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ABSTRACT

Counterfactual explanations (CFXs) provide human-understandable justifications
for model predictions, enabling actionable recourse and enhancing interpretabil-
ity. To be reliable, CFXs must avoid regions of high predictive uncertainty, where
explanations may be misleading or inapplicable. However, existing methods often
neglect uncertainty or lack principled mechanisms for incorporating it with formal
guarantees. We propose CONFEX, a novel method for generating uncertainty-
aware counterfactual explanations using Conformal Prediction (CP) and Mixed-
Integer Linear Programming (MILP). CONFEX explanations are designed to pro-
vide local coverage guarantees, addressing the issue that CFX generation violates
exchangeability. To do so, we develop a novel localised CP procedure that enjoys
an efficient MILP encoding by leveraging an offline tree-based partitioning of the
input space. This way, CONFEX generates CFXs with rigorous guarantees on
both predictive uncertainty and optimality. We evaluate CONFEX against state-
of-the-art methods across diverse benchmarks and metrics, demonstrating that in
many cases, our approach more robust and plausible explanations compared to
competing uncertainty-aware generators.

1 INTRODUCTION

Machine learning models are deployed in high-stakes decision-making scenarios like loan approvals,
medical diagnoses, and employment screening. In these contexts, algorithmic recourse—providing
actionable feedback to individuals influenced by these decisions—is not just a technical concern but
also an ethical and legal imperative. Although the legal status of “right to explanations” under the
EU’s General Data Protection Regulation (GDPR) remains contested (Wachter et al., 2017; Selbst
& Barocas, 2018), there is growing consensus that individuals should be offered meaningful infor-
mation about algorithmic decisions that impact them (Edwards & Veale, 2017; Binns et al., 2018).

Counterfactual explanations (CFX) were formally introduced by Wachter et al. (2017) as a method
for algorithmic recourse. CFXs answer questions like: “What minimal changes to my input features
would have altered the model’s decision desirably?”, and Wachter’s formalisation focuses on find-
ing counterfactual explanations that are minimally close to the original point (factual instance) or
have sparse feature changes. These criteria of closeness and sparseness have been extended in later
methods to other desiderata such as diversity, causality, actionability, and plausibility, to generate
explanations that work better as a recourse path and are distinguished from adversarial examples.

However, most existing CFX methods fail to account for the inherent uncertainty in both data and
model predictions. This is problematic because explanations that ignore uncertainty may lead to
false confidence in suggested changes, potentially resulting in ineffective recourse actions when
deployed in practice. Uncertainty quantification in CFX is thus crucial for generating reliable and
actionable insights.

We introduce CONFEX, an uncertainty-aware CFX generator that builds on Conformal Prediction
(CP) (Vovk et al., 2022; Angelopoulos et al., 2023). CP is a popular uncertainty quantification
framework that offers distribution-free and finite-sample coverage guarantees. It works by using
calibration data to construct prediction regions that contain the true (unknown) outcome with a user-
specified probability. CP does not require assumptions on the data distribution and the underlying
model, except that the calibration data and the test point must be exchangeable. The core idea of
our CONFEX method is to constrain the search space for CFXs only to those points leading to a
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(a) Minimum distance (b) CONFEX-Naive (c) CONFEX-LCP (d) CONFEX-Tree

Figure 1: Counterfactuals produced for the same factual instance (marked in blue) for a MLP classi-
fier using approaches MILP-MinDist, CONFEX-Naive, CONFEX-LCP, CONFEX-Tree. CONFEX
approaches use bandwidth as 35% of the median pairwise distance between calibration points, and
alpha as 2%.

singleton prediction region {y+}, i.e., points that yield the desired outcome y+ with a high degree
of certainty, since non-singleton CP regions represent uncertain predictions.

To illustrate our methods, Fig. 1a displays CFXs produced over a synthetic 2D dataset inspired
from Poyiadzi et al. (2020). We can observe that counterfactuals produced by the minimal distance
approach and by a naive application of CP to the CFX generation problem, called CONFEX-Naive
(Section 3), fail to be plausible with respect to the data distribution.

These issues with naively applying CP to CFX generation stem from the fact that the generated
(test-time) CFX may not be exchangeable with the calibration points, thereby affecting the valid-
ity of CP’s guarantees. We solve this by imposing stricter coverage requirements for CP: we build
prediction regions that approximately1 attain local (aka test-conditional) guarantees, i.e., the tar-
get coverage probability is achieved for any test point. In contrast, normally, CP guarantees are
marginal, i.e., the coverage probability is averaged over the joint calibration and test distribution.

Our CONFEX method relies on a Mixed-Integer Linear Programming (MILP) encoding of the op-
timisation problem, which not only guarantees optimality of solutions but also ensures satisfaction
of the CP constraints. We present two methods for incorporating local coverage constraints. The
first is localised CP (Guan, 2023), which frames conditional coverage as a covariate shift problem
(Tibshirani et al., 2019). However, it requires encoding and solving calibration quantiles in MILP,
which is computationally expensive and scales poorly with the dataset size. The second, more effi-
cient, method is a KD-tree-based encoding of local calibration quantiles. For this method, we use
regression trees, which can be efficiently encoded in MILP.

In summary, our main contributions are:

1. a mathematical formulation for distribution-free uncertainty-aware counterfactual explanations,
the first to apply conformal prediction in a principled manner (i.e., by addressing the exchange-
ability problem via test-conditional coverage, retaining formal guarantees);

2. a novel localised CP procedure, with an efficient MILP encoding, for generation of CFXs, which
can be used more generally to incorporate (test-conditional) CP uncertainty constraints in any
search problem;

3. an extensive experimental evaluation demonstrating that our CONFEX method outperforms com-
peting uncertainty-aware generators by providing more certain, plausible and stable explana-
tions, as well as enjoying formal guarantees on uncertainty.

2 BACKGROUND AND PROBLEM FORMULATION

Counterfactual Explanations Let f̂ : X → Y denote a trained classifier for which we seek to
generate counterfactual explanations. Given an instance x0 ∈ X such that f̂(x0) ̸= y+, the goal is
to identify a counterfactual instance x′ such that f̂(x′) = y+. Wachter et al. (2017) frame this as an

1Exact conditional guarantees for CP are known to be impossible unless the inputs are discrete (Vovk, 2012;
Barber et al., 2020).
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optimisation problem and solve it via gradient descent.

xcf ∈ argmin
x′

max
λ

(
λ yloss

(
f̂ (x′) , y+

)
+ dist (x0, x

′)
)
. (1)

The loss function aims to find an explanation that changes the predicted class to the target class
(first term), while also ensuring that the explanation is close to the input instance (second term).
Closeness is often defined as an Lp norm, which can be weighted based on the observed data (e.g. the
inverse median absolute deviation), or to reflect domain knowledge (Dandl et al., 2020). However,
by optimising solely for closeness, this formulation often leads to counterfactual explanations that
resemble adversarial examples and may not be actionable or robust.

Desirable properties of CFXs include validity (prediction flips to y+), proximity (closeness to the
factual instance), sparsity (few feature changes), plausibility (realistic and likely under the data
distribution), actionability (only mutable features are altered), causality (identified counterfactual
satisfies causal relationships) and robustness (stability under input perturbations); see (Verma et al.,
2020; Karimi et al., 2021).

Uncertainty-aware CFX methods show promise for enhancing the robustness and plausibility of
CFXs. In this line of work, Schut et al. (2021) propose minimising predictive entropy across an
ensemble of models to consider the effect of uncertain regions. Bayesian approaches, such as CLUE
(Antorán et al., 2020), leverage predictive uncertainty from Bayesian neural networks to generate
epistemically informative counterfactuals.

Conformal Prediction CP is a distribution-free inference framework that complements any pre-
dictive model with rigorous uncertainty quantification. CP outputs prediction sets guaranteed to
contain the true (unknown) outcome with a user-specified probability 1 − α without relying on
asymptotic or parametric assumptions (Vovk et al., 2022; Angelopoulos et al., 2023). To construct
these sets, CP performs the following steps:

1. Calibration: use a held-out calibration dataset Dcal = {(xi, yi)}ni=1 to find the critical value
q1−α (i.e., the 1− α quantile) of a chosen test statistic called the (non-conformity) score s(x, y),
which is normally chosen to quantify the deviation between the model prediction f̂(x) and the
ground truth y. This step is performed only once, offline. Formally,

q1−α = Q1−α

(
n∑

i=1

1

n+ 1
δs(xi,yi) +

1

n+ 1
δ+∞

)
, (2)

where Q1−α is the 1− α quantile function and δv is the Dirac distribution centered at v.
2. Inference: for a test input x∗, construct a prediction region C(x∗) by including all labels y whose

score is below the critical value (i.e., such that s(x∗, y) ≤ q1−α).

The CP procedure provides the following marginal guarantee for an unseen test point (x∗, y∗):

P
Dcal,(x∗,y∗)

(y∗ ∈ C1−α(x
∗)) ≥ 1− α. (3)

The above holds in finite sample regimes (as opposed to asymptotic) under the mild condition of ex-
changeability (a weaker assumption than IID), i.e., the joint distribution of calibration and test points
is invariant under permutations. By marginal guarantees, we mean that the coverage probability of
equation 3 is achieved on average over the joint calibration and test distribution.

CP and CFXs To our knowledge, there exist only two methods which apply conformal prediction
to CFX generation: ECCCo (Altmeyer et al., 2024) and CPICF (Adams et al., 2025).

CPICF (Adams et al., 2025) assumes an alternative “individualised” setting, where an institution
holds a private black-box classifier and aims to provide CFXs to individuals without disclosing the
classifier. The knowledge of each individual is modelled by their own classifier, and the organisation
produces a CFX to reduce uncertainty in the global classifier via CP. This is a fundamentally different
setting to ours, furthermore CPICF’s formulation does not retain any formal CP guarantees.

In the standard setting, ECCCo extends Wachter’s formulation (equation 1) with two additional
terms: one that optimises the energy of the identified counterfactual to enhance plausibility, and
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one that minimises uncertainty through the smooth conformal set size loss of Stutz et al. (2022).
However, ECCCo has the following drawbacks: 1) it incorporates conformal prediction, but in a
way that does not address exchangeability issues, which we detail in Section 3.1; 2) the procedure
does not guarantee CP regions will have the required size (e.g., singletons); 3) it relies on energy-
based training to obtain plausible CFXs. As we will show, our approach instead induces plausible
CFXs solely by using CP constraints, formulating these constraints to enforce local validity (thereby
solving the exchangeability issues), and thanks to the MILP formulation, it ensures satisfaction of
the set size constraints whilst being optimally close.

Both ECCCo and CPICF fail to retain formal guarantees on generated counterfactuals, and mention
that further analysis on the role of CP in CFXs is required. In the context of recouse recommen-
dations, wthout uncertainty guarantees, the CFX method may suggest CFXs where the model is
uncertain. This may mislead the recipient into making changes that do not actually alter the out-
come. Instead we want to produce reliable explanations for every individual, backed up by formal
guarantees.

Mixed Integer Linear Programming (MILP) and CFXs MILP provides a framework for for-
mulating and deriving CFXs as a constraint-solving problem. The problem is of finding a point x′

which minimises the distance to the original instance x0 whilst being classified as y+.

xcf ∈ argmin
x′

dist(x0, x
′) s.t. f̂(x′) = y+ (4)

We refer to this method as MILP-MinDist, and it serves as a baseline for our CONFEX method.

To allow the encoding, the model f must be representable in MILP; this is the case for e.g. linear
classifiers and multilayer perceptrons with ReLU activations, as well as non-differentiable models
such as decision trees. Neural network layers like sigmoid or softmax are not linearly representable,
but can be omitted from the MILP encoding if used at the last layer since we can identify if f(xcf) =
y+ based on the logits alone.

When presented to an MILP solver, this approach is guaranteed to yield a valid and optimal CFX,
if such an explanation exists. Gradient-based methods, on the other hand, are incomplete, meaning
that they may fail to find valid CFXs or may return suboptimal solutions.

We note that properties like causality and actionability can be incorporated in equation 4 through
MILP constraints on the input variables; similarly, a set of diverse explanations (as opposed to an
individual one) can be generated by repeatedly solving the problem and adding constraints or objec-
tive function terms to block or penalize explanations similar to those already identified (Kanamori
et al., 2020). By adding such constraints, our method can accommodate these desiderata as well.

Problem Formulation We aim to find CFXs that modify the factual input to the minimum extent
necessary to yield the desired label y+ with high probability. Below is the formal problem statement.
Problem 1 (Uncertainty-aware CFX). Given a factual input x0 and an error level α ∈ (0, 1), an
uncertainty-aware counterfactual explanation xcf is a solution to the below optimisation problem:

xcf ∈ argmin
x′

dist(x0, x
′) s.t. PY |X=x′(Y = y+) ≥ 1− α, (5)

where PY |X=x′ is the conditional distribution of labels Y given X = x′. Hence, our base method
targets just the minimal distance and low uncertainty desirable CFX properties.

3 CFXS WITH CP CONSTRAINTS: A NAIVE ATTEMPT

We first present a naive approach to apply conformal prediction to minimise the uncertainty in
the generated CFX, which we call CONFEX-Naive. This approach extends MILP-MinDist (see
equation 4) by restricting the search space to points yielding the singleton CP region {y+}, i.e.,
points attaining the target class and with a high degree of certainty:

xcf ∈ argmin
x′

dist(x0, x
′) s.t. C1−α(x

′) = {y+} (6)
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Note that the above constraint is equivalent to the constraints s(x′, y+) ≤ q1−α and∧
y ̸=y+ s(x′, y) > q1−α. The quantile q1−α is pre-computed on the held-out calibration set.

For multi-layer perceptrons, we use the following log-likelihood ratio as the score function

s(x, y) = log

(
maxy′ ̸=y p(x)y′

p(x)y

)
, (7)

where p(x)y is the softmax probability of y predicted by the model f for input x. When the correct
class is predicted, the ratio is below 1 and we obtain a negative score. When the model is wrong,
the ratio is positive and the score grows bigger as the model confidence on y decreases relative to
that on the predicted class. Importantly, equation 7 can be equivalently expressed in a linear form as
s(x, y) = −l(x)y+maxy′ ̸=y l(x)y′ , where l(x) is the predicted vector of logits, making it efficiently
representable in MILP.

Relation with MILP-MinDist We note that our score function is well-formed, i.e., s(x, y) is
lowest when y is the label predicted by the model f (and, in particular, s(x, y) increases as the
softmax probability of y decreases). Thus, when a CP prediction region returns the singleton {y+},
then y+ is the class with the lowest score, i.e., the class predicted by f . That is, for any α ∈ (0, 1),
C1−α(x) = {y+} → f(x) = y+. This implies that the feasible set of CONFEX is a subset of that
of MILP-MinDist, and so, CONFEX explanations can never attain smaller (better) distances than
CFX-base. Importantly, since the above property holds for any α, it also holds for any choice of
quantile q1−α. This property also applies to the localised CP methods described later, which define
a different quantile value.

3.1 NEED FOR CONDITIONAL GUARANTEES

A visual example of using CONFEX-Naive to generate a counterfactual explanation is shown in
Figure 1 (plot b). We observe that when adding the singleton set size constraint, the obtained coun-
terfactual explanation is further from the decision boundary compared to MILP-MinDist (plot a).
This is is desirable since the identified CFX would resemble less an adversarial example. However,
the counterfactual explanation the identified CFX is somewhat counterintuitive: it lies in an area
without local datapoints, i.e., away from the data support (see plot d). Since the CP constraints
enforce low-uncertainty predictions, we would expect to find the CFX in a region where datapoints
unambiguously belong to the target class, and not in regions near the decision boundary, where
multiple classes overlap, or with no or little data support.

The main issue is that CONFEX-Naive can return CFXs that are not exchangeable with the calibra-
tion points, violating CP’s marginal guarantees. Hence, our prediction regions should be valid for
any choice of test inputs (not just exchangeable ones), requiring the coverage requirements to be
strengthened to enforce conditional validity, i.e., for any choice of x = x′, the following must hold:

P
Dcal,(x,y)

(y ∈ C1−α(x) | x = x′) ≥ 1− α. (8)

However, unless the inputs are discrete, the above exact conditional guarantees are known to be
impossible if we require distribution-free and finite-sample guarantees (Vovk, 2012; Barber et al.,
2020). To solve this issue, among the several methods recently proposed for CP with approximate
conditional validity (Jung et al., 2022; Hore & Barber, 2023; Ding et al., 2023; Gibbs et al., 2025;
Cabezas et al., 2025), we focus on the localised CP (LCP) method of Guan (2023), described in
the next section. Below, we prove that conditional conformal prediction provides a solution to the
uncertainty-aware CFX problem stated in Problem 1.

Uncertainty-aware CFXs with Conditional Conformal Prediction Consider the set of accept-
able points A = {x | C1−α(x) = {y+}}. If C1−α satisfies the conditional guarantees of Equation 8,
then for every x ∈ A, we have that

P
Dcal,Y |X=x

(
Y = y+

)
≥ 1− α, (9)

which is equivalent to stating P
Dcal,X,Y

(Y = y+ | X = x) ≥ 1 − α. This trivially follows

from the fact that if x ∈ A, then C1−α(x) = {y+}, and so P
Dcal,X,Y

(Y = y+ | X = x) =

P
Dcal,X,Y

(Y ∈ C1−α(x) | X = x).
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Thus, in our optimisation problem, we can use the constraint C1−α(x) = {y+} (provided C1−α

offers conditional guarantees) to ensure satisfaction of the uncertainty constraint (9). Note that (9)
is equal to the chance constraint (5) in Problem 1 except that the probability is over Dcal too.

On the other hand, CONFEX-Naive uses standard CP, where C1−α offers only marginal coverage,
meaning that the constraint C1−α(x) = {y+} does not satisfy Eq. (9) but a weaker form of it:

P
Dcal,X,Y

(
Y = y+ | X ∈ A

)
≥ 1− α/P (A), (10)

where P (A) = P
Dcal,X,Y

(X ∈ A) is the probability that X yields a the singleton region {y+}2.

Therefore, with marginal CP, we cannot attain a principled uncertainty control in CFX generation.

4 THE CONFEX APPROACH

Our method CONFEX uses Localised Conformal Prediction (LCP) to generate CFXs with more
principled, local coverage guarantees. We introduce two variants: CONFEX-LCP, which encodes
LCP constraints via MILP, and CONFEX-Tree, which also provides local guarantees via MILP but
is more computationally efficient thanks to an offline tree-based representation of the local quantiles.

4.1 LOCALISED CONFORMAL PREDICTION (LCP) AND CONFEX-LCP

Localised Conformal Prediction (LCP) (Guan, 2023) relaxes strict conditional coverage (see equa-
tion 8) by requiring coverage to hold only within a local neighbourhood around a test input x∗. To
achieve this, LCP reweights the calibration points as if they were drawn under the localised distri-
bution of x∗, thereby restoring exchangeability. The reweighted probabilities are computed by a
localiser kernel H : X × X → [0, 1], which measures how “close” x′ is to x, with H(x, x) = 1. In
our method, we use the L1-box kernel

H(x, x′) = 1(∥x− x′∥1 ≤ h), (11)

where h is the kernel bandwidth controlling the degree of localisation. For numerical and ordinal
features, the L1 distance is computed after normalisation; for categorical features, we require exact
matches over all or some categorical features, else H(x, x′) = 0. Other kernels (e.g., based on
infinity norm or Gaussian smoothing) are also possible.

