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Abstract

Recent Diffusion Transformers (DiTs) have demonstrated impressive capabilities
in generating high-quality single-modality content, including images, videos, and
audio. However, the potential of transformer-based diffusers to efficiently de-
noise the Gaussian noises towards superb multimodal content creation remains
underexplored. To bridge this gap, we introduce AV-DiT, a novel and efficient
audio-visual diffusion transformer designed to generate high-quality, realistic
videos with synchronized visual and audio tracks. To minimize model complex-
ity and computational costs, AV-DiT utilizes a modality-shared DiT backbone
pre-trained on image-only data, with only lightweight, newly inserted adapters
being trainable. This shared backbone facilitates the generation of both audio and
video. Specifically, the video branch incorporates a trainable temporal attention
layer into a frozen pre-trained DiT block for temporal consistency. Additionally, a
small number of trainable parameters adapt the image-based DiT block for audio
generation. An extra shared self-attention block from the DiT block, equipped with
lightweight parameters, facilitates feature interaction between audio and visual
modalities, ensuring alignment. Extensive experiments on the AIST++ and Land-
scape datasets demonstrate that AV-DiT achieves state-of-the-art performance in
joint audio-visual generation with significantly fewer tunable parameters.

1 Introduction

In recent years, diffusion models [15] have emerged as powerful generative technologies, signifi-
cantly advancing AI-generated content creation, including images [36, 35], videos [14, 39, 16], and
audio [23, 27, 8]. However, most existing research focuses on generating single-modality content,
overlooking the multimodality inherent in real-world perception. For example, many video diffusion
models [3, 1] generate silent videos, lacking the crucial auditory component. Our work aims to bridge
this gap by generating high-quality videos with accompanying audio.

For generating both audio and video content, a straightforward approach involves a two-stage process:
generating silent videos using video diffusion models first, followed by generating corresponding
audio based on these videos. However, this serial computation is time-consuming. Recent works like
MM-Diffusion [37] and Seeing and Hearing [45] propose a more integrated approach, generating
video and audio simultaneously using convolutional U-Net-based diffusion models. These frameworks
require two separate large generation modules, increasing computational complexity. Given the
inherent correlation between audio and visual modalities and the strength of existing image generation
models, we question whether a shared image generation module could be adapted for a joint audio-
visual generation with minimal additional learnable parameters?

Inspired by the success of diffusion transformers (DiTs) [33] in generating high-quality content,
particularly with Sora’s impressive performance in creating high-fidelity long videos [2], we propose
AV-DiT, a novel and efficient Audio-Visual Diffusion Transformer. AV-DiT aims to simultaneously
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generate high-quality, realistic audio and video with minimal computational cost by adapting pre-
trained image DiTs, effectively addressing the aforementioned questions. Specifically, our AV-DiT
leverages a shared DiT backbone pre-trained solely on ImageNet, along with lightweight trainable
layers (e.g., LoRA and adapters) to extend image generation into joint audio and video generation.
Compared with MM-Diffusion introducing an extra super-resolution module and involving full
parameter updates, our end-to-end AV-DiT only trains the newly inserted layers while maintaining
the DiT backbone frozen, greatly reducing the number of tunable parameters and computing memory.

To adapt the image diffusion backbones to audio and video domains, AV-DiT addresses three
challenges: 1. Image-to-video: Benefiting from the generalized capability in modeling spatial
information, the pre-trained image backbone can spatially extract contextual information from each
video frame. However, modeling temporal consistency across various video frames is crucial for
video generation. Therefore, our AV-DiT equips the frozen image DiT with the spatial-temporal
ability by inserting temporal adapters after spatial layers. 2. Image-to-audio: Due to the large domain
gap between image and audio, it is hard for the image backbone to directly learn the harmonic
structure of the acoustic spectrogram. To solve this, AV-DiT enhances the image DiT to learn acoustic
information by incorporating audio-specific LoRA and adapter; 3. Multimodal alignment: During
multimodal generation, the generation of each modality expects to benefit from the counterpart
modality. Fortunately, the original self-attention block from image DiT can globally connect tokens
from different modalities. To further facilitate the audio-video alignment, AV-DiT injects LoRA layers
into the self-attention block of image DiT to shift the attention from close-domain token connection
to cross-domain interaction. Extensive quantitative and qualitative experiments on the Landscape [24]
and AIST++ [25] datasets demonstrate the effectiveness and efficiency of our proposed approach.

