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Abstract— To tackle the challenge of recognizing similar ship 

encounter scenarios under multi-ship interference coupling and 

dynamic evolution, this paper proposes a classification method 

that combines a Convolutional Auto-Encoder (CAE) and a Long 

Short-Term Memory (LSTM) recurrent neural network model. 

To extract many genuine ship encounter scenarios from historical 

AIS data for further categorization, first, a method for extracting 

ship encounter scenarios taking spatiotemporal proximity 

restrictions is devised. Then, by setting a time window and 

rasterizing the scenarios, a CAE-based model is constructed to 

characterize the spatial interference of ships in the scenarios. 

Further, an LSTM network is used to learn temporal evolution 

features, achieving a low-dimensional spatiotemporal vector 

representation of ship encounter scenarios. Finally, hierarchical 

clustering is applied to classify different ship encounter scenarios 

based on these low-dimensional spatiotemporal vectors. The 

proposed method is validated through extensive experiments using 

data from Ningbo-Zhoushan Port, and the results show that this 

method can effectively extract real ship encounter scenarios and 

accurately identify similar scenarios. This research provides 

robust support for a deep understanding of ship encounter 

scenarios and the mining of similar ship behavior patterns. 

Keywords—ship encounter scenarios, scenarios classification, 

CAE, LSTM 

I. INTRODUCTION 

In recent years, the continuous growth in shipping volume 
has significantly increased maritime traffic density, leading to a 
rise in ship collision accidents [1]. Research shows that these 
mishaps are mostly caused by human factors. [2]. To mitigate 
collision incidents caused by human error, researchers have 
developed numerous navigation collision avoidance algorithms 
to enhance maritime safety[3]. Historical ship encounter 
scenarios contain rich avoidance processes and strategies. 
Extracting these scenarios and analyzing collision avoidance 
behavior patterns in similar situations allows this implicit 
knowledge to be integrated into the design of collision 
avoidance algorithms. This approach enhances the practicality 
of these algorithms and improves avoidance safety in similar 
scenarios. Therefore, extracting real ship encounter scenarios 
and effectively classifying similar scenarios hold significant 
potential for advancing collision avoidance algorithm design. 

Ship encounter scenarios essentially involve interactions 
between multiple vessels, which can be explained through their 

trajectories. Because the Automatic Identification System (AIS) 
is widely used on ships, scholars can collect large quantities of 
high-quality vessel trajectory data at a low cost, providing a rich 
and reliable data source for extracting ship encounter scenarios. 
Related research on encounter scenario extraction using AIS 
data has been carried out by several academics. Through the use 
of AIS data, Ma Jie et al. [4,5] were able to successfully extract 
ship encounter scenarios by analyzing the spatiotemporal 
correlations during ship interactions. Similarly, Based on the 
spatiotemporal proximity relationships between ships, Wang et 
al.[6] identified ship encounter possibilities from AIS data, 
evaluated the significance of each event, and sampled the data 
to create test scenarios for collision avoidance algorithms. 

Ship encounter scenarios are typical spatiotemporal sequence 
data, often exhibiting significant temporal evolution 
characteristics and complex multi-vessel interaction couplings. 
This complexity makes classifying ship encounter scenarios 
challenging. Current research mainly focuses on clustering 
analysis of individual ship trajectories. To identify frequent 
paths and discover abnormal trajectories, Li et al. [7] for instance, 
suggested a multi-step clustering methodology that combines 
principal component analysis, dynamic time warping, and an 
enhanced trajectory clustering center method. Ship itineraries 
were inferred from AIS data by Zhang et al. [8] using data-
driven techniques such as ant colony optimization and 
geographic clustering of applications with noise based on 
density (DBSCAN). Zhang et al [9] classified ship trajectories 
using K-Means and DBSCAN clustering algorithms, then 
identified potential collision scenarios by detecting illegal 
evasive maneuvers through relative bearing angles and 
quantified the collision risk index when evasive actions were 
taken. However, these methods primarily rely on the similarity 
calculation of individual ship trajectories. Although they 
perform well in trajectory similarity analysis and classification, 
encounter scenarios involve the interactions of multiple ships, 
featuring significant temporal evolution characteristics and 
complex multi-ship interference effects. As a result, these 
methods have limitations in representing and measuring the 
spatio-temporal interference features in encounter scenarios and 
face challenges when directly applied to encounter scenario 
classification. 
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In recent years, deep learning has shown great potential in 
handling complex spatio-temporal data, and some studies have 
begun exploring its potential in trajectory similarity computation. 
These works demonstrate how deep learning techniques can 
more effectively capture the features of ship trajectories. 
Compared to traditional methods, deep learning models can 
automatically learn useful features from large amounts of data 
without relying on manual feature extraction, offering certain 
advantages [10]. Liang et al [11] proposed an unsupervised 
learning method based on a convolutional autoencoder (CAE), 
which maps trajectories into two-dimensional matrices to 
generate trajectory images and automatically extracts low-
dimensional features via the CAE to compute similarity. Chen 
et al [12] introduced a method based on convolutional neural 
networks (CNN) to identify movement patterns in emerging 
trajectories. In this approach, a mobility-based trajectory 
structure is introduced as input to the identification model, and 
evaluations using real maritime trajectory datasets show the 
superiority of this method. Kontopoulos et al [13] proposed a 
novel method that integrates research in computer vision and 
trajectory classification, automatically extracting meaningful 
information from trajectory data and identifying movement 
patterns without the need for expert input. 

