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ABSTRACT

Can a pre-trained generator be adapted to the hybrid of multiple target domains
and generate images with integrated attributes of them? In this work, we intro-
duce a new task – Few-shot Hybrid Domain Adaptation (HDA). Given a source
generator and several target domains, HDA aims to acquire an adapted generator
that preserves the integrated attributes of all target domains, without overriding
the source domain’s characteristics. Compared with Domain Adaptation (DA),
HDA offers greater flexibility and versatility to adapt generators to more composite
and expansive domains. Simultaneously, HDA also presents more challenges than
DA as we have access only to images from individual target domains and lack
authentic images from the hybrid domain. To address this issue, we introduce
a discriminator-free framework that directly encodes different domains’ images
into well-separable subspaces. To achieve HDA, we propose a novel directional
subspace loss comprised of a distance loss and a direction loss. Concretely, the
distance loss blends the attributes of all target domains by reducing the distances
from generated images to all target subspaces. The direction loss preserves the
characteristics from the source domain by guiding the adaptation along the per-
pendicular to subspaces. Experiments show that our method can obtain numerous
domain-specific attributes in a single adapted generator, which surpasses the base-
line methods in semantic similarity, image fidelity, and cross-domain consistency.
Project page is at https://echopluto.github.io/FHDA-project/.

1 INTRODUCTION

Few-shot generative domain adaptation (DA) aims to adapt a pre-trained image generator (Karras
et al., 2019; Brock et al., 2018; Vahdat et al., 2021; Rombach et al., 2022) from the source domain to
a new target domain using only few reference images. Existing methods (Mo et al., 2020; Li et al.,
2020; Xiao et al., 2022; Mondal et al.) generally seek to achieve realistic and diverse generation
which acquires salient characteristics of the target domain and preserves the variations learned from
the source domain. Building upon previous promising progress toward DA, it is straightforward to
derive the adapted model given images from sketch domain as shown in Fig. 1 (Left). However, a
challenge remains when we require to generate images with integrated attributes of sketch, smile,
and baby, given real images from individual domains. Besides, in real-world scenarios, images from
the hybrid domain (e.g., a smiling baby with the style of sketch) tend to be more difficult to collect
compared with single domain. Under such circumstances, conventional DA becomes less feasible.

Instead of DA, we investigate this novel task – Few-shot generative Hybrid Domain Adaptation
(HDA). Given a source generator and few-shot images of several target domains, HDA aims to
acquire an adapted image generator that preserves the integrated attributes of all target domains,
without overriding the original characteristics. Compared with DA, HDA offers greater flexibility
and versatility to adapt generators to more composite and expansive domains. For example, given the
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Figure 1: (Middle) Given a source generator (GS ) pre-trained on a large-scale dataset, we propose to
adapt it to the new target domain. (Left) Domain Adaptation adapts the generator from the source
domain (human(sketch). The adapted model GT1

captures the target distribution using extremely
few-shot references. (Right) Our newly introduced Hybrid Domain Adaptation aims to adapt to
GT1∪T2∪T3

that generate images with integrated attributes from T1 (sketch), T2 (smile), and T3 (baby),
given few-shot references from multiple individual domains.

few-shot references from the individual sketch, baby and smile domains as shown in Fig. 1 (Right),
HDA aims to adapt the generator to sketch-smile-baby domain. Concurrently, these images retain the
primary characteristics of the source domain, which upholds cross-domain consistency.

Compared with conventional DA, HDA is more challenging in two aspects: (1) Existing DA ap-
proaches typically employ the discriminator to discern whether generated images belong to the target
domain. However, we only have images sampled from individual domains and lack real images
of the hybrid domain, which presents challenges for designing the discriminator-based adaptation
framework. (2) Since there are extremely few reference images, the discriminator could easily overfit
the easy-to-learn characteristics of certain target domains (Ojha et al., 2021), leading to missing the
characteristics from other target domains in the generator.

To solve these issues stemming from the reliance on discriminator, we propose a discriminator-free
framework for HDA. Instead of directly distinguishing whether generated images are real or fake,
we endeavor to project distinct domains into separate embedding subspaces. Inspired by image
classification task (Dosovitskiy et al., 2020; Oquab et al., 2023; Liu et al., 2021) that encodes images
into high-dimensional embedding space and extract well-separable features, we posit that the pre-
trained image encoder intrinsically functions as a hybrid domain classifier. Leveraging this property,
we utilize these well-known pre-trained encoders to embed different domains’ images into several
distinct embedding subspaces.

