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ABSTRACT

Traditional Convolutional Neural Networks (CNNs) tend to use 3×3 small ker-
nels, but can only capture neighboring spatial information in one block. Inspired
by the success of Vision Transformers (ViTs) in capturing long-range visual de-
pendencies, recent CNNs have reached a consensus on utilizing large kernel con-
volutions (e.g., 31×31 and, astonishingly, 51×51 kernels). Nevertheless, these ap-
proaches necessitate adopting specialized techniques such as re-parameterization
or sparsity, which require extra post-processing. And too large kernels are un-
friendly to hardware. This paper introduces a Simple Convolutional Neural Net-
work (SCNN) that employs a sequence of stacked 3×3 convolutions but surpasses
state-of-the-art CNNs utilizing larger kernels. Notably, we propose simple yet
highly effective designs that enable 3×3 convolutions to progressively capture
visual cues of various sizes, thereby overcoming the limitations of smaller ker-
nels. First, we build a thin and deep model, which encourages more convolu-
tions to capture more spatial information under the same computing complexity
instead of opting for a heavier, shallower architecture. Furthermore, we introduce
an innovative block comprising two 3×3 depthwise convolutions to enlarge the
receptive field. Finally, we replace the input of the popular Sigmoid Linear Unit
(SiLU) activation function with global average pooled features to capture all spa-
tial information. Our SCNN performs superior to state-of-the-art CNNs and ViTs
across various tasks, including ImageNet-1K image classification, COCO instance
segmentation, and ADE20K semantic segmentation. Remarkably, SCNN outper-
forms the small version of Swin Transformer, a well-known ViT, while requiring
only 50% computation, which further proves that large kernel convolution is not
the only choice for high-performance CNNs.

1 INTRODUCTION

The field of neural network architecture holds paramount significance within machine learning and
computer vision research. In recent years, notable Vision Transformer (ViT) architectures (Doso-
vitskiy et al., 2021; Touvron et al., 2021) with global attention have been sequentially introduced.
These advancements have considerably enhanced the performance of various computer vision tasks
and surpassed convolutional neural networks (CNNs) by a large margin.

Very recently, Swin Transformer (Liu et al., 2021b) captures the spatial patterns using local shifted
window attention and obtains comparable results with the ViTs using the global window. This local
attention is viewed as a variant of the large kernel. Thus, some novel CNNs use large convolutional
kernels to improve performance to strike back against the ViTs. DWNet (Han et al., 2022) replaced
the local attention in Swin (Liu et al., 2021b) with the 7×7 depthwise convolutional layer and sur-
prisedly found it could obtain the same result on image classification with only 84% computation.
Almost at the same time, ConvNeXt (Liu et al., 2022) gradually modernized a standard ResNet to-
ward the design of ViTs and scale the kernel size from 3×3 to 7×7. Following this large kernel
design, many advanced CNN-based architectures (Ding et al., 2022; Liu et al., 2023; Yu et al., 2023)
were proposed, and they achieved more impressive results in more vision tasks. InceptionNeXt (Yu
et al., 2023) decomposed large-kernel depthwise convolution into four parallel branches along chan-
nel dimension to design a novel Inception-style CNN (Szegedy et al., 2015; Ioffe & Szegedy, 2015;
Szegedy et al., 2016; 2017). RepLKNet (Ding et al., 2022) employed re-parameterized 31×31 con-
volutions to build up large receptive fields. SLaK (Liu et al., 2023) introduced a sparse factorized
51 × 51 convolution to simplify the training difficulty of a large kernel. However, their results are
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Figure 1: Block illustration of DWNet, RepLKNet, InceptionNeXt, ConvNext, SLaK and
SCNN. The former five CNNs introduce large kernel, and the smallest kernel size is set to 7 × 7.
Our SCNN is more efficient because only 3× 3 kernel depthwise convolution is used.

much poorer than recent state-of-the-art ViTs (Dong et al., 2022) and MLPs (Lai et al., 2023). In
addition, the large kernel improves training difficulty and is unfriendly to hardware devices. More-
over, some large kernel methods (Ding et al., 2022; Liu et al., 2023) require extra processes and
complicated architecture.