Overall, unsupervised and semi-supervised methods based 
on deep learning are gradually gaining attention in the field of 
maritime situational awareness. These methods share a common 
feature: they reduce reliance on manual intervention through 
automatic feature extraction, demonstrating strong adaptability, 
especially when handling large amounts of unlabeled data. It is 
recommended to develop an unsupervised learning method for 
representing the complex temporal evolution characteristics of 
ship encounter scenarios to enable effective classification. 
Based on the above analysis, this study proposes a ship 
encounter scenario classification method that combines a 
Convolutional Autoencoder (CAE) with a Long Short-Term 
Memory (LSTM) network. This approach comprehensively 
considers both the spatial interference coupling features among 
multiple ships and the temporal evolution patterns within the 
encounter scenario, enabling effective classification of ship 
encounter scenarios. 

II. METHODOLOGY 

This paper focuses on two main tasks: the extraction of real 
ship encounter scenarios based on AIS data, and the 
classification of these scenarios using a combination of CAE and 
LSTM models. As seen in Figure. 1., the research framework 
consists of three steps: preprocessing AIS data, ship encounter 
scenario extraction, and clustering ship encounter scenarios. 

Step 1: Data Preprocessing. Original AIS data is 
preprocessed to retain key attributes such as timestamp, 
Maritime Mobile Service Identity (MMSI), ship length, 
longitude, latitude, speed over ground (SOG), and course over 
ground (COG). These attributes are essential for calculating the 
subsequent spatiotemporal relationships of the vessels. 

Step 2: Encounter Scenario Extraction. Based on the 
spatiotemporal proximity analysis of ships, ship encounter 
scenarios are extracted from historical AIS data. This extraction 
provides numerous encounter scenarios that reflect the real 
navigational behaviors of ships for subsequent classification. 

Step 3: Time Slicing and Gridding. Time slicing and 
gridding are applied to the scenarios to characterize their 
spatiotemporal attributes. 

Step 4: Feature Representation. CAE and LSTM represent 
the spatial and temporal features of the encounter scenarios with 
feature vectors. 

Step 5: Clustering of Encounter Scenarios. Hierarchical 
clustering is applied to the feature vectors of all scenarios. To 
achieve the classification of encounter scenarios, the ideal 
number of clusters is found using the Silhouette Coefficient (SC) 
index. 

In summary, based on the most advanced research findings, 
our CAE-based ship encounter scenario classification method 
offers the following innovations. We propose generating 
information trajectory images by remapping the ship trajectories 
involved in encounter scenarios into two-dimensional matrices: 

1. The similarity between different encounter scenarios is 
measured by assessing the structural similarity between the 
corresponding information trajectory images. 

2. A convolutional autoencoder neural network is proposed 
to learn the low-dimensional representation of these images in 
an unsupervised manner. The learned representation can 
effectively capture the characteristics of ship encounter 
scenarios. 

 

Fig. 1. Overview of the proposed approach. 

A. Data Preprocessing 

The quality of AIS data significantly impacts the accuracy of 
the extracted encounter scenarios. Due to various factors, AIS 
data may contain inconsistencies with the actual navigational 



state of the ships. Therefore, preprocessing is necessary before 
extracting encounter scenarios[14]. Main preprocessing 
operations include noise filtering, anomaly removal, data 
interpolation, and matching of static data information[15]. 

