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Abstract

Bayesian optimization based on the Gaussian process upper confidence bound (GP-UCB)
offers a theoretical guarantee for optimizing black-box functions. In practice, however,
black-box functions often involve input uncertainty. To handle such cases, GP-UCB can
be extended to optimize evaluation criteria known as robustness measures. However, GP-
UCB-based methods for robustness measures require a trade-off parameter, β, which, as in
the original GP-UCB, must be set sufficiently large to ensure theoretical validity. In this
study, we propose randomized robustness measure GP-UCB (RRGP-UCB), a novel method
that samples β from a chi-squared-based probability distribution. This approach eliminates
the need to explicitly specify β. Notably, the expected value of β under this distribution
is not excessively large. Furthermore, we show that RRGP-UCB provides tight bounds on
the expected regret between the optimal and estimated solutions. Numerical experiments
demonstrate the effectiveness of the proposed method.

1 Introduction

In this study, we address the optimization problem of robustness measures for black-box functions under
input uncertainty. In various practical applications, particularly in engineering, black-box functions with
high evaluation costs are frequently used. In practice, these functions often exhibit input uncertainty. Let
f(x, w) be a black-box function, where x ∈ X and w ∈ Ω are input variables referred to as design vari-
ables and environmental variables, respectively. The design variable x is completely controllable, whereas
the environmental variable w is uncontrollable and follows a certain probability distribution. In practical
applications, identifying the optimal design variables for black-box functions that include stochastic envi-
ronmental variables requires the use of measures that depend solely on the design variables while accounting
for the influences of environmental uncertainty. Robustness measures are evaluation criteria defined only in
terms of the design variables, effectively removing influence of environmental uncertainty. Examples of such
robustness measures include the expectation measure Ew[f(x, w)], which takes the expected value over the
distribution of the environmental variables, and the worst-case measure infw∈Ω f(x, w), which considers the
worst-case scenario. In this paper, we consider the following optimization problem for a given robustness
measure F (x):

arg max
x∈X

F (x).

Bayesian optimization (BO) (Shahriari et al., 2015), based on Gaussian processes (GPs) (Williams & Ras-
mussen, 2006), is a powerful approach for optimizing black-box functions. Numerous BO methods have
been developed for optimizing black-box functions without input uncertainty. In contrast, applying stan-
dard GP-based BO methods to the optimization of robustness measures under input uncertainty is not
straightforward. The main difficulty lies in the fact that even if the black-box function f follows a GP, the
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resulting robustness measure F generally does not follow a GP. However, recent studies have proposed BO
methods specialized for specific robustness measures by utilizing the GP assumption for f , without requiring
distributional information about F (Iwazaki et al., 2021b; Nguyen et al., 2021b;a; Kirschner et al., 2020). In
addition, methods have been proposed for optimizing general robustness measures (Cakmak et al., 2020), as
well as for multi-objective robust optimization using BO (Inatsu et al., 2024a).

However, a theoretical evaluation of the performance of BO is vital. Regret, defined as the difference between
the solution obtained by an optimization algorithm and the true optimal solution, is commonly used to
evaluate the performance of such algorithms. In particular, within the standard BO framework without
input uncertainty, the Gaussian process upper confidence bound (GP-UCB) algorithm (Srinivas et al., 2010)
is a prominent example of a BO method with theoretical performance guarantees. GP-UCB has been shown
to achieve sublinear regret with high probability by appropriately tuning the trade-off parameter βt, which
is specified by the user. It is highly scalable, and numerous extensions have been proposed, including multi-
objective BO, multi-fidelity BO, high-dimensional BO, parallel BO, multi-stage BO, and BO of robustness
measures (Zuluaga et al., 2016; Kandasamy et al., 2016; 2017; 2015; Rolland et al., 2018; Contal et al.,
2013; Kusakawa et al., 2022; Iwazaki et al., 2021b; Nguyen et al., 2021b;a; Kirschner et al., 2020; Inatsu
et al., 2024a). These extended GP-UCB-based methods also provide theoretical guarantees for regret-like
performance metrics.

However, to ensure theoretical validity, the trade-off parameter βt in GP-UCB and its variants must in-
crease on the order of log t with iteration t. This results in overly conservative behavior in practice. Such
conservatism can significantly impair practical performance (Takeno et al., 2023). To solve this problem,
the improved randomized GP-UCB (IRGP-UCB) (Takeno et al., 2023) was proposed, which replaces the
deterministic setting of βt with a random sample drawn from a two-parameter exponential distribution.
IRGP-UCB avoids the need to increase βt by log t, thereby mitigating the conservativeness of the theoreti-
cally recommended values in GP-UCB. Furthermore, the cumulative regret of BO using IRGP-UCB has been
shown to remain sublinear in expectation and achieves a tighter bound than that of the original GP-UCB.
Additionally, an optimization method was introduced within the level-set estimation framework that applies
a similar sampling-based technique to replace the trade-off parameter in UCB-based methods (Inatsu et al.,
2024b). Thus, IRGP-UCB not only resolves the limitations of the original GP-UCB but also shows promise
for generalization across a variety of settings, similar to its predecessor. In this study, we propose a new BO
method for robustness measures by extending the randomized GP-UCB-based method used in IRGP-UCB.

1.1 Related Work

BO is a powerful tool for optimizing black-box functions with high evaluation costs. It typically comprises
three main steps: constructing a surrogate model, selecting the next evaluation point, and evaluating the
function. GP or the kernel ridge regression model (Williams & Rasmussen, 2006) is commonly used as the
surrogate model. The next evaluation point is determined by optimizing a utility function known as an
acquisition function. Research in BO has focused on the design of new acquisition functions. For standard
black-box optimization problems, widely used acquisition functions include expected improvement (Močkus,
1975), Thompson sampling (Thompson, 1933), entropy search (Hernández-Lobato et al., 2014), knowledge
gradient (Wu & Frazier, 2016), and GP-UCB (Srinivas et al., 2010). Many of these acquisition functions
have been extended to accommodate various BO settings, such as multi-objective optimization, constrained
optimization, high-dimensional problems, and optimization involving robustness measures.

When optimizing a black-box function in the presence of input uncertainty, such as that introduced by
environmental variables, robustness measures too have to be optimized. These are defined solely in terms of
the design variables and reflect the uncertainty associated with the environmental variables. Representative
robustness measures include the expectation measure (Beland & Nair, 2017), worst-case measure (Bogunovic
et al., 2018), probability threshold robustness (PTR) measure (Iwazaki et al., 2021a), value-at-risk (Nguyen
et al., 2021b), conditional value-at-risk (Nguyen et al., 2021a), mean-variance measure (Iwazaki et al., 2021b),
and distributionally robust measure (Kirschner et al., 2020; Tay et al., 2022; 2024). Corresponding acquisition
functions for the BO of robustness measures include GP-UCB-based methods (Bogunovic et al., 2018; Iwazaki
et al., 2021a; Nguyen et al., 2021b;a; Iwazaki et al., 2021b; Kirschner et al., 2020), knowledge gradient-based
methods (Cakmak et al., 2020), Thompson sampling-based methods (Iwazaki et al., 2021a; Tay et al.,
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2024), and approximation-based methods (Tay et al., 2022). In particular, GP-UCB-based optimization
methods for robustness measures provide theoretical guarantees with respect to regret. Furthermore, Inatsu
et al. (2024a) proposed the bounding box-based multi-objective BO (BBBMOBO) method—a theoretically
guaranteed GP-UCB-based optimization method for multi-objective robust BO involving multiple general
robustness measures. If we consider the special case in which only a single robustness measure is involved,
the method proposed in Inatsu et al. (2024a) provides a theoretically guaranteed optimization method
based on GP-UCB for general robustness measures. However, in GP-UCB-based optimization methods for
robustness measures, establishing theoretical guarantees requires the trade-off parameter βt to increase with
the iteration index t, resulting in a conservative setting that adversely affects practical performance. On
the other hand, Tay et al. (2024) propose a BO method for a robustness measure defined as the weighted
sum of the distributionally robust expectation measures and their right derivatives, using a method based on
Thompson sampling. Furthermore, they provide theoretical bounds for Bayesian regret, which has a slightly
different definition from the regret considered in this study. However, while Thompson sampling does not
require trade-off parameters like GP-UCB in terms of algorithm design, it is necessary to use GP-UCB,
which requires the trade-off parameter βt to increase with iteration t, when performing theoretical analysis.
As a result, this influence is also included in the theoretical bounds they derived.

Two studies closely related to the present work are Inatsu et al. (2024a) and Takeno et al. (2023). The
former addresses BO for Pareto optimization with multiple robustness measures using a GP-UCB-based
framework. As a special case, it also considers optimization for a single robustness measure and provides
high-probability regret bounds for general robustness measures. The latter study, Takeno et al. (2023),
introduces a randomized approach to GP-UCB in which the trade-off parameter βt is sampled from a
two-parameter exponential distribution. This approach avoids the need to increase βt logarithmically and
achieves a tighter regret bound than standard GP-UCB under certain conditions. However, the regret bounds
achieved by Takeno et al. (2023) depend heavily on the problem setting, the specific definition of regret,
and the choice of the sampling distribution for βt. As pointed out by Inatsu et al. (2024b), these factors
must be carefully tailored to the target problem to replicate the theoretical guarantees in different contexts.
Therefore, a direct substitution of the trade-off parameter in the method of Inatsu et al. (2024a) with a
random sample from a two-parameter exponential distribution will not suffice to obtain a tighter regret
bound. To the best of our knowledge, no research has been conducted on BO methods based on GP-UCB
for general robustness measures that achieves a tighter regret bound without requiring the growth of βt.

1.2 Contribution

In this study, we propose randomized robustness measure GP-UCB (RRGP-UCB), a new algorithm for
efficiently optimizing robustness measures of black-box functions. RRGP-UCB modifies the BBBMOBO
framework in Inatsu et al. (2024a) by introducing random sampling for the trade-off parameter and selecting
points with high uncertainty between the optimistic and average-based maxima. This enables a tighter
theoretical analysis of regret for solutions based on the surrogate model’s average prediction. Table 1
summarizes the correspondence between IRGP-UCB, BBBMOBO, and RRGP-UCB, while Table 2 presents
theoretical bounds on cumulative regret for representative robustness measures and existing methods. In
addition, Figure 1 shows the behavior of βt in the proposed method and the relationship of βt with respect
to the increase in iteration t. The main contributions of this study are as follows:

• RRGP-UCB introduces a randomized trade-off parameter βt for GP-UCB in robustness measure
optimization. This randomization, along with certain modifications, eliminates the need to explicitly
specify the parameter βt or to increase it on the order of log t. As a result, it avoids the problem of
overly conservative behavior.

• RRGP-UCB applies to general robustness measures. We theoretically show that the expected cu-
mulative regret is sublinear for many robustness measures, including the expectation measure.

• RRGP-UCB is extended to various robustness optimization settings: controllable environmental
variables (simulator settings), uncontrollable settings, finite input spaces, and continuous input
spaces.
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Figure 1: Comparison of βt in the proposed method and existing methods when |X × Ω| = 1000. The
figure on the left shows the histogram of β

1/2
t in the proposed method with 1, 000, 000 samplings. The figure

on the right shows βt at the theoretically recommended value in the proposed method, the setting where
the black-box function is assumed to be an element of a reproducing kernel Hilbert space (RKHS setting)
(Bogunovic et al., 2018; Nguyen et al., 2021b; Kirschner et al., 2020; Inatsu et al., 2024a), the setting where
the black-box function is assumed to be a sample path from a GP (Bayesian setting) (Nguyen et al., 2021a),
and BO method for PTR measure (BPT-UCB) (Iwazaki et al., 2021a). The pink area in the figure on the
right represents the 95% confidence interval, and for the RKHS setting, Bayesian setting, and BPT-UCB,
1+
√

2(log(t) + 1 + log(1/0.05)),
√

2 log(|X × Ω|π2t2/(6 × 0.05)),
(
|X × Ω|π2t2/(6 × 0.05)

)1/10 were used as
β

1/2
t , respectively.

Table 1: Theoretical guarantee of regret in IRGP-UCB, BBBMOBO, and RRGP-UCB (Proposed).
Method Confidence parameter βt Next point to be evaluated Regret

IRGP-UCB (Takeno et al., 2023) βt ∼ 2 log(|X |/2) + χ2
2 xt = arg maxx∈X ucb(f)

t−1(x) rt = maxx∈X f(x) − f(xt)
BBBMOBO (Inatsu et al., 2024a) βt =

(
B +

√
2(γt + log(1/δ))

)2
xt = arg maxx∈X

(
ucb(F )

t−1(x) − lcb(F )
t−1(x̌t)

)
+

rt = maxx∈X F (x) − F (x̌t)

Proposed βt ∼ 2 log(|X × Ω|) + χ2
2 xt = arg maxx∈{x̃t,x̂t}

(
ucb(F )

t−1(x) − lcb(F )
t−1(x)

)
rt = maxx∈X F (x) − F (x̂t)

χ2
2: Chi-squared distribution with two degrees of freedom

γt: Maximum information gain, (·)+ ≡ max{·, 0}
x̌t = arg maxx∈X lcb(F )

t−1(x), x̂t = arg maxx∈X ρ(µt−1(x, w)), x̃t = arg maxx∈X

(
ucb(F )

t−1(x) − lcb(F )
t−1(x̌t)

)
+

• Experimental results on both synthetic and real-world datasets show that RRGP-UCB achieves
performance comparable to or better than existing methods.

2 Preliminary

Problem Setup Let f : X × Ω → R be an expensive-to-evaluate black-box function, where X and Ω are
finite sets1. For each (xt, wt) ∈ X × Ω, we observe f(xt, wt) with noise εt as follows: yt = f(xt, wt) + εt,
where ε1, . . . , εt are mutually independent and follow some distribution with zero mean. Let x ∈ X be a
design variable and w ∈ Ω an environmental variable, where w is uncontrollable and follows a distribution
P ∗. In black-box optimization involving environmental variables, two types of settings are considered:
simulator settings (Cakmak et al., 2020; Nguyen et al., 2021b; Beland & Nair, 2017; Iwazaki et al., 2021a)
and uncontrollable settings (Kirschner et al., 2020; Inatsu et al., 2024a; 2022; Iwazaki et al., 2021b). In the
simulator setting, the value of w can be arbitrarily selected during optimization, whereas in the uncontrollable
setting, w cannot be controlled even during optimization. In the main text, we focus on the simulator
setting; the uncontrollable setting is discussed in Appendix B. Let ϑ(w) be a function of w, and let ρ(·)
be a mapping from the function ϑ(·) to the real numbers. For any function φ(x, w) defined on X × Ω,

1The case where X and Ω are continuous is discussed in Appendix A.
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Table 2: Theoretical bounds on cumulative regret RT for existing and proposed methods for expectation
(EXP), value-at-risk (VaR), conditional VaR (CVaR), and distributionally robust expectation (DREXP)
measures.

Method EXP VaR CVaR DREXP
DRBO (Kirschner et al., 2020) RT ≤δ

√
TβT γT - - RT ≤δ

√
TβT γT

V-UCB (Nguyen et al., 2021b) - RT ≤δ

√
TβT γT - -

CV-UCB (Nguyen et al., 2021a) - - RT ≤δ

√
TβT γT -

BBBMOBO (Inatsu et al., 2024a) RT ≤δ

√
TβT γT RT ≤δ

√
TβT γT RT ≤δ

√
TβT γT RT ≤δ

√
TβT γT

Proposed E[RT ] ≤
√

TγT E[RT ] ≤
√

TγT E[RT ] ≤
√

TγT E[RT ] ≤
√

TγT

Definition of cumulative regret RT is not necessarily the same for each method
RT ≤δ a ⇔ P(RT ≤ a) ≥ 1 − δ

when x is fixed, φ(x, w) is a function of w and is denoted by φ(x, ·). In particular, when x is fixed, we
define ρ(f(x, ·)) ≡ F (x) as a robustness measure of f in x. Representative robustness measures include:
the expectation measure F1(x) = E[f(x, w)], the worst-case measure F2(x) = infw∈Ω f(x, w), the best-case
measure F3(x) = supw∈Ω f(x, w), the α-value-at-risk measure F4(x; α) = inf{b ∈ R | α ≤ P(f(x, w) ≤ b)},
the α-conditional value-at-risk measure F5(x; α) = E[f(x, w)|f(x, w) ≤ F4(x; α)], and the mean absolute
deviation measure F6(x) = E[|f(x, w) − F1(x)|], where the expectation or probability is taken with respect
to w. Our goal is to identify the following x∗ using as few function evaluations as possible:

x∗ = arg max
x∈X

F (x).

We emphasize that while the optimization target is F (x), we cannot directly observe F (x); instead, only
the noisy evaluations of f(x, w) are available.

Regularity Assumption We introduce regularity assumptions for the function f . Let k : (X , Ω) ×
(X , Ω) → R be a positive-definite kernel such that k((x, w), (x, w)) ≤ 1 for all (x, w) ∈ X × Ω. Assume
that f is a sample path from a GP GP(0, k((x, w), (x′, w′))) with zero mean and kernel function k(·, ·). We
further assume that the noise terms εt are independently drawn from a normal distribution with mean zero
and variance σ2

noise, and that f, ε1, . . . , εt are mutually independent.

Gaussian Process In this study, we predict F based on a surrogate model of the black-box function f . We
assume that the prior distribution of f is a GP GP(0, k((x, w), (x′, w′))). Given the dataset {(xj , wj , yj)}t

j=1,
the posterior distribution of f remains a GP. The posterior mean µt(x, w) and posterior variance σ2

t (x, w)
are given by standard results from the GP regression (Williams & Rasmussen, 2006):

µt(x, w) = kt(x, w)⊤(Kt + σ2
noiseIt)−1yt,

σ2
t (x, w) = k((x, w), (x, w)) − kt(x, w)⊤(Kt + σ2

noiseIt)−1kt(x, w),

where kt(x, w) is the t-dimensional vector whose j-th element is k((x, w), (xj , wj)), yt = (y1, . . . , yt)⊤, It

is the t × t identity matrix, and Kt is the t × t kernel matrix with the (j, k)-th element k((xj , wj), (xk, wk)).

Notations We summarize particularly important notations used in the main text in Table 3.

3 Proposed Method

In this section, we propose a BO method to efficiently identify x∗. First, in Section 3.1, we construct
credible intervals for F (x) based on credible intervals for f(x, w). Next, in Section 3.2, we present a method
for estimating the optimal solution. In Section 3.3, we describe a method for selecting xt and wt. The
pseudo-code of the proposed algorithm is provided in Algorithm 1.
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Table 3: Notations used in the main text and their meanings.
Notation Meaning

x Design variable
w Environmental variable
X Set of design variables
Ω Set of environmental variables

f(x, w) Black-box function defined on X × Ω
εt Observetion noise following a normal distribution

σ2
noise Variance of the noise ditribution

φ(x, w) Arbitrary function defined on X × Ω
φ(x, ·) In φ(x, w), a function with respect to w when x is fixed

ρ(·) Robustness measure, a mapping from functions with respect to w to real numbers
F (x) Target robustness measure defined by F (x) = ρ(f(x, ·))
x∗ Optimal solution defined by arg maxx∈X F (x)

k(·, ·) Kernel function defined on (X × Ω) × (X × Ω)
µt(x, w) Posterior mean based on GP for f(x, w)
σ2

t (x, w) Posterior variance based on GP for f(x, w)
ut(x, w) Upper confidence bound for f(x, w)
lt(x, w) Lower confidence bound for f(x, w)

βt Parameter for adjusting the confidence bound width
ucbt(x) Upper confidence bound for F (x)
lcbt(x) Lower confidence bound for F (x)

x̂t Estimated solution for the optimal solution defined by x̂t = arg maxx∈X ρ(µt−1(x, ·))
(·)+ Operator defined by (a)+ = max{a, 0}
x̃t Optimistic maximum solution defined by x̃t = arg maxx∈X (ucbt−1(x) − maxx∈X lcbt−1(x))+
xt Next design variable to be evaluated
ξt Random variable following the chi-squared distribution with two digrees of freedom
wt Next environmental variable to be evaluated
rt Instantaneous regret regarding the optimal solution and estimated solution
Rt Cumulative instantaneous regret regarding the optimal solution and estimated solution
γt Maximum information gain

Et−1[·] Conditional expectation given the dataset Dt−1 = {(x1, w1, ε1, β1), . . . , (xt−1, wt−1, εt−1, βt−1)}
t̂ Optimal index given by t̂ = arg max1≤i≤t Et−1[F (x̂i)]

Algorithm 1 RRGP-UCB for robustness measures.
Input: GP prior GP(0, k)

for t = 1, 2, . . . do
Generate ξt from chi-squared distribution with two degrees of freedom
Compute βt = 2 log(|X × Ω|) + ξt

Compute Qt−1(x, w) for each (x, w) ∈ X × Ω
Compute Qt−1(x) for each x ∈ X
Estimate x̂t by x̂t = arg maxx∈X ρ(µt−1(x, ·))
Select next evaluation point xt by equation 4
Select next evaluation point wt by equation 5
Observe yt = f(xt, wt) + εt at point (xt, wt)
Update GP by adding observed data

end for
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3.1 Credible Interval for Robustness Measures

For each (x, w) ∈ X × Ω and t ≥ 1, let Qt−1(x, w) = [lt−1(x, w), ut−1(x, w)] denote a credible interval for
f(x, w), where lt−1(x, w) and ut−1(x, w) are given by

lt−1(x, w) = µt−1(x, w) − β
1/2
t σt−1(x, w), ut−1(x, w) = µt−1(x, w) + β

1/2
t σt−1(x, w).