Is the large kernel really CNN needed? This paper makes an interesting thing: stacking depthwise
3×3 convolutions in a simple CNN architecture and outperforming (efficiency and effectiveness)
state-of-the-art MLPs, CNNs, and ViTs. The overall architecture, Simple CNN (SCNN), is shown
in Figure 1f, which consists of pure small kernels. In previous small kernel CNNs (He et al., 2016;
Xie et al., 2017; Sandler et al., 2018; Radosavovic et al., 2020; Zhang et al., 2022), researchers
focus more on the design of bottleneck block and ignore the importance of the receptive field in
the network. In particular, we make some simple but effective designs to let 3×3 convolutions
progressively capture various sizes of visual cues in one block, which breaks through the limitation
of small kernels. First, we designed a thin and deep model to capture more spatial information
instead of a heavy and shallow one, which could have more 3×3 convolutions under the same
computing complexity. We then introduce a novel block with two 3×3 depthwise convolutions to
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enlarge the receptive field further. Finally, we replace the input of the popular Sigmoid Linear Unit
(SiLU) activation function with global average pooled features, which lets SCNN capture global
information. Impressively, the overall SCNN architecture is simple but effective and outperforms
existing complicated architectures.

Our SCNN achieves the best accuracy in ImageNet-1K image classification compared to state-of-
the-art ViTs, MLPs, and CNNs. Moreover, compared with the state-of-the-art CNN, SLaK, our
improvements (0.7% accuracy on the tiny scale, same accuracy on the small and base scale with
fewer FLOPs) are significant. Also, compared with the well-known Swin Transformer and Con-
vNeXt, our tiny version could obtain better results with almost 50% of the computation.

SCNN also achieves impressive results and outperforms state-of-the-art CNNs, ViTs, and MLPs on
dense prediction tasks, including MS-COCO object detection, MS-COCO instance segmentation,
and ADE20K semantic segmentation. In particular, our SCNN outperforms previous state-of-the-
art CNNs by a large margin (around 0.9% Apb or 0.5% mIoU improvements).

The Above experimental results with our simple architecture demonstrate not only the effectiveness
and efficiency of our model but the great potential of CNNs in both image classification and dense
prediction. We believe this paper will raise more attention to CNNs for vision. Our contributions
can be summarized below:

• We introduce a small kernel CNN architecture named Simple CNN, which employs a thin
and deep architecture to capture more spatial information. A novel block with two 3×3
depthwise convolutions is also proposed to enlarge the receptive field of the model further.

• A Global Sigmoid Linear Unit activation function is proposed to capture global visual cues,
which leads to richer spatial feature extraction.

• Extensive experiments demonstrate that SCNN outperforms the state-of-the-art CNNs,
ViTs, and MLPs in various vision tasks, including image classification, object detection,
instance segmentation, and semantic segmentation.

2 RELATED WORK

Convolutional Neural Network Architectures. The introduction of AlexNet (Krizhevsky et al.,
2012) marked a significant milestone in the rapid development of Convolutional Neural Networks
(CNNs), with subsequent architectures (Szegedy et al., 2015; He et al., 2016; Szegedy et al., 2017)
continually pushing the boundaries of performance. One recent trend in CNNs is the utilization of
large convolutional kernels to achieve larger receptive fields and capture more long-range informa-
tion. ConvNeXt (Liu et al., 2022) has made a noteworthy discovery, revealing that scaling the kernel
size from 3×3 to 7×7 significantly contributes to performance. Similarly, DWNet (Han et al., 2022)
has reached a similar conclusion by replacing the local attention layer in Swin (Liu et al., 2021b)
with a 7×7 depthwise convolutional layer. Additional architectures, such as RepLKNet (Ding et al.,
2022) and SLaK (Liu et al., 2023), have also demonstrated impressive outcomes in many vision
tasks, employing even larger kernel sizes like 31×31 and 51×51 convolutions, respectively. How-
ever, some methods introduce complicated architecture to employ large kernels. In addition, using
large kernels in models will improve training difficulty and is hardware-intensive, resulting in longer
training and inference times.