Employing these well-separable subspaces, we introduce the directional subspace loss comprised
of a distance loss and a direction loss to achieve HDA. Specifically, our objective is for generated
images to progressively approach all the target subspaces. To this end, we propose the distance
loss to minimize the distances from the generated images to all target domains’ subspace. Solely
employing the distance loss can result in model collapse, since distinct generated images may project
onto the same point on the subspace and compromise cross-domain consistency. To preserve more
characteristics from the source domain, we further propose the direction loss to guide the adaptation
along the perpendicular to subspaces. Additionally, we can easily use our directional subspace loss
for single domain adaptation since DA is a special form of HDA.

We validate the effectiveness of our method across multiple target domains. Compared with other
potential approaches for achieving hybrid domain (Wu et al., 2023; Gal et al., 2021), our method
accomplishes the fastest adaptation without training models on multiple individual domains. For
both DA and HDA, our method achieves superior semantic similarity with the target domain, better
image fidelity, and more characteristics preservation of the source domain compared with existing
approaches. Overall, our contributions are summarized as follows:

• We introduce a novel task – Hybrid Domain Adaptation (HDA). Compared with DA, HDA offers
greater flexibility and versatility to adapt generators to more composite and expansive domains.
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• We propose a novel discriminator-free framework with directional subspace loss for HDA. Com-
pared with other potential approaches, our methods accomplish fast and versatile adaptation
without training models on multiple individual domains.

• For both DA and HDA, our method surpasses existing methods on the semantic similarity with the
target domain, image fidelity, and cross-domain consistency. Qualitative and quantitative results
demonstrate the effectiveness of our method.

2 RELATED WORKS

Few-shot Generative Domain Adaptation. Few-shot generative domain adaptation aims to adapt a
pre-trained image generator to a new target domain with a limited number of reference images. Due
to the scarcity of training images, existing works (Mo et al., 2020; Li et al., 2020; Ojha et al., 2021;
Zhao et al., 2022b; Xiao et al., 2022; Mondal et al.) often adopt extra regularization terms to avoid
overfitting. For example, CDC (Ojha et al., 2021) proposes the instance distance consistency loss to
preserve the distance between different instances in the source domain. RSSA (Xiao et al., 2022)
proposes a relaxed spatial structural alignment method to preserve the spatial structural information
of the source domain. AdAM (Zhao et al., 2022a) proposes Adaptation-Aware kernel Modulation to
address general FSIG of different source-target domain proximity. While previous works achieve
promising progress toward generative domain adaptation, they rely fundamentally on the discriminator
which makes it difficult to handle hybrid domain adaptation.

Inference Time Interpolation for Hybrid Domain Adaptation. Taking advantage of the disen-
tanglement in the latent space of StyleGAN (Härkönen et al., 2020; Shen & Zhou, 2021; Xu et al.,
2022; Shen et al., 2020; Wu et al., 2020), some works (Wu et al., 2023; Nitzan et al., 2023; Gal et al.,
2021) are capable of producing images from the hybrid domain through the interpolation technique.
For example, DoRM (Wu et al., 2023) adapts the source generator to each domain individually and
then interpolate multiple domain’s latent codes at inference time to generate images from the hybrid
domain. However, the approach of inference time interpolation needs to train models on multiple
individual domains, which necessitates multiple times the model size and training time. In contrast,
our method can acquire one model for the hybrid domain in just few minutes.

Pre-trained Image Encoder as Implicit Domain Classifier. Image encoder has been extensively
explored to extract salient and representative features, which typically projects the images into a
well-separable embedding space for classification. Recently, beginning with ViT (Dosovitskiy et al.,
2020; Caron et al., 2021; Oquab et al., 2023; Liu et al., 2021), Transformer-based network achieves
revolutionary performance on the image classification challenge. To address large variations in the
scale of visual entities and the high resolution of pixels in images, Swin (Liu et al., 2021) proposes a
hierarchical Transformer whose representation is computed with shifted windows. On the other hand,
self-supervised efforts represented by DINO (Caron et al., 2021) and DINOv2 (Oquab et al., 2023)
have also been devoted to developing effective image encoder. In this paper, we propose to utilize
the pre-trained image encoder as an implicit domain classifier to encode the reference images from
different domains into the distinct embedding subspace (see Appendix A.1).