Here, βt ≥ 0 is a user-defined trade-off parameter. Due to the properties of GPs, the posterior distribution
of f(x, w) after observing data is a normal distribution with mean µt−1(x, w) and variance σ2

t−1(x, w).
Therefore, by selecting an appropriate value of βt

2, the interval Qt−1(x, w) contains f(x, w) with high
probability. Next, for each x, we define Gt−1(x), the set of functions over w, as follows:

Gt−1(x) = {g(x, ·) | for any w ∈ Ω, g(x, w) ∈ Qt−1(x, w)}.

If Qt−1(x, w) is a high-probability credible interval for f(x, w) for all w ∈ Ω, then the function f(x, ·) lies
in Gt−1(x) with high probability. Therefore, the following inequality holds with high probability:

inf
g(x,·)∈Gt−1(x)

ρ(g(x, ·)) ≤ ρ(f(x, ·)) = F (x) ≤ sup
g(x,·)∈Gt−1(x)

ρ(g(x, ·)). (1)

We can thus construct a high-probability credible interval for F (x) using the left- and right-hand sides of
equation 1. However, computing the exact bounds in equation 1 is generally intractable. To address this,
we introduce the lower bound lcbt−1(x) and upper bound ucbt−1(x), which satisfy:

lcbt−1(x) ≤ inf
g(x,·)∈Gt−1(x)

ρ(g(x, ·)), sup
g(x,·)∈Gt−1(x)

ρ(g(x, ·)) ≤ ucbt−1(x). (2)

Inatsu et al. (2024a) showed that, for commonly used robustness measures, including expectation, the bounds
lcbt−1(x) and ucbt−1(x) can be analytically calculated using lt−1(x, w) and ut−1(x, w)3. Inatsu et al.
(2024a) differs from this study in that it deals with multi-objective optimization for robustness measures
under input uncertainty and adopts the assumption that black-box functions are in RKHS. On the other
hand, it shares commonalities with this study in that it adopts a GP as a surrogate model and calculates
upper and lower bounds for robustness measures based on equation 2. Therefore, the computational methods
for lcbt−1(x) and ucbt−1(x) presented in Inatsu et al. (2024a) for various robustness measures are applicable
to the setting of this study. Representative robustness measures and their corresponding lcbt−1(x) and
ucbt−1(x) are summarized in Table 4. On the other hand, even for robustness measures not listed in
Table 4, it is possible to approximate lcbt−1(x) and ucbt−1(x) by sampling. First, we generate S sample
paths f (1)(x, w), . . . , f (S)(x, w) from the posterior distribution of the function f(x, w) and then estimating
lcbt−1(x) and ucbt−1(x) as follows:

lcbt−1(x) = min
1≤s≤S

ρ(f (s)(x, ·)), ucbt−1(x) = max
1≤s≤S

ρ(f (s)(x, ·)).

Using these bounds, we define the credible interval Qt−1(x) = [lcbt−1(x), ucbt−1(x)] for F (x).

3.2 Estimation of Optimal Solution

We present a method for estimating the optimal solution x∗ at each iteration t ≥ 1. Recall that in this
setting, the value of the objective function F (x) is unobservable; we can only access noisy observations of
f(x, w). As a result, directly estimating x∗ from the observed data is not possible. To address this, we
define the estimated solution x̂t based on the estimate of F (x) calculated from the posterior mean of f as
follows:

x̂t = arg max
x∈X

ρ(µt−1(x, ·)). (3)

2For example, if β
1/2
t = 1.96, then f(x, w) ∈ Qt−1(x, w) holds with probability 0.95.

3In Tables 3 and 4 in Inatsu et al. (2024a), the terms “risk measure” and “Bayes risk” are used instead of “robustness
measure” and “expectation measure,” respectively.
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Table 4: Values of lcbt(x) and ucbt(x) for commonly used robustness measures (Table 3 in Inatsu et al.
(2024a)).

Robustness measure Definition lcbt(x) ucbt(x)
Expectation E[fx,w] E[lt,x,w] E[ut,x,w]
Worst-case infw∈Ω fx,w infw∈Ω lt,x,w infw∈Ω ut,x,w

Best-case supw∈Ω fx,w supw∈Ω lt,x,w supw∈Ω ut,x,w

α-value-at-risk inf{b ∈ R | α ≤ P(fx,w ≤ b)} inf{b ∈ R | α ≤ P(lt,x,w ≤ b)} inf{b ∈ R | α ≤ P(ut,x,w ≤ b)}
α-conditional value-at-risk E[fx,w|fx,w ≤ vf (x; α)] 1

α

∫ α

0 vlt
(x; α′)dα′ 1

α

∫ α

0 vut
(x; α′)dα′

Mean absolute deviation E[|fx,w − E[fx,w]|] E[min{|ľt,x,w|, |ǔt,x,w|} − STR(ľt,x,w, ǔt,x,w)] E[max{|ľt,x,w|, |ǔt,x,w|}]
Standard deviation

√
E[|fx,w − E[fx,w]|2]

√
E[min{|ľt,x,w|2, |ǔt,x,w|2} − STR2(ľt,x,w, ǔt,x,w)]

√
E[max{|ľt,x,w|2, |ǔt,x,w|2}]

Variance E[|fx,w − E[fx,w]|2] E[min{|ľt,x,w|2, |ǔt,x,w|2} − STR2(ľt,x,w, ǔt,x,w)] E[max{|ľt,x,w|2, |ǔt,x,w|2}]
Distributionally robust infP ∈A F (x; P ) infP ∈A lcbt(x; P ) infP ∈A ucbt(x; P )

Monotonic Lipschitz map M(F (x)) min{M(lcbt(x)), M(ucbt(x))} max{M(lcbt(x)), M(ucbt(x))}
Weighted sum α1F (m1)(x) + α2F (m2)(x) α1lcb(m1)

t (x) + α2lcb(m2)
t (x) α1ucb(m1)

t (x) + α2ucb(m2)
t (x)

Probabilistic threshold P(fx,w ≥ θ) P(lt,x,w ≥ θ) P(ut,x,w ≥ θ)
fx,w ≡ f(x, w), lt,x,w ≡ lt(x, w), ut,x,w ≡ ut(x, w), vf (x; α) ≡ inf{b ∈ R | P(fx,w ≤ b) ≥ α}

vlt
(x; α) ≡ inf{b ∈ R | P(lt,x,w ≤ b) ≥ α}, vut

(x; α) ≡ inf{b ∈ R | P(ut,x,w ≤ b) ≥ α}, α ∈ (0, 1)
ľt,x,w ≡ lt,x,w − E[ut,x,w], ǔt,x,w ≡ ut,x,w − E[lt,x,w] , STR(a, b) ≡ max{min{−a, b}, 0}

F (x; P ): Robustness measure F (x) defined based on the distribution P
lcbt(x; P ), ucbt(x; P ): lcbt(x) and ucbt(x) for F (x; P )
lcb(m)

t (x), ucb(m)
t (x): lcbt(x) and ucbt(x) for F (m)(x)

M(·): Monotonic Lipschitz continuous map with Lipschitz constant K
α1, α2 ≥ 0

Expectation and probability are taken with respect to distribution of w, and α-value-at-risk is same meaning as α-quantile

3.3 Acquisition Function

We introduce acquisition functions to determine the next evaluation point (xt, wt). In this study, the
estimated solution x̂t and the next evaluation point xt are not necessarily identical. In previous studies
on BO under robustness considerations and environmental variability (Kirschner et al., 2020; Inatsu et al.,
2024a), xt is typically chosen based on the upper bound of a credible interval for a robustness measure,
while wt is selected to maximize the posterior variance of f(xt, w). We propose a modification to the
method for selecting xt and partially adopt the aforementioned approach. In particular, as wt is selected
based on the posterior variance of f , this eliminates the need for hyperparameter tuning in the acquisition
function, unlike the credible interval for F (x), which depends on a user-specified parameter βt. To address
this, we avoid fixing βt explicitly and instead treat it as a realization from a probability distribution. For
example, Takeno et al. (2023) proposed IRGP-UCB within the standard BO framework, in which βt for GP-
UCB is randomly sampled from a two-parameter exponential distribution. Similarly, Inatsu et al. (2024b)
proposed the randomized straddle method for level-set estimation, where βt in the straddle acquisition
function (Bryan et al., 2005) is drawn from a chi-squared distribution. These methods remove the need to
manually specify hyperparameters and also yield tighter theoretical guarantees than conventional GP-UCB
or straddle methods. However, these algorithms are designed for problems in which the target function f
itself is modeled as a GP, and their theoretical guarantees critically depend on f following GPs. In contrast,
the target function in our setting is F (x), which generally does not follow a GP, even if f does. Therefore,
to derive a theoretically sound acquisition strategy, we modify the GP-UCB method to suit the context in
which xt is selected based on the upper bound of the credible interval for F (x). Before introducing this
method, we reformulate standard GP-UCB in the conventional BO setting without input uncertainty and
highlight its essential structural properties. The following lemma characterizes GP-UCB in this simplified
setting:
Lemma 3.1. For a black-box function f(x) modeled as a GP, let µt−1(x) denote the posterior mean, σ2

t−1(x)
the posterior variance, and βt ≥ 0 a user-defined parameter. Define ut−1(x) = µt−1(x) + β

1/2
t σt−1(x) and

lt−1(x) = µt−1(x) − β
1/2
t σt−1(x), and

x
(u)
t = arg max

x∈X
ut−1(x), x̃

(f)
t = arg max

x∈X
(ut−1(x) − max

x∈X
lt−1(x))+,

x̂
(f)
t = arg max

x∈X
µt−1(x), x

(f)
t = arg max

x∈{x̃
(f)
t ,x̂

(f)
t }

(ut−1(x) − lt−1(x),
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where (a)+ denotes a if a > 0, and otherwise is 0. Then, the equality ut−1(x(u)
t ) = ut−1(x(f)

t )) holds.

The proof is provided in Appendix C. Using this lemma, we define the selection rule for xt as follows.
Definition 3.1 (Selection rule for xt). Let ξ1, . . . , ξt be independent random variables drawn from the chi-
squared distribution with two degrees of freedom, where f, ε1, . . . , εt, ξ1, . . . , ξt are mutually independent.
Define βt = 2 log(|X × Ω|) + ξt. Assume that lcbt−1(x) and ucbt−1(x) are lower and upper bounds that
satisfy equation 2, and let x̂t be defined by equation 3. Then, xt is selected as follows:

xt = arg max
x∈{x̃t,x̂t}

(ucbt−1(x) − lcbt−1(x)), (4)

where x̃t = arg maxx∈X (ucbt−1(x) − maxx∈X lcbt−1(x))+.

Here, Lemma 3.1 provides a different perspective on Definition 3.1. The acquisition function in Definition 3.1
appears, at first glance, to be unrelated to the usual GP-UCB. However, the usual GP-UCB can be expressed
in the same form as Lemma 3.1, and since this equivalent expression is similar to Definition 3.1, the proposed
acquisition function can also be interpreted as an acquisition function based on GP-UCB. Finally, based on
xt selected by equation 4, we determine wt as follows.
Definition 3.2 (Selection rule for wt). The next environmental variable wt is selected as follows:

wt = arg max
w∈Ω

σ2
t−1(xt, w), (5)

where xt is given by equation 4.

4 Theoretical Analysis

In this section, we provide theoretical guarantees on the expected regret of the proposed algorithm. Detailed
proofs are given in Appendix C. To evaluate the quality of the estimated solution, we define the instantaneous
regret rt and cumulative regret Rt as follows:

rt = F (x∗) − F (x̂t), Rt =
t∑

i=1
{F (x∗) − F (x̂i)} =

t∑
i=1

ri.

In addition, to derive theoretical guarantees for the proposed method, we introduce the concept of maximum
information gain γt. This quantity is widely used in the theoretical analysis of GP-based BO and level-set
estimation (Srinivas et al., 2010; Bogunovic et al., 2016; Gotovos et al., 2013), and is expressed as follows:

γt = 1
2 sup

{(x(1),w(1)),...,(x(t),w(t))}⊂X ×Ω
log det(It + σ−2

noiseK̃t),

where (x(1), w(1)), . . . , (x(t), w(t)) are arbitrary elements of X × Ω, K̃t is a t × t kernel matrix with the
(i, j)-th entry given by k((x(i), w(i)), (x(j), w(j))). For commonly used kernels, such as the linear, Gaussian,
and Matérn kernels, γt is known to grow sublinearly under mild conditions (see, e.g., Theorem 5 in Srinivas
et al. (2010)). Let h(a) : [0, ∞) → [0, ∞) be a non-decreasing, concave function satisfying h(0) = 0, and
denote by H the set of all h(a). We then define a class of functions q(a) : [0, ∞) → [0, ∞), denoted by Q, as
follows:

Q =

q(a) =
n∑

i=1
ζihi

 si∑
j=1

λijaνij

 | n, si ∈ N, ζi, λij , ≥ 0, νij > 0, hi(·) ∈ H

 .

For Q, we impose the following assumption on ucbt−1(xt), lcbt−1(xt), and the width term 2β
1/2
t σt−1(xt, wt).

Assumption 4.1. There exists a function q(x) ∈ Q such that for any t ≥ 1, xt, βt, and σt−1(xt, w), the
following inequality holds:

ucbt−1(xt) − lcbt−1(xt) ≤ q(2β
1/2
t max

w∈Ω
σt−1(xt, w)). (6)

9
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Table 5: Specific forms of q(a) for commonly used robustness measures (modified version of Table 4 in Inatsu
et al. (2024a)).

Robustness measure Definition q(a)
Expectation E[fx,w] a
Worst-case infw∈Ω fx,w a
Best-case supw∈Ω fx,w a

α-value-at-risk inf{b ∈ R | α ≤ P(fx,w ≤ b)} a
α-conditional value-at-risk E[fx,w|fx,w ≤ vf (x; α)] a
Mean absolute deviation E[|fx,w − E[fx,w]|] 2a
Distributionally robust infP ∈A F (x; P ) q(a; F )

Monotonic Lipschitz map M(F (m)(x)) Kq(m)(a)
Weighted sum α1F (m1)(x) + α2F (m2)(x) α1q(m1)(a) + α2q(m2)(a)

fx,w ≡ f(x, w), vf (x; α) ≡ inf{b ∈ R | P(fx,w ≤ b) ≥ α} , α ∈ (0, 1)
F (x; P ): Robustness measure F (x) defined based on distribution P

q(a; F ): function q(a) for F (x) satisfying Assumption 4.1
M(·): Monotonic Lipschitz continuous map with Lipschitz constant K

q(·)(a): function q(a) for F (·)(x) satisfying Assumption 4.1
α1, α2 ≥ 0

Expectation and probability are taken with respect to distribution of w,
and α-value-at-risk is same meaning as α-quantile

In this study, q(a) plays the same role as q(a) in Inequality (3) of Inatsu et al. (2024a), but while their q(a)
does not have any assumptions regarding concave functions, ours does. The reason for this is that, unlike
Inatsu et al. (2024a), we are subjecting the expected value of (cumulative) regret to theoretical analysis.
This analysis requires an inequality evaluation of the expected value, which they did not need to perform. In
particular, we need to use Jensen’s inequality, which requires us to impose additional assumptions regarding
concave functions. Similarly to equation 2, it also shares commonalities with Inatsu et al. (2024a) in terms
of requiring q(a) satisfying equation 6. They provide q(a) for various robustness measures, including the
expectation measure. In this study, we impose stronger assumptions on q(a) than those in their; however,
since the q(a) provided by Inatsu et al. (2024a) satisfies Assumption 4.1 and q(a) ∈ Q, their results can
be applied. Representative robustness measures and their corresponding q(a) functions are summarized in
Table 5.4 Then, the following theorem holds.
Theorem 4.1. Assume that equation 2, the regularity assumption, and Assumption 4.1 hold. Suppose
that ξ1, . . . , ξt are independent random variables following the chi-squared distribution with two degrees of
freedom, and that f, ε1, . . . , εt, ξ1, . . . , ξt are mutually independent. Define βt = 2 log(|X × Ω|) + ξt. Let
q(a) =

∑n
i=1 ζihi

(∑si

j=1 λijaνij

)
be a function satisfying Assumption 4.1. Then, if Algorithm 1 is performed,

the following inequality holds:

E[Rt] ≤ 2t

n∑
i=1

ζihi

1
t

si∑
j=1

2νij λij

(
tC2,νij

)1−ν′
ij/2 (C1γt)ν′

ij/2

 ,

where ν′
ij = min{νij , 1}, C1 = 2

log(1+σ−2
noise) , C2,νij

= E[βνij/(2−ν′
ij)

t ]. The expectation is taken over all sources
of randomness, including f, ε1, . . . , εt, β1, . . . , βt.

If γt is a sublinear function, the following convergence holds:

lim
t→∞

1
t

si∑
j=1

2νij λij

(
tC2,νij

)1−ν′
ij/2 (C1γt)ν′

ij/2 = 0. (7)

4Inatsu et al. (2024a) derives q(a) for measures such as the standard deviation and variance, but these rely on constants
dependent on the norm in the RKHS, which differ from our setting and are thus excluded. The probabilistic threshold is also
omitted as no explicit form of q(a) is provided.
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Then, if each hi(a) is continuous at 0, it follows from Theorem 4.1 that the E[Rt]/t satisfies

lim
t→∞

E[Rt]
t

= 0. (8)

As a special case, according to Table 4 in Inatsu et al. (2024a), q(a) corresponding to the expectation measure
satisfies q(a) = a; i.e., n = ζi = si = λij = νij = 1 and h1(a) = a. In this case, E[Rt] satisfies

E[Rt] ≤ 4
√

tC2,1C1γt = 4
√

C1(2 log(|X × Ω|) + 2)tγt.

Similarly, q(a) corresponding to the worst-case, best-case, α-value-at-risk, α-conditional value-at-risk, and
mean absolute deviation measures satisfies q(a) = 2a for the mean absolute deviation measure and q(a) = a
for the other measures. For these robustness measures, including the expectation measure, the following
corollary holds:
Corollary 4.1. Under the assumptions of Theorem 4.1, the following inequality holds for the expectation,
worst-case, best-case, α-value-at-risk, α-conditional value-at-risk, and mean absolute deviation measures:

E[Rt] ≤ C
√

tC0γt,

where C0 = 2(2 log(|X × Ω|) + 2)/ log(1 + σ−2
noise), and C is 8 for the mean absolute deviation measure and 4

for the other measures.

While Theorem 4.1 and equation 8 provide a guarantee on the expected value of the cumulative regret, they
do not directly provide a guarantee on the expected value of the instantaneous regret. Specifically, they do
not answer the question regarding which estimated solution x̂i, for 1 ≤ i ≤ t, achieves the smallest value of
E[ri]. To this end, we define the index t̂ of the optimal estimated solution up to time t as follows:

t̂ = arg min
1≤i≤t

Et−1[F (x∗) − F (x̂i)], (9)

where Et−1[·] is the conditional expectation given the dataset Dt−1, defined as follows:

Dt−1 = {(x1, w1, ε1, β1), . . . , (xt−1, wt−1, εt−1, βt−1)}

for t ≥ 2, and D0 = ∅. Then, the following theorem holds.
Theorem 4.2. Under the assumptions of Theorem 4.1, the following inequality holds:

E[rt̂] ≤ E[Rt]
t

≤ 2
n∑

i=1
ζihi

1
t

si∑
j=1

2νij λij

(
tC2,νij

)1−ν′
ij/2 (C1γt)ν′

ij/2

 ,

where t̂ is given by equation 9, and hi(·) along with all coefficients are as defined in Theorem 4.1. In
addition, for the expectation, worst-case, best-case, α-value-at-risk, α-conditional value-at-risk, and mean
absolute deviation measures, the following bound holds:

E[rt̂] ≤ E[Rt]
t

≤ C

√
C0γt

t
,

where C and C0 are given in Corollary 4.1.