Multi-Layer Perceptron Architectures. Recently, there has been a surge in the popularity of Multi-
Layer Perceptron (MLP)-based architectures. MLP-Mixer (Tolstikhin et al., 2021) applies MLP in-
dependently to mix spatial information and per-location information without any spatial convolution
and transformer blocks. Building upon this, Res-MLP (Touvron et al., 2022) and gMLP (Liu et al.,
2021a) adopts two-layer feed-forward network and Spatial Gating Unit to enhance the performance
of pure MLP-based architectures, respectively. Further advancements are made with S2-MLP (Yu
et al., 2022), AS-MLP (Lian et al., 2022), and Hire-MLP (Guo et al., 2022). These methods intro-
duced spatial-shift MLP for capturing local and global information. Recently, RaMLP (Lai et al.,
2023) presents Region-aware Mixing to capture and capture visual dependence in a coarse-to-fine
manner and even outperforms the state-of-the-art CNNs, ViTs. However, MLPs are still difficult to
dense prediction tasks, such as object detection and semantic segmentation.
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Figure 2: The architecture of tiny simple convolutional neural network (SCNN-Tiny). It mainly
consists of our well-designed SCNN block. In addition, we design a variant SCNN block for down-
sampling instead of introducing a convolution with stride 2 as patch merging for downsampling in
ConvNeXt (Liu et al., 2022).

Transformer-based Architectures. Transformers (Vaswani et al., 2017) have made significant
breakthroughs in computer vision tasks. ViT (Dosovitskiy et al., 2021) first introduces a pure Trans-
former architecture for visual representations. Swin (Liu et al., 2021b) utilizes window-based multi-
head self-attention (MSA) for effective feature extraction. Pyramid hierarchical structure is designed
in PVT (Wang et al., 2021) to extract spatial features at different scales. Depthwise convolutions are
inserted in the basic transformer blocks of LocalViT (Li et al., 2021) and CPVT (Chu et al., 2023) to
enhance local context. However, compared to CNNs and MLPs, ViTs face hardware compatibility
limitations that restrict their wider application (Zhang et al., 2023a).

3 METHOD

3.1 OVERALL ARCHITECTURE

The overall architecture of our proposed simple convolutional neural network (SCNN) is shown in
Fig 2. Assume the size of the input image is H ×W × 3, we first leverage 3× 3 convolution layer
with stride 2 to obtain H

2 × W
2 feature maps, and the dimension of the feature maps is C (In SCNN-

Tiny, C = 32). We build a hierarchical representation with four stages. In the ith stage, we stack Ni

SCNN blocks (In SCNN-Tiny, N1 = 4, N2 = 8, N3 = 22, N4 = 4), i.e., SCNN blocks. We apply
downsampling operations in the block at the end of each stage to reduce the resolution of the feature
maps to half of the original. Therefore, the output feature maps of the ith stage is H

2i+1 × W
2i+1 .

We stack more 3×3 convolutions in one SCNN block and design a thinner and deeper architecture
compared with ConvNeXt (Liu et al., 2022), to enlarge the receptive field. We also propose Global
Sigmoid Linear Unit (GSiLU) activation function to capture spatial information in a global manner.

3.2 SIMPLE CONVOLUTIONAL NEURAL NETWORK BLOCK

In this section, we design the SCNN block, which uses more 3×3 spatial convolutions. As shown in
Fig. 2, we design two types of SCNN blocks. One is a common block, and another is equipped with
an additional downsampling operation. We design the SCNN block as follows step by step:

(1) We first apply 3×3 depthwise convolution for input features to capture spatial information.

(2) The input features are added to the output of step 1, which is a commonly used residual learning.