For a test input x∗, the local quantile is

qLCP
1−α(x

∗) = Q1−α

(
n∑

i=1

wiδs(xi,yi) + w∗δ+∞

)
, (12)

where wi =
H(x∗,xi)

W for i = 1, . . . , n and w∗ = H(x∗,x∗)
W = 1

W , with W = 1 +
∑n

i=1 H (x∗, xi)
being a normalizing factor.

This reweighting step and the resulting prediction region CLCP
1−α (x∗) = {y : s(x∗, y) ≤ qLCP

1−α(x
∗)}

ensure, for any test point x∗, the following approximate conditional guarantee:

P
Dcal∼Pn

X,Y ,(x,y)∼P∗
X,Y

(y ∈ CLCP,1−α(x)) ≥ 1− α, (13)

where Pn
X,Y is the (product) distribution of the n calibration points, and P ∗

X,Y = PY |X × P ∗
X is

the localised test distribution, with P ∗
X = PX ◦H(x∗, X) being the distribution of X obtained by

applying to PX the kernel H centered at x∗.

CONFEX-LCP We extend CONFEX-Naive by replacing CP regions with LCP regions, yielding
more principled and adaptive counterfactual generation. Formally,

xcf ∈ argmin
x′

dist(x0, x
′) s.t. CLCP

1−α (x′) = {y+}, (14)

2The proof is based on rewriting P
(
Y ̸= y+ | X ∈ A

)
= 1 − P

(
Y = y+ | X ∈ A

)
as

P
(
Y ̸= y+ ∧X ∈ A

)
P (X ∈ A)

and noticing that the numerator is bounded by α.

6
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which enforces s(x′, y+) ≤ qLCP
1−α (x′) and s(x′, y) > qLCP

1−α (x′) for all y ̸= y+. Unlike CONFEX-
Naive, which uses a single global quantile q̂, here the quantile depends on the candidate x′, requiring
explicit encoding in the MILP formulation (see Algorithm 2 in the Appendix). This introduces
additional variables and big-M constraints linear in the calibration set size. Fig. 1 (plot c) shows a
CFX computed using CONFEX-LCP.

Properties. Thanks to the LCP method, CONFEX-LCP computes quantiles using only points lo-
cal to the test input x, where locality is defined by the L1 kernel. This yields more adaptive and
reliable uncertainty estimates than vanilla CP (and CONFEX-Naive), with larger prediction sets in
sparse or ambiguous regions, whilst ensuring that counterfactual is grounded with the data, i.e., sim-
ilar (local) individuals which are correctly predicted to be in the target class. We note that features in
the kernel can be assigned different weights based on domain knowledge. The choice of the kernel
bandwidth h is application-specific and it allows us to balance between local and marginal coverage.

4.2 CONFEX-TREE: FAST VARIANT OF CONFEX-LCP

Due to the increased cost of resolving quantiles using MILP, LCP is infeasible for practical use with
large calibration sets.

In this section, we introduce CONFEX-Tree, an efficient alternative formulation of Localised CP
which retains formal guarantees. CONFEX-Tree leverages that decision trees are efficiently rep-
resentable in MILP and uses precomputed local quantiles. While LCP operates at test-time by
retaining only the calibration points within distance h of the point, CONFEX-Tree works offline to
determine locality constraints: it splits the feature space recursively to obtain local neighbourhoods
of calibration points having kernel width of at most h.

The construction procedure is inspired by kd-trees (Skrodzki, 2019) and detailed in Algorithm 1.
Each leaf specifies a precomputed local quantile using only calibration points within that leaf. From
these points, we also compute the midpoint of the smallest enclosing hyper-rectangle. The tree
construction ensures that no two points in a leaf can have a bigger L∞ distance than the kernel
bandwidth h. Then, each new test point x′ is assigned to a leaf of the tree and is associated with
the corresponding quantile if x′ is within L∞ distance of h/2 from the midpoint, which means that
it is within distance of h from any calibration point of that leaf. To handle categorical features, we
stratify the dataset by each combination of (all or select) categorical values and generate a tree for
each stratum (which is equivalent to first splitting on all categorical features).

The resulting tree is encoded in MILP and used to provide the quantile value for the test point,
replacing the LCP regions from CONFEX-LCP . Formally, explanations are derived by solving

xcf ∈ argmin
x′

dist(x0, x
′) s.t. CTree

1−α(x
′) = {y+}, (15)

where CTree
1−α is constructed using the local tree-based quantiles returned by Algorithm 1.

Properties of CONFEX-Tree. The tree constructed by the CONFEX-Tree defines a partitioning
of the feature space into disjoint regions {Xg}g∈G . Each g has an associated quantile value q1−α,g

computed using only calibration points in g. This results in the following finite-sample group-
conditional coverage guarantee

P
(
y ∈ CTree

1−α(x
∗) | x∗ ∈ Xg

)
≥ 1− α for all g ∈ G, (16)

as per Vovk (2012). Note that our method overapproximates the group-conditional quantiles as it
assigns a quantile of ∞ when x∗ has L∞ distance more than h/2 from the midpoint of g. For this
reason, it still satisfies the above guarantee.

Moreover, by construction, the groups created by CONFEX-Tree are local regions of calibration
points in the feature space. Hence, we obtain an approximate conditional guarantee, as the tree
approximates the conditional quantile Q1−α(s|x) with the granularity of the approximation being
controlled by the bandwidth h.

Finally, CONFEX-Tree can be viewed as an instance of LCP using the following kernel

H(x, x′) = 1(∥x− x′∥∞ ≤ h ∧ ∃g.x, x′ ∈ Xg), (17)
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Algorithm 1: CONFEX-Tree: Tree-based encoding of local quantiles
Input : Calibration set Dcal, score function s, coverage level 1− α, bandwidth h
Output: Tree-based quantile encoding
Categorical Stratification:
1. Stratify the calibration dataset by each distinct combination of (all or some) categorical feature

values.
2. Generate a tree for each group using the Tree Construction procedure over the normalised

numerical and ordinal values only.
Tree Construction:
1. If the maximum range along any feature dimension of all calibration points in the node is less

than h, stop and create a leaf node. At each leaf, compute and store:
• the 1− α quantile of the scores s(x, y) of the calibration points assigned to the leaf;
• the midpoint of the calibration features in the leaf.

2. Otherwise, split the current node along the feature with the maximum spread, using the midpoint
of that feature’s values as the split point. Recurse on the left and right subsets to build subtrees.

Prediction for test point x∗:
1. Select the correct tree based on the test point’s categorical values.
2. Traverse the tree using x′ until reaching a leaf. Let c and q be its stored midpoint and quantile.
3. Reject point if assigned to the leaf but not local: if ∥x∗ − c∥∞ > h/2, return ∞; o/w, return q.

i.e., both points need to belong to the same leaf and have L∞ distance bounded by h. Using this
kernel, the guarantees of equation 13 also apply to CONFEX-Tree.

To summarise, explanations produced by CONFEX-Tree enjoy a distance optimality guarantee, va-
lidity guarantee (Relation with MILP-MinDist), and uncertainty guarantee Eq. (16). Additionally,
our local (i.e., approx. conditional) guarantees imply that our CFXs are valid with high probability
for any individual, even for out-of-distribution ones. This is preferable to a generator which, over a
test set, empiricially produces good results over a particular metric, since the distribution may shift
at test-time - our method is robust to this.

5 EVALUATION

In this section, we evaluate our method against competing CFX methods, assessing the cost (dis-
tance), plausibility and sensitivity of CFXs generated by CONFEX-Tree. We explore the impact of
varying the kernel bandwidth and the user-specified coverage rate, and we verify the formal cover-
age guarantees of CONFEX methods. We find that CONFEX consistently produces more stable and
plausible CFXs across the benchmarks, provided the kernel bandwidth is appropriately chosen.

Experimental setup For our experiments, two classes of models are considered: multi-layer per-
ceptrons (MLPs) and random forests (RFs). We selected four tabular datasets commonly found in the
CFX literature: AdultIncome (Becker & Kohavi, 1996), CaliforniaHousing (Pace & Barry, 1997),
GiveMeSomeCredit and GermanCredit (Hofmann, 1994), using a training-calibration-test split of
60%-20%-20% for each.

To evaluate CONFEX, we compare our efficient tree-based approach CONFEX-Tree (CTree) against
competing uncertainty-aware generators: ECCCo (Altmeyer et al., 2024), the only other CFX
method which uses CP, and a modified version of Schut (Schut et al., 2021) (called ‘Greedy’ in
our table) which uses a single MLP instead of an ensemble, as well as the Wachter et al. (2017)
baseline. We also consider plausibility-targeting generators FACE Poyiadzi et al. (2020) and C-
CHVAE Pawelczyk et al. (2020). For tree-based models, we compare against the popular methods
FeatureTweak (FT) (Tolomei et al., 2017), which searches for possible paths which can change the
classification, and FOCUS (Lucic et al., 2021), which optimises for distance over a differentiable
relaxation of the tree models. As baselines, we include MILP-MinDist (MinDist) and CONFEX-
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CaliforniaHousing GermanCredit

Distance Plausibility Sens (10−1) Distance Plausibility Sens (10−1)

Multi-Layer Perceptron
MinDist 0.03 ± 0.00 0.30 ± 0.07 42.75 ± 8.5 1.65 ± 0.18 0.54 ± 0.19 0.08 ± 0.02
ECCCo 0.37 ± 0.02 -0.65 ± 0.05 0.26 ± 0.05 0.97 ± 0.06 0.16 ± 0.11 0.06 ± 0.02
Greedy 1.88 ± 0.27 -0.99 ± 0.02 0.14 ± 0.02 0.99 ± 0.04 -0.03 ± 0.09 0.08 ± 0.02
Wachter 0.09 ± 0.01 0.42 ± 0.08 1.66 ± 0.37 0.41 ± 0.02 0.73 ± 0.05 0.33 ± 0.09
FACE 0.21 ± 0.02 0.85 ± 0.04 0.34 ± 0.03 0.69 ± 0.05 0.92 ± 0.05 0.05 ± 0.01
C-CHVAE 1.27 ± 0.22 -0.35 ± 0.12 0.06 ± 0.03 2.45 ± 0.13 0.80 ± 0.19 0.07 ± 0.01
CNaive 0.04 ± 0.01 0.24 ± 0.08 8.41 ± 2.26 2.00 ± 0.07 0.16 ± 0.28 0.05 ± 0.01
CTree 0.55 ± 0.04 0.75 ± 0.05 0.05 ± 0.05 2.31 ± 0.20 1.00 ± 0.00 0.01 ± 0.01
Random Forest
MinDist 0.01 ± 0.00 0.37 ± 0.07 89.15 ± 90.9 1.65 ± 0.06 0.52 ± 0.17 0.09 ± 0.01
FT 0.12 ± 0.03 0.29 ± 0.25 0.58 ± 0.16 0.50 ± 0.06 0.84 ± 0.05 0.09 ± 0.01
FOCUS 0.11 ± 0.01 0.34 ± 0.09 5.21 ± 2.31 0.45 ± 0.14 0.83 ± 0.02 0.58 ± 0.25
FACE 0.17 ± 0.01 0.81 ± 0.02 0.46 ± 0.08 0.59 ± 0.06 0.88 ± 0.07 0.07 ± 0.01
CNaive 0.03 ± 0.01 0.42 ± 0.07 12.34 ± 2.94 1.62 ± 0.08 0.63 ± 0.10 0.09 ± 0.01
CTree 0.19 ± 0.02 0.61 ± 0.10 0.40 ± 0.18 2.04 ± 0.16 1.00 ± 0.00 0.01 ± 0.01

Table 1: Results for CaliforniaHousing and GermanCredit datasets. The best result for each gen-
erator over its hyperperameters is reported. See Table 3 in Section A.2 for full results, further
discussion, and p-values for significance of results.
Validity 58% for FT in CaliforniaHousing. For GermanCredit, validity is 50% for FT, 84% for
Wachter, 82% for Schut, 84% for ECCCo, 74% for C-CHVAE. This explains why some methods
seem to attain smaller distances than MinDist, which is always valid.

Naive (CNaive). As discussed previously, CONFEX-LCP is very expensive due to its “direct” (and
inefficient) quantile encoding, hence, we did not conduct extensive experiments for it. Instead, we
include a scalability analysis and comparison of CONFEX-LCP and CONFEX-Tree in Section C.

Metrics To evaluate the CFXs, we focus on two main dimensions: plausibility and sensitivity.
Plausibility evaluates whether counterfactuals lie close to the data distribution, and is measured
with the Local Outlier Factor (LOF) stratified per target class, with higher scores indicating more
realistic examples. Sensitivity (Sens) captures robustness to small perturbations of the input instance
x; counterfactuals with low sensitivity remain consistent under such perturbations.

We run our experiments over five repeats: in each repeat, we train a our models and for each model
and generator, we compute metrics from 100 generated CFXs for factual points taken from the test
set, plus an additional 100 for the sensitivity metric. The metrics obtained are then computed and
averaged to ensure statistical reliability. We also record the distance, implausibility, stability, and
validity of the method. Further details on the metrics and experimental setup can be found in the
appendix.

Evaluation of conformal guarantees In the main setup, CFXs are generated for each test in-
stance, but since their ground truth is unknown, coverage cannot be computed. We therefore run
an additional simulated setup, identical to CONFEX in that it finds the closest test point whose CP
region is a singleton comprising the target class. This way, true labels are known and we can com-
pute the empirical coverage E(1(y ∈ C1−α(x))) over this resampling of the test set. We measure
the gap between the observed coverage and the target 1 − α. Note that this resampling considers
only CFX-like points and hence breaks exchangeability. So, we expect CONFEX-Naive to miss the
coverage target and the localised procedures to fare better.

Results discussion In Table 1, we observe that CONFEX-Tree consistently outperforms com-
peting uncertainty-aware methods by producing, in many cases more plausible and less sensitive
explanations. This is in contrast to CONFEX-Naive which shows substantially lower plausibility
and higher sensitivity, validating the issues illustrated in Figure 1 and further motivating the use
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(a) Distance (b) Plausibility (c) Coverage Gap

Figure 2: Effect of coverage rate and kernel bandwidth on metrics for CONFEX-Tree on the Cali-
forniaHousing dataset. CONFEX-Naive is represented by dashed horizontal lines.

of localisation in CP. In terms of plausibility, we find that CONFEX-Tree performs comparably to
generator FACE and outperforms C-CHVAE and ECCCo, which explicitly target this metric. In the
appendix, we show that our method provides more certain explanations than competing generators,
and include results for the AdultIncome and GiveMeSomeCredit datasets.

Fig. 16 illustrates the effect of varying the kernel bandwidth and coverage rate in the CONFEX-Tree
method. Increasing the coverage rate 1 − α leads to larger distances, since prediction sets become
more conservative and singleton regions less frequent. Larger bandwidths yield shorter distances
but at the cost of lower plausibility, as the notion of locality becomes weaker3. These observations
are consistent with the fact that, as the kernel bandwidth grows, localised CP converges to standard
marginal CP, as seen with CONFEX-Naive in the figures.

In the (simulated) CFX setting, the Coverage Gap results confirm that vanilla CP (used by CONFEX-
Naive) fails to reach the target coverage, while localised CP with a suitably chosen kernel bandwidth
succeeds. For small bandwidths (i.e., “strong” locality), all three choices of α attain or are close to
the target coverage level, but the gap grows as the bandwidth increases and localisation diminishes.
For α = 0.01 and small bandwidths, no data is obtained since no test points produced a singleton
prediction region (as required by our CONFEX constraints). These figures demonstrate that picking
a correct bandwidth is crucial for obtaining good plausibility and coverage guarantees.

6 CONCLUSIONS

We introduced a novel MILP-based framework for generating uncertainty-aware counterfactual ex-
planations with formal, distribution-free guarantees. By developing an efficient encoding of lo-
calised conformal prediction, we address the critical issue of exchangeability violation in the CFX
search process. This allows us to enforce approximate test-conditional guarantees, ensuring the
generation of provably reliable, plausible, and robust explanations.

Limitations Since our approach uses MILP to solve for CFXs, it will struggle scaling to very large
models; gradient-based methods like Wachter and ECCCo are less prone to this problem, but they
sacrifice guarantees on CFX validity. Additionally, unlike gradient-based methods, our method can
be used on random forest and gradient-boosted trees, which remain competitive on tabular datasets.

Moreover, CP requires a held-out calibration dataset, which may be problematic when data is scarce.
Fortunately, CP guarantees hold regardless of the calibration set size (but small sets will lead to more
conservative prediction regions).

Picking an appropriate kernel bandwidth is an additional task which requires domain knowledge
or evaluation on a validation set, for example, with the coverage gap simulation described in the
previous section.

3For very small α (0.01) and small kernel bandwidths, we observe low plausibility: we conjecture this could
be due to the CP method localising on outlier points.

10
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A APPENDIX

AI Use Declaration The authors acknowledge the use of Generative AI to minimally polish text.

A.1 RELATED WORKS

Our work integrates three research areas: counterfactual explanations (CFXs), uncertainty quantifi-
cation in explanations, and the application of conformal prediction (CP) to optimization problems.
Counterfactual explanations, introduced by Wachter et al. (2017), provide recourse by identifying
minimal feature changes to alter a model’s prediction. While initial work focused on validity and
distance, the field has expanded to include desiderata like plausibility and actionability (Verma et al.,
2020; Karimi et al., 2021). Methodologies have also diversified from gradient-based optimization to
tree-specific algorithms (Tolomei et al., 2017; Lucic et al., 2021) and constraint-based methods using
Mixed-Integer Linear Programming (MILP) (Kanamori et al., 2020). However, a critical limitation
of many approaches is their failure to account for model uncertainty, which can result in misleading
or brittle explanations (Schut et al., 2021). To address this, prior works have employed Bayesian
methods (Antorán et al., 2020) or model ensembles (Schut et al., 2021). CONFEX contributes a
novel, principled alternative by using Conformal Prediction. More relevant is ECCCo (Altmeyer
et al., 2024), which uses a loss term based on the conformal set size (Stutz et al., 2022) but cru-
cially does not address the violation of the exchangeability assumption inherent in the CFX search
process.

A.2 FURTHER DISCUSSION OF TABLE 1

For GermanCredit, whilst Wachter obtained the closest counterfactuals, had a validity rate of 84%,
demonstrating how gradient-based methods may fail to correctly change prediction to the target
class. ECCCo (84%) and FeatureTweak (50%) also suffered validity issues. On the other hand,
MILP-MinDistalways found a valid counterfactual, including satisfying correct categorical and or-
dinal encoding unlike some of the competing tree generators, and this is reflected with an increased
distance. Note that in all figures, kernel bandwidth is measured as a multiple of the median pairwise
distance between all points in the dataset.