B. AIS Data-Based Encounter Scenarios Extracted 

Spatio-temporal relationships between ships are 
fundamental for extracting encounter scenarios. In this work, 
ship encounter scenarios are described as a series of ship pairs, 
that within a specific time sequence, satisfy specific 
spatiotemporal proximity conditions. Figure 2. shows a 
graphical description of ship encounter scenarios. The timeline 
is shown on the x-axis in Figure 2, and the ship identification 
numbers that are part of the encounter scenarios are shown on 
the y-axis. The lines with arrows represent the navigation period 
of the Own Ship (OS) in the study area, while the lines with 
arrows in front of each Target Ship (TS) indicate the periods 
when the TS meets the preset spatiotemporal proximity 
conditions with the OS. 

 

Fig. 2. Overview of the proposed approach. 

Additional evolution analysis of the Distance at the Closest 
Point of Approach (DCPA) and the Time to the Closest Point of 
Approach (TCPA) is necessary to precisely define 
spatiotemporal proximity relationships between ships at each 
time[16]. By analyzing the preprocessed AIS data, the spatio-
temporal relationships between ships can be extracted, allowing 
the identification of ship encounters. Specifically, when two 
ships remain in the study area for a period exceeding the set time 
threshold, the minimum distance between them is calculated. 
Further analysis will be done on their relative distance, DCPA, 
and TCPA evolution patterns if this closest passing distance is 
less than the distance criterion. A ship pair will be deemed to 
meet the spatiotemporal proximity constraints that may result in 
a collision if their relative distance is decreasing and stays within 
the early-warning distance, and both DCPA and TCPA values 
stay below a specific threshold before approaching the closest 
passing distance. Under such circumstances, the relevant data 
will be saved and the segments of two ships that satisfy these 
spatiotemporal proximity constraints will be retrieved. The 
beginning and ending times of the extracted segments, as well 
as static and dynamic information on each ship (such as MMSI, 
length, width, type, and so on) at each timestamp over this period, 
are all included in this data. Figure. 3. provides a graphical 
illustration of DCPA and TCPA, with the calculation formulas 
provided below. 
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where 
ijtD represents the distance between ship i and ship j at 

time t. 
ijtv  represents the relative speed between ship i and ship 

j at time t. cos( )ijt  indicates the angle formed by the cosine of 

the relative velocity and the line joining the two ships. 

 

Fig. 3. DCPA and TCPA interpretation in graphics. 

C. Encounter Scenario time slice 

Ship encounter scenarios, as spatiotemporal sequence data, 
involve mutual interference between ships that varies over time. 
Therefore, classifying encounter scenarios requires attention to 
both spatial interference characteristics and temporal evolution 
patterns of the ships. Time-slicing the scenarios and gridding 
each slice is the first step in the process of efficiently extracting 
the spatial and temporal features of these scenarios. This maps 
the temporal evolution of spatial interference characteristics into 
multi-time-window grids. Compared with the original trajectory 
image pixels, raster images contain richer information and are 
more conducive to CAE to characterize the interaction of ships 
in the encounter scenario. 

 

Fig. 4. Raster map generation and scene time slicing. 

Thus, this paper projects the original ship trajectory into a 
two-dimensional matrix to generate a trajectory raster image 



based on the time sequence of the encounter scenarios, 
maintaining the original spatiotemporal characteristics. To 
balance the information richness of encounter scene slices and 
the total number of slices, the time window duration is set to 3 
minutes, and the time window step to 1 minute. The particular 
procedure is depicted in Figure. 4. 

D. Feature Representation of Encounter Scenarios 

To fully representant spatial interaction features between 
ships from multi-time window raster images and to learn the 
contextual relationships between feature sequences, as well as to 
uncover the temporal evolution patterns of the scenarios, we 
employ a multi-layer CAE neural network combined with 
LSTM for unsupervised learning and feature representation. The 
CAE, with convolutional and pooling layers, learns to identify 
local spatial interactions and patterns within each raster 
image[17]. Once spatial features are obtained, they are fed into 
the LSTM model, which captures the temporal evolution of 
these features over multiple time windows. The combination of 
CAE and LSTM enables a comprehensive representation of both 
the spatial interactions between ships and their dynamic changes 
over time. 