(3) The output feature of step 2 passes through Layer Normalization (LN), Pointwise convolution
(PW), Batch Normalization (BN), Sigmoid Linear Unit (SiLU), 3×3 depthwise convolution, Batch
Normalization (BN), Global Sigmoid Linear Unit (GSiLU), pointwise convolution, and batch nor-
malization to further capture more diverse visual cues.
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Table 1: Inp. Reso. and Rece. Field are the abbreviation of the Input Resolution and the Receptive
Field. SCNN-Tiny is the baseline model, the same as W512, which means the dimensions are set
to 64, 128, 256, and 512 respectively. We reduce the block number of all stages proportionately to
design three heavy and shallow models with similar FLOPs.

model FLOPs Stage 1 Stage 2

Inp. Reso. Num Rece. Field Inp. Reso. Num Rece. Field

W960 5.1G

112×112

2 15×15

56×56

2 15×15
W768 4.7G 3 23×23 4 31×31
W640 4.5G 4 31×31 5 39×39
W512 4.5G 6 47×47 8 63×63

(4) The output features of step 2 and step 3 are added together to enhance network expressiveness
and alleviate the gradient vanishing. As for the SCNN block with an additional downsampling
operation, the output feature of step 2 will go through 3×3 depthwise convolution with stride 2,
batch normalization, pointwise convolution, and batch normalization, and then be added with the
features of step 3.

The SCNN block achieves a large receptive field by stacked 3×3 convolutions and avoids the issues
brought by large convolution kernels, such as the extra time in training and deployment.

The receptive field of two 3×3 convolutions are the same as one 5×5 convolution (Zhang et al.,
2023a), so our design can reduce the difficulty of training and deployment brought about by the use
of many large convolution kernels, and still remain large receptive field information.

3.3 THIN AND DEEP ARCHITECTURE

Inceptionv3 (Szegedy et al., 2016) points out that a large kernel convolution could be replaced by
a multi-layer network with fewer parameters, and its experimental results prove this thought. Mo-
tivated by it, we design a thin and deep model with more 3×3 convolution instead of a heavy and
shallow model with large kernel convolution. As shown in Table 1, we designed four tiny models
with different depths and widths. In ImageNet dataset (Krizhevsky et al., 2012), the inputs for stage
one and stage two are 112×112 and 56×56, respectively. The receptive field of the deepest model
W512 is even triple the size of the shallowest one W960. Notably, the receptive field of W512 in
stage two is larger than the input resolution of the feature map, which means it has a global receptive
field, while other shallow models only have a local one.

3.4 GLOBAL SIGMOID LINEAR UNIT

Sigmoid Linear Unit (SiLU) is a widely used activation function, which was originally coined in
GELU (Hendrycks & Gimpel, 2016), and later works (Ramachandran et al., 2018; Elfwing et al.,
2018) demonstrate its effectiveness. After GPT using GELU, many subsequent models follow it by
default, including recent ViTs (Liu et al., 2021b) and MLPs (Tolstikhin et al., 2021). GELU can be
approximated as,

GELU(x) = x× Φ(x) ≈ 0.5× x× (1 + tanh(
√

2/π)× (x+ 0.044715× x3)), (1)

where Φ means the Cumulative Distribution Function for Gaussian Distribution. Another approxi-
mate formula of GELU is:

GELU(x) ≈ x× σ(1.702× x), (2)

where σ is a sigmoid function. Similarly, Swish (Ramachandran et al., 2018) proposes to lever-
age automatic search techniques to discover a new activation function named Swish, which can be
formulated as,

Swish(x) = x× σ(β × x). (3)

It is easy to find that Swish has a similar formulation of GELU. The difference is that the learnable
parameter in Swish is set to a fixed value of 1.702. Meanwhile, in reinforcement learning, to achieve
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Table 2: Comparison with other SOTA methods on ImageNet-1K classification.