Extended versions of Table 1 are included as the following two tables.

In each cell, the first line is the mean value of the metric over 5 repeats, the second line is the standard
deviation over those repeats, and the third line is the the p-value for a two-tailed (paired per repeat)
t-test to check whether the mean value of the generator’s metric is significantly different from the
mean value of the best performing generator. Note that the values in the table, including p-values,
are over valid results only: see the list below.

• For CaliforniaHousing, validity is 58% for FeatureTweak.
• For GermanCredit, validity is 50% for FT, 84% for Wachter, 82% for Schut, 84% for ECCCo,

74% for C-CHVAE.
• For GiveMeSomeCredit, validity is 71% for Wachter, 80% for Schut, 50% for FeatureTweak.
• For AdultIncome, Validity 80% for Wachter, 85% for ECCCo, 54% for C-CHVAE, 61% for Fea-

tureTweak

Full results, including details on the Certainty metric “Cert” and for full results.
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CaliforniaHousing GermanCredit

Dist Plaus Sens Cert Dist Plaus Sens Cert

Multi-Layer Perceptron

MinDist
0.03

±0.00
(-)

0.30
±0.07

(2.81e-5)

42.75
±8.45

(5.47e-4)

2.44e-4
±2.62e-4
(4.83e-3)

1.65
±0.18

(1.19e-4)

0.54
±0.19

(8.54e-3)

0.08
±0.02

(5.03e-3)

0.140
±1.23e-2
(1.08e-4)

ECCCo
0.37

±0.02
(9.44e-7)

-0.65
±0.05

(1.14e-6)

0.26
±0.05

(4.39e-3)

0.00e+00
±0.00e+00
(4.78e-3)

0.97
±0.06

(9.72e-6)

0.16
±0.11

(1.16e-4)

0.06
±0.02

(7.32e-3)

0.173
±4.51e-2
(2.77e-3)

Greedy
1.88

±0.27
(1.60e-4)

-0.99
±0.02

(1.52e-7)

0.14
±0.02

(0.037)

0.00e+00
±0.00e+00
(4.78e-3)

0.99
±0.04

(5.00e-5)

-0.03
±0.09

(2.44e-5)

0.08
±0.02

(2.91e-3)

0.101
±3.58e-2
(3.44e-4)

Wachter
0.09

±0.01
(7.98e-5)

0.42
±0.08

(1.29e-4)

1.66
±0.37

(8.20e-4)

3.58e-2
±1.24e-2
(4.78e-3)

0.41
±0.02

(-)

0.73
±0.05

(3.76e-4)

0.33
±0.09

(2.35e-3)

-8.07e-3
±1.25e-2
(3.19e-5)

FACE
0.21

±0.02
(4.23e-6)

0.85
±0.04

(-)

0.34
±0.03

(1.12e-3)

5.40e-3
±4.46e-3
(5.32e-3)

0.69
±0.05

(3.74e-4)

0.92
±0.05

(4.07-2)

0.05
±0.01

(1.26e-3)

0.313
±3.71e-2
(1.26e-2)

C-CHVAE
1.27

±0.22
(3.49e-4)

-0.35
±0.12

(3.37e-5)

0.06
±0.03
(0.79)

0.00e+00
±0.00e+00
(4.78e-3)

2.45
±0.13

(5.28e-6)

0.80
±0.19
(0.10)

0.07
±0.01

(2.66e-4)

8.17e-2
±5.95e-2
(2.41e-4)

CNaive
0.04

±0.01
(7.10e-4)

0.24
±0.08

(2.68e-5)

8.41
±2.26

(1.73e-3)

3.26e-2
±9.71e-3
(6.67e-3)

2.00
±0.07

(1.26e-6)

0.16
±0.28

(3.79e-3)

0.05
±0.01

(5.47e-3)

0.213
±3.03e-2
(2.76e-4)

CTree
0.55

±0.04
(7.50e-6)

0.75
±0.05

(3.00e-2)

0.05
±0.05

(-)

0.101
±3.57e-2

(-)

2.31
±0.20

(3.66e-5)

1.00
±0.00

(-)

0.01
±0.01

(-)

0.483
±4.42e-2

(-)

Random Forest

MinDist
0.01

±0.00
(-)

0.37
±0.07

(2.05e-4)

89.15
±90.9
(0.12)

1.78e-2
±4.18e-3
(2.45e-4)

1.65
±0.06

(4.52e-5)

0.52
±0.17

(4.88e-3)

0.09
±0.01

(2.02e-4)

4.84e-2
±2.14e-2
(2.37e-2)

FT
0.12

±0.03
(1.27e-3)

0.29
±0.25

(1.12e-2)

0.58
±0.16
(0.29)

4.68e-3
±6.00e-3
(1.32e-4)

0.50
±0.06
(0.52)

0.84
±0.05

(2.17e-3)

0.09
±0.01

(6.76e-4)

4.27e-2
±4.41e-2
(1.09e-2)

FOCUS
0.11

±0.01
(1.21e-4)

0.34
±0.09

(6.20e-4)

5.21
±2.31

(1.51e-2)

1.96e-2
± 7.52e-3
(2.07e-4)

0.45
±0.14

(-)

0.83
±0.02

(7.24e-5)

0.58
±0.25

(1.11e-2)

0.134
± 7.82e-3
(6.00e-2)

FACE
0.17

±0.01
(8.05e-6)

0.81
±0.02

(-)

0.46
±0.08
(0.60)

3.79e-2
±8.69e-3
(4.21e-4)

0.59
±0.06

(4.59e-2)

0.88
±0.07

(3.70e-2)

0.07
±0.01

(3.81e-4)

0.04
±0.01

(7.10e-1)

CNaive
0.03

±0.01
(3.42e-3)

0.42
±0.07

(5.67e-4)

12.34
±2.94

(1.34e-3)

8.34e-2
±1.54e-2
(5.17e-3)

1.62
±0.08

(1.05e-5)

0.63
±0.10

(1.54e-3)

0.09
±0.01

(4.94e-4)

0.175
±6.52e-2
(1.95e-1)

CTree
0.19

±0.02
(2.17e-5)

0.61
±0.10

(1.71e-2)

0.40
±0.18

(-)

0.143
±1.83e-2

(-)

2.04
±0.16

(1.35e-4)

1.00
±0.00

(-)

0.01
±0.01

(-)

0.335
± 0.148

(-)

Table 2: Extended version of Table 1. CFX generation results for CaliforniaHousing and German-
Credit, including mean and standard deviation of metric value over 5 runs, and p-value of a t-test
to check whether the mean value of the generator’s metric is significantly different from the mean
value of the best performing generator. See Section A.2 for more detail, including on validities.
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GiveMeSomeCredit AdultIncome

Dist Plaus Sens Cert Dist Plaus Sens Cert

Multi-Layer Perceptron

MinDist
0.03

±0.00
(-)

0.93
±0.04

(3.12e-2)

1.39
±0.57

(9.67e-3)

6.00e-3
±5.64e-3
(6.42e-2)

1.16
±0.07

(6.20e-5)

-0.13
±0.05

(1.04e-3)

0.11
±0.11
(0.35)

2.11e-2
±1.33e-2
(1.78e-3)

ECCCo
0.69

±0.28
(8.87e-3)

-0.97
±0.03

(2.69e-8)

0.21
±0.06

(7.09e-3)

0.00e+00
±0.00e+00
(5.80e-2)

0.73
±0.11

(2.69e-2)

-0.05
±0.07

(1.07e-3)

0.05
±0.00

(0.719)

9.42e-3
±9.68e-3
(1.92e-3)

Greedy
0.13

±0.07
(4.53e-2)

-0.02
±0.38

(6.37e-3)

1.05
±0.81

(8.13e-2)

6.90e-3
±4.06e-3
(7.53e-2)

0.95
±0.08

(2.64e-3)

0.02
±0.10

(4.18e-3)

24190
±48381
(0.374)

-5.43e-3
±2.44e-2
(1.20e-3)

Wachter
0.09

±0.01
(3.42e-4)

0.93
±0.02

(4.64e-3)

0.95
±0.07

(1.51e-5)

0.00e+00
±0.00e+00
(5.80e-2)

0.43
±0.09

(-)

0.28
±0.05

(0.424)

0.21
±0.08

(2.23e-2)

-2.91e-3
±1.03e-2
(7.85e-4)

FACE
0.12

±0.01
(7.66e-6)

0.95
±0.02

(3.49e-2)

0.35
±0.04

(2.76e-4)

1.92e-2
±1.52e-2
(8.98e-2)

1.36
±0.16

(1.99e-4)

0.34
±0.12

(-)

0.06
±0.02

(0.428)

0.144
±1.71e-2
(4.32e-2)

C-CHVAE
1.32

±0.08
(5.38e-6)

-0.92
±0.06

(3.69e-7)

0.09
±0.02

(-)

6.67e-4
±1.33e-3
(5.86e-2)

6.39
±0.55

(2.05e-5)

0.33
±0.15

(0.847)

0.04
±0.01

(0.448)

2.26e-2
±1.22e-1
(6.90e-2)

CNaive
0.04

±0.00
(7.87e-4)

0.76
±0.05

(2.08e-3)

0.78
±0.11

(6.41e-4)

4.86e-3
±4.56e-3
(6.28e-2)

1.24
±0.07

(2.10e-4)

-0.13
±0.04

(1.90e-3)

0.05
±0.01

(0.876)

6.28e-2
±2.71e-2
(2.62e-3)

CTree
0.24

±0.06
(1.76e-3)

0.98
±0.01

(-)

0.14
±0.03

(1.41e-2)

7.75e-2
± 5.88e-2

(-)

1.78
±0.19

(2.98e-4)

-0.02
±0.14

(2.91e-2)

0.05
±0.02

(-)

0.210
±5.06e-2

(-)

Random Forest

MinDist
0.01

±0.00
(-)

0.96
±0.01

(4.64e-3)

96.79
±35.89

(5.81e-3)

1.10e-2
±6.28e-3
(5.49e-4)

0.96
±0.03

(7.56e-2)

0.03
±0.07

(1.44e-3)

0.14
±0.03

(5.97e-2)

5.03e-2
±1.28e-2
(7.97e-4)

FT
0.03

±0.01
(9.17e-4)

0.96
±0.02

(1.61e-2)

1.40
±0.16

(6.45e-4)

1.09e-3
±9.31e-3
(3.55e-4)

0.24
±0.10

(0.152)

0.30
±0.11

(2.69e-2)

0.06
±0.01

(0.862)

4.68e-2 ± 7.16e-2
(6.77e-3)

FOCUS
0.05

±0.00
(4.38e-5)

0.91
±0.05

(3.76e-2)

2.27
±0.79

(1.29e-2)

9.82e-3
±7.81e-3
(1.46e-3)

0.58
±0.34

(-)

0.40
±0.06

(0.795)

0.29
±0.14

(0.0196)

0.153
±1.44e-2
(8.34e-3)

FACE
0.10

±0.01
(9.25e-6)

0.97
±0.01

(3.41e-2)

0.46
±0.08

(-)

5.45e-2
±9.73e-3
(1.02e-2)

1.50
±0.07

(6.27e-3)

0.39
±0.07

(-)

0.06
±0.02

(0.989)

2.21e-1
±2.63e-2
(7.01e-2)

CNaive
0.01

±0.00
(1.50e-3)

0.96
±0.01

(3.88e-3)

28.68
±25.01

(8.76e-2)

3.20e-2
±1.38e-2
(3.05e-3)

0.97
±0.09

(1.62e-3)

0.00
±0.10

(9.69e-4)

0.12
±0.02

(0.108)

2.43e-1
±5.17e-2
(0.169)

CTree
0.07

±0.01
(6.85e-5)

0.99
±0.01

(-)

0.55
±0.14

(8.43e-2)

8.56e-2
±1.21e-2

(-)

1.56
±0.21

(2.85e-3)

0.08
±0.15

(1.17e-2)

0.06
±0.03

(-)

0.311
±6.12e-2

(-)

Table 3: Extended version of Table 1. CFX generation results for GiveMeSomeCredit and Adult-
Income, including mean and standard deviation of metric value over 5 runs, and p-value of a t-test
to check whether the mean value of the generator’s metric is significantly different from the mean
value of the best performing generator. See Section A.2 for more detail, including on validities.
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B MILP FORMULATION DETAILS

The full CONFEX model optimises the following problem:

argminx′ ∥x0 − x′∥1
subject to encoding validity constraints (C1-C5)

classifier constraints (C6)
conformal quantile constraints (Alg 1-2)

conformal singleton set constraints (C7-14)
optional further constraints (C15)

where x0 is the factual instance and x′ is the counterfactual explanation returned by the optimisation.

Encoding validity constraints The obtained counterfactual explanation must follow correct nu-
meric/categorical/ordinal encoding of the dataset.

Let the indices i = 0, 1, 2, N of the N -length vector x′ be partitioned into Inum, indices of numeric
variables, Iord, indices of ordinally encoded variables, and I1cat, I

2
cat, . . . , I

C
cat, which are index

groups for each of C one-hot categorically encoded variables. It is possible that some of these sets
are empty.

For each numeric variable, we require that the variable is within bounds. Let l[i] and u[i] represent
the lower and upper bound of feature i.

x′[i] ≥ l[i] for all i ∈ Inum where l[i] ̸= − inf (C1)

x′[i] ≤ u[i] for all i ∈ Inum where u[i] ̸= + inf (C2)

For ordinal features, we must encode that x′[i] ∈ v[i], where v[i] is the set of possible ordinal values
that x′[i] can take.

Add |v[i]| binary indicator variables Vi,1, Vi,2, . . . , Vi,|v[i]| for each i ∈ Iord

corresponding to possible ordinal values vi,1, vi,2, . . . , vi,|v[i]|
|v[i]|∑
j=1

Vi,j = 1 for all i ∈ Iord (C3)

x′[i] =

|v[i]|∑
j=1

Vi,jvi,j for all i ∈ Iord (C4)

For each group of one-hot encoded categorical features I1cat, I
2
cat, . . . I

C
cat, we must encode that

x′[i] = 1 for one i in Iccat and x′[i] = 0 for all j ∈ Iccat, j ̸= i.

Add |Iccat| binary indicator variables Cc,1, Cc,2, . . . , Cc,|Ic
cat| for each c ∈ {1, . . . , C}

corresponding to each entry in the one-hot feature ic1, i
c
2, . . . , i

c
|Ic

cat| ∈ Iccat

|Ic
cat|∑
j=1

icj = 1 for all c ∈ {1, . . . , C} (C5)

Classifier constraints To encode the classifier prediction f(x′) of the factual x′ we repurpose the
core components of the gurobi-machinelearning library (originally designed for encoding
regressors) to instead produce an MILP encoder of Neural Network and Random Forest classifers.

In constraint Eq. (C6), the model prediction is constrained to the variable y′.
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y′ = f(x′) (C6)

Note that in the MILP-MinDistmethod, we constrain y′ to be the target class y+. This is done by
checking if the output logit for the correct class is larger than all other classes.

y′y+ > y′i for all i ̸= y+ (C6b)

However, in the CONFEX method, this explicit constraint Eq. (C6b) is not required as explained in
Section 3, we only require Eq. (C6).

B.1 MILP ENCODING OF LOCALISED CP

MILP encoding of CONFEX-LCP The following algorithm Algorithm 2 computes the LCP
quantile value in MILP. To do this, all calibration scores and calibration points must be accessi-
ble to the optimiser. Variables are constrained as distances from the test point to each calibration
point, and another set of variables compute the corresponding weight according to the L1 kernel.
These weights are used alongside calibration scores to identify the desired weighted quantile. This
encoding is linear in the size of the calibration set.

Algorithm 2: Localised CP constraints in MILP
Input : Calibration dataset {(xi, yi)}ni=1, corresponding scores {si}ni=1, test input x∗, L1

localisation kernel with bandwidth h, level α ∈ (0, 1)
Output: Local quantile qLCP

1−α

1 Sort {(xi, yi)}ni=1 in ascending order w.r.t. scores.
2 Add n real variables d1, . . . , dn.
3 For i = 1, . . . , n, add the L1 distance constraint di = ∥xi − x∗∥1.
4 Add n binary variables w1, . . . , wn as the weights induced by the L1 kernel.
5 For i = 1, . . . , n, add the constraint wi = 1(di ≤ h), implemented for arbitrarily large M > 0

as
di ≤ h+M(1− wi) ∧ di ≥ h−Mwi

6 Add n binary variables in1, . . . , inn; each ini keeps track if the score si is below the quantile.
7 Add integer variables W and W1−α denoting, respectively, the sum of all weights and of those

weights whose score is below the quantile.
8 Add constraints W =

∑n
i=1 wi, W1−α =

∑n
i=1 ini · wi and W1−α ≥ ⌈(1− α)W ⌉. The latter

expresses that the scores below the quantile have probability at least 1− α.
9 Define W ′

1−α =
∑n

i=1(1− ini) · wi and add constraint W ′
1−α ≥ ⌊αW ⌋

10 Solve constraints and return sk.
11 qLCP

1−α will be the largest calibration score si for which ini = 1. To identify it, add an integer
variable k ∈ {1, . . . , n}.

12 For i = 1, . . . , n, add the constraint ini = 1(i ≤ k) using a big-M encoding as done in line 5.

MILP encoding of CONFEX-Tree Following the Tree Construction procedure in Algorithm 1,
we obtain a family of decision trees. Each tree contains with leaf nodes holding a centre midpoint
m and quantile q, these are concatenated as a single vector [c1, c2, . . . , cD, q].

The MILP encoding procedure consists of encoding the decision tree in the MILP problem using the
gurobi-machinelearning library, selecting the correct tree T to use based on the categorical
values of x′, identifying the leaf of T corresponding to x′, to obtain or reject the quantile based on
the midpoint and distance.