From Theorem 4.2, if γt is a sublinear function and hi(·) is continuous at 0, then using hi(0) = 0 and
equation 7, E[rt̂] satisfies

lim
t→∞

E[rt̂] = 0.

Therefore, the expected regret associated with index t̂ converges to zero as t → ∞. However, computing t̂
requires solving equation 9, which is generally intractable analytically. Nevertheless, t̂ can alternatively be
written as follows:

t̂ = arg max
1≤i≤t

Et−1[F (x̂i)].

11
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Therefore, t̂ can be defined without using the unknown x∗. The reason for expressing t̂ as in equation 9
is to simplify the evaluation of inequalities in theoretical analysis, such as equation 23. Furthermore, the
posterior distribution of f given Dt−1 follows GPs. By using this, we can generate sample paths f̂1, . . . , f̂M

from this posterior. For each sample path f̂j , we evaluate F (x) and use these M evaluations to estimate
Et−1[F (x)]. In this way, t̂ can be approximated from the sampled paths. In contrast, for the expectation
measure, the following theorem shows that one can use t itself as a substitute for t̂.
Theorem 4.3. Under the assumptions of Theorem 4.1, the following holds for the expectation measure:

E[rt̂] = E[rt] ≤ E[Rt]
t

≤ 4
√

C0γt

t
,

where C0 is given in Corollary 4.1.

Theorem 4.3 states that when considering the expectation measure as a robustness measure, an upper
bound on E[rt] is given, while for other robustness measures, estimation of t̂ is still required. If the number
of samples M generated from the posterior distribution is sufficiently large, the estimated t̂ can be expected
to be close to the true t̂, but whether it is possible to accurately derive the true t̂ without estimation remains
an important direction for future work. Nevertheless, in the synthetic function experiments conducted in
Section 5.1, E[rt] is used as the evaluation metric instead of E[rt̂], but the behavior of the convergence of
E[rt] to 0 in the proposed method has been confirmed in all settings. Therefore, similarly to how an upper
bound for E[rt] is given by Theorem 4.3, it is expected that some kind of upper bound holds for E[rt] in
other robustness measures.

In this section, we have presented theoretical guarantees for the expected value of both the regret and the
cumulative regret. However, we have not addressed high-probability bounds. Such bounds can nonetheless be
readily derived via Markov’s inequality. In fact, for a non-negative random variable X, Markov’s inequality
yields P(X > a) ≤ E[X]/a. By setting a = δ−1E[X], we obtain that X ≤ δ−1E[X] with probability at
least 1 − δ. Hence, for any non-negative value J satisfying E[X] ≤ J , we can conclude that X ≤ δ−1J
with probability at least 1 − δ. Applying this argument to the regret and cumulative regret, which are both
non-negative, and invoking Theorems 4.1 and 4.2, we obtain the following result:
Theorem 4.4. Let δ ∈ (0, 1). Under the assumptions of Theorem 4.1, for any t ≥ 1, the following inequality
holds with probability at least 1 − δ:

Rt ≤ 2δ−1t

n∑
i=1

ζihi

1
t

si∑
j=1

2νij λij

(
tC2,νij

)1−ν′
ij/2 (C1γt)ν′

ij/2

 ,

where hi(·) and all coefficients are as defined in Theorem 4.1. In addition, for the index t̂ defined in equation 9,
the following inequality holds with probability at least 1 − δ:

rt̂ ≤ 2δ−1
n∑

i=1
ζihi

1
t

si∑
j=1

2νij λij

(
tC2,νij

)1−ν′
ij/2 (C1γt)ν′

ij/2

 .

Although Theorem 4.4 provides high-probability bounds, these bounds are not tight with respect to δ. In
fact, the right-hand sides of both inequalities depend on δ−1. In contrast, most high-probability bounds
based on the GP-UCB framework—such as those in Srinivas et al. (2010)—involve a log(δ−1) term instead
of δ−1. Therefore, deriving tighter high-probability bounds with respect to δ than those in Theorem 4.4
remains an important direction for future work. Nevertheless, δ is a probability parameter specified in
advance by the user and is a constant. Therefore, when considering the order with respect to t by treating
δ as a constant, the high-probability bound in the proposed method is tighter than that in GP-UCB-based
methods such as Srinivas et al. (2010). For example, the standard BO on the input space X with no input
uncertainty is equivalent to maximizing the expectation measure on X × Ω using |Ω| = 1. From Theorem 1
of Srinivas et al. (2010), the order of the high-probability upper bound for the cumulative regret is

√
tγt log t,

whereas in the proposed method, it is
√

tγt according to Corollary 4.1. Furthermore, when considering the
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expectation measure as a robustness measure in the presence of input uncertainty, according to Theorem 1
and 2 in Inatsu et al. (2024a), at time t the order of the high-probability bound for rt′ is

√
t−1γ2

t , where
t′ ≤ t. On the other hand, the high-probability bound for rt in our proposed method is

√
t−1γt. However,

as given in Table 1, the definitions of rt in Srinivas et al. (2010); Inatsu et al. (2024a) and this study differ
slightly, so it is important to note that these high-probability bounds cannot be directly compared.

4.1 Extension to Other Settings

In this section, we provide some results for uncontrollable settings. Furthermore, we provide an overview of
methods and results for extending the proposed method to continuous spaces, and explain issues involved.
Details on the extension to continuous spaces and to general uncontrollable settings are given in Appendix
A and B.

Uncontrollable Setting when X and Ω are Finite We consider the case of uncontrollable settings, i.e.,
w1, . . . , wt follow the distribution P ∗ and cannot be controlled even during optimization. We assume that
w1, . . . , wt are mutually independent. The difference between the proposed algorithm in this setting and
Algorithm 1 is only in how wt is obtained. Specifically, in this setting, the acquisition function equation 5
cannot be used, and w sampled from P ∗ becomes wt at time t. We give the pseudo-code for the case where
X and Ω are finite in the uncontrollable setting in Algorithm 2. When Algorithm 2 is performed, similar
theorems as in the simulator setting hold.
Theorem 4.5. Assume that the regularity assumption, Assumption 4.1 and equation 2 hold. Suppose that
X and Ω are finite. Also suppose that w1, . . . , wt follow P ∗, and ξ1, . . . , ξt are random variables following the
chi-squared distribution with two degrees of freedom, where f, ε1, . . . , εt, w1, . . . , wt, ξ1, . . . , ξt are mutually
independent. Let Ω = {w(1), . . . , w(J)}, pj = P(w = w(j)) and pmin = min1≤j≤J pj , and assume that
pmin > 0. Define βt = 2 log(|X × Ω|) + ξt. Let q(a) =

∑n
i=1 ζihi

(∑si

j=1 λijaνij

)
be a function satisfying

Assumption 4.1. Then, under the uncontrollable setting, if Algorithm 2 is performed, the following holds:

E[Rt] ≤ 2t

n∑
i=1

ζihi

1
t

si∑
j=1

2νij λij

(
tC2,νij

)1−ν′
ij/2 (C ′

1γt)ν′
ij/2

 ,

where ν′
ij = min{νij , 1}, C ′

1 = 2p−1
min

log(1+σ−2
noise) , C2,νij = E[βνij/(2−ν′

ij)
t ], and the expectation is taken over all

sources of randomness, including f, ε1, . . . , εt, w1, . . . , wt, β1, . . . , βt. In addition, for the expectation, worst-
case, best-case, α-value-at-risk, α-conditional value-at-risk, and mean absolute deviation measures, the fol-
lowing inequality holds:

E[Rt] ≤ C
√

tC ′
1(2 log(|X × Ω|) + 2)γt,

where C is 8 for the mean absolute deviation measure and 4 for the other measures.
Theorem 4.6. Under the assumptions of Theorem 4.5, the following holds:

E[rt̂] ≤ E[Rt]
t

≤ 2
n∑

i=1
ζihi

1
t

si∑
j=1

2νij λij

(
tC2,νij

)1−ν′
ij/2 (C ′

1γt)ν′
ij/2

 ,

where t̂ is given by equation 9, and the function hi(·) and all coefficients are as defined in Theorem 4.5. In
addition, for the expectation, worst-case, best-case, α-value-at-risk, α-conditional value-at-risk, and mean
absolute deviation measures, the following holds:

E[rt̂] ≤ E[Rt]
t

≤ C

√
C ′

1(2 log(|X × Ω|) + 2)γt

t
,

where C is given in Theorem 4.5. Furthermore, in the expectation measure, the following holds:

E[rt] ≤ E[Rt]
t

≤ 4
√

C ′
1(2 log(|X × Ω|) + 2)γt

t
.
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Algorithm 2 RRGP-UCB for robustness measures in the uncontrollable setting when X and Ω are finite.
Input: GP prior GP(0, k)

for t = 1, 2, . . . do
Generate ξt from chi-squared distribution with two degrees of freedom
Compute βt = 2 log(|X × Ω|) + ξt

Compute Qt−1(x, w) for each (x, w) ∈ X × Ω
Compute Qt−1(x) for each x ∈ X
Estimate x̂t by x̂t = arg maxx∈X ρ(µt−1(x, ·))
Select next evaluation point xt by equation 4
Generate wt from P ∗

Observe yt = f(xt, wt) + εt at point (xt, wt)
Update GP by adding observed data

end for

Here, note that by using Theorems 4.5 and 4.6, and Markov’s inequality, high-probability bounds similar to
those in Theorem 4.4 can also be obtained in this setting.

Extension to Continuous Spaces In this section, we provide an overview of the extension of the proposed
method to continuous spaces. In Algorithm 1 or 2, βt is defined using |X × Ω|. Therefore, if X or Ω is a
continuous space, this definition cannot be used directly. In this case, discretization of the continuous space is
necessary, and to perform a theoretically valid discretization, additional assumptions on the differentiability
of f , such as Assumption 2.1 in Takeno et al. (2023), are required. In fact, in Appendix A, the proposed
method is extended to continuous spaces under similar assumptions. However, this approach has two issues.
First, to propose a theoretically valid method, it is necessary to increase the number of discretized points
according to time t, resulting in βt needing to be large according to time t, as in Theorem A.1. Thus, one of
the advantages of the proposed method, namely that βt does not need to increase according to time t, is lost.
Second, theoretically valid discretization requires constants such as a1 and b1 in Assumption A.1, and these
are used to define βt. However, although these constants a1 and b1 are determined by the kernel function,
their actual values are difficult to calculate, resulting in the need for estimation or heuristic adjustment of
these values. Therefore, the advantage of the proposed method, which eliminates the need for estimation or
tuning of βt, is also lost. Although an extension to continuous space is provided in Appendix A, the two
issues mentioned above remain, and resolving these issues is an important direction for future work.

5 Numerical Experiments

In this section, we verify the performance of the proposed method using both synthetic benchmark functions
and real-world data on carrier lifetime values of silicon ingots used in solar cells. In all experiments, a GP
model with a zero mean function is used as the surrogate model. Further details regarding the experimental
settings, as well as additional experiments not included in the main text, are described in Appendix D.

5.1 Synthetic Function

The input space X ×Ω was defined as a subset of [−M, M ]d × [−M, M ]d ≡ [−M, M ]D; there each coordinate
was uniformly discretized into s grid points. Three different configurations of (M, D, s) were considered
in the experiments: (5, 2, 50), (2.5, 4, 15), and (2, 6, 7). The black-box function f varied depending on the
dimension D. When D = 2, f was a sample path drawn from a GP, referred to as the 2D synthetic
function. When D = 4, the black-box function was defined as f(x1, x2, w1, w2) = fH(x1 + w1, x2 + 0.5w2)
(4D synthetic function), where fH(a, b) is Himmelblau’s function with translation and scaling. For the case
D = 6, f was defined as the sum of four independent GP sample paths f1, . . . , f4 (6D synthetic function),
where the dependencies of each function were specified as follows: f1 on (x1, x2, x3), f2 on (x2, x3, w1), f3
on (x3, w1, w2), and f4 on (w1, w2, w3). In each setting, the kernel function k(·, ·) used in the GP surrogate
model was defined as follows:
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(2D synthetic function): k(θ, θ′) = exp(∥θ − θ′∥2
2/2).

(4D synthetic function): k(θ, θ′) = exp(∥θ − θ′∥2
2/10).

(6D synthetic function):

k(θ, θ′) = 1.25 exp(∥θ1−θ′
1∥2

2/1.75)+0.75 exp(∥θ2−θ′
2∥2

2/1.75)+exp(∥θ3−θ′
3∥2

2/2)+exp(∥θ4−θ′
4∥2

2/1.5),

where θ1 = (x1, x2, x3), θ2 = (x2, x3, w1), θ3 = (x3, w1, w2) and θ4 = (w1, w2, w3).

Among these settings, only the 2D synthetic function setting used a surrogate model that matched the true
black-box function. The remaining two settings intentionally introduced a mismatch between the surrogate
model and the black-box function. In addition, all experiments were conducted under the assumption that
observations were corrupted by independent Gaussian noise with mean zero and variance 10−6. To evaluate
robustness, three robustness measures were considered, using the probability mass function p(w) of w defined
for each setting:

(EXP): Expectation measure, F (x) = E[f(x, w)] ≡ Fexp(x).

(PTR): Probability threshold robustness measure, F (x) = P(f(x, w) ≥ h).

(EXP-MAE): Weighted sum of expectation measure and mean absolute deviation,

F (x) = Fexp(x) − αE[|f(x, w) − Fexp(x)|].

In the 2D, 4D, and 6D synthetic function settings, the values of (h, α) were set to (0.5, 1), (0.18, 4), and
(2, 8), respectively. In this experiment, only the acquisition function was changed, and the evaluation metric
was the regret rt = F (x∗) − F (x̂t). To compare performance, nine methods were evaluated, including the
proposed method: random sampling (Random), uncertainty sampling (US), Bayesian quadrature (BQ) (Be-
land & Nair, 2017), BPT-UCB (Iwazaki et al., 2021a), BPT-UCB (fixed), BBBMOBO (Inatsu et al., 2024a),
BBBMOBO (fixed), the proposed method (Proposed), and Proposed (fixed). The random method selected
(xt, wt) uniformly at random, while US selected (xt, wt) by maximizing σ2

t−1(x, w). For the remaining seven
methods, xt was selected according to each method’s acquisition function. For all methods except BPT-UCB
and BPT-UCB (fixed), wt was selected using equation 5. The method for selecting wt in BPT-UCB and
BPT-UCB (fixed) is described in Appendix D. BQ and BPT-UCB were originally proposed for the EXP
and PTR measures, respectively. Although BBBMOBO was designed for Pareto optimization over multiple
robustness measures, it can be applied to a single robustness measure as well. The trade-off parameters
used in BPT-UCB, BBBMOBO, and Proposed were set to theoretical values. In contrast, the methods
marked with (fixed) used fixed values smaller than the theoretical ones. Note that in the EXP setting,
BBBMOBO (fixed) and Proposed (fixed) are the same (see Appendix D for details). Under these settings,
a single random initial point was selected, and the algorithms were run for 300 iterations. This process was
repeated 100 times, and the average rt was calculated at each iteration. As shown in Figure 2, Random
and US, which are not designed to maximize robustness measures, performed poorly in all settings. BQ,
BPT-UCB, and BPT-UCB (fixed) were effective for EXP and PTR, but their performance for EXP-MAE
in the 2D synthetic function was insufficient. This is because these methods are not tailored for EXP-MAE.
For BBBMOBO and Proposed, as well as BBBMOBO (fixed) and Proposed (fixed), performance tended to
be similar. This is because the only difference lies in whether xt is set to x̃t or selected via equation 4, aside
from the trade-off parameters. For BBBMOBO (fixed) and Proposed (fixed), using smaller-than-theoretical
trade-off parameters led to improved practical performance, achieving favorable results in many settings.
However, in the 4D synthetic function under the EXP measure, regret was not fully reduced. One reason is
that the surrogate model fails to correctly express the true black-box function. Furthermore, small trade-off
parameters limit exploration, often resulting in convergence to local optima. In fact, Figure 5 of Srinivas
et al. (2010) shows the results of BO (Mean Only) using only the posterior mean, and Figure 5 of Inatsu
et al. (2024a) compares the differences in β for the expectation measure, suggesting that in both cases,
small β tends to lead to local optima. In contrast, the Proposed method, by employing random trade-off
parameters, occasionally explores more broadly. This increases the likelihood of escaping local solutions and,
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Figure 2: Average regret across 100 simulations for each method. Top, middle, and bottom rows correspond
to 2D, 4D, and 6D synthetic function settings, respectively. Left, center, and right columns show results for
EXP, PTR, and EXP-MAE, respectively. Since BBBMOBO (fixed) and Proposed (fixed) are the same in
EXP, only Proposed (fixed) is displayed in the figures on the left column. Error bars represent twice the
standard error.

consequently, improves performance. This demonstrates a key advantage of using randomly varying trade-off
parameters beyond the theoretical guarantees. The trade-off parameters in BBBMOBO are on the order of
O(log(t|X × Ω|)). Since they are often larger and more conservative than the βt values used in Proposed,
Proposed generally outperformed BBBMOBO, except in the 4D synthetic function (EXP) setting. Overall,
the Proposed method performed comparably to or better than the baseline methods across most settings.
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5.2 Synthetic Function Experiments under Uncontrollable Settings

In this section, we changed the experiment in Section 5.1 to the uncontrollable setting, where wt cannot
be selected and is obtained randomly according to the probability mass function p(w). The method for
selecting xt was the same as in Section 5.1. As in Section 5.1, Figure 3 shows that the proposed method
outperforms the comparison methods in most settings. On the other hand, in the experiments in Section
5.1, the regret of Proposed (fixed) did not decrease in the 4D synthetic function (EXP), while in Figure 3,
the regret decreased more than Figure 2. This is because w could not be selected, and as a result of random
sampling, more exploration was performed, making it possible to avoid local solutions.

5.3 Carrier Lifetime Data

In this section, we conducted experiments using the carrier lifetime dataset (Kutsukake et al., 2015), which
quantifies the performance of silicon ingots used in solar cells. The original dataset includes 6586 two-
dimensional coordinates on the surface of a silicon ingot and the corresponding carrier lifetime values, denoted
by LT(x1, x2) at each coordinate (x1, x2). In this experiment, we focused on the subset X̃ ≡ {(2a+6, 2b+6) |
1 ≤ a ≤ 88, 1 ≤ b ≤ 72}, which includes 6336 of these points. The set of design variables X was defined
as a subset of X̃ , specifically X = {(22a − 4, 18b − 2) | 1 ≤ a ≤ 8, 1 ≤ b ≤ 8}. In addition, we defined
Ω = {(2a − 12, 2b − 10) | 1 ≤ a ≤ 11, 1 ≤ b ≤ 9}. This results in |X | = 64, |Ω| = 99, and |X × Ω| = 6336,
with the set X + Ω ≡ {x + w | x ∈ X , w ∈ Ω} equal to X̃ . For each input (x1, x2, w1, w2) ∈ X × Ω, the
black-box function was defined as f(x1, x2, w1, w2) = LT(x1 + w1, x2 + w2). The kernel function used in the
surrogate model was the Matérn 3/2 kernel, defined as follows:

k((x1, x2, w1, w2), (x′
1, x′

2, w′
1, w′

2)) = 4
(

1 +
√

3∥θ − θ′∥2

25

)
exp

(
−

√
3∥θ − θ′∥2

25

)
,

where θ = (x1 + w1, x2 + w2) and θ′ = (x′
1 + w′

1, x′
2 + w′

2). The experiment was performed under the
assumption of no observation noise. However, to ensure numerical stability when computing the inverse
of the kernel matrix, a nominal noise variance of σ2

noise = 10−6 was added. The same three robustness
measures and nine methods as described in Section 5.1 were employed. The probability mass function was
set to p(w) = 1/99, and the parameters (h, α) = (2.9, 4). Under this setting, one initial point was selected
at random, and each algorithm was run for 500 iterations. This procedure was repeated 100 times, and the
average regret rt was computed for each iteration. As shown in Figure 4, the Proposed method demonstrated
performance comparable to that of the baseline methods, even on the carrier lifetime dataset.