Discriminator-Free Domain Adaptation. Style-NADA (Gal et al., 2021) proposes text-driven
DA and presents a discriminator-free method which utilizes CLIP (Radford et al., 2021) model to
produce the CLIP-space direction. Although the method can also be applied for image-driven domain
adaptation, it suffers from the semantic bias stemming from the CLIP encoder and is not guaranteed
to converge to the exact realization of the style such as the sketch domain. Besides, the directional
loss with CLIP cannot handle small attribute edits such as the sunglasses domain. Instead, we propose
the directional subspace loss with the image encoder pre-trained on large classification dataset, which
facilitates the adaptation of small attributes and significantly alleviates the bias.

3 METHOD

3.1 PROBLEM FORMULATION

Following previous works (Ojha et al., 2021; Xiao et al., 2022), we start with a pre-trained Style-
GAN2 (Karras et al., 2019) generator GS that maps from noise z to images in a source domain S , and
a set of N target domains Ti, i ∈ {1, ..., N}. Domain adaptation (DA) finetunes GS with few-shot
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Figure 2: The diagram of our discriminator-free framework with the directional subspace loss Ldist

and Ldirect. Yi is the reference images from the i-th domain. Ỹs and Ỹt are images generated by
frozen source generator and training target generator. The frozen image encoder extracts features f
to constitute the subspace Pi. After that, we project the target embedding f̃t onto the subspace Pi

to obtain f∗
i . Then we minimize the distance between f̃t and f∗

i . Simultaneously, we minimize the
angle between f̃t − f̃s and f∗

i − f̃t to guarantee that f̃t moves along the perpendicular from f̃s to Pi.

images Yi from each target domain Ti to yield a generator GTi
. The adapted GTi

can generate images
Ỹi similar to domain Ti. Differently, hybrid domain adaptation (HDA) aims to acquire a generator
GT that models a hybrid domain T = ∪N

i=1Ti and generate images Ỹ with integrated attributes.

3.2 DISCRIMINATOR-FREE DOMAIN ADAPTATION

Conventional DA methods commonly incorporate a discriminator to differentiate whether the gener-
ated images pertain to the target domain. However, we only have images sampled from individual
domains and lack real images of the hybrid domain, which poses challenges in the development of
discriminator-based methods. Moreover, owing to the scarcity of reference images (Ojha et al., 2021),
the discriminator inevitably exhibits a tendency to overfit to easily learned attributes of certain target
domains. Consequently, this leads the generator to ignore other target domains’ attributes within the
context of HDA.

To address the issues, we propose a discriminator-free framework for HDA. Specifically, we utilize
the pre-trained image encoder E, such as Swin (Liu et al., 2021) and Dinov2 (Oquab et al., 2023) in
image classification task, to encode the few-shot reference images Yi from Ti into features fi:

fi = E(Yi), f i =
1

|fi|
∑
f∈fi

f, (1)

where f i is the average mean of fi and |fi| is the cardinality of fi that equals to the number of
images in Ti. As shown in Fig. 2, the features f in fi constitute a separable embedding subspace Pi

(see Appendix A.1).

3.3 DIRECTIONAL SUBSPACE LOSS

Then we introduce a directional subspace loss for the adaptation. Technically, we encode the images
generated by the frozen source generator GS and the adapted generator GT with the same noise z.

Ỹs = GS(z), Ỹt = GT (z)

f̃s = E(Ỹs), f̃t = E(Ỹt).
(2)

Our objective is for generated images to progressively approach the target subspace. Inspired by
(Simon et al., 2020), we propose the distance loss from the generated images to the target subspace.
Concretely, we first project the embedding f̃t onto the subspace Pi to get the projected point f∗

i :

f∗
i = MiM

T
i (f̃t − f i) + f i, (3)

where Mi is the projection matrix computed from SVD factorization of all elements in fi. We then
minimize the distance between f̃t and subspace Pi spanned by fi:

Ldist = dist(f̃t,Pi) =
∥∥∥f∗

i − f̃t

∥∥∥2 . (4)
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However, solely employing Ldist can still result in model collapse, i.e., distinct generated images
may project onto the same point on Pi which compromises cross-domain consistency. To preserve
more characteristics from Ỹs, we propose to enforce the collinearity between f̃s, f̃t, and f∗

i such that
f∗
i becomes the closest point to f̃s on the subspace Pi. To this end, we minimize the angle between
f̃t − f̃s and f∗

i − f̃t to guarantee that f̃t moves along the perpendicular from f̃s to the subspace Pi:

∆s→t = f̃t − f̃s, ∆t→p = f∗
i − f̃t ,

Ldirect = 1− ∆s→t ·∆t→p

∥∆s→t∥ ∥∆t→p∥
,

(5)

Besides, to alleviate the biases introduced by individual image encoder, we employ the ensemble
method that exploits several image encoders during the adaptation:

LDA = Ez∼p(z)

∑
E∈E

(Ldist + λLdirect), (6)

where E is the set of pre-trained image encoders and λ is the balancing factor.