This study employs a CAE-based autoencoder architecture. 
Compared to traditional autoencoders, CAE incorporates 
convolutional and pooling layers, allowing for better extraction 
of local features related to ship spatial interference in the scene 
grid maps. As shown in Figure. 5, the CAE model consists of 
three convolutional layers, three max-pooling layers, and fully 
connected layers. The encoder layer transforms input scene grid 
maps into low-dimensional feature vectors, thereby representing 
the spatial features of encounter scenarios. The decoder layer 
uses ReLU as the activation function to effectively reconstruct 
the low-dimensional feature vectors into scene grid maps. 
Additionally, to enhance the feature representation capability 
CAE, this study introduces a loss function sensitive to the 
structure of the images, specifically the structural similarity 
(SSIM) index, to ensure the accuracy of the extracted features. 
To further elucidate the working mechanism of the CAE model, 
the operations of convolutional and fully connected layers are 
described in detail as follows:  
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where l represents the layer number, ⊙ denotes the convolution 

operation,𝑓𝑘
𝑙 represents the convolution kernel, 𝑥𝑘

𝑙−1 represents 

the feature map,𝑏𝑘
𝑙  is the bias term, and Y is the feature vector 

with a final output dimension L. The loss function, through 

training the model, ensures that the reconstruction �̃� of the 

decoder output has minimal error relative to the original input

x . The following is the definition of the loss function SSIM: 
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Fig. 5. The architecture of convolutional autoencoder. 

LSTM is widely used for studying persistent features in time 
series data and can effectively learn dependencies between time 
series[18]. Therefore, LSTM is chosen to represent temporal 
feature evolution. The LSTM primarily consists of three gating 
units: the forget gate, the input gate, and the output gate, as 
shown in Figure. 6. The forget gate controls the transmission or 
forgetting of information. The process is described by Equation 
(7): 

 
1( [ , ] )t f t t ff W h x b −=  +  () 

where W represents weight, b represents bias, [ℎ𝑡−1, 𝑥𝑡] 
represents a vector consisting of the hidden layer output ℎ𝑡−1 of 
the previous LSTM module, and the input𝑥𝑡  of the current 

module,  （ ） represents the sigmoid function. 

 

Fig. 6. LSTM unit structure diagram. 

E.  Clustering of Encounter Scenarios 

Feature vectors can eventually describe the intricate spatial 
relationships and temporal evolution of ship encounter events 
through the aforementioned method. By calculating the distance 
between each related feature vector, the similarity between ship 
encounter scenarios is determined. Once the distances are 
obtained, clustering algorithms classify the scenarios, and the 
results are evaluated using metrics to obtain the final 
classification outcome. Hierarchical clustering, simple and 
widely used, can reflect the step-by-step partitioning process of 
each object through a hierarchical clustering tree. 



[19,20]Therefore, hierarchical clustering is chosen as the 
clustering algorithm for this study's encounter scenarios. 

In the process of hierarchical clustering, it is challenging to 
directly select the best clustering result Therefore, an indicator 
is needed to select the appropriate number of clusters. In this 
paper, the value of k is adaptively determined using the 
silhouette coefficient. SC is defined by the mean distance from 
any point in the cluster to other points in the cluster after 
classification and the mean distance from any point to all points 
in the adjacent clusters. The better the categorization effect, the 
higher the SC value. The formula (8) displays the SC calculating 
procedure. 
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The average distance between scenario i and other scenes in the 

same cluster is CTb(i), whereas the minimal average distance 

between scenario i and other clusters is CTa(i). The silhouette 

coefficient ranges from -1 to 1, with higher values indicating 

better clustering performance. 

 

III.  CASE STUDY 

A. Data collection and processing 

This research uses data from November 1, 2018, to 
November 30, 2018, for the outside waters of Ningbo-Zhoushan 
Port. As shown in Fig.7, the targeted area is situated between 
latitudes 29◦30N-29◦49 N and longitudes 122◦20E-122◦60 E. To 
guarantee the precision of the ship encounter scenario analysis, 
specific mission vessel data, including tugboats, fishing boats, 
and anchored ships, were removed from the data. Subsequently, 
the residual data underwent data preprocessing procedures in 
preparation for more experiments. It is evident from the 
trajectory distribution that there are a lot of ship interactions in 
the research area. 

 

Fig. 7. The location of the study area. 

B. Analysis and validation of scenario extraction results 

Three sample ship encounter scenarios are shown in Figure 
8 to confirm the retrieved ship encounter scenarios. Four 
graphics are used to explain each scenario: the first graph shows 
the encounter process from start to finish using printed 
trajectories. The end state of the interaction is indicated by the 
ship icon in this subgraph. The progression of relative distance, 
DCPA, and TCPA between the OS and other TSs during the 
encounter process is shown in the remaining three graphs (a), 
(b), and (c). In these cases, the DCPA stays tiny for a while, the 
TCPA changes from positive to negative, and the relative 

distance first drops to a very low value before gradually 
increasing. The retrieved scenarios are validated by the 
evolutionary patterns that align with real-world encounter 
experiences. The aforementioned evolution trends of relative 
distance, DCPA, and TCPA are all consistent across all 
extracted situations. 