6 Conclusion

In this paper, we proposed a new method for BO of robustness measures for black-box functions with
input uncertainty. The proposed method estimated the optimal solution using posterior means, sampled the
parameters of GP-UCB from a probability distribution, and determined the next evaluation point based on
the estimated solution, credible intervals, and posterior variance. In Section 4, we provided upper bounds
on the expected regret and cumulative regret and showed that their orders for commonly used robustness
measures, including the expectation measure, were O(

√
γt/t) and O(

√
tγt), respectively.

Compared to existing methods, the proposed method offered the following three advantages. First, unlike
the methods in Beland & Nair (2017); Iwazaki et al. (2021a), which were tailored to specific robustness
measures, our method was applicable more generally to any robustness measure satisfying the condition in
equation 2. Second, in contrast to the method in Inatsu et al. (2024a), which was also not restricted to
a particular robustness measure, our method did not require hyperparameters for the acquisition function.
Third, we derived the order of the expected regret and cumulative regret defined in terms of the estimated
solution based on the posterior mean. To the best of our knowledge, this study is the first to establish
expected (cumulative) regret bounds for various robustness measures.

However, the proposed method also had certain limitations. Most significantly, while it randomly replaced
the parameters of GP-UCB, a key feature of the method, this mechanism alone did not significantly improve
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Figure 3: Average regrets across 100 simulations under the uncontrollable setting for each method. Top,
middle, and bottom rows correspond to 2D, 4D, and 6D synthetic function settings, respectively. Left,
center, and right columns show the results for EXP, PTR, and EXP-MAE, respectively. Since BBBMOBO
(fixed) and Proposed (fixed) are the same in EXP, only Proposed (fixed) is displayed in the figures on the
left column. Error bars represent twice the standard error.

practical performance. Additionally, although we derived a high-probability bound for the theoretical anal-
ysis, the appearance of δ−1 in the bound, which was not tight compared to typical GP-UCB-based bounds
with respect to δ, posed a limitation. Furthermore, although the proposed method can be extended to
continuous spaces, it has the disadvantage of losing the advantages of the proposed method, namely, that
βt does not need to be adjusted and that no increase in t is required. Finally, it was generally difficult to
calculate the best index t̂ among the estimated optimal solutions x̂t.
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Figure 4: Average regrets on carrier lifetime dataset over 100 simulations for each method. Left, middle,
and right columns correspond to results for EXP, PTR, and EXP-MAE, respectively. Since BBBMOBO
(fixed) and Proposed (fixed) are the same in EXP, only Proposed (fixed) is displayed in the figures on the
left column. Error bars represent twice standard error.

Addressing these disadvantages remains an important direction for future study.
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Algorithm 3 RRGP-UCB for robustness measures when X is continuous and Ω is finite.
Input: GP prior GP(0, k), {κ

(1)
t }t∈N, 1 ≤ κ

(1)
1 ≤ κ

(1)
2 ≤ · · ·

for t = 1, 2, . . . do
Generate ξt from chi-squared distribution with two degrees of freedom
Compute βt = 2 log κ

(1)
t + ξt

Compute Qt−1(x, w) for each (x, w) ∈ X × Ω
Compute Qt−1(x) for each x ∈ X
Estimate x̂t by x̂t = arg maxx∈X ρ(µt−1(x, ·))
Select next evaluation point xt by equation 4
Select next evaluation point wt by equation 5
Observe yt = f(xt, wt) + εt at point (xt, wt)
Update GP by adding observed data

end for

Appendix

A Extension of the Proposed Method to Continuous Settings

In this section, we consider the case where X and Ω are not finite sets. We consider the following three cases
separately: Only X is continuous, only Ω is continuous, and both X and Ω are continuous.

A.1 Extension to Continuous Settings when X is Continuous and Ω is Finite

Let X be a continuous set, and let Ω be a finite set. Suppose that X is a compact and convex set with
X ⊂ [0, r]d1 . In this setting, the only difference between Algorithm 1 and an extension of the proposed method
is the distribution of βt. Specifically, by using κ

(1)
t with 1 ≤ κ

(1)
1 ≤ κ

(1)
2 ≤ · · · , we define βt = 2 log κ

(1)
t + ξt.

Theoretically valid values of κ
(1)
1 , . . . , κ

(1)
t and the theoretical analysis are given in Appendix A.1.1. The

pseudo-code for the case when X is continuous and Ω is finite is provided in Algorithm 3.

A.1.1 Theoretical Analysis in the Continuous Setting when X is Continuous and Ω is Finite

To derive the theoretical guarantee, we introduce additional two assumptions.
Assumption A.1. There exist a1, b1 > 0 such that

P
(

sup
x∈X

∣∣∣∣∂f(x, w)
∂xj

∣∣∣∣ > L

)
≤ a1 exp

(
−
(

L

b1

)2
)

for j ∈ {1, . . . , d1}, w ∈ Ω.

Assumption A.2. There exists a non-decreasing, concave function q1(a) such that q1(0) = 0 and

|ρ(f(x, ·)) − ρ(f(x′, ·))| ≤ q1

(
max
w∈Ω

|f(x, w) − f(x′, w)|
)

for x, x′ ∈ X .

For Assumption A.1, note that when w is fixed, f(x, w) is a GP on X . In GP-based BOs, similar assumptions
to Assumption A.1 are used in, for example, Srinivas et al. (2010); Takeno et al. (2023). Here, for the Bayes
risk (expectation), worst-case, best-case, α-value-at-risk, α-conditional value-at-risk, and mean absolute
deviation measures described in Table 4 in Inatsu et al. (2024a), we can use q(m) in the table as q1(a) in
Assumption A.2. Details are described in Appendix C.5. Then, the following theorem holds.
Theorem A.1. Assume that the regularity assumption, Assumptions 4.1, A.1 and A.2, and equation 2
hold. Suppose that ξ1, . . . , ξt are random variables following the chi-squared distribution with two degrees of
freedom, where f, ε1, . . . , εt, ξ1, . . . , ξt are mutually independent. Let κ

(1)
t = (1 + ⌈b1d1rt2(

√
log(a1d1|Ω|) +

√
π/2)⌉d1)|Ω|, and define βt = 2 log κ

(1)
t + ξt. Let q1(a) and q(a) =

∑n
i=1 ζihi

(∑si

j=1 λijaνij

)
be functions
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satisfying Assumptions A.2 and 4.1, respectively. Then, if Algorithm 3 is performed, the following holds:

E[Rt] ≤ tq1

(
π2

6t

)
+ 2t

n∑
i=1

ζihi

1
t

si∑
j=1

2νij λij

(
tC2,νij ,t

)1−ν′
ij/2 (C1γt)ν′

ij/2

 ,

where ν′
ij = min{νij , 1}, C1 = 2

log(1+σ−2
noise) , C2,νij ,t = E[βνij/(2−ν′

ij)
t ], and the expectation is taken over all

sources of randomness, including f, ε1, . . . , εt, β1, . . . , βt.

Unlike the case where X is finite, since C2,νij ,t diverges with the order of (log t)νij/(2−ν′
ij), (C2,νij ,t)1−ν′

ij/2

also diverges with the order of (log t)νij/2. Hence, even if limt→∞ γt/t = 0, that is, γt is sublinear, if γt

diverges with the order of t

(log t)
νij /ν′

ij
or higher, the argument for the function hi(·) diverges to infinity. On

the other hand, if the order of γt is slower than t

(log t)
νij /ν′

ij
, then limt→∞ E[Rt]/t = 0 under the assumptions

that q1(·) and hi(·) are continuous at 0. Next, as in the case of X , for six robustness measures including the
expectation measure, the following corollary holds.
Corollary A.1. Under the assumptions of Theorem A.1, for the expectation, worst-case, best-case, α-value-
at-risk, α-conditional value-at-risk, and mean absolute deviation measures, the following holds:

E[Rt] ≤ C

(
π2

6 + 4
√

C1t(2 log κ
(1)
t + 2)γt

)
,

where C is 2 for the mean absolute deviation measure, and 1 for the other measures.

Furthermore, for the index t̂ given by equation 9, the following theorem holds.
Theorem A.2. Under the assumptions of Theorem A.1, the following holds:

E[rt̂] ≤ E[Rt]
t

≤ q1

(
π2

6t

)
+ 2

n∑
i=1

ζihi

1
t

si∑
j=1

2νij λij

(
tC2,νij ,t

)1−ν′
ij/2 (C1γt)ν′

ij/2

 ,

where t̂ is given by equation 9, and functions q1(·), hi(·) and all coefficients are as defined in Theorem A.1.
Moreover, for the expectation, worst-case, best-case, α-value-at-risk, α-conditional value-at-risk, and mean
absolute deviation measures, the following holds:

E[rt̂] ≤ C

π2

6t
+ 4

√
C1(2 log κ

(1)
t + 2)γt

t

 ,

where C is given in Corollary A.1. In addition, for the expectation measure, t̂ satisfies t̂ = t and

E[rt̂] = E[rt] ≤ π2

6t
+ 4

√
C1(2 log κ

(1)
t + 2)γt

t
.

Proofs are given by using the same argument as in the proof of Theorem 4.2 and 4.3.

A.2 Extension to Continuous Settings when X is Finite and Ω is Continuous

Let X be a finite set, and let Ω be a continuous set. Suppose that Ω is a compact and convex set with
Ω ⊂ [0, r]d2 . In this setting, the difference between Algorithm 1 and an extending method is not only the
difference in the distribution of βt. Specifically, the method for estimating the optimal solution x̂t and the
method for selecting xt also need to be changed.

Let t ≥ 1, and let Ωt be a finite subset of Ω. For w ∈ Ω, let [w]t be the element of Ωt closest to w. Then,
for (x, w) ∈ X × Ω, we define µ†

t−1(x, w), l†
t−1(x, w) and u†

t−1(x, w) as follows:

µ†
t−1(x, w) = µt−1(x, [w]t), l†

t−1(x, w) = lt−1(x, [w]t) = µt−1(x, [w]t) − β
1/2
t σt−1(x, [w]t),

u†
t−1(x, w) = ut−1(x, [w]t) = µt−1(x, [w]t) + β

1/2
t σt−1(x, [w]t).
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Algorithm 4 RRGP-UCB for robustness measures when X is finite and Ω is continuous.
Input: GP prior GP(0, k), {κ

(2)
t }t∈N, 1 ≤ κ

(2)
1 ≤ κ

(2)
2 ≤ · · · , finite subsets Ω1, Ω2, . . . ⊂ Ω

for t = 1, 2, . . . do
Generate ξt from chi-squared distribution with two degrees of freedom
Compute βt = 2 log κ

(2)
t + ξt

Compute Q†
t−1(x, w) for each (x, w) ∈ X × Ω

Compute Q†
t−1(x) for each x ∈ X

Estimate x̂†
t by x̂†

t = arg maxx∈X ρ(µ†
t−1(x, ·))

Select next evaluation point xt by equation 12
Select next evaluation point wt by wt = arg maxw∈Ω σ2

t−1(xt, w)
Observe yt = f(xt, wt) + εt at point (xt, wt)
Update GP by adding observed data

end for

Furthermore, for each x, we define a set of functions with respect to w, G†
t−1(x), as follows:

G†
t−1(x) = {g(x, ·) | for all w ∈ Ω, g(x, w) ∈ Q†

t−1(x, w)},

where Q†
t−1(x, w) = [l†

t−1(x, w), u†
t−1(x, w)]. Suppose that lcb†

t−1(x) and ucb†
t−1(x) satisfy the following

inequalities:
lcb†

t−1(x) ≤ inf
g(x,·)∈G†

t−1(x)
ρ(g(x, ·)), sup

g(x,·)∈G†
t−1(x)

ρ(g(x, ·)) ≤ ucb†
t−1(x). (10)

For commonly used robustness measures described in Table 3 in Inatsu et al. (2024a), we can use lcb(m)
t−1(x)

and ucb(m)
t−1(x) in the table as lcb†

t−1(x) and ucb†
t−1(x), respectively. Using this, we define the credible

interval Q†
t−1(x) = [lcb†

t−1(x), ucb†
t−1(x)]. Here, we emphasize that Q†

t−1(x) is the credible interval for
ρ(f†

t (x, ·)) ≡ F †
t (x), not F (x), where f†

t (x, w) ≡ f(x, [w]t). We define the estimated solution x̂†
t by using

µ†
t−1(x, ·) as follows:

x̂†
t = arg max

x∈X
ρ(µ†

t−1(x, ·)). (11)

The next point to be evaluated xt is selected as follows.
Definition A.1 (Selection rule for xt when Ω is continuous). Suppose that ξ1, . . . , ξt are random variables
following the chi-squared distribution with two degrees of freedom, where f, ε1, . . . , εt, ξ1, . . . , ξt are mutually
independent. For the sequence κ

(2)
t with 1 ≤ κ

(2)
1 ≤ κ

(2)
2 ≤ · · · , we define βt = 2 log κ

(2)
t + ξt. Then, for

lcb†
t−1(x) and ucb†

t−1(x) satisfying equation 10, and x̂†
t given by equation 11, we select xt as follows:

xt = arg max
x∈{x̃†

t ,x̂†
t }

(ucb†
t−1(x) − lcb†

t−1(x)), (12)

where x̃†
t = arg maxx∈X (ucb†

t−1(x) − maxx∈X lcb†
t−1(x))+.

For wt, we use the same rule as in Algorithm 1, that is, wt is selected by

wt = arg max
w∈Ω

σ2
t−1(xt, w).

The pseudo-code for the proposed method is provided in Algorithm 4.

A.2.1 Theoretical Analysis in the Continuous Setting when X is Finite and Ω is Continuous

First, we introduce the following two assumptions.
Assumption A.3. There exist a2, b2 > 0 such that

P
(

sup
w∈Ω

∣∣∣∣∂f(x, w)
∂wj

∣∣∣∣ > L

)
≤ a2 exp

(
−
(

L

b2

)2
)

for j ∈ {1, . . . , d2}, x ∈ X .

24



Published in Transactions on Machine Learning Research (07/2025)

Assumption A.4. There exists a non-decreasing concave function q2(a) such that q2(0) = 0 and

|ρ(f(x, ·)) − ρ(f†
t (x, ·))| ≤ q2

(
max
w∈Ω

|f(x, w) − f(x, [w]t)|
)

for any x ∈ X , Ωt and f(x, w).

For Assumption A.3, if x is fixed, then f(x, w) is a GP on Ω. Hence, as in the case of Assumption A.1, we can
obtain a sufficient condition for Assumption A.3 by using the derivative of the kernel function. Furthermore,
for Assumption A.4, we can use q(m)(a) in Table 4 in Inatsu et al. (2024a) as q2(a) if the target robustness
measure is the Bayes risk (expectation), worst-case, best-case, α-value-at-risk, α-conditional value-at-risk,
or mean absolute deviation measure described in the table. Details are given in Appendix C.5. In addition,
for the optimal solution x∗ = arg maxx∈X F (x) and estimated solution x̂†

t , we define the regret r†
t and

cumulative regret R†
t as follows:

r†
t = F (x∗) − F (x̂†

t), R†
t =

t∑
k=1

r†
k.

Here, for ucb†
t−1(xt), lcb†

t−1(xt) and 2β
1/2
t σt−1(xt, wt), we introduce the following assumption.

Assumption A.5. There exists a function q†(x) ∈ Q such that

ucb†
t−1(xt) − lcb†

t−1(xt) ≤ q†(2β
1/2
t max

w∈Ω
σt−1(xt, w))

for any t ≥ 1, xt, βt and σt−1(xt, w).

As in the case of q(a), for the Bayes risk (expectation), worst-case, best-case, α-value-at-risk, α-conditional
value-at-risk, and mean absolute deviation measures described in Table 4 in Inatsu et al. (2024a), we can
use q(m)(a) in the table as q†(a). Then, the following theorem holds.
Theorem A.3. Assume that the regularity assumption, Assumptions A.3, A.4 and A.5, and equa-
tion 10 hold. Let τ †

t = ⌈b2d2rt2(
√

log(a2d2|X |) +
√

π/2)⌉, and let Ωt be a set of discretization for Ω
with each coordinate equally divided into τ †

t . Suppose that ξ1, . . . , ξt are random variables following the
chi-squared distribution with two degrees of freedom, where f, ε1, . . . , εt, ξ1, . . . , ξt are mutually indepen-
dent. Let κ

(2)
t = ⌈b2d2rt2(

√
log(a2d2|X |) +

√
π/2)⌉d2 |X |, and define βt = 2 log κ

(2)
t + ξt. Let q2(a) and

q†(a) =
∑n

i=1 ζih
†
i

(∑si

j=1 λijaνij

)
be functions satisfying Assumptions A.4 and A.5, respectively. Then, if

Algorithm 4 is performed, the following holds:

E[R†
t ] ≤ 2tq2

(
π2

6t

)
+ 2t

n∑
i=1

ζih
†
i

1
t

si∑
j=1

2νij λij

(
tC2,νij ,t

)1−ν′
ij/2 (C1γt)ν′

ij/2

 ,

where ν′
ij = min{νij , 1}, C1 = 2

log(1+σ−2
noise) , C2,νij ,t = E[βνij/(2−ν′

ij)
t ], and the expectation is taken over all

sources of randomness, including f, ε1, . . . , εt, β1, . . . , βt.

Here, since C2,νij ,t diverges with the order of (log t)νij/(2−ν′
ij), if γt diverges with the order of t

(log t)
νij /ν′

ij
or

higher, the argument for the function h†
i (·) tends to infinity. On the other hand, if the order of γt is slower

than t

(log t)
νij /ν′

ij
, limt→∞ E[R†

t ]/t = 0 holds if q2(·) and h†
i (·) are continuous at 0. Next, for six robustness

measures including the expectation measure, the following corollary holds.
Corollary A.2. Under the assumptions of Theorem A.3, for the expectation, worst-case, best-case, α-value-
at-risk, α-conditional value-at-risk, and mean absolute deviation measures, the following holds:

E[R†
t ] ≤ C

(
π2

3 + 4
√

C1t(2 log κ
(2)
t + 2)γt

)
,

where C is 2 for the mean absolute deviation measure, and 1 for the other measures.
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Here, we define t̂ as follows:

t̂ = arg min
1≤i≤t

Et−1[F (x∗) − F (x̂†
i )]. (13)

Then, the following theorem holds.
Theorem A.4. Under the assumptions of Theorem A.3, the following holds:

E[r†
t̂
] ≤ E[R†

t ]
t

≤ 2q2

(
π2

6t

)
+ 2

n∑
i=1

ζih
†
i

1
t

si∑
j=1

2νij λij

(
tC2,νij ,t

)1−ν′
ij/2 (C1γt)ν′

ij/2

 ,

where t̂ is given by equation 13, and functions q2(·), h†
i (·) and all coefficients are as defined in Theorem A.3.

Moreover, for the expectation, worst-case, best-case, α-value-at-risk, α-conditional value-at-risk, and mean
absolute deviation measures, the following holds:

E[r†
t̂
] ≤ C

π2

3t
+ 4

√
C1(2 log κ

(2)
t + 2)γt

t

 , (14)

where C is given in Corollary A.2.

Proofs are given by using the same argument as in the proof of Theorems 4.2 and 4.3. Finally, we consider t̂
in the expectation measure. Under the expectation measure, since x̂†

t corresponds to the posterior mean of
F †

t (x), there is a gap with the index t̂ given in equation 13. As a result, even in the case of the expectation
measure, t̂ does not necessarily equal t. Nevertheless, the upper bound of E[r†

t ] can be expressed as the
right-hand side in equation 14 plus 2t−2.
Theorem A.5. Under the assumptions of Theorem A.3, for the expectation measure, the following holds:

E[r†
t ] ≤ 2

t2 + π2

3t
+ 4

√
C1(2 log κ

(2)
t + 2)γt

t
.

The proof is given in Appendix C.9.

A.3 Extension to Continuous Settings when X and Ω are Continuous

Let X and Ω be continuous sets. Suppose that both X and Ω are compact and convex sets with X × Ω ⊂
[0, r]d1+d2 . Let d = d1+d2. In this setting, there is no difference from Algorithm 4 in terms of implementation,
but the way that the partition of Ω and theoretical choice of κ

(2)
t is different. Therefore, by replacing the

notations in Algorithm 4, we show the pseudo-code of the proposed method in Algorithm 5.