3.4 HYBRID DOMAIN ADAPTATION

Naturally, we can extend the directional subspace loss for HDA, since DA is a special form of HDA.
For the distance loss, we reduce the distances between f̃t and all target subspaces to ensure that the
adapted generator owns their attributes:

L′
dist =

N∑
i=1

αi

∥∥∥f∗
i − f̃t

∥∥∥2 , (7)

where αi is pre-defined domain coefficient for the i-th domain.

On the other hand, we also extend the direction loss for HDA to preserve the characteristics of the
source domain f̃s. Specifically, we minimize the angle between f̃t − f̃s and the weighted sum of
f∗
i − f̃t (the perpendicular from f̃t to the i-th subspace):

∆′
t→p =

N∑
i=1

αi(f
∗
i − f̃t) ,

L′
direct = 1−

∆s→t ·∆′
t→p

∥∆s→t∥∥∆′
t→p∥

.

(8)

Overall, our final objective for HDA is

LHDA = Ez∼p(z)

∑
E∈E

(L′
dist + λL′

direct), (9)

4 EXPERIMENTS

4.1 DATASETS AND METRICS

Datasets: Following previous literature, we consider Flickr-Faces-HQ (FFHQ) (Karras et al., 2019)
as one of the source domains and adapt to the combination of the following individual target domains
(a) FFHQ-baby, (b) FFHQ-sunglasses, (c) sketch, and (d) FFHQ-smile. As in previous works, all our
experiments use 10 randomly sampled targets for each domain. Unless stated otherwise, we operate
on 256× 256 resolution images for both the source and target domains.

Metrics: A key difference between the proposed HDA task against previous DA (Ojha et al., 2021;
Mondal et al.; Nitzan et al., 2023) is that there are no real images in the hybrid target domains. In
terms of the quantitative evaluation, we focus on these evaluation metrics in our experiments: (1)
CLIP-Score (Nitzan et al., 2023; Radford et al., 2021) measures the compatibility of image-text pairs,
which can be thought of as the semantic similarity with the target domain. (2) The Inception Score
(IS) is used to assess the fidelity of images, which is practical in the few shot setting (Xiao et al.,
2022). (3) Identify similarity (ID) measures cross-domain consistency where the adapted images
retain consistency with their corresponding source images in domain-invariant aspects like pose and
identity, following (Zhang et al., 2022; Wu et al., 2023).
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Figure 3: Qualitative results on 10-shot HDA of smile-sunglasses and baby-smile.

Source DoRM OursNADA

Figure 4: Qualitative results on 3 domain 10-shot HDA of sketch-smile-baby.

4.2 METHODOLOGY AND BASELINES

Methodology: Following previous domain adaptation (DA) works (Ojha et al., 2021; Xiao et al.,
2022; Mondal et al.; Zhao et al., 2022b), we apply our method on the StyleGAN2 (Karras et al., 2020)
architecture. To show the flexibility of our method, we conduct the experiments on both DA and
HDA. As described in Section 3.2, we utilize Swin (Liu et al., 2021) and Dinov2 (Oquab et al., 2023)
as the image encoder, which are pre-trained on ImageNet 22k dataset (Deng et al., 2009).

Baselines: To demonstrate the effectiveness of our method, we compare our method against the
following baselines that could potentially achieve hybrid domain: (1) Sequential: sequentially adapted
to individual target domains to achieve hybrid domain; (2) DoRM: Domain Remodulation (Wu et al.,
2023) for hybrid domain as discussed in Section 2; (3) NADA: Following NADA (Gal et al., 2021),
we interpolate the model parameters in different domains to achieve hybrid domain. Additionally for
DA, we compare ours with CDC (Ojha et al., 2021), DoRM (Wu et al., 2023), RSSA (Xiao et al.,
2022), AdAM (Zhao et al., 2022a), and NADA (Gal et al., 2021).