Let there be NT trees, each corresponding to a particular categorical combination. Note that certain
categorical features can be ignored, or different categorical values can be considered the same, in
order to reduce the number of trees required to be encoded without sacrificing any formal guarantees.
This corresponds to a different notion of similarity in the LCP kernel.
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Algorithm 3: CONFEX-Tree constraints in MILP
Input : Trees T1, . . . , TNT

with corresponding categorical indicators θ1, θ2, . . . , θNT
,

produced by Algorithm 1, bandwidth h, test input x′

Output: CONFEX-Tree local quantile qTree
1−α

1 Encoding of trees
2 Add NT vector variables t1, t2, . . . , tNT

of shape (1 + length of x′), for the output of each tree.
3 Let x′

noncat be the vector x′ excluding all categorically encoded entries.
4 Constrain ti = T1(x

′
noncat) for all i ∈ 1, . . . , NT

5 Selection of tree
6 Add NT binary indicators τ1, τ2, . . . , τNT

to determine the active tree.
7 Constrain

∑NT

i=1 τi = 1
▷ The following constraints determine if tree Ti is active by considering values of θi, which are

the indices of one-hot entries in x′ which should be 1 if the tree Ti is selected.
8 For each i, constrain τi ≤ x′[j] for all j ∈ θi
▷ Ensure θi is 0 if any one-hot entries corresponding to the tree is 1. |θi| is the number of

categorical features.
9 For each i, constrain τi ≥

∑
j∈θi

x′[j]− |θi|+ 1 ▷ Ensure θi is 1 if all one-hot entries
corresponding to the tree is 0

10 Obtain the tree output t as t =
∑NT

i=1 tiτi

11 Obtaining of quantile
▷ Note that in the case of no categorical values (only numeric/ordinal), we have only one tree
T and the algorithm can at this line after constraining t = T (x′

noncat)
12 Index t as t = [c1, c2, . . . , cD, q]
13 Let c = [c1, c2, . . . , cD]
14 Constrain d to distance of x∗ to centre: d = ∥x∗ − c∥∞
15 Constrain d ≤ h/2, since otherwise the point would be rejected and the quantile would be ∞.
16 Obtain q as the local quantile.
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MILP encoding of singleton conformal prediction set The local quantile q is constrained using
Algorithm 2 or Algorithm 3. This is used to constrain the conformal prediction set C1−α(x

′) to a
singleton set.

Add |Y| real variables s1, s2, . . . , s|Y| to represent the score s(x, y) for each y ∈ Y .

For random forest classifiers, we use the score function s(x, y) = 1− f(x)y .

si = 1− y′i for i = 1, . . . , |Y| (C7)

For MLP classifiers that output unnormalised logits, we use the score function Eq. (7), which is
s(x, y) = −l(x)y +maxy′ ̸=y l(x)y′ , where l(x) is the predicted vector of logits.

Add m real variables m1, . . . ,m|Y| (C8)

mi = max
j ̸=i

yj , i = 1, . . . , |Y| (C9)

si = − y′i +mi, i = 1, . . . , |Y| (C10)

In the case of binary classification, which any multiclass CFX problem can be reduced to, our score
function is the difference between the two logits and we can remove the maximum constraint as
follows.

s1 = y′2 − y′1 for i = 1 (C11)
s2 = −s1 for i = 2 (C12)

Finally, we constrain C1−α(x
′) to a singleton set containing the target class, {y+}.

si ≤ q for all i ̸= y+ (C13)

si > q for i = y+ (C14)

Further constraints As mentioned in Section 2, further properties such as causality and action-
ability can be incorporated into the model by introducing further constraints on x′. (C15)

Notes on MILP Strict inequalities such as those present in Eq. (C6b), Eq. (C14) and some model
encodings Eq. (C6) can not directly be modelled in MILP, this is resolved by adding a small epsilon
to one side of the equation.

In Eq. ((C4)), Algorithm 2, Algorithm 3, we observe products of two variables which would usually
indicate a quadratic constraint. However, in all of these cases, at least one variable is a binary
variable. This allows the solver to linearise it, see Klotz (2021) for further details.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C SCALABILITY ANALYSIS

In this section, we empirically analyse the scalabiluty of the CONFEX-LCP and CONFEX-Tree
methods. All experiments were conducted on a MacBook Pro, M3 Pro chipset, 18 GB memory.

C.1 DATASET DIMENSION

The dimensionality of the dataset affects the number of variables involved in the distances and
weights constraints for CONFEX-LCP and the complexity of the tree for CONFEX-TreeḞor this
experiment, we analyse the effect of changing the dimensionality of the dataset.

We create synthetic datasets of varying dimensionalities by using sklearn’s
make classification method with all features being informative, and we plot the number of
counterfactuals generated per second (observed over a 5-minute period) in Fig. 3. Tabular results
are available in Table 4. Note that we fix the kernel bandwidth and alpha value, use a MLP model
with 50 hidden units, and use a calibration set size of 150.

Figure 3: Counterfactuals generated per second for CONFEX-LCP and CONFEX-Tree, against
dimensionality of the dataset.

We find that the beyond a dimensionality of 2, CONFEX-LCP is infeasible for use, whilst CONFEX-
Treeś generation rate eventually flattens.

Dataset dimension CONFEX-LCP CONFEX-Tree

2 0.060 32.853
3 0.000 20.427
4 0.000 14.353
5 0.000 9.280
10 0.000 4.713
15 0.000 2.680
20 0.000 2.693

Table 4: Counterfactuals generated per second for CONFEX-LCP and CONFEX-Tree, against di-
mensionality of the dataset.
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C.2 SIZE OF CALIBRATION SET

Varying the size of the calibration set also affects the number of variables involved in constraining
distances and weights in CONFEX-LCP as well as affecting the complexity of the tree in CONFEX-
Tree procedure.

For this experiment, we use the CaliforniaHousing dataset (which has 8 dimensions) with an MLP
model containing 50 hidden units, and fix the kernel bandwidth and alpha value. We vary the size
of the calibration set from between 10 and 2000 points. The effect on the rate of counterfactual
generation is found in Fig. 4.

Figure 4: Number of counterfactuals generated per second for CONFEX-LCP and CONFEX-Tree
on the CaliforniaHousing dataset, varying the calibration set size.

Fig. 8 shows the effect that an increased calibration set size has on distance and plausibility: we get
reduced distances with improved plausibility.

(a) Distance (b) Plausibility

Figure 5: Effect of varying the calibration set size on distance and plausibility on the California-
Housing dataset, CONFEX-Tree.
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C.3 MODEL COMPLEXITY

Model outputs are obtained within the MILP formulation through a series of constraints involving
the input variables and the details of the trained model. As explained in Section B, (C6), we modify
implementations from the gurobi-machinelearning library.

In this section, we see how CONFEX-Tree performs as the model complexity changes. We consider
three classes of models: multi-layer perceptron, random forests and gradient-boosted trees, varying
their hyperparameters. Although we use CONFEX-Tree to generate counterfactuals, this analysis
focusses on the MILP encoding of the classifiers and would apply to other MILP methods as well,
e.g. MinDist. We use the CaliforniaHousing dataset and fix alpha to 0.1, and bandwidth scale to
1. The following figures show how the number of CFXs generated per second varies as we change
hyperparmeters. The accuracy of the models over a test set is also shown.

(a) CFXs generated per second (b) Test Accuracy

Figure 6: Effect of varying MLP model hyperparameters on number of CFXs generated per second,
and accuracy for CONFEX-Tree.

(a) CFXs generated per second (b) Test Accuracy

Figure 7: Effect of varying Random Forest model hyperparameters on number of CFXs generated
per second, and accuracy for CONFEX-Tree.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(a) CFXs generated per second (b) Test Accuracy

Figure 8: Effect of varying Gradient Boosted Trees hyperparameters on number of CFXs generated
per second, and accuracy for CONFEX-Tree.

We find that as the complexity of the model increases, the number of CFXs generated per second
decreases. In the worst case tested, Gradient Boosted Trees with no depth limit and 10 estimators,
we obtain a reasonable 4 CFXs per second. From the accuracy plots, we can see that in many cases,
a less complex model can provide similar accuracy and more complex models exhibit overfitting.
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D FURTHER EVALUATION

D.1 EXPERIMENTAL SETUP

Generators. For solving MILP instances, we utilise the Gurobi solver, and utilise the Gurobi
Machine Learning Gurobi (2022) library to formulate the trained classifiers as constraints. All gen-
erators, except FOCUS (using the CFXplorer package Morita (2023)) and FeatureTweak/FACE/C-
CHVAE (implementations ported from CARLA Pawelczyk et al. (2021), and FeatureTweakPy4),
were implemented as part of a Python library to generate CFXs. The details of this library are
removed for anonymous submission.

Model Configuration. For all datasets, we used a multilayer perceptron (MLP) with 50 hidden
units. The batch size was set to 64 for California Housing and German Credit, trained for 100
epochs, and 256 for GiveMeSomeCredit and Adult Income, trained for 50 epochs. For the random
forest model, we also evaluated a Random Forest classifier with 5 estimators and number of leaves
limited to 500 for the GiveMeSomeCredit and AdultIncome models.

D.2 METRICS

In order to evaluate the quality of the generated counterfactual explanations, we adopt a set of quanti-
tative metrics that measure different aspects of their usefulness and reliability. Specifically, we focus
on three core dimensions: plausibility, sensitivity, and stability. In addition, we report auxiliary met-
rics such as the distance of counterfactuals to the original instance, the proportion of failures, and
the validity rate of generated explanations. Together, these metrics provide a comprehensive view
of both the fidelity and robustness of counterfactual explanations.

Plausibility. A counterfactual explanation should lie close to the underlying data distribution so
that it represents a realistic and interpretable alternative. To assess this, we measure plausibility
using the Local Outlier Factor (LOF) (Breunig et al., 2000), which quantifies how isolated a sample
is with respect to its nearest neighbours. A LOF score of +1 indicates that the counterfactual is
consistent with observed data, whereas −1 suggest that the counterfactual is implausible. We use the
scikit-learn implementation of LOF with novelty=True and n neighbors = 20, stratified
by the target class. In practice, we average over 100 test points.

Sensitivity. Beyond plausibility, we also want to assess whether counterfactuals are robust to small
changes in the input instance. Sensitivity measures how much a counterfactual explanation changes
when the original instance x is perturbed within a small neighbourhood. Formally, given an input x
and its counterfactual xc, we uniformly sample a perturbed instance x′ ∼ Ub(x) from the ℓ2 ball cen-
tred around the factual, compute a new counterfactual x′

c. Sensitivity is then defined as the relative
deviation between the two counterfactuals, normalised by the cost of the initial counterfactual:

CFX Sensitivity = Ex′∼Ub(x)

[
∥x′

c − xc∥2
∥xc − x∥2

]
.

In practice, we sample 4 neighbours from 25 test points to inform our sensitivity metric. Intuitively,
low sensitivity indicates that the explanation remains stable when the factual input undergoes small
variations, thereby suggesting robustness and consistency.

In our experiments, we choose the budget b of the uniform sampling to correspond to a ball with
0.1% of the volume of the feature space.

Vball =
πd/2

Γ
(
d
2 + 1

)rd = bVtotal

where d is the number of non-categorical features in the space. Solving for r,

r =

(
bVtotal

πd/2/Γ
(
d
2 + 1

))1/d

4https://github.com/upura/featureTweakPy/blob/master/featureTweakPy.py
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This allows the same budget to be used across datasets with differing numbers of features. When
sampling neighbours, we do not change categorical values and we fix ordinal values to their closest
valid value.

Stability. Complementary to sensitivity, stability measures how consistent the counterfactual is
under perturbations applied directly to the counterfactual itself. That is, we perturb xc within a
budgeted neighbourhood and evaluate the variance in the model predictions across these perturbed
samples. Following an adaptation of (Dutta et al., 2022), stability is computed as:

CFX Stability =
1

K

∑
x′∈Nx

f̂ (x′)y+ −

√√√√ 1

K

∑
x′∈Nx

(
f̂ (x′)y+ − 1

K

∑
x′∈Nx

f̂ (x′)y+

)2

,

where Nx is a set of K points sampled as x′ ∼ Ub(xc).

where f̂ (x′)y+ refers to the predicted probability of the target class. The metric neighbours a large
mean value for the predicted probability of sampled neighbours, whilst penalising variations in these
values by subtracting the standard deviation to ensure that that mean is not a combination of very
high and very low values. Similarly to the Sensivity metric, Ub(xc) denotes sampling from the ℓ2
ball centred around the counterfactual, computing the radius in the same way, taking the budget to
represent 0.1% of the total feature volume.

Stability is high when the predictions across perturbed counterfactuals remain close to each other,
which indicates that the explanation is not overly sensitive to minor fluctuations in its actualisation.

Certainty. CONFEX minimises the uncertainty of the counterfactual by constraining the conformal
prediction set to be a singleton containing the target class only. Certainty in the counterfactual relates
to the property P(y = y+|x = x′).

To quantify the certainty of the counterfactuals in a principled way, we use local conformal p-values.
In a conformal prediction procedure, the conformal p-value of a point (x,y) is the proportion of the
calibration points with score above s(x,y). It is used to determine which labels are included in the
prediction set: labels with a p-value over α are included and the rest excluded. This is equivalent to
checking if s(x,y) is above the 1− α quantile of the calibration score (as explained in Section 2).

A high p-value for (x,y) provides strong evidence that y is is the true label for x. Hence, for our
certainty metric, we compute the average difference between the conformal p-value for the target
class and the max of conformal p-values for all other classes. If the p-value of the target class is high
and the max p-value of the other classes are low - indicating a certain prediction with strong evidence
in favour of the target class and against others - then our metric will be high. If the prediction is
uncertain then the p-values of all classes will be similar, leading to a lower value of our metric.

Note that we use the LCP procedure to compute p-values for this metric because of its local guaran-
tees. We don’t use vanilla CP, because its resulting p-values would be affected by calibrations points
well-away (not local) to the counterfactual point of interest. We do not use the CONFEX-Tree
procedure to compute local p-values since the metric may be seen as tailored to our generator.

cert(x′) = py+(x′)− max
y ̸=y+

py(x
′) (18)

Certainty results are reported in tables found in Section A.2.

Auxiliary metrics. In addition to the three core dimensions, we report the following supplementary
measures:

• Distance: the average L1 distance between the original instance and the counterfactual,

Distance = E
(
∥x′ − x0∥1),

which quantifies the minimality of the intervention required.
• Validity: the proportion of counterfactuals that successfully change the prediction to the desired

class,
Validity = E(1{f̂(x′) = y+}).
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For example, invalidity could be due to numerical artefacts in encoding the models in MILP, or
failure for SGD procedures to converge to a flipped class. We report whenever a method a method
produces less than 90% validity, and exclude invalid CFXs from the computation of other metrics.

• Failure rate: the proportion of runs where the generator fails to produce a counterfactual, for
example due to infeasible constraints in optimisation-based methods such as MILP.

• Implausibility: The average distance from the counterfactual to the closest 10% of points of the
target class, similar to Altmeyer et al. (2024).

D.2.1 CONDITIONAL COVERAGE RESULTS

In the additional results, we furthermore evaluate the performance of different conformal CFX gener-
ators under four evaluation settings: marginal coverage, class-conditional coverage, random binning,
and counterfactual similarity. In the paper we discussed the counterfactual simulation, however we
also evaluate the marginal coverage over a test set, average class-conditional coverage, average cov-
erage over a random paritioning of the test set into 3 bins. We report the coverage gap (Barber et al.
(2023)): the difference between the empirical coverage and target coverage, in percentage points.

CovGap = 100× (P{y ∈ C(x)} − (1− α)) (19)
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D.3 CALIFORNIA HOUSING

We use the California Housing dataset Pace & Barry (1997) from the StatLib repository through
scikit-learn’s sklearn.datasets.fetch california housing function5. The original
regression problem was changed into a binary classification task by categorizing houses based on
whether the median income exceeds $20,000 (42% above, 58% below). The dataset contains 8
numeric features, which we scaled to the range (0, 1) using MinMax scaling.

Our results demonstrate a nice pattern showing that distance decreases and plausibility decreases
as the kernel bandwidth increases. CONFEX methods outperform all other methods (except FACE,
where it comes second) on plausibility and sensitivity.

D.3.1 PLOTS

(a) Distance (b) Plausibility (c) Coverage Gap

Figure 9: Effect of coverage rate and kernel bandwidth on metrics for CONFEX-Tree on the Cali-
forniaHousing dataset, MLP. CONFEX-Naive is represented by dashed horizontal lines.

(a) Distance (b) Plausibility (c) Coverage Gap

Figure 10: Effect of coverage rate and kernel bandwidth on metrics for CONFEX-Tree on the Cali-
forniaHousing dataset, RandomForest. CONFEX-Naive is represented by dashed horizontal lines.

5https://www.dcc.fc.up.pt/˜ltorgo/Regression/cal_housing.html
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D.3.2 MODEL EVALUATION RESULTS

Repeat Accuracy (%) Precision (%) F1 Score (%)

repeat0,MLP 83.58 83.61 83.59
repeat1,MLP 82.95 83.59 82.95
repeat2,MLP 78.20 80.17 78.06
repeat3,MLP 81.59 82.37 81.59
repeat4,MLP 79.31 80.71 79.25
repeat0,RF 78.05 80.60 77.85
repeat1,RF 78.10 80.60 77.90
repeat2,RF 77.59 81.06 77.26
repeat3,RF 76.02 79.26 75.68
repeat4,RF 76.36 79.09 76.10

Table 5: Model evaluation results, CaliforniaHousing.
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D.3.3 CFX GENERATION RESULTS

Generator Distance Plausibility Implausibility Sensitivity (10−1) Stability

MLP
MinDist 0.03 ± 0.00 0.30 ± 0.07 0.21 ± 0.01 42.75 ± 8.45 0.02 ± 0.04
Wachter 0.09 ± 0.01 0.42 ± 0.08 0.20 ± 0.00 1.66 ± 0.37 0.02 ± 0.05
Greedy 1.88 ± 0.27 -0.99 ± 0.02 0.89 ± 0.10 0.14 ± 0.02 0.42 ± 0.10
ConfexNaive
α = 0.01 0.07 ± 0.01 0.04 ± 0.06 0.22 ± 0.01 3.45 ± 1.25 0.02 ± 0.05
α = 0.05 0.04 ± 0.01 0.24 ± 0.08 0.22 ± 0.01 8.41 ± 2.26 0.02 ± 0.05
α = 0.1 0.03 ± 0.01 0.27 ± 0.08 0.21 ± 0.01 14.51 ± 3.09 0.02 ± 0.04

ECCCo
α = 0.01 0.39 ± 0.02 -0.69 ± 0.04 0.21 ± 0.01 0.24 ± 0.05 0.26 ± 0.08
α = 0.05 0.37 ± 0.02 -0.65 ± 0.05 0.21 ± 0.01 0.26 ± 0.05 0.25 ± 0.08
α = 0.1 0.37 ± 0.02 -0.63 ± 0.04 0.21 ± 0.01 0.26 ± 0.05 0.24 ± 0.08

ConfexTree, α = 0.01
bw = 0.05 1.40 ± 0.04 -1.00 ± 0.00 0.39 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
bw = 0.1 1.03 ± 0.04 -0.48 ± 0.19 0.15 ± 0.01 0.02 ± 0.01 0.03 ± 0.04
bw = 0.15 0.52 ± 0.04 0.08 ± 0.19 0.16 ± 0.00 0.07 ± 0.01 0.05 ± 0.04
bw = 0.2 0.21 ± 0.03 0.30 ± 0.12 0.16 ± 0.00 0.40 ± 0.27 0.05 ± 0.04
bw = 0.25 0.17 ± 0.02 0.35 ± 0.17 0.16 ± 0.00 0.60 ± 0.32 0.05 ± 0.05
bw = 0.3 0.16 ± 0.02 0.33 ± 0.13 0.17 ± 0.00 1.02 ± 0.37 0.05 ± 0.05
bw = 0.35 0.12 ± 0.01 0.28 ± 0.09 0.18 ± 0.00 2.07 ± 0.62 0.04 ± 0.05
bw = 0.4 0.09 ± 0.01 0.17 ± 0.08 0.20 ± 0.00 2.91 ± 0.99 0.03 ± 0.05
bw = 0.45 0.09 ± 0.01 0.11 ± 0.08 0.20 ± 0.00 2.88 ± 0.76 0.03 ± 0.05
bw = 0.5 0.08 ± 0.01 0.11 ± 0.09 0.20 ± 0.00 2.14 ± 0.31 0.08 ± 0.03