Method Family Param FLOPs Top-1 Throughput
Swin-T (Liu et al., 2021b) Trans 29M 4.5G 81.3 758
Swin-S (Liu et al., 2021b) Trans 50M 8.7G 83.0 437
Swin-B (Liu et al., 2021b) Trans 88M 15.4G 83.5 287
HiViT-T (Zhang et al., 2023b) Trans 19M 4.6G 82.1 850
HiViT-S (Zhang et al., 2023b) Trans 38M 9.1G 83.5 436
HiViT-B (Zhang et al., 2023b) Trans 66M 15.9G 83.8 286
AS-MLP-T (Lian et al., 2022) MLP 28M 4.4G 81.3 864
AS-MLP-S (Lian et al., 2022) MLP 50M 8.5G 83.1 478
AS-MLP-B (Lian et al., 2022) MLP 88M 15.2G 83.3 312
CycleMLP-T (Chen et al., 2022) MLP 28M 4.4G 81.3 611
CycleMLP-S (Chen et al., 2022) MLP 50M 8.5G 82.9 360
CycleMLP-B (Chen et al., 2022) MLP 88M 15.2G 83.4 216
Hire-MLP-S (Guo et al., 2022) MLP 33M 4.2G 82.1 808
Hire-MLP-B (Guo et al., 2022) MLP 58M 8.1G 83.2 441
Hire-MLP-L (Guo et al., 2022) MLP 96M 13.4G 83.8 290
RaMLP-T (Lai et al., 2023) MLP 25M 4.2G 82.9 759
RaMLP-S (Lai et al., 2023) MLP 38M 7.8G 83.8 441
RaMLP-B (Lai et al., 2023) MLP 58M 12.0G 84.1 333
DWNet (Han et al., 2022) CNN 24M 3.8G 81.3 929
DWNet (Han et al., 2022) CNN 74M 12.9G 83.2 328
ConvNeXt-T (Liu et al., 2022) CNN 29M 4.5G 82.1 775
ConvNeXt-S (Liu et al., 2022) CNN 50M 8.7G 83.1 447
ConvNeXt-B (Liu et al., 2022) CNN 89M 15.4G 83.8 292
RepLKNet-31B (Ding et al., 2022) CNN 79M 15.3G 83.5 296
InceptionNeXt-T (Yu et al., 2023) CNN 28M 4.2G 82.3 901
InceptionNeXt-S (Yu et al., 2023) CNN 49M 8.4G 83.5 521
InceptionNeXt-B (Yu et al., 2023) CNN 87M 14.9G 84.0 375
SLaK-T (Liu et al., 2023) CNN 30M 5.0G 82.5 -
SLaK-S (Liu et al., 2023) CNN 55M 9.8G 83.8 -
SLaK-B (Liu et al., 2023) CNN 95M 17.1G 84.0 -
SCNN-T (ours) CNN 23M 4.5G 83.2 789
SCNN-S (ours) CNN 44M 8.7G 83.8 451
SCNN-B (ours) CNN 75M 15.4G 84.0 324

the same goal of the output from one hidden unit in the expected energy-restricted Boltzmann ma-
chine (EE-RBM), SiLU (Elfwing et al., 2018) proposes an activation function for neural network
function approximation:

SiLU(x) = x× σ(x). (4)
SiLU is a simplified version of Swish and GELU, and it does not require a learnable parameter or a
fixed value inside the sigmoid function. However, SiLU computes results in all positions individu-
ally. It is unable to capture spatial information. We hope it achieves a global receptive field to let our
SCNN closer to those large kernel CNNs. Thus, we propose a Global Sigmoid Linear Unit (GSiLU)
activation function to capture global spatial visual cues. The formula is as follows:

GSiLU(x) = x× σ(GAP (x)), (5)

where GAP is a global average pooling operation. It embeds global information of every channel
into a single value to produce the importance of these channels.

3.5 ARCHITECTURE VARIANTS

We set different numbers of blocks in Stage 1 ∼ 4 as {S1, S2, S3, S4}, and expand the channel
dimensions as shown in Figure 2 to obtain variants of SCNN architecture. By balancing the per-
formance and inference time, we designed three versions of our models, including SCNN-Tiny,
SCNN-Small, and SCNN-Base. The architecture hyper-parameters of our models are:
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Table 3: COCO val2017 object detection results using various backbones employing a 3x training
schedule.