4.3 RESULTS ON HYBRID DOMAIN ADAPTATION

Qualitative Results: Fig. 3 shows the qualitative result of the baseline and our method on HDA, all of
which start from the same source domain FFHQ (Karras et al., 2019) to the combinations of individual
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Method
smile-sunglass baby-smile baby-sketch

CS (↑) IS (↑) ID (↑) CS (↑) IS (↑) ID (↑) CS (↑) IS (↑) ID (↑)

Seq 17.92 1.82 0.261 17.36 1.7 0.33 22.69 2.28 0.198
DoRM 18.99 1.94 0.312 16.38 2.12 0.28 17.46 2.69 0.21
NADA 20.23 1.34 0.27 20.45 1.68 0.34 22.06 2.61 0.18
Ours 25.65 2.4 0.373 23.08 2.94 0.34 24.91 2.97 0.223

Table 1: Quantitative evaluations on 10-shot HDA including CLIP-Score (CS), IS, and ID discussed
in Section 4.1. Note that ↑ indicates higher is better.

Method Inter. Dis. free
2-domain 5-domain 10-domain

size (↓) time (↓) size (↓) time (↓) size (↓) time (↓)

Seq 24M 240min 24M 600min 24M 1200min
DoRM ✓ 30M 240min 54M 600min 84M 1200min
NADA ✓ ✓ 48M 6min 120M 15min 240M 30min

Ours ✓ 24M 3min 24M 3min 24M 3min

Table 2: Comparison of model size and training time. Note that Inter. and Dis. free indicate the
inference time interpolation and discriminator-free methods.

baby, sketch, smile and sunglasses domains, respectively. For naive Sequential learning, we find that
it suffers from catastrophic forgetting (McCloskey & Cohen, 1989) and tends to generate images of
the last adapted domain, which fails to generate desired images (e.g., baby with the style of sketch).
DoRM (Wu et al., 2023) are unstable to generate images of the hybrid domain (e.g., the images
of smile-sunglasses lack the attribute of smile and lose the characteristics of the source domain),
since the simple interpolation of latent codes at inference time is not enough to semantically align
multiple domains. NADA could somehow generate images with integrated attributes, but it exhibits
significant bias stemming from the CLIP model. For instance, the sketch domain deviates stylistically
from the reference images, and it fails to learn the sunglasses domain. In contrast, our method
exhibits desirable performance and shows its stable capability to generate hybrid target images and
preserve the characteristics of the source domain. Furthermore, we also conduct experiments on
the hybrid of three target domains sketch-smile-baby in Fig. 4 where our generated images blend
the domain-specific attributes and preserve the primary characteristics of the source domain, which
surpass all the baseline methods. More results for HDA are included in Appendix.

Quantitative Results: To quantify the quality and diversity of the generated images, we evaluate
all methods with CLIP-Score, IS, and ID respectively. As shown in Table 1, our method achieves
best scores for all metrics. Especially for CLIP-Score, our method significantly outperforms other
methods, indicating that generated images with our method effectively integrate the multiple attributes
from distinct domains. Furthermore, our method achieves better IS and ID, indicating that generated
images has higher fidelity and preserve more characteristics of the source domain.

Additionally, we calculate the model size and training time to verify the efficiency of our method as
shown in Table 2. Compared with the discriminator-based baselines, our discriminator-free method
obviates adversarial training, thereby saving substantial training time. Furthermore, compared with
interpolation-based approaches at inference time, our method saves multiple times the model size and
training time, completing the adaptation in just three minutes.

4.4 RESULTS ON SINGLE DOMAIN ADAPTATION

Qualitative Results: To show the flexibility of our proposed method, we also conduct the experiments
on DA, as shown in Fig. 5. Similar to the performance on HDA, our method surpasses all baseline
approaches. Specifically, previous methods exhibit severe overfitting to the few-shot reference images,
inadequately preserving source domain attributes, while also demonstrating relatively inferior image
fidelity. While NADA demonstrates cross-domain consistency to some extent, it exhibits significant
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Figure 5: Qualitative results on 10-shot DA of smile and sketch.

Method
baby smile sunglasses sketch

CS (↑) IS (↑) ID (↑) CS (↑) IS (↑) ID (↑) CS (↑) IS (↑) ID (↑) CS (↑) IS (↑) ID (↑)

CDC 17.84 2.22 0.326 18.93 1.22 0.479 22.19 2.33 0.318 20.83 2.12 0.214
DoRM 17.10 2.30 0.335 17.10 2.18 0.490 22.26 2.59 0.389 19.42 2.06 0.365
RSSA 18.42 2.57 0.238 18.18 2.20 0.410 21.63 2.52 0.256 21.40 1.66 0.231
AdAM 21.18 2.12 0.210 19.79 1.61 0.280 22.50 2.50 0.197 21.18 2.22 0.109
NADA 21.52 3.36 0.182 19.95 1.18 0.305 20.95 1.51 0.233 20.9 1.86 0.335
Ours 21.92 3.71 0.353 20.38 2.23 0.587 24.13 2.67 0.414 22.83 2.39 0.417

Table 3: Quantitative evaluations on 10-shot DA.

bias stemming from the CLIP encoder. In contrast, our method is capable of accurately acquiring the
visual attributes of target domain while retaining strong fidelity and cross-domain consistency.

