.5 20.8 20.8
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Table 12: Class-wise mAP on Night Clear domain of DWD dataset.

Type Method Bus Bike Car Motor Person Rider Truck mAP
FR 34.7 32 56.6 13.6 36.8 27.6 38.6 34.4

UDA SDGOD 40.6 35.1 45.7 19.7 34.7 32.1 43.4 36.6
CLIPAug 37.7 34.3 48.0 29.2 37.6 28.5 42.9 36.9
SED 31.9 34.5 33.8 31.2 32.5 34.9 33.7 33.4
MSMT 38.2 35.8 39.2 39.0 43.2 38.1 37.0 37.7

SFDA MixUp 35.8 34.2 34.5 34.6 36.0 36.2 34.5 35.0
HCL 29.4 31.9 31.2 29.5 29.9 32.4 31.2 30.8
IRG 37.3 35.8 36.4 36.5 37.8 37.9 36.1 36.7
GDINO 27.6 26.5 28.8 29.9 30.5 30.4 28.5 29.2
Tent 29.6 28.5 30.8 31.9 32.5 32.4 30.5 32.2
TPT 33.6 32.8 32.8 34.4 34.8 34.5 32.8 33.7
C-TPT 33.7 33.0 33.1 34.9 35.4 34.8 33.3 34.1
ZS-Norm 34.7 34.1 34.3 36.2 36.3 35.7 34.5 35.2

FTTA Penalty 34.9 34.3 34.8 36.4 36.4 36.1 34.8 35.5
SaLS 34.8 34.1 34.5 36.2 36.0 36.0 34.5 35.3
O-TPT 35.6 35.5 35.4 37.3 37.4 37.2 35.6 37.5
DART 31.4 30.7 32.5 34.5 34.9 34.8 33.0 33.5
IOUFilter 29.2 28.8 30.3 32.4 33.0 32.6 31.1 31.4
InsCal 36.3 37.1 37.7 38.8 39.5 40.8 37.9 38.5

Table 13: Class-specific AP on Comic Dataset.

Category Methods bike bird car cat dog person mAP

w/o adpt
FR 39.6 11.3 30.4 12.9 15.4 40.3 25.0
GDINO 40.7 12.4 31.4 13.8 16.2 50.2 25.9

UDA

UAN 41.0 16.0 29.1 8.6 14.4 43.8 25.5
CMU 36.8 17.8 24.5 18.3 28.9 54.5 30.1
DAF 32.1 21.3 26.4 12.5 31.1 46.2 28.3
MAF 43.1 17.5 24.2 19.4 22.4 49.1 29.3
HTCN 30.0 13.9 27.7 7.5 26.1 38.4 24.0
CAD 39.1 24.8 25.8 11.0 22.0 49.9 28.8
IDF 19.9 20.5 25.8 15.0 22.8 44.6 24.8
USDAF 39.8 15.9 38.6 18.1 26.6 56.5 32.6
CODE 40.2 26.9 29.7 19.5 26.6 59.8 33.8

FTTA

Tent - - - - - - 25.5
TPT 40.8 12.6 31.5 13.7 16.4 50.1 25.9
IOUFilter - - - - - - 20.2
InsCal 40.7 27.4 30.2 20.1 27.3 60.3 34.3
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Table 14: Class-specific AP on Watercolor

Category Methods bike bird car cat dog person mAP

w/o adpt
FR 82.4 51.7 48.4 39.9 30.7 59.2 52.0
GDINO 83.1 52.5 49.4 40.9 31.7 59.9 52.8

UDA

UAN 78.0 53.6 50.4 36.4 35.8 65.6 53.3
CMU 82.0 53.9 48.6 39.6 33.1 66.0 53.9
DAF 73.4 51.9 43.1 35.6 28.8 63.1 49.3
MAF 70.4 50.3 44.3 36.7 30.6 62.9 49.2
HTCN 74.1 49.8 51.9 35.3 35.3 66.0 52.1
CAD 82.3 52.3 49.3 38.1 32.0 62.6 52.8
IDF 81.4 54.9 46.7 36.6 29.1 66.0 52.5
USDAF 86.5 54.1 50.0 43.0 34.0 63.2 55.2
CODE 87.9 55.3 50.7 38.9 34.7 67.5 55.8

FTTA

Tent - - - - - - 52.5
TPT 83.2 52.6 49.5 41.1 31.9 60.2 53.0
IOUFilter - - - - - - 35.8
InsCal 88.38 55.7 51.3 39.45 35.3 68.1 56.3

Class-specific results on Clipart In Table 15, we can draw similar conclusions of the per-class
analysis for Clipart dataset as the previous Comic and Watercolor datasets, where InsCal provides
consistent and stable performance.

Table 15: Class-specific AP on Clipart

Category Methods bike bird car cat dog person mAP

w/o adpt
FR - - 34.7 5.1 8.3 49.6 29.8
GDINO 56.9 18.6 34.8 5.2 8.4 50.5 30.5

UDA

UAN - - 31.5 8.6 2.4 42.8 30.3
CMU - - 34.7 9.2 7.6 55.7 32.1
DAF - - 35.9 2.3 4.2 59.4 31.3
MAF - - 32.3 11.0 6.7 52.7 32.2
HTCN - - 32.8 11.3 10.5 57.9 34.7
CAD - - 35.9 9.8 4.7 56.1 34.2
IDF - - 37.3 16.7 3.7 52.6 32.7
USDAF - - 36.4 17.7 10.3 62.5 38.4
CODE - - 37.7 18.4 8.4 61.7 39.4

FTTA

Tent - - - - - - 30.3
TPT 60.1 18.3 35.5 10.1 8.4 50.7 30.6
IOUFilter - - - - - - 29.6
InsCal 69.4 28.2 38.1 18.9 10.0 62.4 39.9

E SOURCE CODE

For source code, please refer to https://anonymous.4open.science/r/InsCal-6602/
README.md.

F LLM USAGE STATEMENT

Large Language Models (LLMs) were used solely to aid in polishing the writing and improving
the clarity of exposition. No part of the research ideation, experimental design, implementation, or
analysis relied on LLMs. The authors take full responsibility for the content of this paper.
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