Backbone APb APb
50 APb

75 APm APm
50 APm

75 Params FLOPs

Mask R-CNN (3×)

ResNet50 (He et al., 2016) 41.0 61.7 44.9 37.1 58.4 40.1 44M 260G
PVT-S (Wang et al., 2021) 43.0 65.3 46.9 39.9 62.5 42.8 44M 245G

AS-MLP-T (Lian et al., 2022) 46.0 67.5 50.7 41.5 64.6 44.5 48M 260G
Hire-MLP-S (Guo et al., 2022) 46.2 68.2 50.9 42.0 65.6 45.3 - 256G

Swin-T (Liu et al., 2021b) 46.0 68.2 50.2 41.6 65.1 44.9 48M 267G
ConvNeXt-T (Liu et al., 2022) 46.2 67.9 50.8 41.7 65.0 44.9 48M 267G

SCNN-T (ours) 47.1 70.2 54.2 43.7 67.4 47.2 42M 252G

ResNet101 (He et al., 2016) 42.8 63.2 47.1 38.5 60.1 41.3 63M 336G
PVT-Medium (Wang et al., 2021) 44.2 66.0 48.2 40.5 63.1 43.5 64M 302G

AS-MLP-S (Lian et al., 2022) 47.8 68.9 52.5 42.9 66.4 46.3 69M 346G
Hire-MLP-B (Guo et al., 2022) 48.1 69.6 52.7 43.1 66.8 46.7 - 335G

Swin-S (Liu et al., 2021b) 48.5 70.2 53.5 43.3 67.3 46.6 69M 359G
SCNN-S (ours) 49.5 70.9 54.3 43.9 67.3 47.3 63M 334G

PVT-L (Wang et al., 2021) 44.5 66.0 48.3 40.7 63.4 43.7 81M 364G
Swin-B (Liu et al., 2021b) 48.5 69.8 53.2 43.4 66.8 46.9 107M 496G

SCNN-B (ours) 49.8 71.2 54.5 44.3 67.8 47.5 94M 484G

• SCNN-Tiny: C = 64, block numbers = {6, 8, 20, 4}, expand ratio = 4

• SCNN-Small: C = 80, block numbers = {8, 12, 22, 6}, expand ratio = 4

• SCNN-Base: C = 96, block numbers = {8, 15, 32, 6}, expand ratio = 4

The parameters (model size), FLOPs (computation complexity), and top-1 accuracy on ImageNet-
1K of the variants of SCNN architecture are shown in Table 2.

4 EXPERIMENTS

In this section, starting with the evaluation of SCNN on the ImageNet-1K dataset (Deng et al., 2009)
for image classification, we subsequently expand our assessment on the MS-COCO (Lin et al., 2014)
object detection and instance segmentation, as well as the ADE20K (Zhou et al., 2019) semantic
segmentation.

4.1 IMAGENET-1K CLASSIFICATION

Experimental Setup. To evaluate the effectiveness of our SCNN, we utilize the ImageNet-
1K (Deng et al., 2009) dataset, which consists of 1.2 million training images and 50,000 validation
images across 1,000 categories. Our primary metric for experimentation is the top-1 accuracy. Dur-
ing the training phase, we employ the AdamW optimizer with a batch size of 1024 and initialize the
learning rate at 0.001. To facilitate learning, we incorporate cosine decay and introduce a weight
decay of 0.05. The training process spans 300 epochs, with a warm-up strategy implemented for
the initial 20 epochs. For data augmentation and regularization, we adopt the same strategies as
ConvNeXt (Liu et al., 2022).

Comparison with SOTA Models. Table 2 compares SCNNs with state-of-the-art CNNs, MLPs
and ViTs. Our methods demonstrate superior performance compared to Swin-Transformer (Liu
et al., 2021b) and RepLKNet-31B (Ding et al., 2022). Particularly, our SCNN-T achieves a higher
top-1 accuracy of 83.2% (compared to 82.5%) with fewer FLOPs (4.5G versus 5.0G) compared to
SLaK-T. Additionally, our compact version of SCNN achieves better results than ConvNeXt-S (Liu
et al., 2022) while requiring only approximately 50% of the computational resources. Compared
with HiViT (Zhang et al., 2023b), our base version also achieves better accuracy (84.0% vs. 83.8%)
with fewer FLOPs (15.4G vs. 15.9G). Compared with recent SoTA MLP, all SCNN versions are
comparable with RaMLP (Lai et al., 2023).
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Table 4: The semantic segmentation results of different backbones on the ADE20K validation set.