Quantitative Results: To demonstrate the effectiveness of our method on DA, we evaluate all the
methods with CLIP-Score, IS, and ID respectively. As reported in Table 3, our method surpasses all
the baselines. Concretely, our method achieves higher semantic similarity with the target domain in
CLIP-Score. Furthermore, it outperforms priors on IS and ID, indicating that our generated images
have better fidelity and cross-domain consistency.

8



Published as a conference paper at ICLR 2024

Source w/o with

Figure 6: Qualitative ablation for Ldirect on sunglasses.

Target Ours-Swin Ours-EnsembleNADASource

Figure 7: Qualitative ablation for the ensemble on sketch.

4.5 ABLATION STUDY

Ldist Ldirect
sunglass baby

IS (↑) ID (↑) IS (↑) ID (↑)

✓ 1.91 0.249 2.56 0.178
✓ 2.61 0.372 3.5 0.304

✓ ✓ 2.67 0.414 3.71 0.353

Table 4: Ablation for Ldist and Ldirect on 10-shot DA.

First, we conduct the ablation study to ver-
ify the effectiveness of our proposed direc-
tional subspace loss. As shown in Fig. 6,
Ldirect greatly improves the cross-domain
consistency (e.g., clothes and hair). Consis-
tently, we observe that the adaptation with
our directional loss maintains higher ID
scores throughout training. Quantitatively,
we report the ablation for Ldist and Ldirect

in Table 4. It can be clearly observed that
the Ldist and Ldirect significantly improve image fidelity and cross-domain consistency. Besides, we
report the qualitative ablation for the encoders ensemble in Fig. 7. Our method with Swin (Liu et al.,
2021) significantly alleviates the bias compared with NADA (Gal et al., 2021) and the ensemble
technique further help to converge to the exact realization of the style of the sketch domain.

5 CONCLUSION & LIMITATION

Conclusion. In this paper, we propose a new task – Hybrid Domain Adaptation (HDA), which aims to
adapt a pre-trained generator to the hybrid target domain to generate images with integrated attributes.
To achieve this, we introduce a novel discriminator-free framework, which utilizes the pre-trained
image encoder to encode the reference images from different domains into separate embedding
subspaces. Furthermore, we introduce a directional subspace loss to guide the adaptation and retain
cross-domain consistency. We believe that our work is an important step towards few-shot HDA
since we have demonstrated that the source generator can be effectively adapted to a hybrid domain
without accessing the real images from the hybrid domain.

Limitation. While our method realizes HDA and achieves better superior metrics compared with
state-of-the-art DA methods, it also has the limitation. We observe that for hybrid domain adaptation,
the weights of different domain in our loss are not entirely equivalent to the proportionality of visual
characteristics, which needs empirical adjustment. Nevertheless, we believe that some solutions
could be integrated into our HDA pipeline to facilitate the alignment in the future.
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(a) Swin (b) Dinov2

Figure 8: T-SNE visualization of the embedding space encoded by Swin (Liu et al., 2021) and
Dinov2 (Oquab et al., 2023) for images from baby, sketch, and sunglasses domain.

Intra-LPIPS (↑) smile sketch sunglasses

NADA 0.529 0.491 0.535
CDC 0.616 0.453 0.562
RSSA 0.625 0.480 0.563
AdAM 0.615 0.495 0.598
Ours 0.642 0.506 0.615

Table 5: Intra-cluster pairwise LPIPS distance on 10-shot DA.

A APPENDIX

A.1 EMBEDDING SPACE ANALYSIS

Since the image encoder in image classification typically projects the images into a well-separable
embedding space, such as Swin (Liu et al., 2021) and Dinov2 (Oquab et al., 2023), we can employ
the separable subspaces to achieve HDA. To validate that, we visualize the embeddings of real images
from multiple domains by t-SNE (Van der Maaten & Hinton, 2008). As shown in Fig. 8, distinct
subspaces from different domains manifest separation, which facilitates us to adapt the generator to
the target subspace corresponding to the target domain.

A.2 INTRA-LPIPS

Following CDC (Ojha et al., 2021), we utilize Intra-cluster pairwise LPIPS distance (Zhang et al.,
2018) to evaluate the diversity of generated images for single domain adaptation. Specifically, we use
1000 generated images and 10 real images from the target domain to compute Intra-LPIPS. As shown
in Table 5, our method achieves higher Intra-LPIPS distance than baseline methods, indicating more
distinct images being generated.