A.3.1 Theoretical Analysis in the Continuous Setting when X and Ω are Continuous

To derive the theoretical guarantee, we introduce the following two assumptions.
Assumption A.6. Let X × Ω ≡ Θ and (x, w) ≡ θ. Then, there exist a3, b3 > 0 such that

P
(

sup
θ∈Θ

∣∣∣∣∂f(θ)
∂θj

∣∣∣∣ > L

)
≤ a3 exp

(
−
(

L

b3

)2
)

for j ∈ {1, . . . , d}.

Assumption A.7. There exists a non-decreasing and concave function q3(a) such that q3(0) = 0 and

|ρ(f(x, ·)) − ρ(f†
t (x, ·))| ≤ q3

(
max
w∈Ω

|f(x, w) − f(x, [w]t)|
)

,

|ρ(f(x, ·)) − ρ(f†
t ([x]t, ·))| ≤ q3

(
max
w∈Ω

|f(x, w) − f([x]t, [w]t)|
)

for any x ∈ X , Ωt and f(x, w).
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Algorithm 5 RRGP-UCB for robustness measures when X and Ω are continuous.
Input: GP prior GP(0, k), {κ

(3)
t }t∈N, 1 ≤ κ

(3)
1 ≤ κ

(3)
2 ≤ · · · , finite subsets Ω1, Ω2, . . . ⊂ Ω

for t = 1, 2, . . . do
Generate ξt from chi-squared distribution with two degrees of freedom
Compute βt = 2 log κ

(3)
t + ξt

Compute Q†
t−1(x, w) for each (x, w) ∈ X × Ω

Compute Q†
t−1(x) for each x ∈ X

Estimate x̂†
t by x̂†

t = arg maxx∈X ρ(µ†
t−1(x, ·))

Select next evaluation point xt by equation 12
Select next evaluation point wt by wt = arg maxw∈Ω σ2

t−1(xt, w)
Observe yt = f(xt, wt) + εt at point (xt, wt)
Update GP by adding observed data

end for

For Assumption A.7, we can use q(m)(a) in Table 4 in Inatsu et al. (2024a) as q3(a) if the target robustness
measure is the Bayes risk (expectation), worst-case, best-case, α-value-at-risk, α-conditional value-at-risk,
or mean absolute deviation measures described in the table. Details are described in Appendix C.5. Then,
the following theorem holds.
Theorem A.6. Assume that the regularity assumption, Assumptions A.5, A.6 and A.7, and equation 10
hold. Let τ̃t = ⌈b3drt2(

√
log(a3d) +

√
π/2)⌉, and let Xt × Ωt be a set of discretization for X × Ω with

each coordinate equally divided into τ̃t. Suppose that ξ1, . . . , ξt are random variables following the chi-
squared distribution with two degrees of freedom, where f, ε1, . . . , εt, ξ1, . . . , ξt are mutually independent.
Let κ

(3)
t = (1 + τ̃d1

t )τ̃d2
t , and define βt = 2 log κ

(3)
t + ξt. Let q3(a) and q†(a) =

∑n
i=1 ζih

†
i

(∑si

j=1 λijaνij

)
be

functions satisfying Assumptions A.7 and A.5, respectively. Then, if Algorithm 5 is performed, the following
holds:

E[R†
t ] ≤ 2tq3

(
π2

6t

)
+ 2t

n∑
i=1

ζih
†
i

1
t

si∑
j=1

2νij λij

(
tC2,νij ,t

)1−ν′
ij/2 (C1γt)ν′

ij/2

 ,

where ν′
ij = min{νij , 1}, C1 = 2

log(1+σ−2
noise) , C2,νij ,t = E[βνij/(2−ν′

ij)
t ], and the expectation is taken over all

sources of randomness, including f, ε1, . . . , εt, β1, . . . , βt.

The proof is given in Appendix C.10. Here, since C2,νij ,t diverges with the order of (log t)νij/(2−ν′
ij), if the

order of γt is t

(log t)
νij /ν′

ij
or higher, then the argument for the function h†

i (·) tends to infinity. On the other

hand, if the order of γt is slower than t

(log t)
νij /ν′

ij
, limt→∞ E[R†

t ]/t = 0 holds if q3(·) and h†
i (·) are continuous

at 0. Next, for six measures including the expectation measure, the following corollary holds.
Corollary A.3. Under the assumptions of Theorem A.6, for the expectation, worst-case, best-case, α-value-
at-risk, α-conditional value-at-risk, and mean absolute deviation measures, the following holds:

E[R†
t ] ≤ C

(
π2

3 + 4
√

C1t(2 log κ
(3)
t + 2)γt

)
,

where C is 2 for the mean absolute deviation measure, and 1 for the other measures.

Furthermore, for t̂ given by equation 13, the following theorem holds.
Theorem A.7. Under the assumptions of Theorem A.6, the following holds:

E[r†
t̂
] ≤ E[R†

t ]
t

≤ 2q3

(
π2

6t

)
+ 2

n∑
i=1

ζih
†
i

1
t

si∑
j=1

2νij λij

(
tC2,νij ,t

)1−ν′
ij/2 (C1γt)ν′

ij/2

 ,
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Algorithm 6 RRGP-UCB for robustness measures in the uncontrollable setting when Ω is finite.
Input: GP prior GP(0, k), finite set Ω, {κ

(4)
t }t∈N, 1 ≤ κ

(4)
1 ≤ κ

(4)
2 ≤ · · ·

for t = 1, 2, . . . do
Generate ξt from chi-squared distribution with two degrees of freedom
Compute βt = 2 log κ

(4)
t + ξt

Compute Qt−1(x, w) for each (x, w) ∈ X × Ω
Compute Qt−1(x) for each x ∈ X
Estimate x̂t by x̂t = arg maxx∈X ρ(µt−1(x, ·))
Select next evaluation point xt by equation 4
Generate wt from P ∗

Observe yt = f(xt, wt) + εt at point (xt, wt)
Update GP by adding observed data

end for

where t̂ is given by equation 13, and functions q3(·), h†
i (·) and all coefficients are as defined in Theorem A.6.

Moreover, for the expectation, worst-case, best-case, α-value-at-risk, α-conditional value-at-risk, and mean
absolute deviation measures, the following holds:

E[r†
t̂
] ≤ C

π2

3t
+ 4

√
C1(2 log κ

(3)
t + 2)γt

t

 ,

where C is given in Corollary A.3.

The proof is given by using the same argument as in the proof of Theorems 4.2 and 4.3. Finally, for the
expectation measure, the following theorem holds.
Theorem A.8. Under the assumptions of Theorem A.6, for the expectation measure, the following holds:

E[r†
t ] ≤ 2

t2 + π2

3t
+ 4

√
C1(2 log κ

(3)
t + 2)γt

t
.

As in Appendix C.9, we can prove Theorem A.8.

B Extension of the Proposed Method to Uncontrollable Settings

In this section, we consider the case of uncontrollable settings, i.e., w1, . . . , wt follow the distribution P ∗

and cannot be controlled even during optimization. Hereafter, we assume that w1, . . . , wt are mutually
independent.

B.1 Extension to Uncontrollable Settings when Ω is Finite

Let Ω be a finite set. In this case, if X is finite or continuous, the only difference between the proposed
method and Algorithm 1 or 3 is whether or not wt is sampled from P ∗. Moreover, if we set κ

(1)
t = |X × Ω|

in Algorithm 3, we can express the case when X is finite, i.e., Algorithm 1. We give the pseudo-code for the
case where Ω is finite in the uncontrollable setting in Algorithm 6. Note that the X in Algorithm 6 includes
both the finite and continuous cases.

B.2 Theoretical Analysis in Uncontrollable Settings when Ω is Finite

Let Ω = {w(1), . . . , w(J)}, pj = Pw(w = w(j)) and pmin = min1≤j≤J pj . Next, we introduce the following
assumption.
Assumption B.1. For any j ∈ {1, . . . , J}, pj > 0 holds.
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Then, for the upper bound of the inequality for the theoretical analysis for finite or continuous X , it is
sufficient to replace C1 in the upper bound of the inequality in the results of Section 4 or Appendix A.1.1
with C ′ = p−1

minC1.
Theorem B.1. Assume that the regularity assumption, Assumptions 4.1 and B.1, and equation 2 hold.
Suppose that X and Ω are finite. Also suppose that w1, . . . , wt follow P ∗, and ξ1, . . . , ξt are random
variables following the chi-squared distribution with two degrees of freedom, where f, ε1, . . . , εt, w1, . . . , wt,
ξ1, . . . , ξt are mutually independent. Let κ

(4)
t = |X × Ω|, and define βt = 2 log κ

(4)
t + ξt. Let q(a) =∑n

i=1 ζihi

(∑si

j=1 λijaνij

)
be a function satisfying Assumption 4.1. Then, under the uncontrollable setting,

if Algorithm 6 is performed, the following holds:

E[Rt] ≤ 2t

n∑
i=1

ζihi

1
t

si∑
j=1

2νij λij

(
tC2,νij

)1−ν′
ij/2 (C ′

1γt)ν′
ij/2

 ,

where ν′
ij = min{νij , 1}, C ′

1 = 2p−1
min

log(1+σ−2
noise) , C2,νij

= E[βνij/(2−ν′
ij)

t ], and the expectation is taken over all
sources of randomness, including f, ε1, . . . , εt, w1, . . . , wt, β1, . . . , βt. In addition, for the expectation, worst-
case, best-case, α-value-at-risk, α-conditional value-at-risk, and mean absolute deviation measures, the fol-
lowing inequality holds:

E[Rt] ≤ C
√

tC ′
1(2 log(|X × Ω|) + 2)γt,

where C is 8 for the mean absolute deviation measure and 4 for the other measures.
Theorem B.2. Under the assumptions of Theorem B.1, the following holds:

E[rt̂] ≤ E[Rt]
t

≤ 2
n∑

i=1
ζihi

1
t

si∑
j=1

2νij λij

(
tC2,νij

)1−ν′
ij/2 (C ′

1γt)ν′
ij/2

 ,

where t̂ is given by equation 9, and the function hi(·) and all coefficients are as defined in Theorem B.1. In
addition, for the expectation, worst-case, best-case, α-value-at-risk, α-conditional value-at-risk, and mean
absolute deviation measures, the following holds:

E[rt̂] ≤ E[Rt]
t

≤ C

√
C ′

1(2 log(|X × Ω|) + 2)γt

t
,

where C is given in Theorem B.1. Furthermore, in the expectation measure, the following holds:

E[rt] ≤ E[Rt]
t

≤ 4
√

C ′
1(2 log(|X × Ω|) + 2)γt

t
.

Theorem B.3. Assume that the regularity assumption, Assumptions 4.1, A.1, A.2 and B.1, and equation 2
hold. Suppose that X and Ω are continuous and finite, respectively. Also suppose that w1, . . . , wt follow
P ∗, and ξ1, . . . , ξt are random variables following the chi-squared distribution with two degrees of freedom,
where f, ε1, . . . , εt, w1, . . . , wt, ξ1, . . . , ξt are mutually independent. Let κ

(4)
t = (1+⌈b1d1rt2(

√
log(a1d1|Ω|)+

√
π/2)⌉d1)|Ω|, and define βt = 2 log κ

(4)
t + ξt. Let q1(a) and q(a) =

∑n
i=1 ζihi

(∑si

j=1 λijaνij

)
be functions

satisfying Assumptions A.2 and 4.1, respectively. Then, under the uncontrollable setting, if Algorithm 6 is
performed, the following holds:

E[Rt] ≤ tq1

(
π2

6t

)
+ 2t

n∑
i=1

ζihi

1
t

si∑
j=1

2νij λij

(
tC2,νij ,t

)1−ν′
ij/2 (C ′

1γt)ν′
ij/2

 ,

where ν′
ij = min{νij , 1}, C ′

1 = 2p−1
min

log(1+σ−2
noise) , C2,νij ,t = E[βνij/(2−ν′

ij)
t ], and the expectation is taken over

all sources of randomness, including f, ε1, . . . , εt, w1, . . . , wt, β1, . . . , βt. In addition, for the expectation,
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Algorithm 7 RRGP-UCB for robustness measures in the uncontrollable setting when Ω is continuous.
Input: GP prior GP(0, k), continuous set Ω, {κ

(5)
t }t∈N, 1 ≤ κ

(5)
1 ≤ κ

(5)
2 ≤ · · · , finite subsets Ω1, Ω2, . . . ⊂ Ω

for t = 1, 2, . . . do
Generate ξt from chi-squared distribution with two degrees of freedom
Compute βt = 2 log κ

(5)
t + ξt

Compute Q†
t−1(x, w) for each (x, w) ∈ X × Ω

Compute Q†
t−1(x) for each x ∈ X

Estimate x̂†
t by x̂†

t = arg maxx∈X ρ(µ†
t−1(x, ·))

Select next evaluation point xt by equation 12
Generate wt from P ∗

Observe yt = f(xt, wt) + εt at point (xt, wt)
Update GP by adding observed data

end for

worst-case, best-case, α-value-at-risk, α-conditional value-at-risk, and mean absolute deviation measures,
the following holds:

E[Rt] ≤ C

(
π2

6 + 4
√

C ′
1t(2 log κ

(4)
t + 2)γt

)
,

where C is 2 for the mean absolute deviation measure, and 1 for the other measures.
Theorem B.4. Under the assumptions of Theorem B.3, the following holds:

E[rt̂] ≤ E[Rt]
t

≤ q1

(
π2

6t

)
+ 2

n∑
i=1

ζihi

1
t

si∑
j=1

2νij λij

(
tC2,νij ,t

)1−ν′
ij/2 (C ′

1γt)ν′
ij/2

 ,

where t̂ is given by equation 9, and functions q1(·), hi(·) and all coefficients are as defined in Theorem B.3.
In addition, for the expectation, worst-case, best-case, α-value-at-risk, α-conditional value-at-risk, and mean
absolute deviation measures, the following holds:

E[rt̂] ≤ C

π2

6t
+ 4

√
C ′

1(2 log κ
(4)
t + 2)γt

t

 ,

where, C is given in Theorem B.3. Moreover, for the expectation measure, t̂ satisfies t̂ = t, i.e., the following
holds:

E[rt] ≤ π2

6t
+ 4

√
C ′

1(2 log κ
(4)
t + 2)γt

t
.

Proofs are given in Appendix C.11.

B.3 Extension to Uncontrollable Settings when Ω is Continuous

Let Ω be a continuous set. In this case, if X is finite or continuous, the only difference between the proposed
method and Algorithm 4 or 5 is whether or not wt is sampled from P ∗. We give the pseudo-code for the case
where Ω is continuous in the uncontrollable setting in Algorithm 7. Note that X in Algorithm 7 includes
both the finite and continuous cases.

B.4 Theoretical Analysis in Uncontrollable Settings when Ω is Continuous

First, we introduce a similar assumption to Assumption B.1. When Ω is finite, Assumption B.1 means that
there is no w(j) ∈ Ω such that Pw(w = w(j)) = 0, and this requires that the points that cannot be realized
values of w are not included in Ω. On the other hand, when Ω is continuous, a similar assumption is that
there is no a ∈ Ω and ϵ > 0 such that Pw(w ∈ Nei(a; ϵ)) = 0, where Nei(a; ϵ) is the open ball with center a
and radius ϵ > 0. Therefore, we introduce the following assumption:
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Assumption B.2. For any a ∈ Ω and ϵ > 0, Pw(w ∈ Nei(a; ϵ)) > 0 holds.

Furthermore, we introduce a new assumption on the partition of Ω. Here, let S = {Ω̃1, . . . , Ω̃s} be a family
of subsets in Ω. Then, S is the partition of Ω if S satisfies

⋃s
i=1 Ω̃i = Ω and Ω̃i ∩ Ω̃j = ∅ for any i ̸= j.

Assumption B.3. There exist partitions S1, S2, . . . of Ω satisfying the following two conditions:

1. For any t ≥ 1, pmin,t ≡ min1≤i≤t minΩ̃∈Si
Pw(w ∈ Ω̃) > 0.

2. There exists a non-stochastic sequence ι1, ι2, . . . such that

|σ2
t−1(xt, a) − σ2

t−1(xt, b)| ≤ ιt

for any t ≥ 1, {(x1, w1, y1, β1), . . . , (xt−1, wt−1, yt−1, βt−1), xt, βt}, Ω̃ ∈ St and a, b ∈ Ω̃.

Then, the following theorem holds.
Theorem B.5. Assume that the regularity assumption, Assumptions A.3, A.4, A.5, B.2 and B.3,
and equation 10 hold. Suppose that X and Ω are finite and continuous, respectively. Let τ †

t =
⌈b2d2rt2(

√
log(a2d2|X |) +

√
π/2)⌉, and let Ωt be a set of discretization for Ω with each coordinate equally

divided into τ †
t . Suppose that w1, . . . , wt follow P ∗, and ξ1, . . . , ξt are random variables following the

chi-squared distribution with two degrees of freedom, where f, ε1, . . . , εt, w1, . . . , wt, ξ1, . . . , ξt are mutually
independent. Define κ

(5)
t = ⌈b2d2rt2(

√
log(a2d2|X |) +

√
π/2)⌉d2 |X | and βt = 2 log κ

(5)
t + ξt. Let q2(a) and

q†(a) =
∑n

i=1 ζih
†
i

(∑si

j=1 λijaνij

)
be functions satisfying Assumptions A.4 and A.5, respectively. For the

sequence ι1, . . . , ιt satisfying Assumption B.3, define φt = ι1 + · · · + ιt. Then, under the uncontrollable
setting, if Algorithm 7 is performed, the following holds:

E[R†
t ] ≤ 2tq2

(
π2

6t

)
+ 2t

n∑
i=1

ζih
†
i

1
t

si∑
j=1

2νij λij

(
tC2,νij ,t

)1−ν′
ij/2 (φt + p−1

min,tC1γt)ν′
ij/2

 ,

where ν′
ij = min{νij , 1}, C1 = 2

log(1+σ−2
noise) , C2,νij ,t = E[βνij/(2−ν′

ij)
t ], p−1

min,t is given in Assumption B.3, and
the expectation is taken over all sources of randomness, including f, ε1, . . . , εt, w1, . . . , wt, β1, . . . , βt. In
addition, for the expectation, worst-case, best-case, α-value-at-risk, α-conditional value-at-risk, and mean
absolute deviation measures, the following holds:

E[R†
t ] ≤ C

(
π2

3 + 4
√

t(2 log κ
(5)
t + 2)(φt + p−1

min,tC1γt)
)

,

where C is 2 for the mean absolute deviation measure, and 1 for the other measures.
Theorem B.6. Under the assumptions of Theorem B.5, for t̂ defined by equation 13, the following holds:

E[r†
t̂
] ≤ E[R†

t ]
t

≤ 2q2

(
π2

6t

)
+ 2

n∑
i=1

ζih
†
i

1
t

si∑
j=1

2νij λij

(
tC2,νij ,t

)1−ν′
ij/2 (φt + p−1

min,tC1γt)ν′
ij/2

 .

In addition, for the expectation, worst-case, best-case, α-value-at-risk, α-conditional value-at-risk, and mean
absolute deviation measures, the following holds:

E[r†
t̂
] ≤ C

π2

3t
+ 4

√
(2 log κ

(5)
t + 2)(φt + p−1

min,tC1γt)
t

 .