The main contributions of this work are as follows: 1) We propose AV-DiT, the first multimodal
diffusion transformer architecture for joint audio and video generation by leveraging an off-the-shelf
frozen DiT pre-trained on image-only data and minimal trainable adapters; 2) Our AV-DiT adapts the
shared frozen pre-trained DiT for video generation by introducing temporal consistency, for audio
generation by mitigating the domain gap, and for audio-visual alignment by multimodal interaction,
demonstrating that the joint audio-video generation can benefit from a pre-trained image generator;
3) Extensive experiments on the Landscape and AIST++ datasets show that our AV-DiT achieves
competitive or even better performance than recent state-of-the-art methods in generating high-quality
video and audio with fewer trainable parameters.

2 Method
In this section, we propose an audio-visual diffusion transformer (AV-DiT) by leveraging the off-the-
shell DiT backbone pre-trained on image-only data, aiming to make full use of its generalization
ability to reduce the training cost and model complexity as shown in Figure 1.

Video and Audio Latent Encoding: Our AV-DiT follows the LDMs to adopt the VAE encoder
to project the input video and audio into the latent space before undergoing the AV-DiT denoising
network. More specifically, the input videos V ∈ RB×M×H×W×3 are first flattened along the
batch B and temporal dimension M , and are then extracted by a learned VAE encoder, resulting in
video latent features zv = Ev(V ), where zv ∈ R(B∗M)× H

rv
×W

rv
×cv , M means the number of video

frames, cv is the video channel and rv > 1 denotes the video downsampling ratio. Meanwhile, the
audio waveform is transformed into an image-like mel-spectrogram A ∈ RB×T×F via the STFT
operator which is then passed through a pre-trained VAE encoder to obtain the audio latent code
za = Ea(A), where za ∈ RB× T

ra
× F

ra
×ca , T , F and ca denote the temporal, frequency, and channel

dimension, respectively, and ra > 1 means the ratio of downsampling audio resolution. In our
work, we employ the off-the-shell pre-trained VAEs from image LDM [36] and audio LDM [8] to
extract the video and audio latent codes respectively and save them locally to reduce the training
memory. Furthermore, similar to the ViTs, the zv and za are transformed into the sequence of tokens
by respective patch embedding layers, which are then followed by the positional encoding to yield the
video xv ∈ R(B∗M)×Lv×D and audio xa ∈ RB×La×D inputs of our proposed multimodal diffusion
transformer. In addition, the time information is incorporated into the diffusion transformer blocks
via a time embedder. Note that, in our proposed diffusion transformer, we adopt the frozen visual
patch embedding and time embedding layers from the pre-trained image-based DiT while employing
a trainable patch embedder for specifically addressing the audio modality.

AV-DiT Block Design: Once the audio and video inputs are obtained, a sequence of proposed AV-DiT
blocks is adopted to perform the joint diffusion and denoising processes. In each AV-DiT block, the
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Figure 1: Illustration of vanilla DiT (left) and our proposed AV-DiT (right) for joint audio and
video generation. Our AV-DiT leverages a shared frozen DiT backbone pre-trained on image-only
data to simultaneously generate high-quality and realistic audio and video, where only inserted
modality-specific adapters are trainable while the original pre-trained weights are frozen.

video xv and audio xa inputs are normalized by a shared adaptive layer normalization (AdaLN) [34]
that regresses the scale < γv

1 , γ
a
1 > and shift < βv

1 , β
a
1 > parameters from MLP conditioning block

to introduce the time guidance. Then, the normalized video features undergo a frozen pre-trained
multi-head self-attention (MHSA) to learn the spatial correlation within each video frame along Lv

dimension’. Meanwhile, audio features share the same frozen pre-trained MHSA since the learnt
attention weights have been explored to be an effective initialization for the audio domain [11, 26].