A.3 MORE QUALITATIVE RESULTS

As the complement of qualitative results in the main paper, we conduct the experiments on more
target domains. We present the results in Fig. 9 and Fig. 10 for DA and HDA respectively. It can
be observed that the generated images generated by our methods integrate the attributes, which
significantly surpasses the baseline methods.
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Figure 9: Qualitative results on 10-shot HDA.

A.4 IMPLEMENT DETAILS

As depicted in Eq. (7) and Eq. (8), we use pre-defined domain coefficient to modulate the attributes
from multiple domains. For most experiments on two domains, we use αi = 0.5 except for baby-
sunglasses with αbaby = 0.3 and αsunglasses = 0.7. For the experiment of three domains, we set
αbaby = 0.7, αsketch = 0.4, and αsmile = 0.3.

Following the setting of previous DA methods, we utilize the batch size of 4 and a training session
typically requires 300 iterations in roughly 3 minutes on a single NVIDIA TITAN GPU. Besides, we
set the balancing factor λ as 1 in Eq. (6) and Eq. (9).
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Figure 10: Qualitative results on 10-shot DA of sunglasses and baby.

Domain Prompt

baby “face of a baby”
sketch “face of a person with the style of sketch”

sunglasses “face of a person with sunglasses”
smile “face of a person with smile”

smile-sunglasses “face of a person with smile and sunglasses”
baby-smile “face of a baby with smile”
baby-sketch “face of a baby with the style of sketch”

Table 6: Prompts of different domains for CLIP-Score.

A.5 PROMPTS FOR CLIP-SCORE

To measure the semantic similarity with the target domain, we adopt CLIP-Score as the evaluation
metric in Section 4.1. As shown in Table 6, we present the prompts corresponding to different target
domains.
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Figure 11: Impact of different shots for our method in HDA. Results of 5-shot are close to those of
10-shot. Compared with them, the results of 1-shot exhibit relatively lower cross-domain consistency.

Source Red hair10-shot

Source Sunglasses Sunglasses-SmileMask

Red hair-Smile

Figure 12: Conditional generation of our method in DA and HDA. We adapt the generator with
masked images for red hair and sunglasses respectively. The red masks represent red hair, while the
blue masks represent faces wearing sunglasses.

A.6 RESULTS USING DIFFERENT NUMBERS OF SHOTS

We perform experiments on lower shots (5-shot and 1-shot) as suggested using various datasets. As
shown in Fig. 11, the results of 5-shot are close to those of 10-shot, which integrates the attributes
and maintains the consistency with source domain. Although multiple attributes have been learned,
the results of 1-shot exhibit relatively lower cross-domain consistency compared with 10-shot and
5-shot. This is because when there is only one reference image per domain, the subspace in our
directional subspace loss degenerates into a single point (see Fig. 2). Then distinct generated images
corresponding to different noise tend to converge towards the same image in CLIP’s embedding
space, which comprises cross-domain consistency as depicted in Section 3.3.
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Figure 13: Effect of different pre-trained image encoders in Fig. 2, e.g., Swin, Dinov2, and their
ensemble.

A.7 RESULTS OF CONDITIONAL GENERATION

As shown in Fig. 12, we conduct the experiments on conditional generation. Specifically, we collect
10-shot images with red hair and sunglasses. Then we use masks to separate these attributes and
adapt the generator with masked images for red hair and sunglasses respectively. We can observe
that the generated images possess the corresponding attribute for both single DA and hybrid DA.
Simultaneously, these images also maintain consistency with source domain.

A.8 EFFECT OF DIFFERENT PRE-TRAINED IMAGE ENCODERS

As shown in Fig. 13, we conduct experiments on pre-trained Swin and Dinov2 to explore the impact
of different image encoders on generated images. Our method is agnostic to different pre-trained
image encoders. Although they exhibit slight stylistic differences, these are due to their different
approaches to extract features into separated subspaces, as depicted in Fig. 8. To converge to the
exact realization of the target domain, our method employs the ensemble technique that exploits both
Swin and Dinov2. As shown in the figure, the results closely resembles the attributes of the target
domain while maintaining the best consistency with source domain.