ConfexTree, α = 0.05
bw = 0.05 0.55 ± 0.04 0.75 ± 0.05 0.15 ± 0.00 0.05 ± 0.05 0.07 ± 0.03
bw = 0.1 0.19 ± 0.02 0.60 ± 0.07 0.17 ± 0.01 0.43 ± 0.12 0.05 ± 0.05
bw = 0.15 0.15 ± 0.01 0.53 ± 0.09 0.17 ± 0.01 0.83 ± 0.48 0.05 ± 0.05
bw = 0.2 0.10 ± 0.02 0.55 ± 0.09 0.18 ± 0.01 2.15 ± 0.73 0.03 ± 0.05
bw = 0.25 0.09 ± 0.02 0.50 ± 0.09 0.18 ± 0.01 3.05 ± 0.79 0.03 ± 0.04
bw = 0.3 0.08 ± 0.01 0.43 ± 0.07 0.19 ± 0.01 4.73 ± 2.37 0.03 ± 0.04
bw = 0.35 0.07 ± 0.01 0.36 ± 0.07 0.19 ± 0.00 6.03 ± 0.74 0.03 ± 0.04
bw = 0.4 0.06 ± 0.01 0.30 ± 0.08 0.20 ± 0.00 6.69 ± 1.37 0.03 ± 0.04
bw = 0.45 0.06 ± 0.01 0.26 ± 0.10 0.20 ± 0.01 6.93 ± 1.44 0.03 ± 0.04
bw = 0.5 0.05 ± 0.01 0.28 ± 0.08 0.20 ± 0.00 7.16 ± 0.70 0.07 ± 0.02

ConfexTree, α = 0.1
bw = 0.05 0.25 ± 0.04 0.58 ± 0.12 0.17 ± 0.01 0.20 ± 0.09 0.06 ± 0.04
bw = 0.1 0.14 ± 0.02 0.62 ± 0.05 0.17 ± 0.01 0.96 ± 0.75 0.04 ± 0.04
bw = 0.15 0.11 ± 0.02 0.58 ± 0.08 0.18 ± 0.00 2.76 ± 2.77 0.03 ± 0.05
bw = 0.2 0.09 ± 0.01 0.48 ± 0.07 0.19 ± 0.00 4.88 ± 2.61 0.03 ± 0.04
bw = 0.25 0.07 ± 0.01 0.44 ± 0.09 0.19 ± 0.00 4.34 ± 1.72 0.03 ± 0.04
bw = 0.3 0.07 ± 0.01 0.39 ± 0.05 0.19 ± 0.00 6.42 ± 2.59 0.02 ± 0.04
bw = 0.35 0.06 ± 0.01 0.36 ± 0.07 0.19 ± 0.00 9.80 ± 0.97 0.02 ± 0.04
bw = 0.4 0.05 ± 0.01 0.34 ± 0.07 0.20 ± 0.00 12.93 ± 3.75 0.02 ± 0.04
bw = 0.45 0.05 ± 0.01 0.32 ± 0.09 0.20 ± 0.01 14.53 ± 3.82 0.02 ± 0.04
bw = 0.5 0.04 ± 0.01 0.36 ± 0.08 0.20 ± 0.00 13.87 ± 0.66 0.07 ± 0.02

FACE 0.21 ± 0.02 0.85 ± 0.04 0.16 ± 0.00 0.34 ± 0.03 0.06 ± 0.05
C-CHVAE 1.27 ± 0.22 -0.35 ± 0.12 0.46 ± 0.15 0.06 ± 0.03 0.16 ± 0.03

Table 6: CFX generation results, CaliforniaHousing, MLP. All methods attained full validity.
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Generator Distance Plausibility Implausibility Sensitivity (10−1) Stability

MinDist 0.01 ± 0.00 0.37 ± 0.07 0.21 ± 0.00 89.15 ± 90.88 0.22 ± 0.02
ConfexNaive
α = 0.01 0.03 ± 0.01 0.42 ± 0.07 0.20 ± 0.00 12.34 ± 2.94 0.23 ± 0.02
α = 0.05 0.03 ± 0.01 0.42 ± 0.07 0.20 ± 0.00 12.34 ± 2.94 0.23 ± 0.02
α = 0.1 0.03 ± 0.01 0.42 ± 0.07 0.20 ± 0.00 12.34 ± 2.94 0.23 ± 0.02

ConfexTree, α = 0.01
bw = 0.05 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
bw = 0.1 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
bw = 0.15 0.61 ± 0.11 0.57 ± 0.22 0.16 ± 0.01 0.08 ± 0.03 0.27 ± 0.03
bw = 0.2 0.18 ± 0.03 0.48 ± 0.06 0.16 ± 0.00 0.59 ± 0.23 0.23 ± 0.02
bw = 0.25 0.14 ± 0.02 0.68 ± 0.08 0.16 ± 0.00 1.55 ± 0.76 0.23 ± 0.02
bw = 0.3 0.12 ± 0.02 0.62 ± 0.08 0.17 ± 0.00 2.13 ± 0.77 0.23 ± 0.02
bw = 0.35 0.10 ± 0.04 0.58 ± 0.08 0.17 ± 0.01 3.77 ± 1.59 0.23 ± 0.02
bw = 0.4 0.10 ± 0.03 0.53 ± 0.08 0.18 ± 0.00 5.53 ± 1.39 0.22 ± 0.02
bw = 0.45 0.15 ± 0.09 0.52 ± 0.09 0.18 ± 0.01 4.78 ± 1.98 0.23 ± 0.02

ConfexTree, α = 0.05
bw = 0.05 0.48 ± 0.02 0.44 ± 0.06 0.16 ± 0.00 0.06 ± 0.05 0.26 ± 0.03
bw = 0.1 0.17 ± 0.01 0.63 ± 0.11 0.17 ± 0.00 0.47 ± 0.10 0.23 ± 0.01
bw = 0.15 0.12 ± 0.01 0.56 ± 0.07 0.17 ± 0.00 0.91 ± 0.41 0.22 ± 0.01
bw = 0.2 0.09 ± 0.01 0.56 ± 0.06 0.18 ± 0.00 2.58 ± 1.75 0.22 ± 0.02
bw = 0.25 0.08 ± 0.01 0.54 ± 0.07 0.18 ± 0.00 3.57 ± 1.14 0.23 ± 0.02
bw = 0.3 0.07 ± 0.01 0.48 ± 0.06 0.19 ± 0.00 4.52 ± 1.61 0.22 ± 0.02
bw = 0.35 0.06 ± 0.01 0.44 ± 0.06 0.19 ± 0.00 8.32 ± 2.21 0.22 ± 0.02
bw = 0.4 0.05 ± 0.01 0.44 ± 0.09 0.19 ± 0.00 7.12 ± 2.07 0.22 ± 0.02
bw = 0.45 0.05 ± 0.01 0.48 ± 0.11 0.19 ± 0.01 8.99 ± 3.49 0.22 ± 0.02

ConfexTree, α = 0.1
bw = 0.05 0.19 ± 0.02 0.61 ± 0.10 0.17 ± 0.00 0.40 ± 0.18 0.23 ± 0.02
bw = 0.1 0.11 ± 0.01 0.56 ± 0.10 0.18 ± 0.00 1.64 ± 1.18 0.22 ± 0.02
bw = 0.15 0.09 ± 0.01 0.56 ± 0.07 0.18 ± 0.00 1.56 ± 0.89 0.22 ± 0.02
bw = 0.2 0.07 ± 0.01 0.48 ± 0.06 0.19 ± 0.00 4.61 ± 2.05 0.22 ± 0.02
bw = 0.25 0.06 ± 0.01 0.46 ± 0.07 0.19 ± 0.00 5.80 ± 1.61 0.22 ± 0.02
bw = 0.3 0.05 ± 0.01 0.44 ± 0.07 0.19 ± 0.00 7.30 ± 1.29 0.22 ± 0.02
bw = 0.35 0.04 ± 0.01 0.44 ± 0.06 0.19 ± 0.00 11.46 ± 1.56 0.22 ± 0.02
bw = 0.4 0.04 ± 0.01 0.42 ± 0.09 0.19 ± 0.00 13.16 ± 1.83 0.22 ± 0.02
bw = 0.45 0.04 ± 0.01 0.42 ± 0.08 0.20 ± 0.00 15.65 ± 2.91 0.22 ± 0.02

FeatureTweak 0.12 ± 0.03 0.29 ± 0.25 0.21 ± 0.02 0.58 ± 0.16 0.24 ± 0.03
FOCUS 0.11 ± 0.01 0.34 ± 0.09 0.20 ± 0.00 5.21 ± 2.31 0.24 ± 0.02
FACE 0.17 ± 0.01 0.81 ± 0.02 0.17 ± 0.00 0.46 ± 0.08 0.24 ± 0.02

Table 7: CFX generation results, CaliforniaHousing, RandomForest. Methods with nan values had
100% failures. Validity 58% for FeatureTweak.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

D.3.4 CONFORMAL EVALUATION RESULTS

Generator Marginal CovGap Binning CovGap Class Cond CovGap Simulated CovGap

MLP
ConfexNaive
α = 0.01 0.99 ± 0.00 -0.35 ± 0.66 -0.38 ± 0.63 -8.61 ± 1.51
α = 0.05 0.96 ± 0.02 0.22 ± 1.84 0.17 ± 1.78 -12.83 ± 4.89
α = 0.1 0.92 ± 0.02 -0.19 ± 1.76 -0.34 ± 1.71 -22.79 ± 7.76

ConfexTree, α = 0.01
bw = 0.05 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 nan ± nan
bw = 0.1 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 nan ± nan
bw = 0.15 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 nan ± nan
bw = 0.2 1.00 ± 0.00 0.91 ± 0.02 0.90 ± 0.02 -1.04 ± 0.49
bw = 0.25 1.00 ± 0.00 0.81 ± 0.04 0.80 ± 0.04 -1.87 ± 0.84
bw = 0.3 1.00 ± 0.00 0.75 ± 0.03 0.74 ± 0.04 -2.60 ± 0.66
bw = 0.35 1.00 ± 0.00 0.60 ± 0.08 0.57 ± 0.08 -3.98 ± 1.54
bw = 0.4 1.00 ± 0.00 0.34 ± 0.05 0.30 ± 0.06 -4.76 ± 1.45
bw = 0.45 1.00 ± 0.00 0.32 ± 0.05 0.28 ± 0.06 -4.77 ± 1.45

ConfexTree, α = 0.05
bw = 0.05 1.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00
bw = 0.1 1.00 ± 0.00 4.91 ± 0.00 4.90 ± 0.00 -2.29 ± 0.31
bw = 0.15 1.00 ± 0.00 4.82 ± 0.03 4.81 ± 0.03 -10.12 ± 1.42
bw = 0.2 1.00 ± 0.00 4.67 ± 0.04 4.65 ± 0.04 -10.19 ± 5.66
bw = 0.25 0.99 ± 0.00 4.35 ± 0.08 4.32 ± 0.07 -7.64 ± 4.82
bw = 0.3 0.99 ± 0.00 3.83 ± 0.12 3.76 ± 0.11 -11.33 ± 3.95
bw = 0.35 0.97 ± 0.01 1.55 ± 0.27 1.35 ± 0.29 -13.37 ± 2.89
bw = 0.4 0.95 ± 0.00 0.09 ± 0.47 -0.19 ± 0.53 -14.08 ± 2.06
bw = 0.45 0.95 ± 0.00 0.07 ± 0.47 -0.22 ± 0.53 -14.06 ± 1.97

ConfexTree, α = 0.1
bw = 0.05 1.00 ± 0.00 9.99 ± 0.01 9.99 ± 0.01 -0.56 ± 14.46
bw = 0.1 1.00 ± 0.00 9.76 ± 0.08 9.74 ± 0.08 3.16 ± 0.88
bw = 0.15 1.00 ± 0.00 9.54 ± 0.21 9.52 ± 0.22 -10.92 ± 5.77
bw = 0.2 0.99 ± 0.00 8.98 ± 0.14 8.93 ± 0.15 -19.47 ± 4.74
bw = 0.25 0.99 ± 0.00 8.49 ± 0.25 8.42 ± 0.24 -11.00 ± 2.93
bw = 0.3 0.98 ± 0.00 7.55 ± 0.38 7.44 ± 0.35 -14.15 ± 3.08
bw = 0.35 0.91 ± 0.01 1.87 ± 0.80 1.41 ± 0.90 -22.28 ± 6.52
bw = 0.4 0.91 ± 0.01 1.01 ± 0.82 0.51 ± 0.92 -22.27 ± 5.75
bw = 0.45 0.91 ± 0.01 0.97 ± 0.83 0.47 ± 0.93 -22.19 ± 5.64

Table 8: Conformal evaluation results, CaliforniaHousing, MLP
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Generator Marginal CovGap Binning CovGap Class Cond CovGap Simulated CovGap

RandomForest
ConfexNaive
α = 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 nan ± nan
α = 0.05 0.95 ± 0.01 0.16 ± 0.53 -0.10 ± 0.56 -39.17 ± 8.15
α = 0.1 0.95 ± 0.01 5.16 ± 0.53 4.90 ± 0.56 -34.17 ± 8.15

ConfexTree, α = 0.01
bw = 0.05 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 nan ± nan
bw = 0.1 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± nan
bw = 0.15 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± nan
bw = 0.2 1.00 ± 0.00 0.97 ± 0.02 0.97 ± 0.03 0.79 ± 0.41
bw = 0.25 1.00 ± 0.00 0.97 ± 0.03 0.97 ± 0.03 0.66 ± 0.65
bw = 0.3 1.00 ± 0.00 0.97 ± 0.03 0.97 ± 0.03 0.66 ± 0.65
bw = 0.35 1.00 ± 0.00 0.96 ± 0.07 0.96 ± 0.07 -7.24 ± 2.12
bw = 0.4 1.00 ± 0.00 0.83 ± 0.23 0.83 ± 0.23 -33.35 ± 31.24
bw = 0.45 1.00 ± 0.00 0.83 ± 0.23 0.83 ± 0.23 -30.80 ± 27.63

ConfexTree, α = 0.05
bw = 0.05 1.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00
bw = 0.1 1.00 ± 0.00 4.93 ± 0.05 4.93 ± 0.05 0.93 ± 3.99
bw = 0.15 1.00 ± 0.00 4.88 ± 0.05 4.87 ± 0.06 -12.72 ± 5.73
bw = 0.2 1.00 ± 0.00 4.76 ± 0.10 4.75 ± 0.10 -25.53 ± 19.62
bw = 0.25 1.00 ± 0.00 4.48 ± 0.10 4.46 ± 0.10 -33.60 ± 11.02
bw = 0.3 0.99 ± 0.00 4.00 ± 0.25 3.98 ± 0.26 -37.57 ± 6.37
bw = 0.35 0.97 ± 0.01 2.67 ± 0.31 2.56 ± 0.32 -35.59 ± 3.75
bw = 0.4 0.97 ± 0.01 2.54 ± 0.46 2.43 ± 0.47 -34.96 ± 6.88
bw = 0.45 0.97 ± 0.01 2.51 ± 0.45 2.40 ± 0.46 -35.47 ± 6.05

ConfexTree, α = 0.1
bw = 0.05 1.00 ± 0.00 10.00 ± 0.01 10.00 ± 0.01 4.72 ± 11.81
bw = 0.1 1.00 ± 0.00 9.81 ± 0.05 9.80 ± 0.05 -3.35 ± 5.87
bw = 0.15 1.00 ± 0.00 9.60 ± 0.23 9.57 ± 0.24 -17.34 ± 10.55
bw = 0.2 1.00 ± 0.00 9.33 ± 0.04 9.31 ± 0.04 -29.85 ± 6.39
bw = 0.25 0.99 ± 0.01 8.51 ± 0.40 8.47 ± 0.42 -29.75 ± 8.83
bw = 0.3 0.98 ± 0.01 7.57 ± 0.56 7.53 ± 0.58 -33.10 ± 7.00
bw = 0.35 0.93 ± 0.01 3.39 ± 0.99 3.16 ± 1.02 -44.42 ± 5.68
bw = 0.4 0.93 ± 0.01 2.95 ± 1.07 2.69 ± 1.10 -43.75 ± 6.11
bw = 0.45 0.93 ± 0.01 2.84 ± 1.02 2.58 ± 1.05 -43.73 ± 5.96

Table 9: Conformal evaluation results, CaliforniaHousing, RandomForest
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D.4 GERMAN CREDIT

We use the German Credit dataset from the UCI Machine Learning Repository Hofmann (1994),
with a cleaned version obtained through Kaggle6. The preprocessing included: (i) scaling numeric
features (Age, Credit amount, Duration) to (0, 1) using MinMax scaling, (ii) ordinal encoding of
categorical features (job, savings account, checking account), then normalised. The Purpose feature
was dropped.

Our results show that distance decreases and plausibility decreases as the kernel bandwidth in-
creases. When the bandwidth is properly tuned, CONFEX methods outperform all other methods
on plausibility and sensitivity.

D.4.1 PLOTS

(a) Distance (b) Plausibility (c) Coverage Gap

Figure 11: Effect of coverage rate and kernel bandwidth on metrics for CONFEX-Tree on the Ger-
manCredit dataset, MLP. CONFEX-Naive is represented by dashed horizontal lines.

(a) Distance (b) Plausibility (c) Coverage Gap

Figure 12: Effect of coverage rate and kernel bandwidth on metrics for CONFEX-Tree on the Ger-
manCredit dataset, RandomForest. CONFEX-Naive is represented by dashed horizontal lines.