Method Backbone val MS mIoU Params FLOPs

DANet (Fu et al., 2019a) ResNet-101 (He et al., 2016) 45.2 69M 1119G
DeepLabv3+ (Chen et al., 2018) ResNet-101 (He et al., 2016) 44.1 63M 1021G

ACNet (Fu et al., 2019b) ResNet-101 (He et al., 2016) 45.9 - -
DNL (Yin et al., 2020) ResNet-101 (He et al., 2016) 46.0 69M 1249G

OCRNet (Yuan et al., 2020) ResNet-101 (He et al., 2016) 45.3 56M 923G
UperNet (Xiao et al., 2018) ResNet-101 (He et al., 2016) 44.9 86M 1029G

OCRNet (Yuan et al., 2020) HRNet-w48 (Sun et al., 2019) 45.7 71M 664G
DeepLabv3+ (Chen et al., 2018) ResNeSt-101 (Zhang et al., 2022) 46.9 66M 1051G
DeepLabv3+ (Chen et al., 2018) ResNeSt-200 (Zhang et al., 2022) 48.4 88M 1381G

UperNet (Xiao et al., 2018)

Swin-T (Liu et al., 2021b) 45.8 60M 945G
AS-MLP-T (Lian et al., 2022) 46.5 60M 937G
ConvNeXt-T (Liu et al., 2022) 46.7 60M 939G
Hire-MLP-S (Guo et al., 2022) 47.1 63M 930G

InceptionNeXt-T (Yu et al., 2023) 47.9 56M 933G
SCNN-T (ours) 48.4 54M 938G

UperNet (Xiao et al., 2018)

Swin-S (Liu et al., 2021b) 49.5 81M 1038G
AS-MLP-S (Lian et al., 2022) 49.2 81M 1024G
ConvNeXt-S (Liu et al., 2022) 49.6 82M 1027G
Hire-MLP-B (Guo et al., 2022) 49.6 88M 1011G

InceptionNeXt-S (Yu et al., 2023) 50.0 78M 1020G
SCNN-S (ours) 50.1 75M 1025G

UperNet (Xiao et al., 2018)

Swin-B (Liu et al., 2021b) 49.7 121M 1188G
AS-MLP-B (Lian et al., 2022) 49.5 121M 1166G
ConvNeXt-B (Liu et al., 2022) 49.9 82M 1170G
Hire-MLP-L (Guo et al., 2022) 49.9 122M 1125G

InceptionNeXt-B (Yu et al., 2023) 50.6 115M 1159G
SCNN-B (ours) 50.1 108M 1169G

4.2 OBJECT DETECTION ON COCO

Experimental Setup. We conduct object detection employing Mask-RCNN as the framework. MS-
COCO (Lin et al., 2014) dataset is selected, with 118k training data and 5k validation data. We
compare SCNN with other backbones. All Hyperparameters align with Swin Transformer: AdamW
optimizer, learning rate of 0.0001, weight decay of 0.05, and batch size of 2 images/GPU (8 GPUs).
We use a multi-scale training strategy. Backbones are initialized with ImageNet-1K pre-trained
weights. Models are trained for 36 epochs with a 3x schedule.

Detection Results. The performance of our SCNN on the COCO dataset is presented in Table 3,
along with other architectures. Our proposed SCNN achieves superior results to the Swin Trans-
former and requires fewer FLOPs. Specifically, Mask R-CNN + Swin-S achieves an APb of 48.5
with 359 GFLOPs, whereas Mask R-CNN + SCNN-S achieves an APb of 49.5 with 334 GFLOPs.

4.3 SEMANTIC SEGMENTATION ON ADE20K

Experimental Setup. We evaluate our methods on ADE20K (Zhou et al., 2019), a challenging
semantic segmentation dataset. We use the efficient UperNet (Xiao et al., 2018) framework. In
training, we initialize the backbone with ImageNet weights and use Xavier initialization for other
layers. AdamW optimizer with initial learning rate 1.0 × 10−4 is used. Training involves 160k
iterations, batch size 16 on 8×A100 GPUs, weight decay 0.01, and polynomial decay schedule
with power 0.9. Data augmentation includes random horizontal flipping, rescaling (0.5-2.0), and
photometric distortion. The stochastic depth ratio is set to 0.3. During training, images are randomly
resized and cropped to 576× 576, and during testing, they are rescaled to have a shorter side of 576
pixels. The evaluation metric is multi-scale mean Intersection over Union (MS mIoU).
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Table 5: Ablation analysis on the convolution in SCNN block and the GSiLU. PreConv means the
first convolution, and MidConv means the second convolution in the block.