Bridging Audio-Visual Domain Gap. However, to further alleviate the domain gap between audio and
image modality, we inject trainable LoRA layers into projection modules of frozen MHSA to transfer
the knowledge from the image into the audio domain. Afterwards, a pair of scaling parameters
< αv

1, α
a
1 > from the conditioning block is used to control the information flow prior to the residual

connection. It is worth noting that the weights of the conditioning block are inherited from the one of
frozen DiT to provide consistent information guidance for both audio and video diffusion.

Temporal Adaptation. To enhance the frozen DiT’s ability to model temporal dependencies, we insert
a trainable temporal adapter after the frozen spatial MHSA block. This adapter, structurally identical
to the frozen MHSA, ensures temporal consistency in video generation. Specifically, the output video
features from the frozen MHSA are permuted into xv,f ∈ R(B∗Lv)×M×D by swapping the M and
Lv dimensions, which are then passed through the temporal adapter to learn the temporal dependency
among different video frames. For efficiency, the temporal adapter enables the feature compression
on the query and key projector of the MHSA block, whose compression ratio will be explored in the
following section. Additionally, factors regressed from the frozen condition block incorporate time
information into the temporal adapter via adaptive layer normalization.

Multimodal Alignment. To bridge the audio and video branches and learn multimodal alignment for
improved joint generation, we first pool the video tokens temporally, then concatenate them with
audio tokens, feeding the combined sequence into an MHSA block for mutual interaction. Instead
of training MHSA as in [6], we reuse a frozen MHSA block from the pre-trained DiT and augment
it with LoRA. This adapts the model’s knowledge from the image domain to facilitate multimodal
interaction, generating audio-steered video features and video-steered audio features to refine the
respective tokens. The refined video and audio tokens are processed by a shared frozen feed-forward
network (FFN) from the pre-trained DiT, enabling global feature extraction for each modality. Time
conditions are incorporated into each branch via adaptive layer normalization (adaLN). Additionally,
a simple learnable adapter (a bottleneck MLP) is connected in parallel with the audio branch’s FFN,
further adapting the learned image knowledge to benefit audio modeling. Finally, the output video
and audio features from the AV-DiT block are passed to the next block for iterative processing.

Video and Audio Latent Decoding: After the final AV-DiT block, the sequences of video and audio
tokens are required to be decoded into the predicted noises and diagonal covariance of corresponding
modalities. To do so, a shared AdaLN followed by two separate liner decoding layers is adopted to
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Table 1: Comparison between our AV-DiT and existing SOTA methods. Since Seeing and Hear-
ing [45] only evaluates 200 samples, we also use the same number of samples for fair comparison.
For metrics, we used the same scripts as MM-Diffusion [37]. Note that ∗ means the reproduced
results using the released model weights from the authors.

Model AIST++ Landscape Param. ↓ Inference
Speed ↑FVD ↓ KVD ↓ FAD ↓ FVD ↓ KVD ↓ FAD ↓

GroundTruth 8.73 0.0036 8.46 17.83 -0.12 7.51 - -
DIGAN (ICLR 2022) [48] 119.47 35.84 - 305.36 19.56 - - -

TATS-base (ECCV 2022) [7] 267.24 41.64 - 267.24 41.64 - - -
MM-Diffusion* (CVPR 2023) [37] 98.69 18.90 10.58 186.09 9.21 10.61 426.16M 0.009 sample/sec

AV-DiT (Ours) 68.88 21.01 10.17 172.69 15.41 11.17 159.91M 0.032 sample/sec
Seeing and Hearing1 (CVPR 2024) [45] - - - 326.23 9.20 12.76 - -

AV-DiT (Ours), 200 samples - - - 260.50 9.15 14.15 159.91M 0.032 sample/sec

decode video and audio tokens into corresponding predicted latent codes respectively, generating
the original spatial feature layout via the feature rearrangement to obtain the predicted noise and
covariance of video and audio for diffusion objective. Note that, the decoding layer from the video is
directly from frozen DiT, while the other one is initialized and trained from scratch. Once diffusion
forward is finished, two sampled Gaussian noises are separately fed into the trained AV-DiT to
progressively perform noise removal, yielding the less noisy audio and video latent code at the last
diffusion time step. Next, the decoders from pre-trained VAEs from image LDM and audio LDM
are employed to simultaneously reconstruct the video and audio latent features back generated video
frames and audio mel-spectrogram. Last but not least, a pre-trained HiFi-GAN [22] is used as a
vocoder to transform the audio mel-spectrograms into the audio waveforms.