 

Fig. 8.  Encounter situations involving varying numbers of ships and the 

development of their features. 

Due to computational cost constraints, experimenting with 
all ship encounter scenarios is difficult. Therefore, selecting 
common encounter scenarios in maritime navigation as 
experimental data is necessary. As seen in Figure 9, the extracted 
encounter scenarios were first categorized and statistically 
examined according to the number of ships engaged. According 
to the classification results, two-ship encounters make up around 
half of all extracted scenarios, making them the most frequent. 
As ships involved increase, the number of scenarios gradually 
decreases, with a substantial decline occurring when the number 
of ships exceeds five.  

 

Fig. 9. Scenario classification outcomes depending on the number of ships. 

To ensure the experimental data is representative while also 
saving computational costs, two-ship and three-ship encounter 
scenarios are chosen as the experimental dataset. This selection 
includes common two-ship encounters and more complex multi-
ship encounters, which occur more frequently in actual maritime 
navigation. The durations of the two types of encounter 
scenarios in the experimental dataset were then statistically 
analyzed, and Figure. 10. displays the results. The analysis 
revealed that the proportions of two-ship and three-ship 



scenarios lasting more than 10 minutes were 84.6% and 90.1%, 
respectively. This data segment is representative of all data 
exceeding 10 minutes, providing an important reference value 
for experimental analysis. Based on maritime navigation 
experience, scenarios lasting 10-20 minutes were chosen as 
experimental data. This selection ensures the significance of 
ship interactions while preventing the dataset from becoming 
overly large. Therefore, two-ship and three-ship encounter 
scenarios lasting 10-20 minutes were chosen as the final 
experimental dataset. 

 

Fig. 10. Duration statistics for encounter scenarios. 

C. Experimental Software Environment and Model Training 

For the experimental software environment, Python was 
chosen, using the PyTorch deep learning framework to train the 
model. The hyperparameter settings are shown in Table Ⅰ. In 
Table Ⅰ, Adam is the optimizer for the adaptive moment 
estimation method; Batch size represents the number of samples 
trained in each batch; Epoch refers to the number of training 
epochs; and Num Hidden Unit is the hidden layer dimensions of 
the LSTM. 

TABLE I.  HYPERPARAMETER SETTINGS 

HYPERPARAMETER Parameter Value 

Optimizer Adam 

CAE hidden layer 

dimensions 
8 

Batch size 128 

Learning Rate 0.001 

Epoch 760 

Num Hidden Unit 3 

A total of 500 scenarios were selected from the experimental 
dataset for model training. First, the encounter scenarios were 
time-sliced, resulting in 7,366 and 7,261 scenario grid images, 
respectively. These encounter scenarios were then input into the 
CAE to extract spatial features. After 760 training epochs, the 
change in the loss function values with the number of training 
epochs is shown in Figure. 11. The training error converges to a 
very small value, indicating that the trained CAE can reconstruct 
the input data from the latent layer features. To demonstrate that 
the trained CAE can reconstruct the original encounter scenarios, 
the original scenario images and their reconstructed versions are 
shown in Figure. 12. The first row displays the original ship 

encounter scenarios, while the second row shows the 
reconstructed images. The structural similarity between the 
original and reconstructed scenarios demonstrates that the CAE 
model excels in capturing low-dimensional representations and 
reconstructing high-quality images from these features. Finally, 
the feature matrix generated by the CAE is input into the LSTM 
model to learn the spatial feature evolution of the scenarios over 
time, outputting feature vectors to represent them. 

 

Fig. 11. Loss during the training of CAE. 

 

Fig. 12. Original and reconstructed encounter scenario images of CAE 

D. Clustering and Evaluation 

The ship encounter scenarios were represented by feature 
vectors using the CAE-LSTM approach. Subsequently, 
hierarchical clustering was applied to these feature vectors to 
classify the ship encounter scenarios and obtain clustering 
results. SC was used to determine the ideal number of clusters 
and evaluate the effectiveness of clustering. Cluster counts 
varied from two to fifteen., and the SC values varied accordingly, 
as shown in Figure. 13.  