Moreover, for the expectation measure, the following holds:

E[r†
t ] ≤ 2

t2 + π2

3t
+ 4

√
(2 log κ

(5)
t + 2)(φt + p−1

min,tC1γt)
t

.
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Theorem B.7. Assume that the regularity assumption, Assumptions A.5, A.6, A.7, B.2 and B.3, and
equation 10 hold. Suppose that X and Ω are continuous. Let τ̃t = ⌈b3drt2(

√
log(a3d)+

√
π/2)⌉, and let Xt×Ωt

be a set of discretization for X × Ω with each coordinate equally divided into τ̃t. Suppose that w1, . . . , wt

follow P ∗, and ξ1, . . . , ξt are random variables following the chi-squared distribution with two degrees of
freedom, where f, ε1, . . . , εt, w1, . . . , wt, ξ1, . . . , ξt are mutually independent. Define κ

(5)
t = (1 + τ̃d1

t )τ̃d2
t and

βt = 2 log κ
(5)
t + ξt. Let q3(a) and q†(a) =

∑n
i=1 ζih

†
i

(∑si

j=1 λijaνij

)
be functions satisfying Assumptions

A.7 and A.5, respectively. For the sequence ι1, . . . , ιt satisfying Assumption B.3, let φt = ι1 + · · · + ιt. Then,
under the uncontrollable setting, if Algorithm 7 is performed, the following holds:

E[R†
t ] ≤ 2tq3

(
π2

6t

)
+ 2t

n∑
i=1

ζih
†
i

1
t

si∑
j=1

2νij λij

(
tC2,νij ,t

)1−ν′
ij/2 (φt + p−1

min,tC1γt)ν′
ij/2

 ,

where ν′
ij = min{νij , 1}, C1 = 2

log(1+σ−2
noise) , C2,νij ,t = E[βνij/(2−ν′

ij)
t ], p−1

min,t is given in Assumption B.3, and
the expectation is taken over all sources of randomness, including f, ε1, . . . , εt, w1, . . . , wt, β1, . . . , βt. In
addition, for the expectation, worst-case, best-case, α-value-at-risk, α-conditional value-at-risk, and mean
absolute deviation measures, the following holds:

E[R†
t ] ≤ C

(
π2

3 + 4
√

t(2 log κ
(5)
t + 2)(φt + p−1

min,tC1γt)
)

,

where C is 2 for the mean absolute deviation measure, and 1 for the other measures.
Theorem B.8. Under the assumptions of Theorem B.7, for t̂ defined by equation 13, the following holds:

E[r†
t̂
] ≤ E[R†

t ]
t

≤ 2q3

(
π2

6t

)
+ 2

n∑
i=1

ζih
†
i

1
t

si∑
j=1

2νij λij

(
tC2,νij ,t

)1−ν′
ij/2 (φt + p−1

min,tC1γt)ν′
ij/2

 .

In addition, for the expectation, worst-case, best-case, α-value-at-risk, α-conditional value-at-risk, and mean
absolute deviation measures, the following holds:

E[r†
t̂
] ≤ C

π2

3t
+ 4

√
(2 log κ

(5)
t + 2)(φt + p−1

min,tC1γt)
t

 .

Moreover, for the expectation measure, the following holds:

E[r†
t ] ≤ 2

t2 + π2

3t
+ 4

√
(2 log κ

(5)
t + 2)(φt + p−1

min,tC1γt)
t

.

Proofs are described in Appendix C.12. In the next section, we provide specific examples that satisfy
Assumption B.3.

B.5 Specific Examples Satisfying Assumption B.3

For simplicity, assume that X = Ω = [0, 1]. Let P ∗ be the uniform distribution on Ω. For each t ≥ 1,
we define ϱt = ⌈t1/2⌉. Here, we consider a partition of Ω into ϱt intervals with length ϱ−1

t , that is, St =
{[(j − 1)/ϱt, j/ϱt) | j = 1, . . . , ϱt − 1} ∪ {[(ϱt − 1)/ϱt, 1]}. Then, for any Ω̃j ∈ St, pmin,t = ϱ−1

t > 0 because
Pw(w ∈ Ω̃j) = ϱ−1

t . Next, since the difference between posterior variances satisfies

σ2
t−1(xt, a) − σ2

t−1(xt, b) = (σt−1(xt, a) + σt−1(xt, b)) (σt−1(xt, a) − σt−1(xt, b)) ,

the following holds:

|σ2
t−1(xt, a)−σ2

t−1(xt, b)| = |σt−1(xt, a)+σt−1(xt, b)||σt−1(xt, a)−σt−1(xt, b)| ≤ 2|σt−1(xt, a)−σt−1(xt, b)|.
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Furthermore, from Theorem E.4 in Kusakawa et al. (2022), for linear, Gaussian and Matérn kernels, the
posterior standard deviation is a K-Lipschitz continuous function for any t ≥ 1 and observed data. Therefore,
if the true kernel function is the Gaussian kernel k((x, w), (x′, w′)) ≡ k(θ, θ′) = exp(−∥θ − θ′∥2

2/2), the
following inequality holds:

|σt−1(xt, a) − σt−1(xt, b)| ≤
√

2∥a − b∥1.

Moreover, since the length of Ω̃j is ϱ−1
t , the following holds:

|σ2
t−1(xt, a) − σ2

t−1(xt, b)| ≤ 2|σt−1(xt, a) − σt−1(xt, b)| ≤ 2
√

2∥a − b∥1 = 2
√

2ϱ−1
t .

This implies that ιt = 2
√

2ϱ−1
t . Hence, the following inequality holds:

φt = 2
√

2
t∑

k=1
ϱ−1

k ≤ 2
√

2
t∑

k=1
k−1/2 ≤ 2

√
2
(

1 +
∫ t

1
k−1/2dk

)
= 2

√
2(1 + 2

√
t − 2) ≤ 6

√
t.

Thus, by substituting φt ≤ 6
√

t and p−1
min,t = ϱt = ⌈t1/2⌉ into Theorem B.7, the following holds for the

expectation measure:

E[R†
t ] ≤ π2

3 + 4
√

t(2 log κ
(5)
t + 2)(6

√
t + ⌈t1/2⌉C1γt).

From the definition, κ
(5)
t satisfies log κ

(5)
t = O(log t). In addition, from Theorem 5 in Srinivas et al. (2010),

for the Gaussian kernel, γt satisfies γt = O((log t)3). Therefore, we obtain

E[R†
t ] = O(t3/4(log t)2).

C Proofs

C.1 Proof of Lemma 3.1

Proof. The value maxx∈X lt−1(x) is a constant that does not depend on x. This implies that x̃
(f)
t = x

(u)
t .

Therefore, if x
(f)
t = x̃

(f)
t , then ut−1(x(u)

t ) = ut−1(x(f)
t ). On the other hand, if x

(f)
t = x̂

(f)
t , that is,

2β
1/2
t σt−1(x̃(f)

t ) = ut−1(x̃(f)
t ) − lt−1(x̃(f)

t ) ≤ ut−1(x̂(f)
t ) − lt−1(x̂(f)

t ) = 2β
1/2
t σt−1(x̂(f)

t ),

then β
1/2
t σt−1(x̃(f)

t ) ≤ β
1/2
t σt−1(x̂(f)

t ). From the definition of x̂
(f)
t , µt−1(x̃(f)

t ) ≤ µt−1(x̂(f)
t ). Since

β
1/2
t σt−1(x̃(f)

t ) ≤ β
1/2
t σt−1(x̂(f)

t ), the inequality µt−1(x̃(f)
t ) + β

1/2
t σt−1(x̃(f)

t ) ≤ µt−1(x̂(f)
t ) + β

1/2
t σt−1(x̂(f)

t )
holds. This implies that ut−1(x̃(f)

t ) ≤ ut−1(x̂(f)
t ). Finally, since x̃

(f)
t = x

(u)
t , ut−1(x(u)

t ) ≤ ut−1(x̂(f)
t ) and

ut−1(x(u)
t ) = ut−1(x̂(f)

t ) hold.

C.2 Proof of Theorem 4.1

Proof. For t ≥ 1, we define Dt−1 = {(x1, w1, y1, β1), . . . , (xt−1, wt−1, yt−1, βt−1)} and D0 = ∅. Let ξt be
a realization from the chi-squared distribution with two degrees of freedom, and δ = 1

exp(ξt/2) . Then, from
the proof of Lemma 5.1 in Srinivas et al. (2010), with probability at least 1 − δ, the following holds for any
(x, w) ∈ X × Ω:

lt−1,δ(x, w) ≡ µt−1(x, w) − β
1/2
δ σt−1(x, w) ≤ f(x, w) ≤ µt−1(x, w) + β

1/2
δ σt−1(x, w) ≡ ut−1,δ(x, w),

where βδ = 2 log(|X × Ω|/δ). From the definition of δ, since βδ = 2 log(|X × Ω|) + ξt = βt, the following
inequality holds with probability at least 1 − δ:

lt−1(x, w) ≤ f(x, w) ≤ ut−1(x, w).

Hence, f(x, ·) ∈ Gt−1(x) holds. In addition, from the theorem’s assumption, since ucbt−1(x) and lcbt−1(x)
satisfy equation 2, the following holds:

lcbt−1(x) ≤ F (x) ≤ ucbt−1(x).
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Therefore, for F (x∗) − F (x̂t), the following inequality holds:

F (x∗) − F (x̂t) = (F (x∗) − max
x∈X

lcbt−1(x)) + (max
x∈X

lcbt−1(x) − F (x̂t))

≤ (ucbt−1(x∗) − max
x∈X

lcbt−1(x)) + (max
x∈X

lcbt−1(x) − F (x̂t))

≤ (ucbt−1(x∗) − max
x∈X

lcbt−1(x)) + (ρ(µt−1(x̂t, ·)) − F (x̂t))

≤ (ucbt−1(x̃t) − max
x∈X

lcbt−1(x)) + (ucbt−1(x̂t) − lcbt−1(x̂t))

≤ (ucbt−1(x̃t) − lcbt−1(x̃t)) + (ucbt−1(x̂t) − lcbt−1(x̂t))
≤ (ucbt−1(xt) − lcbt−1(xt)) + (ucbt−1(xt) − lcbt−1(xt))
= 2(ucbt−1(xt) − lcbt−1(xt)),

where the third inequality is derived by µt−1(x, ·) ∈ Gt−1(x), the definition of x̂t, and maxx∈X lcbt−1(x) ≤
maxx∈X ρ(µt−1(x, ·)) = ρ(µt−1(x̂t, ·)). Moreover, from Assumption 4.1, there exists a function

q(a) =
n∑

i=1
ζihi

 si∑
j=1

λijaνij


such that ucbt−1(xt) − lcbt−1(xt) ≤ q(2β

1/2
t σt−1(xt, wt)). Thus, we have

F (x∗) − F (x̂t) ≤ 2q(2β
1/2
t σt−1(xt, wt)). (15)

Let Ft−1(·) be a distribution function of F (x∗) − F (x̂t) under the given Dt−1. Then, from equation 15 we
get

Ft−1(2q(2β
1/2
t σt−1(xt, wt))) ≥ 1 − δ.

By taking the generalized inverse function for both sides, we obtain

F−1
t−1(1 − δ) ≤ 2q(2β

1/2
t σt−1(xt, wt)).

Taking the expectation with respect to ξt for both sides, we have

Eξt
[F−1

t−1(1 − δ)] ≤ Eξt
[2q(2β

1/2
t σt−1(xt, wt))].

Here, since ξt follows the chi-squared distribution with two degrees of freedom, δ follows the uniform dis-
tribution on the interval (0, 1). Hence, noting that 1 − δ also follows the uniform distribution on (0, 1),
F (x∗) − F (x̂t) does not depend on δ, from the property of the generalized inverse function, under the given
Dt−1 the distribution of F−1

t−1(1−δ) is equal to that of F (x∗)−F (x̂t). Let Et−1[·] be a conditional expectation
under the given Dt−1. Then, we get

Eξt [F−1
t−1(1 − δ)] = Et−1[F (x∗) − F (x̂t)].

Furthermore, since βt = 2 log(|X × Ω|) + ξt, noting that

Eξt [2q(2β
1/2
t σt−1(xt, wt))] = Eβt [2q(2β

1/2
t σt−1(xt, wt))],

we obtain
Et−1[F (x∗) − F (x̂t)] ≤ Eβt [2q(2β

1/2
t σt−1(xt, wt))].

Thus, by taking the expectation with respect to Dt−1 for both sides, we have

E[rt] = E[F (x∗) − F (x̂t)] ≤ E[2q(2β
1/2
t σt−1(xt, wt))].
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Therefore, the following inequality holds:

E[Rt] = E

[
t∑

k=1
rk

]
≤ E

[
t∑

k=1
2q(2β

1/2
k σk−1(xk, wk))

]
= 2E

 t∑
k=1

n∑
i=1

ζihi

 si∑
j=1

λij(2β
1/2
k σk−1(xk, wk))νij


= 2

n∑
i=1

ζiE

 t∑
k=1

hi

 si∑
j=1

λij(2β
1/2
k σk−1(xk, wk))νij

 .
(16)

In addition, since hi(·) is a concave function, the following holds:

t∑
k=1

hi

 si∑
j=1

λij(2β
1/2
k σk−1(xk, wk))νij

 = t

t∑
k=1

1
t
hi

 si∑
j=1

λij(2β
1/2
k σk−1(xk, wk))νij


≤ thi

 t∑
k=1

1
t

si∑
j=1

λij(2β
1/2
k σk−1(xk, wk))νij


= thi

1
t

si∑
j=1

2νij λij

t∑
k=1

(β1/2
k σk−1(xk, wk))νij

 .

Furthermore, from Jensen’s inequality, we get

E

 t∑
k=1

hi

 si∑
j=1

λij(2β
1/2
k σk−1(xk, wk))νij

 ≤ thi

1
t

si∑
j=1

2νij λijE

[
t∑

k=1
(β1/2

k σk−1(xk, wk))νij

] . (17)

Here, if νij ≤ 1, by letting η = 2/(2 − νij) and θ = 2/νij , using Hölder’s inequality we obtain

t∑
k=1

(β1/2
k σk−1(xk, wk))νij =

t∑
k=1

(βνij/2
k σ

νij

k−1(xk, wk)) ≤

(
t∑

k=1
β

νijη/2
k

)1/η ( t∑
k=1

σ
νijθ
k−1(xk, wk)

)1/θ

.

Moreover, by using Hölder’s inequality for expected values, the following inequality holds:

E

[
t∑

k=1
(β1/2

k σk−1(xk, wk))νij

]
≤

(
E

[
t∑

k=1
β

νijη/2
k

])1/η (
E

[
t∑

k=1
σ

νijθ
k−1(xk, wk)

])1/θ

.

From the definition, since β1, . . . , βt are independent and identically distributed random variables, the fol-
lowing equality holds:(

E

[
t∑

k=1
β

νijη/2
k

])1/η

=
(

tE
[
β

νijη/2
t

])1/η

=
(

tE
[
β

νij/(2−νij)
t

])1−νij/2
=
(

tE
[
β

νij/(2−ν′
ij)

t

])1−ν′
ij/2

. (18)

In addition, from the proof of Lemma 5.4 in Srinivas et al. (2010), the following inequality holds:

t∑
k=1

σ2
k−1(xk, wk) ≤ C1γt.

Hence, we have(
E

[
t∑

k=1
σ

νijθ
k−1(xk, wk)

])1/θ

=
(
E

[
t∑

k=1
σ2

k−1(xk, wk)
])νij/2

≤ (C1γt)νij/2 = (C1γt)ν′
ij/2. (19)
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Thus, we get

E

[
t∑

k=1
(β1/2

k σk−1(xk, wk))νij

]
≤
(

tE
[
β

νij/(2−ν′
ij)

t

])1−ν′
ij/2

(C1γt)ν′
ij/2 =

(
tC2,νij

)1−ν′
ij/2 (C1γt)ν′

ij/2.

Similarly, if νij > 1, by letting η = θ = 2, using the same argument we obtain

E

[
t∑

k=1
(β1/2

k σk−1(xk, wk))νij

]
≤

(
E

[
t∑

k=1
β

νij

k

])1/2(
E

[
t∑

k=1
σ

2νij

k−1(xk, wk)
])1/2

=
(
E

[
t∑

k=1
β

νij/(2−ν′
ij)

k

])1−ν′
ij/2(

E

[
t∑

k=1
σ

2νij

k−1(xk, wk)
])ν′

ij/2

.

Therefore, since σk−1(x, w) ≤ 1, noting that σ
2νij

k−1(xk, wk) ≤ σ2
k−1(xk, wk) we get

E

[
t∑

k=1
(β1/2

k σk−1(xk, wk))νij

]
≤

(
E

[
t∑

k=1
β

νij/(2−ν′
ij)

k

])1−ν′
ij/2(

E

[
t∑

k=1
σ

2νij

k−1(xk, wk)
])ν′

ij/2

≤

(
E

[
t∑

k=1
β

νij/(2−ν′
ij)

k

])1−ν′
ij/2(

E

[
t∑

k=1
σ2

k−1(xk, wk)
])ν′

ij/2

≤
(
tC2,νij

)1−ν′
ij/2 (C1γt)ν′

ij/2.

(20)

Hence, for any νij > 0, the following inequality holds:

E

[
t∑

k=1
(β1/2

k σk−1(xk, wk))νij

]
≤
(
tC2,νij

)1−ν′
ij/2 (C1γt)ν′

ij/2. (21)

Thus, noting that hi(·) is a monotonic non-decreasing function, by substituting equation 21 into equation 17
we obtain

E

 t∑
k=1

hi

 si∑
j=1

λij(2β
1/2
k σk−1(xk, wk))νij

 ≤ thi

1
t

si∑
j=1

2νij λij

(
tC2,νij

)1−ν′
ij/2 (C1γt)ν′

ij/2

 . (22)

Finally, by substituting equation 22 into equation 16, we get

E[Rt] ≤ 2t

n∑
i=1

ζihi

1
t

si∑
j=1

2νij λij

(
tC2,νij

)1−ν′
ij/2 (C1γt)ν′

ij/2

 .

C.3 Proof of Theorem 4.2

Proof. For the expectation E[rt̂], the following equality holds:

E[rt̂] = EDt−1 [Et−1[rt̂]] = EDt−1 [Et−1[F (x∗) − F (x̂t̂)]],

where EDt−1 [·] is the expectation with respect to Dt−1. From the definition of t̂, the following inequality
holds for any 1 ≤ i ≤ t:

Et−1[F (x∗) − F (x̂t̂)] ≤ Et−1[F (x∗) − F (x̂i)]. (23)
This implies that

Et−1[F (x∗) − F (x̂t̂)] ≤ 1
t

t∑
i=1

Et−1[F (x∗) − F (x̂i)].
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Therefore, using this we get

E[rt̂] = EDt−1 [Et−1[F (x∗) − F (x̂t̂)]] ≤ EDt−1

[
1
t

t∑
i=1

Et−1[F (x∗) − F (x̂i)]
]

= 1
t

t∑
i=1

EDt−1 [Et−1[F (x∗) − F (x̂i)]]

= 1
t

t∑
i=1

E[F (x∗) − F (x̂i)] = 1
t
E

[
t∑

i=1
F (x∗) − F (x̂i)

]
= E[Rt]

t
.

C.4 Proof of Theorem 4.3

Proof. We show t̂ = t. Let Ω = {w(1), . . . , w(L)} and P(w = w(j)) = pj , where j ∈ {1, . . . , L}, and the
probability is taken with respect to w. Then, from the definition of the expectation measure, F (x) can be
expressed as follows:

F (x) =
L∑

j=1
pjf(x, w(j)).

Therefore, the following equality holds:

Et−1[F (x)] =
L∑

j=1
pjEt−1[f(x, w(j))] =

L∑
j=1

pjµt−1(x, w(j)) = ρ(µt−1(x, ·)).

Here, from the definition of x̂t, the following inequality holds for any x ∈ X :

ρ(µt−1(x, ·)) ≤ ρ(µt−1(x̂t, ·)).

Hence, for any i ∈ {1, . . . , t}, the following holds:

Et−1[F (x̂i)] = ρ(µt−1(x̂i, ·)) ≤ ρ(µt−1(x̂t, ·)) = Et−1[F (x̂t)].

This implies that t̂ = t.

C.5 Equality between q(m)(a) in Table 4 in Inatsu et al. (2024a) and q1(a), q2(a), and q3(a)

Proof. For any x, x′, f(x, w) and f ′(x′, w), we derive q(a) satisfying

|ρ(f(x, ·)) − ρ(f ′(x′, ·))| ≤ q

(
sup
w∈Ω

|f(x, w) − f ′(x′, w)|
)

.

Since x, x′, f(x, w) and f ′(x′, w) are arbitrary, we can assume that |ρ(f(x, ·)) − ρ(f ′(x′, ·))| = ρ(f(x, ·)) −
ρ(f ′(x′, ·)) without loss of generality. For the distributionally robust, monotone Lipschitz map, and weighted
sum measures, we can use q(m)(a) in Table 4 in Inatsu et al. (2024a) by introducing additional assumptions
about monotonicity, concavity, and taking zero at point zero.

Expectation Let Ew[·] be an expectation with respect to w. Then, the following holds:

ρ(f(x, ·)) − ρ(f ′(x′, ·)) = Ew[f(x, w)] − Ew[f ′(x′, w)]
= Ew[f(x, w) − f ′(x′, w)]
≤ Ew[|f(x, w) − f ′(x′, w)|] ≤ sup

w∈Ω
|f(x, w) − f ′(x′, w)|.