A.9 TRAVERSAL FOR DOMAIN COEFFICIENT α

In our method for hybrid domain adaptation, this parameter controls the composition ratio of the
attribute from each domain. As depicted in Appendix A.4, we use αi = 0.5 for most experiments
without the need for complex and intricate adjustments. To further explore the sensitivity, we
conduct the study for simple traversal of αi. As shown in Fig. 14, the attributes of generated images
transit smoothly between domains. Our method produces the similar attribute blending effect when
αi ∈ {0.4, 0.5, 0.6}.

A.10 THE RESULTS OF MORE DOMAINS

Consistent with prior work for few-shot generative domain adaptation (like CDC (Ojha et al., 2021),
RSSA (Xiao et al., 2022) and DoRM (Wu et al., 2023)), our experimental data encompasses both
global style (sketch and baby) and local attributes (smile and sunglasses). The combination of these
domains demonstrates the effectiveness of our method since they encompass all types of generative
domain adaptation.
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Figure 14: The study of simple traversal on αi for hybrid domain adaptation. The attributes of
generated images transit smoothly between two domains. Our method produces the similar attribute
blending effect when αi ∈ {0.4, 0.5, 0.6}. Note that αbaby and αsunglasses are 1− αsmile.
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10-shot (Caricature)
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Caricature Caricature-Baby Caricature-Sketch

Figure 15: Single and hybrid domain adaptation on Raphael and Caricature.

To provide more comprehensive evidence of validity, we conduct additional experiments on Raphael
and Caricature for both single and hybrid domain adaptation. As shown in Fig. 15, the results
integrate the characteristics from multiple target domains and maintains robust consistency with
source domain, which further demonstrates the effectiveness of our method.

A.11 THE GENERALIZABILITY TO OTHER DOMAINS

To verify the generalizability of our method to other domains, we conduct experiments on church
domain following prior work (Ojha et al., 2021; Xiao et al., 2022; Wu et al., 2023), RSSA (Xiao
et al., 2022) and DoRM (Wu et al., 2023)). We adapt the pre-trained generator from LSUN Church
(Yu et al., 2015) to Van Gogh’s house paintings, haunted houses, and the combination of them. As
shown in Fig. 16, the results acquire the corresponding style and showcase the preservation of good
cross-domain consistency. This aligns with the results observed in the face domain.
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Source Van Gogh Van Gogh-Haunted Haunted

10-shot (Van Gogh) 10-shot (Haunted)

Figure 16: Results of domain adaptation from LSUN Church to Van Gogh’s house paintings, haunted
houses, and the combination of them.
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Figure 17: Editing results on the images generated by original and adapted model for both single and
hybrid domain adaptation. The first line is the source images. The second and third lines are images
of the adaptation.

A.12 THE EDITABILITY BEFORE AND AFTER THE DOMAIN ADAPTATION

We conduct the editing on the images generated by original and adapted model for both single
and hybrid domain adaptation. As shown in the Fig. 17, the results indicate the adapted generator
maintains similar editability like pose to the original generator. This verifies that the our method
effectively preserves original generator’s attributes.
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Source Sunglasses Sunglasses-Smile

Figure 18: Single and hybrid domain adaptation in 3D GAN. We adapt pre-trained EG3D (Chan
et al., 2022) with our method using 10-shot training images per domain.

A.13 SINGLE AND HYBRID DOMAIN ADAPTATION IN 3D GAN.

We conducted experiments using the popular 3D-aware image generation method, EG3D (Chan et al.,
2022). Specifically, we replace the discriminator as we did in Fig. 2 for both single and hybrid domain
adaptation. As shown in Fig. 18, we adapt the pre-trained generator from FFHQ to sunglasses and
the hybrid of sunglasses and smile with 10-shot training images per domain. We can observe that the
results effectively integrate the attributes and preserve the characters and poses of source domain.

A.14 COMPARISON TO METHODS FOR DIFFUSION MODEL PERSONALIZATION

Current trend in customized text-to-image models like DreamBooth (Ruiz et al., 2023) aim to
mimic the appearance of subjects in a given reference set. Similar to ours, DreamBooth fine-tunes
a pre-trained generator for the personalization. However, there are two key differences between
personalization and HDA.

(1) DreamBooth aims to retain the individuals from the training images, requiring similar individuals
across the training set. Differently, our goal is to acquire the attributes of target domain like and
preserve consistency with the source generator, ensuring that images generated from the same noise
exhibit similar individuals.

(2) Dreambooth utilizes text-to-image generator which necessitates intricate and laborious adjust-
ments of prompts to synthesize images with specific attributes. Additionally, certain attributes are
challenging to accurately describe using text, such as artistic paintings. Conversely, our adapted
model adeptly preserves the domain-specific attributes of reference images without the need for
intricate prompt engineering.
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