 

Fig. 13. Variation of silhouette coefficient values with the number of clusters 



It demonstrates that both datasets obtained the highest 
silhouette coefficient values when there are two clusters. 
However, avoiding too few clusters is required to ensure a 
detailed separation of the microscopic aspects of ship 
interactions in various encounter scenarios. Therefore, 5 and 4 
were chosen as the final number of clusters for the two datasets, 
respectively. These values represent the inflection points of the 
silhouette coefficient for both datasets. Beyond these points, as 
the number of clusters increases, the silhouette coefficient 
generally declines, indicating a deterioration in clustering 
performance. 

After clustering the encounter scenarios, the frequency and 
duration distributions for each cluster are shown in Figures 14 
and Figure. 15, respectively. For further analysis, the two 
clusters with the highest and lowest frequencies from each 
dataset were selected for feature analysis. 

 

Fig. 14.  Frequency distribution of encounter scenarios. 

 

Fig. 15. The duration distribution of each cluster of encounter scenarios. 

The interaction process between ship trajectories and the 
evolution of two features—relative distance and TCPA is shown 
in Figures 16 and Figure. 17. The first row of three images shows 
the complete trajectory of three encounter scenarios, where “ ” 
and “ ” represent the start and end positions of the encounter 
scenario, respectively. The relevant scenarios' relative distance 
and TCPA evolution are shown in the other two rows. The first 
two columns belong to the same cluster and illustrate the 
common characteristics of the scenarios. The third column 
represents a different cluster to highlight the distinctions. 

For the two-ship encounter scenarios, Cluster 4 features 
ships moving in opposite directions, showing a head-on 
encounter with the relative distance initially decreasing and then 
increasing, and the TCPA exhibiting a linear decreasing trend. 
Cluster 5, on the other hand, consists of ships moving in the 
same direction, with the relative distance remaining constant and 
TCPA showing a decreasing trend but with significant 
fluctuations. For the three-ship encounter scenarios, Cluster 1 
involves one target ship crossing paths with the OS, while the 
other target ship encounters head-on. The relative distances for 

both target ships initially decrease and then increase, with the 
increase varying in magnitude. The TCPA shows a decreasing 
trend, with one ship's TCPA decreasing linearly and the other 
exhibiting noticeable fluctuations. In contrast, Cluster 3 features 
both target ships crossing paths with the OS. Although the 
relative distance trend is similar to Cluster 1, the ships in Cluster 
3 are moving in the same direction, resulting in consistent 
changes in relative distance and TCPA fluctuating consistently 
before reaching zero. In summary, the interaction of trajectories, 
the evolution of features, and the duration within the same 
cluster exhibit consistent patterns. Different clusters, however, 
show distinctly different patterns. 

 

Fig. 16. Trajectory interaction and feature evolution process of the two-ship 

encounter scenarios. 

 

Fig. 17. Trajectory interaction and feature evolution process of the three-ship 

encounter scenarios. 

Through the above analysis, the ship encounter scenario 
clustering method proposed in this paper effectively classifies 
different scenarios. The visual verification of trajectory 
interactions and feature evolution during the encounter process 
confirms the validity of this classification method. It 
demonstrates the various interaction patterns and contexts 
among multiple ships in complex navigable waters, aiding in 
distinguishing and understanding different types of ship 
encounter scenarios. 



IV.  CONCLUSION 

This paper proposes a method for clarifying ship encounter 
scenarios. First, ship encounter scenarios are segmented using 
time windows, and convolutional autoencoders generate spatial 
feature vectors for each time slice. Next, these spatial feature 
vectors are sequentially input into a long short-term memory 
(LSTM) network to produce temporal feature vectors. Finally, 
hierarchical clustering is applied to group the feature vectors 
based on their spatiotemporal attributes. Experimental results 
demonstrate that this method effectively classifies encounter 
scenarios involving various numbers of ships. The visualization 
of the interaction process and the dynamic evolution of features 
between ships confirms the classification's effectiveness. 

V. FUTURE WORK 

In the future, we plan to make improvements in the following 
two directions: 

1. Increase the size of the experimental data sample and 
optimize the scenario construction method to develop a multi-
ship encounter scenario library tailored for complex 
navigational waters. Additionally, establish a query index based 
on ship scenarios. 

2. Improve the classification method of ship encounter 
scenarios and enrich the dynamic characterization of encounter 
scenarios; design relevant application algorithms based on the 
scenario library, such as scenario prediction, risk assessment, 
and ship collision avoidance algorithms, etc., and further study 
the characterization of multi-ship encounter scenarios and the 
evolution law in depth. 
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