This implies that q(a) = a.
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Worst-Case For any ϵ > 0, from the definition of infimum, there exists w∗ such that

f ′(x′, w∗) ≤ inf
w∈Ω

f ′(x′, w) + ϵ.

Thus, we have

inf
w∈Ω

f(x, w) − inf
w∈Ω

f ′(x′, w) ≤ inf
w∈Ω

f(x, w) − f ′(x′, w∗) + ϵ ≤ f(x, w∗) − f ′(x′, w∗) + ϵ

≤ sup
w∈Ω

|f(x, w) − f ′(x′, w)| + ϵ.

Since ϵ > 0 is arbitrary, we get

ρ(f(x, ·)) − ρ(f ′(x′, ·)) = inf
w∈Ω

f(x, w) − inf
w∈Ω

f ′(x′, w) ≤ sup
w∈Ω

|f(x, w) − f ′(x′, w)|.

This implies that q(a) = a.

Best-Case For any ϵ > 0, from the definition of supremum, there exists w∗ such that

sup
w∈Ω

f(x, w∗) ≤ f(x, w∗) + ϵ.

Hence, we obtain

sup
w∈Ω

f(x, w) − sup
w∈Ω

f ′(x′, w) ≤ f(x, w∗) + ϵ − sup
w∈Ω

f ′(x′, w) ≤ f(x, w∗) − f ′(x′, w∗) + ϵ

≤ sup
w∈Ω

|f(x, w) − f ′(x′, w)| + ϵ.

Since ϵ > 0 is arbitrary, we have

ρ(f(x, ·)) − ρ(f ′(x′, ·)) = sup
w∈Ω

f(x, w) − sup
w∈Ω

f ′(x′, w) ≤ sup
w∈Ω

|f(x, w) − f ′(x′, w)|.

This implies that q(a) = a.

α-Value-at-Risk Let α ∈ (0, 1) and k = supw∈Ω |f(x, w) − f ′(x′, w)|. Then, we have f(x, w) ≤
f ′(x′, w)+k. Here, for any b ∈ R, the inequality Pw(f ′(x′, w)+k ≤ b) ≤ Pw(f(x, w) ≤ b) holds, where Pw(·)
is the probability with respect to w. Here, if α ≤ Pw(f ′(x′, w) + k ≤ b) holds, then α ≤ Pw(f(x, w) ≤ b)
holds. This implies that

vf (x; α) ≡ ρ(f(x, ·)) = inf{b ∈ R | α ≤ Pw(f(x, w) ≤ b)} ≤ inf{b ∈ R | α ≤ Pw(f ′(x′, w) + k ≤ b)}
= inf{b ∈ R | α ≤ Pw(f ′(x′, w) ≤ b)} + k

= ρ(f ′(x′, ·)) + k.

Therefore, we get
ρ(f(x, ·)) − ρ(f ′(x′, ·)) ≤ k = sup

w∈Ω
|f(x, w) − f ′(x′, w)|.

This implies that q(a) = a.

α-Conditional Value-at-Risk Let α ∈ (0, 1). From Nguyen et al. (2021a), the α-conditional value-at-risk
can be rewritten as follows:

ρ(f(x, ·)) = 1
α

∫ α

0
vf (x; α′)dα′.

Thus, using the result of the α-value-at-risk, we have

ρ(f(x, ·)) − ρ(f ′(x′, ·)) = 1
α

∫ α

0
(vf (x; α′) − vf ′(x′; α′))dα′ ≤ 1

α

∫ α

0
sup
w∈Ω

|f(x, w) − f ′(x′, w)|dα′

= sup
w∈Ω

|f(x, w) − f ′(x′, w)|.

This implies that q(a) = a.
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Mean Absolute Deviation From the triangle inequality |a| − |b| ≤ |a − b|, the following holds:

ρ(f(x, ·)) − ρ(f ′(x′, ·)) = Ew[|f(x, w) − Ew[f(x, w)]|] − Ew[|f ′(x′, w) − Ew[f ′(x′, w)]|]
= Ew[|f(x, w) − Ew[f(x, w)]| − |f ′(x′, w) − Ew[f ′(x′, w)]|]
≤ Ew[|(f(x, w) − f ′(x′, w)) − (Ew[f(x, w) − f ′(x′, w)])|]
≤ Ew[|f(x, w) − f ′(x′, w)|] + Ew[|Ew[f(x, w) − f ′(x′, w)]|]
≤ sup

w∈Ω
|f(x, w) − f ′(x′, w)| + sup

w∈Ω
|f(x, w) − f ′(x′, w)|

= 2 sup
w∈Ω

|f(x, w) − f ′(x′, w)|.

This implies that q(a) = 2a.

Distributionally Robust Let P be a candidate distribution of w, A be a family of candidate distri-
butions, and ρP (·) be a robustness measure with respect to P . The distributionally robust measure is
defined as ρ(f(x, ·)) = infP ∈A ρP (f(x, ·)). Let qA(·) be a function satisfying |ρP (f(x, ·)) − ρP (f ′(x′, ·))| ≤
qA(supw∈Ω |f(x, w) − f ′(x′, w)|) for any P . Additionally, assume that qA(·) is a non-decreasing concave
function satisfying qA(0) = 0. For any ϵ > 0, from the definition of infimum, there exists a distribution
P ′ ∈ A such that

ρ(f ′(x′, ·)) = inf
P ∈A

ρP (f ′(x′, ·)) ≥ ρP ′(f ′(x′, ·)) − ϵ.

Therefore, the following inequality holds:

ρ(f(x, ·)) − ρ(f ′(x′, ·)) ≤ inf
P ∈A

ρP (f(x, ·)) − ρP ′(f ′(x′, ·)) + ϵ

≤ ρP ′(f(x, ·)) − ρP ′(f ′(x′, ·)) + ϵ

≤ qA

(
sup
w∈Ω

|f(x, w) − f ′(x′, w)|
)

+ ϵ.

Since ϵ > 0 is arbitrary, we get

ρ(f(x, ·)) − ρ(f ′(x′, ·)) ≤ qA

(
sup
w∈Ω

|f(x, w) − f ′(x′, w)|
)

.

This implies that q(a) = qA(a).

Monotone Lipschitz Map Let M be a K-Lipschitz function, and ρ̃(·) be a robustness measure. The
target robustness measure is defined as ρ(·) = (M ◦ ρ̃)(·). Let q̃(a) be a function satisfying

|ρ̃(f(x, ·)) − ρ̃(f ′(x′, ·))| ≤ q̃

(
sup
w∈Ω

|f(x, w) − f ′(x′, w)|
)

.

Additionally, assume that q̃(a) is a non-decreasing concave function satisfying q̃(0) = 0. Then, for the
robustness measure ρ(·), the following holds:

ρ(f(x, ·)) − ρ(f ′(x′, ·)) = M(ρ̃(f(x, ·))) − M(ρ̃(f ′(x′, ·))) ≤ K|ρ̃(f(x, ·)) − ρ̃(f ′(x′, ·))|

≤ Kq̃

(
sup
w∈Ω

|f(x, w) − f ′(x′, w)|
)

.

This implies that q(a) = Kq̃(a).

Weighted Sum Let α1, α2 ≥ 0, and let ρi(·) be a robustness measure. The target robustness measure is
defined as ρ(·) = α1ρ1(·) + α2ρ2(·). Let qi(a) be a function satisfying

|ρi(f(x, ·)) − ρi(f ′(x′, ·))| ≤ qi

(
sup
w∈Ω

|f(x, w) − f ′(x′, w)|
)

.

39



Published in Transactions on Machine Learning Research (07/2025)

Additionally, assume that qi(a) is a non-decreasing concave function satisfying qi(0) = 0. Then, for the
robustness measure ρ(·), the following holds:

ρ(f(x, ·)) − ρ(f ′(x′, ·)) = α1ρ1(f(x, ·)) + α2ρ2(f(x, ·)) − (α1ρ1(f ′(x′, ·)) + α2ρ2(f ′(x′, ·)))
= α1(ρ1(f(x, ·)) − ρ1(f ′(x′, ·))) + α2(ρ2(f(x, ·)) − ρ2(f ′(x′, ·)))

≤ α1q1

(
sup
w∈Ω

|f(x, w) − f ′(x′, w)|
)

+ α2q2

(
sup
w∈Ω

|f(x, w) − f ′(x′, w)|
)

.

This implies that q(a) = α1q1(a) + α2q2(a).

C.6 Proof of Theorem A.1

Proof. For t ≥ 1, let τt = ⌈b1d1rt2(
√

log(a1d1|Ω|) +
√

π/2)⌉. Suppose that Xt is a set of discretization for X
with each coordinate equally divided into τt. Note that |Xt| = τd1

t . For each x ∈ X , let [x]t be the element
of Xt closest to x. Then, rt can be expressed as follows:

rt = F (x∗) − F (x̂t) = F (x∗) − F ([x∗]t) + F ([x∗]t) − F (x̂t).

Therefore, the following equality holds:

E[Rt] = E

[
t∑

k=1
(F (x∗) − F ([x∗]k))

]
+ E

[
t∑

k=1
(F ([x∗]k) − F (x̂k))

]
. (24)

Let ξt be a realization from the chi-squared distribution with two degrees of freedom, and let δ = 1
exp(ξt/2) .

Then, from the proof of Lemma 5.1 in Srinivas et al. (2010), with probability at least 1 − δ, the following
inequality holds for any (x, w) ∈ (Xt ∪ {x̂t}) × Ω:

lt−1,δ(x, w) ≡ µt−1(x, w) − β
1/2
δ σt−1(x, w) ≤ f(x, w) ≤ µt−1(x, w) + β

1/2
δ σt−1(x, w) ≡ ut−1,δ(x, w),

where βδ = 2 log(|(Xt ∪{x̂t})×Ω|/δ). From the definition of δ, noting that |(Xt ∪{x̂t})×Ω| = (1+τd1
t )|Ω| =

κ
(1)
t and βδ = 2 log(κ(1)

t ) + ξt = βt, the following holds with probability at least 1 − δ:

lt−1(x, w) ≤ f(x, w) ≤ ut−1(x, w).

Hence, for the function f(x, w) with respect to w, each element x ∈ Xt ∪ {x̂t} satisfies f(x, ·) ∈ Gt−1(x).
Moreover, from the theorem’s assumption, since ucbt−1(x) and lcbt−1(x) satisfy equation 2, the following
inequality holds:

lcbt−1(x) ≤ F (x) ≤ ucbt−1(x).

Therefore, noting that [x∗]t, x̂t ∈ Xt ∪ {x̂t}, F ([x∗]t) − F (x̂t) can be evaluated as follows:

F ([x∗]t) − F (x̂t) = (F ([x∗]t) − max
x∈X

lcbt−1(x)) + (max
x∈X

lcbt−1(x) − F (x̂t))

≤ (ucbt−1([x∗]t) − max
x∈X

lcbt−1(x)) + (max
x∈X

lcbt−1(x) − F (x̂t))

≤ (ucbt−1([x∗]t) − max
x∈X

lcbt−1(x)) + (ρ(µt−1(x̂t, ·)) − F (x̂t))

≤ (ucbt−1(x̃t) − max
x∈X

lcbt−1(x)) + (ucbt−1(x̂t) − lcbt−1(x̂t))

≤ (ucbt−1(x̃t) − lcbt−1(x̃t)) + (ucbt−1(x̂t) − lcbt−1(x̂t))
≤ (ucbt−1(xt) − lcbt−1(xt)) + (ucbt−1(xt) − lcbt−1(xt))
= 2(ucbt−1(xt) − lcbt−1(xt)),
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where the third inequality is derived by µt−1(x, ·) ∈ Gt−1(x), the definition of x̂t and maxx∈X lcbt−1(x) ≤
maxx∈X ρ(µt−1(x, ·)) = ρ(µt−1(x̂t, ·)). Furthermore, from Assumption 4.1, there exists a function

q(a) =
n∑

i=1
ζihi

 si∑
j=1

λijaνij


such that ucbt−1(xt) − lcbt−1(xt) ≤ q(2β

1/2
t σt−1(xt, wt)). This implies that

F ([x∗]t) − F (x̂t) ≤ 2q(2β
1/2
t σt−1(xt, wt)).

Since the left-hand side does not depend on ξt, using the same argument as in the proof of Theorem 4.1 we
get

E[F ([x∗]t) − F (x̂t)] ≤ E[2q(2β
1/2
t σt−1(xt, wt))].

Thus, using the same argument as in the derivation of equation 16, equation 17, equation 21 and equation 22,
we obtain

E

[
t∑

k=1
(F ([x∗]k) − F (x̂k))

]
≤ 2t

n∑
i=1

ζihi

1
t

si∑
j=1

2νij λij

(
tC2,νij ,t

)1−ν′
ij/2 (C1γt)ν′

ij/2

 . (25)

Here, β1, . . . , βt do not have the same distribution, and equation 18 does not holds. Nevertheless, from the
monotonicity of κ

(1)
t , the following holds:(

E

[
t∑

k=1
β

νijη/2
k

])1/η

≤
(

tE
[
β

νijη/2
t

])1/η

=
(

tE
[
β

νij/(2−νij)
t

])1−νij/2
=
(

tE
[
β

νij/(2−ν′
ij)

t

])1−ν′
ij/2

.

Hence, we have equation 25. On the other hand, from the definition, the following inequality holds:

F (x∗) − F ([x∗]t) = ρ(f(x∗, ·)) − ρ(f([x∗]t, ·)) ≤ q1

(
max
w∈Ω

|f(x∗, w)) − f([x∗]t, w))|
)

.

Let Lmax = supw∈Ω sup1≤j≤d1 supx∈X

∣∣∣ ∂
∂xj

f(x, w)
∣∣∣. Then, the following holds:

∀x, x′ ∈ X , w ∈ Ω, |f(x, w) − f(x′, w)| ≤ Lmax∥x − x′∥1.

Therefore, we get
|f(x∗, w) − f([x∗]t, w)| ≤ Lmax∥x∗ − [x∗]t∥1.

In addition, noting that ∥x∗ − [x∗]t∥1 ≤ d1r/τt, we obtain

|f(x∗, w) − f([x∗]t, w)| ≤ Lmaxd1r/τt.

Thus, since
q1

(
max
w∈Ω

|f(x∗, w)) − f([x∗]t, w))|
)

≤ q1 (Lmaxd1r/τt) ,

using the concavity of q1(a) we get

E[F (x∗) − F ([x∗]t)] ≤ E [q1 (Lmaxd1r/τt)] ≤ q1 (E [Lmaxd1r/τt]) . (26)

Moreover, Lmax satisfies E[Lmax] ≤ b1(
√

log(a1d1|Ω|) +
√

π/2) (see, Appendix C.7). This implies that
E [Lmaxd1r/τt] ≤ t−2. By substituting this into equation 26, we have

E[F (x∗) − F ([x∗]t)] ≤ q1
(
t−2) .

Therefore, the following holds:

E

[
t∑

k=1
(F (x∗) − F ([x∗]k))

]
≤

t∑
k=1

q1(k−2) = t

t∑
k=1

t−1q1(k−2) ≤ tq1

(
t−1

t∑
k=1

k−2

)
≤ tq1

(
π2

6t

)
. (27)

Finally, by substituting equation 25 and equation 27 into equation 24, we obtain the desired result.
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C.7 Upper Bound of E[Lmax]

Proof. For any j ∈ {1, . . . , d1} and w ∈ Ω, if supx∈X

∣∣∣ ∂
∂xj

f(x, w)
∣∣∣ ≤ L, then Lmax ≤ L. Therefore, the

following inequality holds:

P(Lmax > L) ≤
d1∑

j=1

∑
w∈Ω

P
(

sup
x∈X

∣∣∣∣∂f(x, w)
∂xj

∣∣∣∣ > L

)
≤

d1∑
j=1

∑
w∈Ω

a1 exp
(

−
(

L

b1

)2
)

= a1d1|Ω| exp
(

−
(

L

b1

)2
)

.

Let a1d1|Ω| = J . Then, using the property of the expectation in non-negative random variables, E[Lmax]
can be evaluated as follows:

E[Lmax] =
∫ ∞

0
P(Lmax > L)dL

≤
∫ ∞

0
min{1, Je−(L/b1)2

}dL

= b1
√

log J +
∫ ∞

b1
√

log J

Je−(L/b1)2
dL

= b1
√

log J + Jb1
√

π

∫ ∞

b1
√

log J

1√
2π(b2

1/2)
e−(L/b1)2

dL

= b1
√

log J + Jb1
√

π
(

1 − Φ
(√

2 log J
))

≤ b1
√

log J + b1
√

π

2 ,

where Φ(·) is the cumulative distribution function of the standard normal distribution, and the last inequality
is derived by Lemma H.3 in Takeno et al. (2023).

C.8 Proof of Theorem A.3

Proof. For each t ≥ 1, let τ †
t = ⌈b2d2rt2(

√
log(a2d2|X |) +

√
π/2)⌉. Suppose that Ωt is a set of discretization

for Ω with each coordinate is equally divided into τ †
t . Note that |Ωt| = (τ †

t )d2 . For each w ∈ Ω, let [w]t be
the element of Ωt closest to w. Then, the following equality holds:

r†
t = F (x∗) − F (x̂†

t) = F (x∗) − F †
t (x∗) + F †

t (x∗) − F †
t (x̂†

t) + F †
t (x̂†

t) − F (x̂†
t).

This implies that

E[R†
t ] = E

[
t∑

k=1
(F (x∗) − F †

k (x∗))
]

+ E

[
t∑

k=1
(F †

k (x∗) − F †
k (x̂†

k))
]

+ E

[
t∑

k=1
(F †

k (x̂†
k) − F (x̂†

k))
]

. (28)

Let ξt be a realization from the chi-squared distribution with two degrees of freedom, and let δ = 1
exp(ξt/2) .

Then, from the proof of Lemma 5.1 in Srinivas et al. (2010), with probability at least 1 − δ, the following
holds for any (x, w) ∈ X × Ωt:

lt−1,δ(x, w) ≡ µt−1(x, w) − β
1/2
δ σt−1(x, w) ≤ f(x, w) ≤ µt−1(x, w) + β

1/2
δ σt−1(x, w) ≡ ut−1,δ(x, w),

where βδ = 2 log(|X × Ωt|/δ). From the definition of δ, since |X × Ωt| = (τ †
t )d2 |X | = κ

(2)
t , we have

βδ = 2 log(κ(2)
t ) + ξt = βt. Hence, the following inequality holds with probability at least 1 − δ:

lt−1(x, w) ≤ f(x, w) ≤ ut−1(x, w).
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Therefore, the following holds for any w ∈ Ω:

lt−1(x, [w]t) ≤ f(x, [w]t) ≤ ut−1(x, [w]t).

Thus, for the function f†
t (x, w) with respect to w, f†

t (x, ·) ∈ G†
t−1(x) holds. Here, from the theorem’s

assumption, since ucb†
t−1(x) and lcb†

t−1(x) satisfy equation 10, the following holds:

lcb†
t−1(x) ≤ F †

t (x) ≤ ucb†
t−1(x).

Hence, we obtain

F †
t (x∗) − F †

t (x̂†
t) ≤ 2(ucb†

t−1(xt) − lcb†
t−1(xt)).

Furthermore, from Assumption A.5, there exists a function

q†(a) =
n∑

i=1
ζih

†
i

 si∑
j=1

λijaνij


such that ucb†

t−1(xt) − lcb†
t−1(xt) ≤ q†(2β

1/2
t σt−1(xt, wt)). This implies that

F †
t (x∗) − F †

t (x̂†
t) ≤ 2q†(2β

1/2
t σt−1(xt, wt)).

Noting that the left-hand side does not depend on ξt, using the same argument as in the proof of Theorem
4.1 we get

E[F †
t (x∗) − F †

t (x̂†
t)] ≤ E[2q†(2β

1/2
t σt−1(xt, wt))].

Therefore, using the same argument as in the derivation of equation 16, equation 17, equation 21 and
equation 22, we obtain

E

[
t∑

k=1
(F †

k (x∗) − F †
k (x̂†

k))
]

≤ 2t

n∑
i=1

ζih
†
i

1
t

si∑
j=1

2νij λij

(
tC2,νij ,t

)1−ν′
ij/2 (C1γt)ν′

ij/2

 . (29)

On the other hand, from the assumption, the following inequality holds:

F (x∗) − F †
t (x∗) = ρ(f(x∗, ·)) − ρ(f†

t (x∗, ·)) ≤ q2

(
max
w∈Ω

|f(x∗, w)) − f(x∗, [w]t))|
)

.