6https://www.kaggle.com/datasets/uciml/german-credit/data
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D.4.2 MODEL EVALUATION RESULTS

Repeat Accuracy (%) Precision (%) F1 Score (%)

repeat0,MLP 72.00 72.00 72.00
repeat1,MLP 71.00 70.01 70.39
repeat2,MLP 72.00 72.00 72.00
repeat3,MLP 73.00 75.40 73.74
repeat4,MLP 71.50 71.12 71.29
repeat0,RF 70.00 68.27 68.77
repeat1,RF 69.50 68.31 68.76
repeat2,RF 70.00 68.27 68.77
repeat3,RF 68.50 67.26 67.74
repeat4,RF 72.50 70.28 69.81

Table 10: Model evaluation results, GermanCredit.
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D.4.3 CFX GENERATION RESULTS

Generator Distance Plausibility Implausibility Sensitivity (10−1) Stability

MLP
MinDist 1.65 ± 0.18 0.54 ± 0.19 0.71 ± 0.06 0.08 ± 0.02 0.58 ± 0.04
Wachter 0.41 ± 0.02 0.73 ± 0.05 0.59 ± 0.02 0.33 ± 0.09 0.24 ± 0.02
Greedy 0.99 ± 0.04 -0.03 ± 0.09 0.80 ± 0.01 0.08 ± 0.02 0.68 ± 0.03
ConfexNaive
α = 0.01 2.26 ± 0.14 -0.16 ± 0.38 0.88 ± 0.06 0.03 ± 0.01 0.97 ± 0.02
α = 0.05 2.00 ± 0.07 0.16 ± 0.28 0.80 ± 0.08 0.05 ± 0.01 0.83 ± 0.07
α = 0.1 1.80 ± 0.04 0.40 ± 0.22 0.72 ± 0.05 0.06 ± 0.02 0.72 ± 0.09

ECCCo
α = 0.01 1.01 ± 0.07 0.12 ± 0.11 0.77 ± 0.03 0.06 ± 0.02 0.73 ± 0.01
α = 0.05 1.00 ± 0.06 0.08 ± 0.14 0.77 ± 0.02 0.05 ± 0.02 0.73 ± 0.01
α = 0.1 0.97 ± 0.06 0.16 ± 0.11 0.75 ± 0.02 0.06 ± 0.02 0.72 ± 0.01

ConfexTree, α = 0.01
bw = 0.05 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
bw = 0.6 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
bw = 0.8 2.97 ± 0.35 -0.58 ± 0.27 0.87 ± 0.10 0.02 ± 0.01 0.99 ± 0.01
bw = 1 2.97 ± 0.35 -0.57 ± 0.27 0.87 ± 0.10 0.02 ± 0.01 0.99 ± 0.01
bw = 1.2 2.97 ± 0.21 -0.60 ± 0.04 0.84 ± 0.07 0.03 ± 0.01 0.98 ± 0.00
bw = 1.4 2.97 ± 0.21 -0.60 ± 0.04 0.84 ± 0.07 0.03 ± 0.01 0.98 ± 0.00
bw = 1.6 2.97 ± 0.21 -0.60 ± 0.04 0.84 ± 0.07 0.03 ± 0.01 0.98 ± 0.00

ConfexTree, α = 0.05
bw = 0.1 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
bw = 0.2 2.31 ± 0.20 1.00 ± 0.00 0.28 ± 0.02 0.01 ± 0.01 0.88 ± 0.03
bw = 0.4 1.60 ± 0.16 1.00 ± 0.00 0.44 ± 0.02 0.03 ± 0.01 0.69 ± 0.04
bw = 0.6 1.48 ± 0.10 0.88 ± 0.04 0.59 ± 0.02 0.06 ± 0.02 0.65 ± 0.07
bw = 0.8 1.91 ± 0.10 0.26 ± 0.27 0.75 ± 0.05 0.05 ± 0.01 0.79 ± 0.07
bw = 1 1.94 ± 0.09 0.23 ± 0.29 0.76 ± 0.06 0.05 ± 0.01 0.80 ± 0.07
bw = 1.2 2.00 ± 0.08 0.04 ± 0.32 0.79 ± 0.05 0.05 ± 0.00 0.81 ± 0.07
bw = 1.4 2.01 ± 0.08 0.05 ± 0.31 0.80 ± 0.05 0.05 ± 0.00 0.81 ± 0.06
bw = 1.6 2.01 ± 0.08 0.05 ± 0.31 0.80 ± 0.05 0.05 ± 0.00 0.81 ± 0.06

ConfexTree, α = 0.1
bw = 0.1 2.18 ± 0.21 1.00 ± 0.00 0.25 ± 0.03 0.01 ± 0.00 0.76 ± 0.11
bw = 0.2 2.21 ± 0.71 1.00 ± 0.00 0.37 ± 0.01 0.01 ± 0.00 0.66 ± 0.08
bw = 0.4 1.67 ± 0.15 0.83 ± 0.18 0.62 ± 0.05 0.07 ± 0.01 0.57 ± 0.08
bw = 0.6 1.61 ± 0.08 0.84 ± 0.13 0.62 ± 0.04 0.07 ± 0.01 0.64 ± 0.07
bw = 0.8 1.79 ± 0.12 0.45 ± 0.14 0.71 ± 0.05 0.07 ± 0.01 0.73 ± 0.06
bw = 1 1.80 ± 0.10 0.47 ± 0.18 0.71 ± 0.05 0.07 ± 0.01 0.74 ± 0.06
bw = 1.2 1.86 ± 0.03 0.31 ± 0.09 0.74 ± 0.01 0.07 ± 0.01 0.73 ± 0.04
bw = 1.4 1.86 ± 0.03 0.28 ± 0.10 0.75 ± 0.02 0.07 ± 0.02 0.73 ± 0.05
bw = 1.5 1.86 ± 0.03 0.28 ± 0.10 0.75 ± 0.02 0.07 ± 0.02 0.73 ± 0.05
bw = 1.6 1.86 ± 0.03 0.28 ± 0.10 0.75 ± 0.02 0.07 ± 0.02 0.73 ± 0.05

FACE 0.69 ± 0.05 0.92 ± 0.05 0.45 ± 0.02 0.05 ± 0.01 0.43 ± 0.01
C-CHVAE 2.45 ± 0.13 0.80 ± 0.19 0.52 ± 0.05 0.07 ± 0.01 0.38 ± 0.06

Table 11: CFX generation results, GermanCredit, MLP. Methods with nan values had 100% failures.
Validity 84% for all ECCCo methods, 82% for Greedy, 84% for Wachter, 74% for C-CHVAE.
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Generator Distance Plausibility Implausibility Sensitivity (10−1) Stability

RandomForest
MinDist 1.65 ± 0.06 0.52 ± 0.17 0.71 ± 0.05 0.09 ± 0.01 0.36 ± 0.01
ConfexNaive
α = 0.01 1.62 ± 0.08 0.63 ± 0.10 0.66 ± 0.04 0.09 ± 0.01 0.43 ± 0.02
α = 0.05 1.62 ± 0.08 0.63 ± 0.10 0.66 ± 0.04 0.09 ± 0.01 0.43 ± 0.02
α = 0.1 1.62 ± 0.09 0.65 ± 0.09 0.66 ± 0.04 0.09 ± 0.01 0.43 ± 0.02

ConfexTree, α = 0.01
bw = 0.05 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
bw = 0.7 2.23 ± 0.11 0.45 ± 0.09 0.61 ± 0.03 0.08 ± 0.01 0.42 ± 0.02
bw = 0.8 2.23 ± 0.11 0.46 ± 0.12 0.61 ± 0.03 0.07 ± 0.01 0.42 ± 0.02
bw = 0.9 2.22 ± 0.11 0.44 ± 0.10 0.61 ± 0.03 0.07 ± 0.01 0.42 ± 0.03
bw = 1 2.22 ± 0.11 0.44 ± 0.10 0.61 ± 0.03 0.07 ± 0.01 0.42 ± 0.03
bw = 1.1 2.39 ± 0.00 0.28 ± 0.00 0.67 ± 0.00 0.09 ± 0.00 0.43 ± 0.00
bw = 1.2 2.39 ± 0.00 0.28 ± 0.00 0.67 ± 0.00 0.09 ± 0.00 0.43 ± 0.00

ConfexTree, α = 0.05
bw = 0.1 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
bw = 0.2 2.04 ± 0.16 1.00 ± 0.00 0.35 ± 0.06 0.01 ± 0.01 0.44 ± 0.26
bw = 0.3 2.12 ± 0.43 1.00 ± 0.00 0.39 ± 0.06 0.07 ± 0.02 0.38 ± 0.05
bw = 0.4 1.73 ± 0.07 0.99 ± 0.02 0.45 ± 0.07 0.07 ± 0.05 0.35 ± 0.04
bw = 0.5 1.88 ± 0.13 0.80 ± 0.08 0.54 ± 0.04 0.05 ± 0.01 0.39 ± 0.03
bw = 0.6 1.40 ± 0.13 0.82 ± 0.13 0.57 ± 0.05 0.07 ± 0.01 0.39 ± 0.03
bw = 0.7 1.63 ± 0.10 0.72 ± 0.14 0.61 ± 0.07 0.11 ± 0.03 0.41 ± 0.02
bw = 0.8 1.71 ± 0.15 0.70 ± 0.16 0.63 ± 0.06 0.11 ± 0.03 0.43 ± 0.03
bw = 0.9 1.65 ± 0.08 0.74 ± 0.09 0.62 ± 0.05 0.11 ± 0.02 0.43 ± 0.04
bw = 1 2.10 ± 0.64 0.59 ± 0.15 0.71 ± 0.07 0.09 ± 0.02 0.45 ± 0.03

ConfexTree, α = 0.1
bw = 0.1 2.01 ± 0.07 1.00 ± 0.00 0.30 ± 0.05 0.01 ± 0.01 0.45 ± 0.24
bw = 0.2 1.76 ± 0.17 1.00 ± 0.00 0.38 ± 0.02 0.04 ± 0.02 0.25 ± 0.06
bw = 0.3 1.48 ± 0.23 0.99 ± 0.01 0.49 ± 0.04 0.10 ± 0.05 0.35 ± 0.03
bw = 0.4 1.39 ± 0.08 0.87 ± 0.09 0.55 ± 0.02 0.08 ± 0.01 0.36 ± 0.02
bw = 0.5 1.46 ± 0.10 0.76 ± 0.07 0.60 ± 0.03 0.09 ± 0.01 0.37 ± 0.03
bw = 0.6 1.49 ± 0.12 0.77 ± 0.08 0.61 ± 0.01 0.13 ± 0.10 0.38 ± 0.02
bw = 0.7 1.57 ± 0.10 0.67 ± 0.14 0.64 ± 0.05 0.10 ± 0.01 0.41 ± 0.01
bw = 0.8 1.58 ± 0.09 0.66 ± 0.14 0.65 ± 0.04 0.09 ± 0.01 0.42 ± 0.01
bw = 0.9 1.61 ± 0.12 0.64 ± 0.15 0.65 ± 0.05 0.09 ± 0.01 0.42 ± 0.01
bw = 1 1.63 ± 0.11 0.66 ± 0.16 0.66 ± 0.05 0.09 ± 0.01 0.42 ± 0.02

FeatureTweak 0.50 ± 0.06 0.84 ± 0.05 0.55 ± 0.03 0.09 ± 0.01 0.20 ± 0.02
FOCUS 0.45 ± 0.14 0.83 ± 0.02 0.56 ± 0.02 0.58 ± 0.25 0.26 ± 0.02
FACE 0.59 ± 0.06 0.88 ± 0.07 0.48 ± 0.01 0.07 ± 0.01 0.22 ± 0.02

Table 12: CFX generation results, GermanCredit, RandomForest. Methods with nan values had
100% failures. Validity 50% for FeatureTweak.
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D.4.4 CONFORMAL EVALUATION RESULTS

Generator Marginal CovGap Binning CovGap Class Cond CovGap Simulated CovGap

MLP
ConfexNaive
α = 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 nan ± nan
α = 0.05 1.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00 nan ± nan
α = 0.1 0.93 ± 0.03 -0.81 ± 0.66 2.90 ± 0.42 -23.40 ± 21.12

ConfexTree, α = 0.01
bw = 0.05 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 nan ± nan
bw = 0.1 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 nan ± nan
bw = 0.2 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 nan ± nan
bw = 0.3 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 nan ± nan
bw = 0.4 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 nan ± nan
bw = 0.5 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 nan ± nan
bw = 0.6 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 nan ± nan
bw = 0.7 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 nan ± nan
bw = 0.8 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 nan ± nan
bw = 0.9 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 nan ± nan
bw = 1 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 nan ± nan

ConfexTree, α = 0.05
bw = 0.05 1.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00 nan ± nan
bw = 0.1 1.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00 nan ± nan
bw = 0.2 1.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00 nan ± nan
bw = 0.3 1.00 ± 0.00 4.93 ± 0.16 4.90 ± 0.22 2.50 ± nan
bw = 0.4 0.99 ± 0.02 3.31 ± 1.53 3.80 ± 1.04 -42.39 ± 38.61
bw = 0.5 0.95 ± 0.05 2.58 ± 1.90 3.30 ± 1.44 -17.85 ± 18.25
bw = 0.6 0.95 ± 0.05 2.42 ± 1.75 3.20 ± 1.35 -21.79 ± 16.32
bw = 0.7 0.97 ± 0.03 2.23 ± 3.11 3.20 ± 2.14 -29.83 ± 27.83
bw = 0.8 0.97 ± 0.03 2.23 ± 3.11 3.20 ± 2.14 -29.83 ± 27.83
bw = 0.9 0.97 ± 0.03 2.23 ± 3.11 3.20 ± 2.14 -28.95 ± 27.52
bw = 1 0.97 ± 0.03 2.23 ± 3.11 3.20 ± 2.14 -28.95 ± 27.52

ConfexTree, α = 0.1
bw = 0.05 1.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00
bw = 0.1 1.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00
bw = 0.2 0.99 ± 0.02 8.51 ± 0.82 8.70 ± 0.76 -1.36 ± 10.37
bw = 0.3 0.95 ± 0.05 4.33 ± 0.60 5.70 ± 0.67 -47.17 ± 26.96
bw = 0.4 0.95 ± 0.06 1.56 ± 1.82 3.90 ± 1.64 -44.65 ± 18.65
bw = 0.5 0.91 ± 0.04 -0.34 ± 0.58 2.40 ± 0.55 -25.40 ± 19.69
bw = 0.6 0.92 ± 0.04 0.76 ± 1.33 3.30 ± 1.15 -28.40 ± 16.51
bw = 0.7 0.93 ± 0.03 -0.08 ± 1.43 3.40 ± 0.82 -26.00 ± 22.49
bw = 0.8 0.93 ± 0.03 -0.08 ± 1.43 3.40 ± 0.82 -26.00 ± 22.49
bw = 0.9 0.93 ± 0.03 -0.08 ± 1.43 3.40 ± 0.82 -25.00 ± 22.10
bw = 1 0.93 ± 0.03 -0.08 ± 1.43 3.40 ± 0.82 -25.00 ± 22.10

Table 13: Conformal evaluation results, GermanCredit, MLP
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Generator Marginal CovGap Binning CovGap Class Cond CovGap Simulated CovGap

RandomForest
ConfexNaive
α = 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 nan ± nan
α = 0.05 1.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00 nan ± nan
α = 0.1 0.92 ± 0.04 -0.97 ± 1.23 2.75 ± 0.35 -33.75 ± 12.37

ConfexTree, α = 0.01
bw = 0.1 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 nan ± nan
bw = 0.2 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 nan ± nan
bw = 0.3 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 nan ± nan
bw = 0.4 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 nan ± nan
bw = 0.5 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 nan ± nan
bw = 0.6 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 nan ± nan
bw = 0.7 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 nan ± nan
bw = 0.8 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 nan ± nan
bw = 0.9 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 nan ± nan
bw = 1 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 nan ± nan

ConfexTree, α = 0.05
bw = 0.1 1.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00 nan ± nan
bw = 0.2 1.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00 nan ± nan
bw = 0.3 1.00 ± 0.00 4.82 ± 0.25 4.75 ± 0.35 2.50 ± nan
bw = 0.4 1.00 ± 0.00 4.82 ± 0.25 4.75 ± 0.35 2.50 ± nan
bw = 0.5 0.98 ± 0.04 2.13 ± 1.74 3.25 ± 1.06 -16.31 ± 11.59
bw = 0.6 0.98 ± 0.04 1.72 ± 1.16 3.00 ± 0.71 -26.15 ± 2.32
bw = 0.7 0.95 ± 0.00 0.13 ± 4.57 1.75 ± 3.18 -51.18 ± 17.93
bw = 0.8 0.95 ± 0.00 0.13 ± 4.57 1.75 ± 3.18 -51.18 ± 17.93
bw = 0.9 0.95 ± 0.00 0.13 ± 4.57 1.75 ± 3.18 -49.43 ± 20.40
bw = 1 0.95 ± 0.00 0.13 ± 4.57 1.75 ± 3.18 -49.43 ± 20.40

ConfexTree, α = 0.1
bw = 0.1 1.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00 10.00 ± nan
bw = 0.2 1.00 ± 0.00 9.82 ± 0.25 9.75 ± 0.35 7.50 ± nan
bw = 0.3 0.98 ± 0.04 5.59 ± 1.23 6.75 ± 0.35 -36.75 ± 49.85
bw = 0.4 0.98 ± 0.04 3.31 ± 0.33 5.50 ± 0.00 -36.75 ± 48.44
bw = 0.5 0.95 ± 0.00 -0.10 ± 2.32 3.00 ± 1.41 -23.75 ± 22.27
bw = 0.6 0.95 ± 0.00 -0.51 ± 3.41 2.75 ± 2.47 -19.50 ± 12.73
bw = 0.7 0.92 ± 0.04 -0.79 ± 1.48 3.00 ± 0.71 -34.00 ± 12.02
bw = 0.8 0.92 ± 0.04 -0.79 ± 1.48 3.00 ± 0.71 -34.00 ± 12.02
bw = 0.9 0.92 ± 0.04 -0.79 ± 1.48 3.00 ± 0.71 -32.75 ± 13.79
bw = 1 0.92 ± 0.04 -0.79 ± 1.48 3.00 ± 0.71 -32.75 ± 13.79

Table 14: Conformal evaluation results, GermanCredit, RandomForest

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

D.5 GIVEMESOMECREDIT

This dataset, obtained through Kaggle7, contains credit scoring data with 8 numeric features that
were scaled to (0, 1) using MinMax scaling.

We find that CONFEX-Tree methods outperform all other methods on plausibility and sensitivity.
Our results roughly show the same pattern that distance decreases as the kernel bandwidth increases,
however plausibility remains quite good for all tested (small) choices of kernel bandwidth.

D.5.1 PLOTS

(a) Distance (b) Plausibility (c) Coverage Gap

Figure 13: Effect of coverage rate and kernel bandwidth on metrics for CONFEX-Tree on the
GiveMeSomeCredit dataset, MLP. CONFEX-Naive is represented by dashed horizontal lines.

(a) Distance (b) Plausibility (c) Coverage Gap

Figure 14: Effect of coverage rate and kernel bandwidth on metrics for CONFEX-Tree on the
GiveMeSomeCredit dataset, RandomForest. CONFEX-Naive is represented by dashed horizon-
tal lines.