PreConv MidConv GSiLU Top-1 (%) Param FLOPs

✓ ✓ ✓ 83.2 23M 4.5G
✓ ✓ 83.0 23M 4.5G
✓ 82.7 23M 4.4G

✓ 82.6 23M 4.4G

Table 6: Ablation analysis on the model depth with similar complexity. Block numbers mean the
numbers in four stages, while channel dims mean the channel dimensions in same four stages.

block numbers channel dims Params FLOPs Top-1

2,3,5,1 120.240,480,960 21M 5.1G 82.1
3,4,8,2 96,192,384,768 23M 4.7G 82.5
4,5,12,3 80,160,320,640 24M 4.5G 82.9
6,8,20,4 64,128,256,512 23M 4.5G 83.2

Segmentation Result. Table 4 presents a performance comparison between our SCNN and state-
of-the-art architectures on the ADE20K dataset. Despite having similar FLOPs, SCNN-T achieves
superior results compared to Swin-T, with an MS mIoU of 48.4 versus 45.8.

4.4 ABLATION STUDY

The main component of the SCNN is two depthwise convolutional layers and SiLU with global
average pooled features, which directly affects the receptive field. Besides, the settings of model
depth also contribute a lot to the receptive field and non-linear fitting capability. We conduct ablation
experiments to verify these factors. Unless otherwise stated, all experiments are based on SCNN-T
on ImageNet-1K (Krizhevsky et al., 2012).

The Impact of GSiLU. As shown in Table 5 line two, when we remove the GSiLU and adopt
a traditional SiLU function, the result gets a decrease of 0.2%. This proves the importance of
capturing long-range visual cues because SiLU only uses original feature maps as the input, which
can not capture any spatial information, while GSiLU could capture global spatial information.

The Impact of SCNN Block. As shown in Table 5 lines three and four, the result is markedly
declined when we remove one convolutional layer in the SCNN block. The receptive field will
become almost halved by using only one convolution in a block. Thus, SCNN will degenerate into
a traditional small kernel CNN like MobileNetV2 (Sandler et al., 2018).

The Impact of Model Depth. In table 6, besides SCNN-T, we design another three models with
different depths. We found that a thinner, deeper architecture could obtain better results than heavier
and shallower models. Surprisingly, the shallowest model with more FLOPs even gets a -1.1%
performance compared with SCNN-T. The main reasons may a smaller receptive field and worse
non-linear fitting capability.

5 CONCLUSION

We propose the Simple Convolutional Neural Network (SCNN) that mainly employs a sequence
of stacked 3×3 convolutions to capture visual cues of various sizes. Though the architecture is
simple, SCNN surpasses the state-of-the-art CNNs with larger kernels. SCNN is a thin and deep
model, encouraging more layers of convolutions to capture more spatial information under the same
computing complexity. Furthermore, we introduce the innovative SCNN block comprising two 3×3
depthwise convolutions to enlarge the receptive field further. We also replace the input of the Sig-
moid Linear Unit (SiLU) activation function with global average pooled features to capture global
information. Experimental results on the downstream tasks (object detection, semantic segmenta-
tion, and instance segmentation) further verify the superiority of SCNN.
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A APPENDIX

(a) (b) (c)

Figure 3: The Effective Receptive Field (ERF). a) only use the second convolution in the block;
b) use both the first and second convolutions in the block; c) use two convolutions and GSiLU
activation functions.

As shown in Figure 3, models with these three kinds of configures can obtain large ERF. The latter
two models are more discriminative. The basic model with only one convolution has similar scores
in all positions, while the SCNN model focuses more on center and edge areas.
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