Let L†
max = supx∈X sup1≤j≤d2 supw∈Ω

∣∣∣ ∂
∂wj

f(x, w)
∣∣∣. Then, the following holds:

∀w, w′ ∈ Ω, x ∈ X , |f(x, w) − f(x, w′)| ≤ L†
max∥w − w′∥1.

Hence, we have
|f(x∗, w) − f(x∗, [w]t)| ≤ L†

max∥w − [w]t∥1.

In addition, noting that ∥w − [w]t∥1 ≤ d2r/τ †
t , we get

|f(x∗, w) − f(x∗, [w]t)| ≤ L†
maxd2r/τ †

t .

Thus, since
q2

(
max
w∈Ω

|f(x∗, w)) − f(x∗, [w]t))|
)

≤ q2

(
L†

maxd2r/τ †
t

)
,

using the concavity of q2(a) we obtain

E[F (x∗) − F †
t (x∗)] ≤ E

[
q2

(
L†

maxd2r/τ †
t

)]
≤ q2

(
E
[
L†

maxd2r/τ †
t

])
. (30)
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Here, by using the same argument as in Appendix C.7, we get E[L†
max] ≤ b2(

√
log(a2d2|X |) +

√
π/2). This

implies that E
[
L†

maxd2r/τ †
t

]
≤ t−2. Substituting this into equation 30, we have

E[F (x∗) − F †
t (x∗)] ≤ q2

(
t−2) .

Therefore, the following inequality holds:

E

[
t∑

k=1
(F (x∗) − F †

k (x∗))
]

≤
t∑

k=1
q2(k−2) = t

t∑
k=1

t−1q2(k−2) ≤ tq2

(
t−1

t∑
k=1

k−2

)
≤ tq2

(
π2

6t

)
. (31)

By using the similar argument, the following inequality also holds:

E

[
t∑

k=1
(F †

k (x̂†
k) − F (x̂†

k))
]

≤ tq2

(
π2

6t

)
. (32)

Finally, substituting equation 29, equation 31 and equation 32 into equation 28, we obtain the desired
result.

C.9 Proof of Theorem A.5

Proof. For r†
t , the following holds:

E[r†
t ] = E[F (x∗) − F (x̂†

t)] = E[F (x∗) − F †
t (x̂†

t)] + E[F †
t (x̂†

t) − F (x̂†
t)] ≤ E[F (x∗) − F †

t (x̂†
t)] + 1

t2 . (33)

Here, we define t̃ as follows:
t̃ = arg min

1≤i≤t
Et−1[F (x∗) − F †

t (x̂†
i )].

Then, noting that

Et−1[F (x∗) − F †
t (x̂†

t̃
)] ≤ 1

t

t∑
i=1

Et−1[F (x∗) − F †
t (x̂†

i )],

the following inequality holds:

E[F (x∗) − F †
t (x̂†

t̃
)] ≤ 1

t

t∑
i=1

E[F (x∗) − F †
t (x̂†

i )] = 1
t

t∑
i=1

E[F (x∗) − F (x̂†
i ) + F (x̂†

i ) − F †
t (x̂†

i )]

≤ E[R†
t ]

t
+ 1

t

t∑
i=1

1
t2 = E[R†

t ]
t

+ 1
t2 . (34)

Next, we show t̃ = t. From the definition, t̃ can be rewritten as follows:

t̃ = arg max
1≤i≤t

Et−1[F †
t (x̂†

i )].

Let Ωt = {w(1), . . . , w(J)}. Then, the following equality holds:

F †
t (x̂†

i ) = Ew[f(x̂†
i , [w]t)] =

J∑
j=1

Pw(w = w(j))f(x̂†
i , w(j)).

Therefore, we get

Et−1[F †
t (x̂†

i )] =
J∑

j=1
Pw(w = w(j))Et−1[f(x̂†

i , w(j))] =
J∑

j=1
Pw(w = w(j))µt−1(x̂†

i , w(j))

= Ew[µt−1(x̂†
i , [w]t)]

= Ew[µ†
t−1(x̂†

i , w)] = ρ(µ†
t−1(x̂†

i , ·)).
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Hence, from the definition of x̂†
t , we have Et−1[F †

t (x̂†
i )] ≤ Et−1[F †

t (x̂†
t)]. This implies that t̃ = t. Hence,

equation 34 can be expressed as follows:

E[F (x∗) − F †
t (x̂†

t)] ≤ E[R†
t ]

t
+ 1

t2 . (35)

Thus, substituting equation 35 into equation 33, we obtain the desired result.

C.10 Proof of Theorem A.6

Proof. For r†
t , the following equality holds:

r†
t = F (x∗) − F (x̂†

t) = F (x∗) − F †
t ([x∗]t) + F †

t ([x∗]t) − F †
t (x̂†

t) + F †
t (x̂†

t) − F (x̂†
t).

Let L̃max = sup1≤j≤d supθ∈Θ

∣∣∣∂f(θ)
∂θj

∣∣∣. From Assumption A.7, the following inequalities hold:

F (x∗) − F †
t ([x∗]t) ≤ q3

(
max
w∈Ω

|f(x∗, w) − f([x∗]t, [w]t)|
)

,

F †
t (x̂†

t) − F (x̂†
t) ≤ q3

(
max
w∈Ω

|f(x̂†
t , w) − f(x̂†

t , [w]t)|
)

.

In addition, the following inequalities hold:

|f(x∗, w) − f([x∗]t, [w]t)| ≤ L̃max∥(x∗, w) − ([x∗]t, [w]t)∥1 ≤ L̃max
dr

τ̃t
,

|f(x̂†
t , w) − f(x̂†

t , [w]t)| ≤ L̃max∥(x̂†
t , w) − (x̂†

t , [w]t)∥1 ≤ L̃max
dr

τ̃t
.

Here, under Assumption A.6, from Lemma H.1 in Takeno et al. (2023), we have E[L̃max] ≤ b3(
√

log(a3d) +√
π/2). Hence, we get

E[F (x∗) − F †
t ([x∗]t)] ≤ q3(t−2), E[F †

t (x̂†
t) − F (x̂†

t)] ≤ q3(t−2).

On the other hand, noting that [x∗]t, x̂†
t ∈ Xt ∪ {x̂†

t} and |(Xt ∪ {x̂†
t}) × Ωt| = (1 + τ̃d1

t )τ̃d2
t = κ

(3)
t , by using

the same argument as in the proof of Theorem A.3, we obtain

E[F †
t ([x∗]t) − F †

t (x̂†
t)] ≤ E[2q†(2β

1/2
t σt−1(xt, wt))].

By combining these, and using the same argument as in the proof of Theorem A.3, we get the desired
result.

C.11 Proof of Theorems B.1–B.4

Proof. For each t ≥ 1, let Dt−1 = {(x1, w1, y1, β1), . . . , (xt−1, wt−1, yt−1, βt−1)} and D0 = ∅. Suppose
that ξt is a realization from the chi-squared distribution with two degrees of freedom. Then, by letting
δ = 1

exp(ξt/2) , using the same argument as in the proof of Theorem 4.1, the following holds with probability
at least 1 − δ:

F (x∗) − F (x̂t) ≤ 2(ucbt−1(xt) − lcbt−1(xt)).

Furthermore, from Assumption 4.1, there exists a function

q(a) =
n∑

i=1
ζihi

 si∑
j=1

λijaνij


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such that ucbt−1(xt) − lcbt−1(xt) ≤ q(2β
1/2
t σt−1(xt, w

(max)
t )), where w

(max)
t =

arg maxw∈Ω 2β
1/2
t σt−1(xt, w). Hence, the following inequality holds:

F (x∗) − F (x̂t) ≤ 2q(2β
1/2
t σt−1(xt, w

(max)
t )).

Therefore, by using the same argument as in the proof of Theorem 4.1, we have

E[rt] = E[F (x∗) − F (x̂t)] ≤ E[2q(2β
1/2
t σt−1(xt, w

(max)
t ))].

Note that under the uncontrollable setting, the expected value of the sum of the posterior variances in
equation 19 and equation 20 is replaced by the following:

E

[
t∑

k=1
σ2

k−1(xk, w
(max)
k )

]
.

Here, for each k, under the given Dk−1 and βk, σ2
k−1(xk, w

(max)
k ) is a constant value. Then, the following

holds:

σ2
k−1(xk, w

(max)
k ) ≤

J∑
j=1

σ2
k−1(xk, w(j)) ≤ p−1

min

J∑
j=1

pjσ2
k−1(xk, w(j)).

Since wk does not depend on Dk−1 and βk, the following equality holds:

J∑
j=1

pjσ2
k−1(xk, w(j)) = E[σ2

k−1(xk, wk)|Dk−1, βk].

Hence, we have
E[σ2

k−1(xk, w
(max)
k )] = p−1

minE[σ2
k−1(xk, wk)].

Therefore, we get

E

[
t∑

k=1
σ2

k−1(xk, w
(max)
k )

]
≤ p−1

minC1 = C ′
1.

By combining these, and using the same argument as in the proof of Theorem 4.1, we obtain Theorem B.1.
Theorems B.2–B.4 can also be obtained by using the same argument.

C.12 Proof of Theorems B.5–B.8

Proof. To show Theorems B.5–B.8, we evaluate E[σ2
k−1(xk, w

(max)
k )] by using the same argument as in the

proof of Theorems B.1–B.4. Under the given

Ďk−1 = {(x1, w1, y1, β1), . . . , (xk−1, wk−1, yk−1, βk−1), xk, βk},

σ2
k−1(xk, w

(max)
k ) is a constant. Moreover, since Ďk−1 and wk are mutually independent, using the tower

property, the partition Sk satisfies

p−1
min,kEwk

[σ2
k−1(xk, wk)|Ďk−1] = p−1

min,k

∑
Ω̃∈Sk

Pwk
(wk ∈ Ω̃)Ewk

[σ2
k−1(xk, wk)|Ďk−1, wk ∈ Ω̃]

≥
∑

Ω̃∈Sk

Ewk
[σ2

k−1(xk, wk)|Ďk−1, wk ∈ Ω̃],

where the last inequality is derived by using the inequality

p−1
min,kPwk

(wk ∈ Ω̃) ≥ 1.
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Here, for Ω̃j ∈ Sk, if w
(max)
k ∈ Ω̃j , from Assumption B.3, the following holds for any w ∈ Ω̃j :

σ2
k−1(xk, w

(max)
k ) − ιk ≤ σ2

k−1(xk, w).

Therefore, we get

σ2
k−1(xk, w

(max)
k ) − ιk ≤ Ewk

[σ2
k−1(xk, wk)|Ďk−1, wk ∈ Ω̃j ].

Thus, we obtain

σ2
k−1(xk, w

(max)
k ) − ιk ≤

∑
Ω̃∈Sk

Ewk
[σ2

k−1(xk, wk)|Ďk−1, wk ∈ Ω̃] ≤ p−1
min,kEwk

[σ2
k−1(xk, wk)|Ďk−1].

This implies that
E[σ2

k−1(xk, w
(max)
k )] ≤ ιk + p−1

min,kE[σ2
k−1(xk, wk)].

Hence, the following inequality holds:
t∑

k=1
E[σ2

k−1(xk, w
(max)
k )] ≤

t∑
k=1

ιk +
t∑

k=1
p−1

min,kE[σ2
k−1(xk, wk)]

= φt +
t∑

k=1
p−1

min,kE[σ2
k−1(xk, wk)]

≤ φt + p−1
min,t

t∑
k=1

E[σ2
k−1(xk, wk)],

where the last inequality is derived by pmin,1 ≥ · · · ≥ pmin,t. Therefore, since

φt + p−1
min,t

t∑
k=1

E[σ2
k−1(xk, wk)] ≤ φt + p−1

min,tC1γt,

we have the desired result.

D Experimental Details and Additional Experiments

In this section, we give details of the numerical experiments.

D.1 Experimental Details

In the 2D synthetic function setting, the black-box function f was sampled from GP(0, k), where the kernel
function k is given by

k(θ, θ′) = exp(−∥θ − θ′∥2
2/2), θ, θ′ ∈ X × Ω.

In the 4D synthetic function setting, fH(a, b) is defined as follows:

fH(a, b) = −{(a2 + b − 11)2 + (a + b2 − 7)2} + 104.8905√
3281.531

.

In the 6D synthetic function setting, we first generated the sample paths f1, f2, f3, f4 independently from
GP(0, k) defined on {−2, −4/3, −2/3, 0, 2/3, 4/3, 2}3. Here, for θ, θ′ ∈ R3, we used

k(θ, θ′) = exp(−∥θ − θ′∥2
2/1.75).

Using this, we defined the black-box function f as follows:

f(x1, x2, x3, w1, w2, w3) = f1(x1, x2, x3) + f2(x2, x3, w1) + f3(x3, w1, w2) + f4(w1, w2, w3).
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For the setting in the 2D (6D) synthetic function setting, the black-box function was generated for each
simulation based on the above, and a total of 100 different black-box functions were used as the true function.

For the probability mass function p(w), we used p(w) = 1/50 for the 2D synthetic function setting, and
p(w) = ϕ̃(w1)ϕ̃(w2) for the 4D synthetic function setting. Here, for a ∈ {−2.5+2.5(i−1)/7 | i = 1, . . . , 15} ≡
A, ϕ̃(a) is defined as follows:

ϕ̃(a) = 0.25ϕ(a − 1) + 0.75ϕ(a + 5)∑
a′∈A{0.25ϕ(a′ − 1) + 0.75ϕ(a′ + 5)} ,

where ϕ(·) is the probability density function of the standard normal distribution. In the 6D synthetic
function setting, we used p(w) = ϕ̃1(w1)ϕ̃2(w2)ϕ̃3(w3), where

ϕ̃1(b) = ϕ(b − 1)∑
b′∈B ϕ(b′ − 1) , ϕ̃2(b) = ϕ(b)∑

b′∈B ϕ(b′) , ϕ̃3(b) = ϕ(b + 1)∑
b′∈B ϕ(b′ + 1)

and b ∈ {−2 + 2(i − 1)/3 | i = 1, . . . , 7} ≡ B.

The details of each acquisition function are as follows:

Random In Random, xt was chosen uniformly at random from X , and wt was chosen randomly from Ω
based on the probability mass function p(w).

US In US, xt and wt were chosen by (xt, wt) = arg max(x,w)∈X ×Ω σ2
t−1(x, w).

BQ In BQ, we used the property that the integral of GP is again GP. Given a dataset {(xj , wj , yj)}t
j=1,

the expectation with respect to w of GP(0, k) is again a GP, and its posterior distribution is given by
GP(µ̃t(x), k̃(x, x′)), where µ̃t(x) and k̃(x, x′) are given by

µ̃t(x) =
{∑

w∈Ω
p(w)kt(x, w)

}⊤

(Kt + σ2
noiseIt)−1yt,

k̃t(x, x′) =

 ∑
w,w′∈Ω

p(w)p(w′)k((x, w), (x′, w′))


−

{∑
w∈Ω

p(w)kt(x, w)
}⊤

(Kt + σ2
noiseIt)−1

{∑
w′∈Ω

p(w′)kt(x′, w′)
}

.

Let F̂t = maxx∈X µ̃t(x) and σ̃2
t (x) = k̃t(x, x). In BQ, xt was selected based on the expected improvement

(EI) maximization in GP(µ̃t(x), k̃(x, x′)) for F̂t. That is, for zx,t = µ̃t(x)−F̂t

σ̃t(x) , the value of EI is calculated
by σ̃t(x){zx,tΦ(zx,t) + ϕ(zx,t)}.

BPT-UCB In BPT-UCB, we first defined η = 0.5 min{10−8c/2, 10−16 × 0.05 × c/(8|X × Ω|)}, where we
used c = 1 in Section 5.1, and c = 2 in Section 5.3. Next, we defined hx,w,t = h + 2η if |µt(x, w) − h| < η,
and otherwise hx,w,t = h. Using this, we defined p̂t(x) and γ2

t (x) as follows:

p̂t(x) =
∑
w∈Ω

p(w)Φ
(

µt(x, w) − hx,w,t

σt(x, w)

)
,

γ2
t (x) =

∑
w∈Ω

p(w)Φ
(

µt(x, w) − hx,w,t

σt(x, w)

){
1 − Φ

(
µt(x, w) − hx,w,t

σt(x, w)

)}
.
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For βt = |X ×Ω|π2t2

3×0.05 , we defined BPTUCB(x) = p̂t(x) + β
1/10
t γ

2/10
t (x). Then, xt+1 and wt+1 were selected

by

xt+1 = arg max
x∈X

BPTUCB(x),

wt+1 = arg max
w∈Ω

Φ
(

µt(xt+1, w) − hxt+1,w,t

σt(xt+1, w)

){
1 − Φ

(
µt(xt+1, w) − hxt+1,w,t

σt(xt+1, w)

)}
.

BPT-UCB (fixed) In BPT-UCB (fixed), the definition of BPTUCB(x) in BPT-UCB was changed to
BPTUCB(x) = p̂t(x) + 3γt(x), and xt+1 and wt+1 were selected using the same procedure as BPT-UCB.

BBBMOBO In BBBMOBO, we used βt = 2 log(|X × Ω|π2t2/(6 × 0.05)) and xt = x̃t, where x̃t is given
in Definition 3.1.

BBBMOBO (fixed) In BBBMOBO (fixed), we used βt = 9 and xt = x̃t, where x̃t is given in Definition
3.1.

Proposed In Proposed, xt was selected by Definition 3.1.

Proposed (fixed) In Proposed (fixed), xt was selected by Definition 3.1, where we used βt = 9.

Values of ucbt−1(x) and lcbt−1(x) in EXP, PTR and EXP-MAE were calculated by using results in Table
3 in Inatsu et al. (2024a). Here, ucbt−1(x) and lcbt−1(x) for −αE[|f(x, w) − Fexp(x)|] were calculated by
using the results of the mean absolute deviation and monotonic Lipschitz map in the table. Combining these
and the results for the weighted sum, we calculated ucbt−1(x) and lcbt−1(x) for EXP-MAE.

D.2 Identity of BBBMOBO (fixed) and Proposed (fixed) in the Expectation Measure

In the expectation measure, ucbt−1(x) and lcbt−1(x) are calculated as follows:

ucbt−1(x) = Ew[µt−1(x, w) + β
1/2
t σt−1(x, w)], lcbt−1(x) = Ew[µt−1(x, w) − β

1/2
t σt−1(x, w)].

Therefore, equation 4 in Definition 3.1 is given by xt = arg maxx∈x̃t,x̂t
Ew[σt−1(x, w)]. Also, the definition

of x̃t can be rewritten as x̃t = arg maxx∈X ucbt−1(x). Here, the difference between BBBMOBO (fixed)
and Proposed (fixed) is only whether to use xt = x̃t or equation 4 in Definition 3.1. In Proposed (fixed),
when xt = arg maxx∈x̃t,x̂t

Ew[σt−1(x, w)] = x̃t, it is consistent with BBBMOBO (fixed). Also, when
xt = arg maxx∈x̃t,x̂t

Ew[σt−1(x, w)] = x̂t,

ucbt−1(x̃t) = Ew[µt−1(x̃t, w) + β
1/2
t σt−1(x̃t, w)] = Ew[µt−1(x̃t, w)] + β

1/2
t Ew[σt−1(x̃t, w)]

≤ Ew[µt−1(x̂t, w)] + β
1/2
t Ew[σt−1(x̃t, w)]

≤ Ew[µt−1(x̂t, w)] + β
1/2
t Ew[σt−1(x̂t, w)] = ucbt−1(x̂t).

Here, the first inequality follows from the definition of x̂t, x̂t = arg maxx∈X Ew[µt−1(x, w)], and the second
inequality is derived by the assumption, xt = arg maxx∈x̃t,x̂t

Ew[σt−1(x, w)] = x̂t. Therefore, ucbt−1(x̃t) ≤
ucbt−1(x̂t), but on the other hand, from the definition of x̃t, ucbt−1(x̃t) ≥ ucbt−1(x̂t). Hence, ucbt−1(x̃t) =
ucbt−1(x̂t). In the EXP experiments in Section 5, there were no cases where multiple x values maximized
ucbt−1(x). As a result, x̃t = x̂t, which is consistent with BBBMOBO (fixed).
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