7https://www.kaggle.com/competitions/GiveMeSomeCredit
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D.5.2 MODEL EVALUATION RESULTS

Repeat Accuracy (%) Precision (%) F1 Score (%)

repeat0,MLP 93.54 91.82 91.81
repeat1,MLP 93.49 91.79 91.96
repeat2,MLP 93.61 91.98 91.87
repeat3,MLP 93.57 91.89 91.72
repeat4,MLP 93.48 91.73 91.84
repeat0,RF 93.40 91.57 91.78
repeat1,RF 93.40 91.53 91.69
repeat2,RF 93.41 91.61 91.82
repeat3,RF 93.37 91.49 91.68
repeat4,RF 93.53 91.83 91.89

Table 15: Model evaluation results, GiveMeSomeCredit.
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D.5.3 CFX GENERATION RESULTS

Generator Distance Plausibility Implausibility Sensitivity (10−1) Stability

MLP
MinDist 0.03 ± 0.00 0.93 ± 0.04 0.09 ± 0.00 1.39 ± 0.57 0.18 ± 0.06
Wachter 0.09 ± 0.01 0.93 ± 0.02 0.09 ± 0.00 0.95 ± 0.07 0.18 ± 0.07
Greedy 0.13 ± 0.07 -0.02 ± 0.38 0.14 ± 0.03 1.05 ± 0.81 0.17 ± 0.06
ConfexNaive
α = 0.01 0.25 ± 0.01 -0.91 ± 0.05 0.21 ± 0.01 0.21 ± 0.05 0.18 ± 0.11
α = 0.05 0.04 ± 0.00 0.76 ± 0.05 0.09 ± 0.00 0.78 ± 0.11 0.18 ± 0.06
α = 0.1 0.08 ± 0.01 -0.16 ± 0.32 0.11 ± 0.01 0.52 ± 0.09 0.16 ± 0.06

ECCCo
α = 0.01 0.71 ± 0.28 -0.98 ± 0.03 0.32 ± 0.15 0.21 ± 0.06 0.20 ± 0.08
α = 0.05 0.69 ± 0.28 -0.97 ± 0.03 0.31 ± 0.14 0.21 ± 0.06 0.20 ± 0.08
α = 0.1 0.69 ± 0.28 -0.97 ± 0.03 0.31 ± 0.14 0.21 ± 0.06 0.20 ± 0.07

ConfexTree, α = 0.01
bw = 0.05 0.27 ± 0.09 0.14 ± 0.66 0.08 ± 0.00 nan ± nan 0.07 ± 0.05
bw = 0.075 0.27 ± 0.09 0.18 ± 0.83 0.08 ± 0.00 nan ± nan 0.07 ± 0.05
bw = 0.1 0.19 ± 0.01 0.96 ± 0.02 0.07 ± 0.00 0.09 ± 0.02 0.20 ± 0.08
bw = 0.125 0.19 ± 0.01 0.96 ± 0.01 0.07 ± 0.00 0.10 ± 0.03 0.20 ± 0.07
bw = 0.15 0.25 ± 0.02 0.96 ± 0.01 0.08 ± 0.00 0.09 ± 0.03 0.18 ± 0.06
bw = 0.175 0.22 ± 0.04 0.96 ± 0.01 0.08 ± 0.00 0.11 ± 0.04 0.19 ± 0.07
bw = 0.2 0.16 ± 0.01 0.90 ± 0.08 0.08 ± 0.00 0.19 ± 0.02 0.18 ± 0.07
bw = 0.25 0.29 ± 0.02 0.88 ± 0.15 0.11 ± 0.01 0.10 ± 0.02 0.17 ± 0.07

ConfexTree, α = 0.05
bw = 0.05 0.28 ± 0.09 0.90 ± 0.15 0.06 ± 0.01 0.10 ± 0.09 0.25 ± 0.07
bw = 0.075 0.23 ± 0.05 0.97 ± 0.02 0.07 ± 0.01 0.14 ± 0.04 0.22 ± 0.09
bw = 0.1 0.08 ± 0.01 0.97 ± 0.02 0.08 ± 0.00 0.47 ± 0.08 0.19 ± 0.07
bw = 0.125 0.06 ± 0.01 0.97 ± 0.02 0.08 ± 0.00 0.53 ± 0.09 0.19 ± 0.07
bw = 0.15 0.06 ± 0.01 0.95 ± 0.04 0.08 ± 0.00 0.56 ± 0.07 0.19 ± 0.07
bw = 0.175 0.05 ± 0.01 0.95 ± 0.04 0.08 ± 0.00 0.59 ± 0.07 0.19 ± 0.07
bw = 0.2 0.05 ± 0.00 0.94 ± 0.04 0.09 ± 0.00 0.62 ± 0.13 0.18 ± 0.07
bw = 0.25 0.05 ± 0.00 0.91 ± 0.02 0.09 ± 0.00 0.70 ± 0.31 0.18 ± 0.07

ConfexTree, α = 0.1
bw = 0.05 0.24 ± 0.06 0.98 ± 0.01 0.08 ± 0.01 0.14 ± 0.03 0.22 ± 0.09
bw = 0.075 0.16 ± 0.04 0.98 ± 0.02 0.08 ± 0.01 0.27 ± 0.07 0.20 ± 0.07
bw = 0.1 0.06 ± 0.01 0.96 ± 0.01 0.08 ± 0.00 0.59 ± 0.09 0.19 ± 0.07
bw = 0.125 0.05 ± 0.01 0.96 ± 0.01 0.08 ± 0.00 0.64 ± 0.08 0.19 ± 0.07
bw = 0.15 0.04 ± 0.00 0.96 ± 0.01 0.09 ± 0.00 0.71 ± 0.11 0.18 ± 0.07
bw = 0.175 0.04 ± 0.00 0.96 ± 0.01 0.09 ± 0.00 0.73 ± 0.13 0.18 ± 0.07
bw = 0.2 0.04 ± 0.00 0.95 ± 0.02 0.09 ± 0.00 0.84 ± 0.33 0.18 ± 0.07
bw = 0.25 0.03 ± 0.00 0.95 ± 0.02 0.09 ± 0.00 0.85 ± 0.33 0.18 ± 0.07

FACE 0.12 ± 0.01 0.95 ± 0.02 0.09 ± 0.00 0.35 ± 0.04 0.19 ± 0.07
C-CHVAE 1.32 ± 0.08 -0.92 ± 0.06 0.69 ± 0.05 0.09 ± 0.02 0.27 ± 0.20

Table 16: CFX generation results, GiveMeSomeCredit, MLP. Validity 71% for Wachter and 80%
for Schut.
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Generator Distance Plausibility Implausibility Sensitivity (10−1) Stability

RandomForest
MinDist 0.01 ± 0.00 0.96 ± 0.01 0.09 ± 0.00 96.79 ± 35.89 0.22 ± 0.07
ConfexNaive
α = 0.01 0.04 ± 0.01 0.88 ± 0.07 0.09 ± 0.00 1.28 ± 0.10 0.22 ± 0.07
α = 0.05 0.01 ± 0.00 0.96 ± 0.01 0.09 ± 0.00 67.00 ± 45.36 0.22 ± 0.07
α = 0.1 0.01 ± 0.00 0.96 ± 0.01 0.09 ± 0.00 28.68 ± 25.01 0.22 ± 0.07

ConfexTree, α = 0.01
bw = 0.05 0.34 ± 0.07 0.30 ± 0.39 0.07 ± 0.01 nan ± nan 0.29 ± 0.07
bw = 0.1 0.08 ± 0.01 0.96 ± 0.01 0.07 ± 0.00 0.50 ± 0.20 0.22 ± 0.07
bw = 0.15 0.08 ± 0.01 0.96 ± 0.03 0.07 ± 0.00 0.60 ± 0.22 0.22 ± 0.07
bw = 0.2 0.05 ± 0.01 0.96 ± 0.01 0.08 ± 0.00 0.73 ± 0.14 0.22 ± 0.07

ConfexTree, α = 0.05
bw = 0.05 0.11 ± 0.02 0.96 ± 0.02 0.07 ± 0.00 0.34 ± 0.08 0.22 ± 0.06
bw = 0.1 0.03 ± 0.01 0.98 ± 0.01 0.08 ± 0.00 2.90 ± 2.12 0.22 ± 0.07
bw = 0.15 0.03 ± 0.00 0.98 ± 0.01 0.08 ± 0.00 3.35 ± 2.19 0.22 ± 0.07
bw = 0.2 0.02 ± 0.00 0.98 ± 0.01 0.08 ± 0.00 2.85 ± 1.09 0.22 ± 0.07

ConfexTree, α = 0.1
bw = 0.05 0.07 ± 0.01 0.99 ± 0.01 0.08 ± 0.00 0.55 ± 0.14 0.22 ± 0.06
bw = 0.1 0.03 ± 0.01 0.98 ± 0.02 0.08 ± 0.00 2.20 ± 1.93 0.22 ± 0.07
bw = 0.15 0.02 ± 0.00 0.98 ± 0.01 0.08 ± 0.00 3.71 ± 2.69 0.22 ± 0.07
bw = 0.2 0.02 ± 0.00 0.98 ± 0.02 0.09 ± 0.00 4.14 ± 2.67 0.22 ± 0.07

FeatureTweak 0.03 ± 0.01 0.96 ± 0.02 0.09 ± 0.00 1.40 ± 0.16 0.20 ± 0.06
FOCUS 0.05 ± 0.00 0.91 ± 0.05 0.09 ± 0.00 2.27 ± 0.79 0.22 ± 0.07
FACE 0.10 ± 0.01 0.97 ± 0.01 0.08 ± 0.00 0.46 ± 0.08 0.22 ± 0.07

Table 17: CFX generation results, GiveMeSomeCredit, RF. ConfexTree with alpha=0.01,bw=0.05
had 78% failures (i.e. one class had no singleton regions). Valdiity 50% for FeatureTweak.
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D.5.4 CONFORMAL EVALUATION RESULTS

Generator Marginal CovGap Binning CovGap Class Cond CovGap Simulated CovGap

MLP
ConfexNaive
α = 0.01 0.99 ± 0.00 -5.24 ± 0.05 0.15 ± 0.01 -10.52 ± 5.95
α = 0.05 0.96 ± 0.00 -30.19 ± 0.86 0.02 ± 0.13 -32.31 ± 9.63
α = 0.1 0.90 ± 0.00 -41.43 ± 0.21 -0.04 ± 0.04 -10.15 ± 15.42

ConfexTree, α = 0.01
bw = 0.05 1.00 ± 0.00 0.98 ± 0.00 1.00 ± 0.00 0.80 ± 0.00
bw = 0.075 1.00 ± 0.00 0.98 ± 0.00 1.00 ± 0.00 0.80 ± 0.00
bw = 0.1 1.00 ± 0.00 -1.84 ± 0.09 0.61 ± 0.01 -8.96 ± 0.20
bw = 0.125 1.00 ± 0.00 -1.73 ± 0.08 0.63 ± 0.01 -8.60 ± 0.17
bw = 0.15 1.00 ± 0.00 -2.03 ± 0.09 0.59 ± 0.01 -9.35 ± 0.18
bw = 0.175 1.00 ± 0.00 -2.15 ± 0.09 0.57 ± 0.01 -10.04 ± 0.32
bw = 0.2 1.00 ± 0.00 -3.88 ± 0.16 0.34 ± 0.02 0.04 ± 0.03
bw = 0.25 1.00 ± 0.00 -4.21 ± 0.09 0.29 ± 0.01 0.07 ± 0.03
bw = 0.4 0.99 ± 0.00 -5.53 ± 0.10 0.11 ± 0.01 -26.76 ± 39.37

ConfexTree, α = 0.05
bw = 0.05 1.00 ± 0.00 -0.48 ± 0.02 4.25 ± 0.00 -14.45 ± 0.11
bw = 0.075 1.00 ± 0.00 -0.70 ± 0.02 4.22 ± 0.00 -14.99 ± 0.11
bw = 0.1 0.98 ± 0.00 -11.87 ± 0.08 2.70 ± 0.01 -32.61 ± 22.10
bw = 0.125 0.98 ± 0.00 -11.94 ± 0.08 2.69 ± 0.01 -32.61 ± 22.10
bw = 0.15 0.98 ± 0.00 -14.15 ± 0.13 2.36 ± 0.02 -59.62 ± 11.20
bw = 0.175 0.98 ± 0.00 -14.64 ± 0.14 2.30 ± 0.01 -45.84 ± 9.20
bw = 0.2 0.97 ± 0.00 -18.83 ± 0.30 1.67 ± 0.03 -38.26 ± 2.07

ConfexTree, α = 0.1
bw = 0.05 0.99 ± 0.00 -1.06 ± 0.05 8.48 ± 0.01 -36.74 ± 40.35
bw = 0.075 0.99 ± 0.00 -1.37 ± 0.05 8.44 ± 0.01 -36.85 ± 40.31
bw = 0.1 0.97 ± 0.00 -14.40 ± 0.13 6.63 ± 0.01 -46.74 ± 15.17
bw = 0.125 0.97 ± 0.00 -14.62 ± 0.13 6.60 ± 0.01 -46.78 ± 15.17
bw = 0.15 0.96 ± 0.00 -18.02 ± 0.22 6.07 ± 0.02 -34.99 ± 12.69
bw = 0.175 0.96 ± 0.00 -18.51 ± 0.23 6.01 ± 0.02 -33.24 ± 12.32
bw = 0.2 0.96 ± 0.00 -22.20 ± 0.37 5.42 ± 0.02 -34.36 ± 2.89

Table 18: Conformal evaluation results, GiveMeSomeCredit, MLP
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Generator Marginal CovGap Binning CovGap Class Cond CovGap Simulated CovGap

ConfexNaive
α = 0.01 0.99 ± 0.00 -6.14 ± 0.33 0.03 ± 0.04 -12.25 ± 6.80
α = 0.05 0.95 ± 0.00 -30.33 ± 0.54 -0.12 ± 0.09 -41.99 ± 4.34
α = 0.1 0.90 ± 0.00 -40.10 ± 0.33 -0.09 ± 0.07 -39.82 ± 6.80

ConfexTree, α = 0.01
bw = 0.05 1.00 ± 0.00 0.98 ± 0.01 1.00 ± 0.00 0.84 ± 0.09
bw = 0.1 1.00 ± 0.00 -1.90 ± 0.09 0.57 ± 0.02 -21.32 ± 26.00
bw = 0.15 1.00 ± 0.00 -1.93 ± 0.10 0.56 ± 0.02 -29.74 ± 31.74
bw = 0.2 0.99 ± 0.00 -3.46 ± 0.06 0.35 ± 0.02 -64.01 ± 30.10

ConfexTree, α = 0.05
bw = 0.05 0.99 ± 0.00 -0.74 ± 0.11 3.59 ± 0.06 -72.90 ± 35.28
bw = 0.1 0.97 ± 0.00 -12.33 ± 0.29 1.52 ± 0.09 -48.29 ± 20.97
bw = 0.15 0.97 ± 0.00 -14.46 ± 0.30 1.20 ± 0.09 -43.87 ± 12.96
bw = 0.2 0.96 ± 0.00 -19.58 ± 0.17 0.53 ± 0.07 -46.87 ± 6.75

ConfexTree, α = 0.1
bw = 0.05 0.96 ± 0.00 -2.32 ± 0.17 5.78 ± 0.10 -50.85 ± 46.46
bw = 0.1 0.93 ± 0.00 -16.78 ± 0.11 2.27 ± 0.09 -50.79 ± 11.62
bw = 0.15 0.92 ± 0.00 -20.68 ± 0.12 1.64 ± 0.10 -48.78 ± 9.57
bw = 0.2 0.91 ± 0.00 -25.84 ± 0.14 0.96 ± 0.09 -41.02 ± 18.42

Table 19: Conformal evaluation results, GiveMeSomeCredit, RandomForest
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D.6 ADULTINCOME

This dataset Becker & Kohavi (1996), obtained through Kaggle8, predicts whether an individual’s
income exceeds $50,000. We processed the following features: numeric features (Age, Capital Gain,
Capital Loss, Hours per week) scaled to (0, 1), ordinal features (education), and categorical features
(Workclass, Occupation, Race, Relationship, Gender, Marital status) using one-hot encoding. In
CONFEXTree, to avoid splitting over many categorical feature combinations, we consider the first
(Workclass) as a feature to split by and do not split the rest.

For this dataset we find that CONFEX-Tree methods generally obtain worse plausibility than com-
peting methods (although we have comparable sensitivity). This could be attributed to an insufficient
kernel: further tuning to obtain a better kernel (bandwidth, features contributing to the kernel) etc.
to better define locality could help with this.

D.6.1 PLOTS

(a) Distance (b) Plausibility (c) Coverage Gap

Figure 15: Effect of coverage rate and kernel bandwidth on metrics for CONFEX-Tree on the Adult-
Income dataset, MLP. CONFEX-Naive is represented by dashed horizontal lines.

(a) Distance (b) Plausibility (c) Coverage Gap

Figure 16: Effect of coverage rate and kernel bandwidth on metrics for CONFEX-Tree on the Adult-
Income dataset, RandomForest. CONFEX-Naive is represented by dashed horizontal lines.

8https://www.kaggle.com/datasets/wenruliu/adult-income-dataset
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D.6.2 MODEL EVALUATION RESULTS

Repeat Accuracy (%) Precision (%) F1 Score (%)

repeat0,MLP 85.41 85.05 85.17
repeat1,MLP 85.04 84.70 84.83
repeat2,MLP 84.89 84.32 84.40
repeat3,MLP 85.03 84.58 84.71
repeat4,MLP 84.96 84.35 84.29
repeat0,RF 85.73 85.20 85.14
repeat1,RF 85.32 84.76 84.72
repeat2,RF 85.70 85.18 85.06
repeat3,RF 85.51 84.96 84.87
repeat4,RF 85.48 84.93 84.89

Table 20: Model evaluation results, AdultIncome.
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D.6.3 CFX GENERATION RESULTS

Generator Distance Plausibility Implausibility Sensitivity (10−1) Stability

MLP
MinDist 1.16 ± 0.07 -0.13 ± 0.05 1.97 ± 0.04 0.11 ± 0.11 0.33 ± 0.02
Wachter 0.39 ± 0.05 0.36 ± 0.02 1.87 ± 0.01 0.14 ± 0.01 0.14 ± 0.02
Greedy 0.95 ± 0.08 0.02 ± 0.10 2.06 ± 0.04 24190.61 ± 48381.15 0.86 ± 0.03
ConfexNaive
α = 0.01 1.24 ± 0.07 -0.13 ± 0.04 1.97 ± 0.04 0.05 ± 0.01 0.44 ± 0.04
α = 0.05 1.17 ± 0.07 -0.14 ± 0.05 1.97 ± 0.04 0.05 ± 0.01 0.37 ± 0.02
α = 0.1 1.17 ± 0.06 -0.14 ± 0.04 1.97 ± 0.04 0.08 ± 0.05 0.35 ± 0.02

ECCCo
α = 0.01 0.57 ± 0.01 0.13 ± 0.01 1.88 ± 0.01 0.05 ± 0.00 0.37 ± 0.01
α = 0.01 0.73 ± 0.11 -0.05 ± 0.07 1.87 ± 0.06 0.05 ± 0.00 0.63 ± 0.14
α = 0.05 0.57 ± 0.00 0.12 ± 0.02 1.88 ± 0.01 0.05 ± 0.00 0.37 ± 0.02
α = 0.05 0.72 ± 0.11 -0.04 ± 0.06 1.87 ± 0.06 0.05 ± 0.01 0.61 ± 0.15
α = 0.1 0.56 ± 0.01 0.12 ± 0.02 1.88 ± 0.01 0.05 ± 0.00 0.37 ± 0.02
α = 0.1 0.72 ± 0.11 -0.04 ± 0.06 1.87 ± 0.06 0.05 ± 0.01 0.61 ± 0.15

ConfexTree, α = 0.01
bw = 0.05 1.78 ± 0.19 -0.02 ± 0.14 1.80 ± 0.04 0.05 ± 0.02 0.29 ± 0.02
bw = 0.1 1.22 ± 0.03 -0.02 ± 0.05 1.84 ± 0.04 0.06 ± 0.01 0.34 ± 0.02
bw = 0.15 1.06 ± 0.08 -0.04 ± 0.04 1.86 ± 0.05 0.05 ± 0.01 0.36 ± 0.04
bw = 0.2 1.14 ± 0.05 -0.11 ± 0.05 1.93 ± 0.05 0.05 ± 0.01 0.36 ± 0.03
bw = 0.25 1.10 ± 0.05 -0.11 ± 0.06 1.93 ± 0.04 0.05 ± 0.01 0.36 ± 0.03
bw = 0.3 1.09 ± 0.05 -0.12 ± 0.06 1.94 ± 0.04 0.05 ± 0.01 0.35 ± 0.03
bw = 0.35 1.08 ± 0.05 -0.12 ± 0.06 1.93 ± 0.04 0.05 ± 0.01 0.37 ± 0.03
bw = 0.4 1.27 ± 0.06 -0.13 ± 0.04 1.97 ± 0.04 0.05 ± 0.01 0.46 ± 0.04
bw = 0.45 1.26 ± 0.07 -0.13 ± 0.04 1.97 ± 0.04 0.04 ± 0.01 0.46 ± 0.04

ConfexTree, α = 0.05
bw = 0.05 1.15 ± 0.05 0.06 ± 0.05 1.87 ± 0.03 0.08 ± 0.03 0.28 ± 0.02
bw = 0.1 1.02 ± 0.05 -0.00 ± 0.05 1.91 ± 0.05 0.07 ± 0.02 0.30 ± 0.02
bw = 0.15 1.06 ± 0.04 -0.05 ± 0.05 1.93 ± 0.04 0.07 ± 0.01 0.33 ± 0.03
bw = 0.2 1.10 ± 0.03 -0.11 ± 0.08 1.95 ± 0.04 0.06 ± 0.02 0.35 ± 0.02
bw = 0.25 1.08 ± 0.04 -0.08 ± 0.08 1.95 ± 0.03 0.07 ± 0.02 0.34 ± 0.02
bw = 0.3 1.10 ± 0.04 -0.09 ± 0.07 1.95 ± 0.03 0.07 ± 0.02 0.35 ± 0.02
bw = 0.35 1.09 ± 0.04 -0.09 ± 0.08 1.94 ± 0.03 0.06 ± 0.03 0.35 ± 0.02
bw = 0.4 1.18 ± 0.07 -0.14 ± 0.05 1.97 ± 0.04 0.05 ± 0.01 0.37 ± 0.02
bw = 0.45 1.18 ± 0.07 -0.14 ± 0.05 1.97 ± 0.04 0.05 ± 0.01 0.37 ± 0.02

ConfexTree, α = 0.1
bw = 0.05 1.02 ± 0.07 0.01 ± 0.04 1.91 ± 0.04 0.08 ± 0.01 0.27 ± 0.02
bw = 0.1 1.04 ± 0.06 -0.04 ± 0.07 1.93 ± 0.04 0.08 ± 0.02 0.31 ± 0.02
bw = 0.15 1.05 ± 0.04 -0.06 ± 0.06 1.93 ± 0.04 0.08 ± 0.02 0.32 ± 0.02
bw = 0.2 1.04 ± 0.04 -0.09 ± 0.06 1.92 ± 0.03 0.07 ± 0.02 0.33 ± 0.02
bw = 0.25 1.08 ± 0.06 -0.08 ± 0.07 1.96 ± 0.03 0.07 ± 0.02 0.34 ± 0.02
bw = 0.3 1.11 ± 0.04 -0.10 ± 0.06 1.96 ± 0.03 0.07 ± 0.03 0.34 ± 0.02
bw = 0.35 1.03 ± 0.04 -0.09 ± 0.07 1.93 ± 0.04 0.07 ± 0.03 0.34 ± 0.02
bw = 0.4 1.17 ± 0.07 -0.13 ± 0.05 1.97 ± 0.04 0.08 ± 0.07 0.35 ± 0.02
bw = 0.45 1.17 ± 0.07 -0.13 ± 0.06 1.97 ± 0.04 0.08 ± 0.07 0.35 ± 0.02

FACE 1.36 ± 0.16 0.34 ± 0.12 1.77 ± 0.03 0.06 ± 0.02 0.32 ± 0.01
C-CHVAE 6.39 ± 0.55 0.33 ± 0.15 1.18 ± 0.18 0.04 ± 0.01 0.46 ± 0.08

Table 21: CFX generation results, AdultIncome, MLP. Validity 80% for Wachter, 84-85% for all
ECCCo methods, 89% for Greedy, 54% for C-CHVAE.
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Generator Distance Plausibility Implausibility Sensitivity (10−1) Stability

RandomForest
ConfexNaive
α = 0.01 1.39 ± 0.19 -0.16 ± 0.10 1.89 ± 0.07 0.14 ± 0.11 0.29 ± 0.05
α = 0.05 1.03 ± 0.08 0.04 ± 0.11 1.91 ± 0.05 0.12 ± 0.05 0.26 ± 0.04
α = 0.1 0.97 ± 0.09 0.00 ± 0.10 1.91 ± 0.04 0.12 ± 0.02 0.26 ± 0.03

ConfexTree, α = 0.01
bw = 0.05 1.56 ± 0.21 0.08 ± 0.15 1.80 ± 0.04 0.06 ± 0.03 0.18 ± 0.02
bw = 0.1 1.41 ± 0.17 -0.06 ± 0.14 1.79 ± 0.05 0.11 ± 0.03 0.24 ± 0.04
bw = 0.15 1.29 ± 0.20 -0.06 ± 0.13 1.82 ± 0.06 0.09 ± 0.03 0.24 ± 0.04
bw = 0.2 1.34 ± 0.18 -0.16 ± 0.10 1.89 ± 0.07 0.12 ± 0.03 0.25 ± 0.04
bw = 0.25 1.28 ± 0.16 -0.07 ± 0.08 1.91 ± 0.07 0.12 ± 0.05 0.26 ± 0.04
bw = 0.3 1.24 ± 0.18 -0.02 ± 0.04 1.93 ± 0.06 0.10 ± 0.05 0.24 ± 0.03
bw = 0.35 1.28 ± 0.19 -0.04 ± 0.10 1.93 ± 0.06 0.14 ± 0.10 0.25 ± 0.04
bw = 0.4 1.44 ± 0.18 -0.15 ± 0.09 1.90 ± 0.07 0.08 ± 0.03 0.29 ± 0.06
bw = 0.45 1.45 ± 0.20 -0.17 ± 0.10 1.90 ± 0.07 0.09 ± 0.03 0.29 ± 0.06

ConfexTree, α = 0.05
bw = 0.05 1.00 ± 0.06 0.13 ± 0.04 1.86 ± 0.05 0.12 ± 0.04 0.19 ± 0.02
bw = 0.1 0.92 ± 0.08 0.08 ± 0.07 1.89 ± 0.05 0.12 ± 0.04 0.22 ± 0.02
bw = 0.15 0.91 ± 0.05 0.08 ± 0.09 1.90 ± 0.04 0.15 ± 0.05 0.22 ± 0.02
bw = 0.2 0.94 ± 0.04 -0.02 ± 0.05 1.93 ± 0.04 0.14 ± 0.04 0.24 ± 0.03
bw = 0.25 0.97 ± 0.03 -0.04 ± 0.03 1.94 ± 0.03 0.09 ± 0.01 0.24 ± 0.03
bw = 0.3 1.00 ± 0.04 -0.02 ± 0.07 1.95 ± 0.03 0.11 ± 0.04 0.24 ± 0.02
bw = 0.35 1.01 ± 0.06 -0.05 ± 0.03 1.95 ± 0.03 0.11 ± 0.03 0.24 ± 0.02
bw = 0.4 1.05 ± 0.08 0.03 ± 0.04 1.91 ± 0.04 0.13 ± 0.04 0.26 ± 0.04
bw = 0.45 1.03 ± 0.07 0.04 ± 0.09 1.91 ± 0.04 0.15 ± 0.06 0.26 ± 0.04

ConfexTree, α = 0.1
bw = 0.05 0.82 ± 0.07 0.18 ± 0.05 1.88 ± 0.04 0.20 ± 0.06 0.20 ± 0.03
bw = 0.1 0.86 ± 0.02 0.05 ± 0.05 1.90 ± 0.03 0.18 ± 0.10 0.22 ± 0.02
bw = 0.15 0.90 ± 0.03 0.04 ± 0.07 1.92 ± 0.04 0.19 ± 0.13 0.24 ± 0.02
bw = 0.2 0.89 ± 0.06 0.10 ± 0.10 1.88 ± 0.04 0.15 ± 0.08 0.25 ± 0.02
bw = 0.25 0.87 ± 0.05 0.13 ± 0.07 1.87 ± 0.03 0.15 ± 0.05 0.25 ± 0.03
bw = 0.3 0.90 ± 0.06 0.12 ± 0.13 1.89 ± 0.03 0.17 ± 0.05 0.25 ± 0.02
bw = 0.35 0.91 ± 0.06 0.12 ± 0.08 1.88 ± 0.03 0.18 ± 0.10 0.25 ± 0.02
bw = 0.4 0.95 ± 0.08 0.05 ± 0.07 1.91 ± 0.04 1.92 ± 3.55 0.25 ± 0.02
bw = 0.45 0.97 ± 0.09 0.02 ± 0.08 1.92 ± 0.04 2.62 ± 4.87 0.25 ± 0.03

FeatureTweak 0.24 ± 0.10 0.30 ± 0.11 1.84 ± 0.04 0.06 ± 0.01 0.13 ± 0.01
FOCUS 0.58 ± 0.34 0.40 ± 0.06 1.84 ± 0.04 0.29 ± 0.14 0.17 ± 0.01
FACE 1.50 ± 0.07 0.39 ± 0.07 1.74 ± 0.03 0.06 ± 0.02 0.27 ± 0.01

Table 22: CFX generation results, AdultIncome, RandomForest. Methods with nan values had 100%
failures. Validity 61% for FeatureTweak.
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D.6.4 CONFORMAL EVALUATION RESULTS

Generator Marginal CovGap Binning CovGap Class Cond CovGap Simulated CovGap

MLP
ConfexNaive
α = 0.01 0.99 ± 0.00 -0.88 ± 0.08 -0.01 ± 0.05 -2.81 ± 0.88
α = 0.05 0.96 ± 0.00 -2.64 ± 0.19 0.33 ± 0.09 -6.63 ± 0.94
α = 0.1 0.90 ± 0.00 -4.74 ± 0.78 0.21 ± 0.08 -13.65 ± 2.19

ConfexTree, α = 0.01
bw = 0.05 1.00 ± 0.00 0.10 ± 0.09 0.52 ± 0.06 -14.95 ± 3.34
bw = 0.1 0.99 ± 0.00 -0.36 ± 0.16 0.28 ± 0.09 -2.74 ± 0.97
bw = 0.15 0.99 ± 0.00 -0.32 ± 0.17 0.30 ± 0.09 -2.72 ± 1.11
bw = 0.2 0.99 ± 0.00 -1.03 ± 0.10 -0.08 ± 0.06 -3.46 ± 1.05
bw = 0.25 0.99 ± 0.00 -0.97 ± 0.17 -0.06 ± 0.09 -3.98 ± 1.18
bw = 0.3 0.99 ± 0.00 -1.07 ± 0.15 -0.13 ± 0.08 -4.51 ± 1.16
bw = 0.35 0.99 ± 0.00 -0.93 ± 0.14 -0.04 ± 0.08 -4.18 ± 1.73
bw = 0.4 0.99 ± 0.00 -0.76 ± 0.20 0.07 ± 0.11 -2.26 ± 1.53
bw = 0.45 0.99 ± 0.00 -0.76 ± 0.20 0.07 ± 0.11 -2.26 ± 1.53

ConfexTree, α = 0.05
bw = 0.05 0.98 ± 0.00 0.61 ± 0.18 2.48 ± 0.05 -18.52 ± 5.56
bw = 0.1 0.96 ± 0.00 -1.50 ± 0.16 1.11 ± 0.12 -11.54 ± 2.82
bw = 0.15 0.96 ± 0.00 -1.92 ± 0.14 0.86 ± 0.14 -11.57 ± 2.21
bw = 0.2 0.95 ± 0.00 -2.55 ± 0.37 0.47 ± 0.14 -9.68 ± 1.30
bw = 0.25 0.95 ± 0.00 -2.61 ± 0.31 0.35 ± 0.10 -9.54 ± 1.12
bw = 0.3 0.95 ± 0.00 -2.71 ± 0.30 0.28 ± 0.08 -9.89 ± 1.27
bw = 0.35 0.95 ± 0.00 -2.71 ± 0.37 0.30 ± 0.14 -9.48 ± 1.13
bw = 0.4 0.95 ± 0.01 -2.88 ± 0.27 0.14 ± 0.19 -6.64 ± 0.66
bw = 0.45 0.95 ± 0.01 -2.88 ± 0.27 0.14 ± 0.19 -6.76 ± 0.60

ConfexTree, α = 0.1
bw = 0.05 0.94 ± 0.00 1.33 ± 0.38 4.61 ± 0.06 -16.15 ± 5.52
bw = 0.1 0.93 ± 0.00 -0.44 ± 0.47 3.46 ± 0.05 -12.99 ± 4.44
bw = 0.15 0.93 ± 0.00 -0.91 ± 0.53 3.16 ± 0.11 -12.76 ± 3.92
bw = 0.2 0.92 ± 0.00 -2.51 ± 0.51 1.93 ± 0.17 -13.07 ± 1.83
bw = 0.25 0.92 ± 0.00 -2.57 ± 0.53 1.78 ± 0.13 -13.01 ± 1.16
bw = 0.3 0.92 ± 0.00 -2.68 ± 0.55 1.72 ± 0.12 -12.83 ± 1.34
bw = 0.35 0.92 ± 0.00 -2.81 ± 0.54 1.64 ± 0.12 -12.79 ± 1.44
bw = 0.4 0.90 ± 0.00 -5.01 ± 0.90 0.13 ± 0.17 -15.19 ± 2.17
bw = 0.45 0.90 ± 0.00 -5.01 ± 0.90 0.13 ± 0.17 -15.19 ± 2.20

Table 23: Conformal evaluation results, AdultIncome, MLP
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Generator Marginal CovGap Binning CovGap Class Cond CovGap Simulated CovGap

RandomForest
ConfexNaive
α = 0.01 0.99 ± 0.00 -0.90 ± 0.22 0.01 ± 0.09 -5.70 ± 5.11
α = 0.05 0.96 ± 0.00 -2.81 ± 0.08 0.35 ± 0.12 -5.49 ± 2.52
α = 0.1 0.91 ± 0.00 -5.78 ± 0.58 0.13 ± 0.14 -10.19 ± 0.48

ConfexTree, α = 0.01
bw = 0.05 1.00 ± 0.00 0.20 ± 0.02 0.56 ± 0.01 -5.11 ± 2.96
bw = 0.1 0.99 ± 0.00 -0.43 ± 0.08 0.23 ± 0.03 -2.95 ± 0.14
bw = 0.15 0.99 ± 0.00 -0.45 ± 0.12 0.23 ± 0.05 -2.67 ± 0.17
bw = 0.2 0.99 ± 0.00 -0.80 ± 0.12 0.05 ± 0.04 -3.32 ± 0.27
bw = 0.25 0.99 ± 0.00 -0.78 ± 0.13 0.04 ± 0.03 -3.89 ± 0.55
bw = 0.3 0.99 ± 0.00 -0.87 ± 0.19 -0.00 ± 0.07 -4.68 ± 0.38
bw = 0.35 0.99 ± 0.00 -0.79 ± 0.20 0.04 ± 0.08 -3.76 ± 0.17
bw = 0.4 0.99 ± 0.00 -0.91 ± 0.24 -0.00 ± 0.10 -7.54 ± 4.96
bw = 0.45 0.99 ± 0.00 -0.91 ± 0.24 -0.00 ± 0.10 -7.54 ± 4.96

ConfexTree, α = 0.05
bw = 0.05 0.97 ± 0.01 0.03 ± 0.06 1.84 ± 0.08 -6.43 ± 1.84
bw = 0.1 0.96 ± 0.00 -1.60 ± 0.23 0.88 ± 0.11 -5.54 ± 1.04
bw = 0.15 0.95 ± 0.00 -2.03 ± 0.04 0.58 ± 0.05 -5.39 ± 0.67
bw = 0.2 0.95 ± 0.00 -2.59 ± 0.01 0.44 ± 0.02 -6.10 ± 0.05
bw = 0.25 0.96 ± 0.00 -2.66 ± 0.19 0.38 ± 0.10 -6.74 ± 0.05
bw = 0.3 0.96 ± 0.00 -2.59 ± 0.12 0.43 ± 0.05 -6.17 ± 0.05
bw = 0.35 0.96 ± 0.00 -2.52 ± 0.08 0.47 ± 0.02 -6.79 ± 0.05
bw = 0.4 0.95 ± 0.00 -2.82 ± 0.10 0.31 ± 0.18 -6.25 ± 0.14
bw = 0.45 0.95 ± 0.00 -2.82 ± 0.10 0.31 ± 0.18 -6.24 ± 0.12

ConfexTree, α = 0.1
bw = 0.05 0.93 ± 0.00 -0.11 ± 0.80 2.91 ± 0.35 -4.98 ± 0.44
bw = 0.1 0.91 ± 0.00 -2.48 ± 0.49 1.38 ± 0.18 -4.62 ± 1.45
bw = 0.15 0.91 ± 0.01 -3.14 ± 0.83 1.00 ± 0.34 -4.33 ± 1.62
bw = 0.2 0.91 ± 0.00 -4.33 ± 0.10 0.66 ± 0.05 -4.80 ± 0.47
bw = 0.25 0.91 ± 0.00 -4.50 ± 0.07 0.54 ± 0.16 -5.34 ± 0.81
bw = 0.3 0.91 ± 0.00 -4.67 ± 0.15 0.38 ± 0.20 -5.73 ± 1.22
bw = 0.35 0.91 ± 0.00 -4.88 ± 0.36 0.25 ± 0.33 -5.56 ± 1.45
bw = 0.4 0.91 ± 0.00 -6.14 ± 0.35 0.04 ± 0.06 -10.77 ± 3.43
bw = 0.45 0.91 ± 0.00 -6.14 ± 0.34 0.03 ± 0.05 -10.87 ± 3.20

Table 24: Conformal evaluation results, AdultIncome, RandomForest
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