3 Experiments

Experimental Setups. Following previous work [37], we evaluate our proposed AV-DiT on two
high-quality datasets including Landscape [24] and AIST++ [25] for joint audio and video generation.
We adopt 16 video frames with the size of 256 × 256 as the visual input and Mel spectrogram
converted from a 1.6-second waveform as the audio input. Our AV-DiT leverages the frozen pre-
trained DiT XL/2 as the shared backbone. The AdamW [29] optimizer is used to train the model
for 100k iterations by setting the learning rate as 5× 10−4 and batch size as 16. Following common
practice [37, 48, 7], we adopt the Frechet Video Distance (FVD) and Kernel Video Distance (KVD)
to measure the visual quality of the generated videos and we calculate the Frechet audio distance
(FAD) [37] between the pairs of ground-truth and generated audio in the space of latent features
extracted by AudioCLIP [13]. Lower scores in these metrics indicate higher quality.

Comparison with SOTA methods. As shown in Table 1, we compare our proposed AV-DiT with
existing state-of-the-art methods (i.e. DIGAN [48], TATS [7], MM-Diffusion [37], Seeing and
Hearing [45]) on AIST++ and Landscape datasets. In general, our AV-DiT achieves competitive or
even superior performance than existing methods on joint audio and video generation while involving
significantly reduced trainable parameters. First, as for AIST++ dataset, compared with existing
baselines, our AV-DiT achieves the best results in FVD (68.88), presenting impressive performance in
generating high-quality videos as shown in Figure 2. Although recent MM-Diffusion obtained a lower
KVD score than our AV-DiT, it adopts the full training of audio and video branches and involves
much more trainable parameters than ours (159.91M vs 426.16M). In addition, MM-Diffusion uses
a two-stage generation that first produces a small resolution and then upscales to a large resolution
by an extra pre-trained super-resolution network, while our AV-DiT directly generates the target
resolution in an end-to-end manner due to our efficient design. For audio evaluation, our AV-DiT
yields a superior FAD score to existing methods without any audio-specific training, demonstrating
that our AV-DiT efficiently adapts the pre-trained image diffusion to generate high-fidelity audio.
Second, as for the Landscape dataset, our AV-DiT also achieves competitive performance in all
evaluation metrics including FVD (172.69), KVD (15.41), and FAD (11.17) with reduced tunable
parameters. It is worth mentioning that we generated the same number of videos (200 samples) as
Seeing and Hearing for a fair comparison on Landscape. As shown in Table 1, we find that our
AV-DiT attains better evaluation scores than Seeing and Hearing in all objective metrics, presenting
excellent generative performance of sounding videos. Finally, we compare the performance of our
methods and the MM-Diffusion baseline in inference efficiency. From Table 1, we observe that our
AV-DiT possesses a three times faster inference speed than MM-Diffusion, showing the efficient
generation capability of joint audio and video.

1We appreciate the authors of Seeing and Hearing [45] providing us their generated samples on Landscape.
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Figure 2: Qualitative examples of our AV-DiT and the MM-Diffusion. Ours generates higher quality
and more realistic videos. Meanwhile, our generated audio spectrogram involves fewer artifacts and
restores more approximate structures reflecting the visual scenes. For example, our audio sample of
Landscape scenes possesses more details that demonstrate the sound of waves lapping on the shore.

Table 2: Influence of various adapter layers
Model FVD ↓ KVD ↓ FAD ↓
AV-DiT 68.88 21.01 10.17

w/o Video temporal adapter 365.71 101.33 10.23
w/o Audio FFN adapter 72.81 22.03 10.28

w/o Audio LoRA 69.46 20.80 10.22
w/o Audio LoRA and adapter 74.01 21.63 10.21

w/o Fusion 72.11 20.39 11.87
w/o Fusion LoRA 73.62 21.95 10.19

Table 3: Different adapter ratios
Video
Ratio

Audio
Ratio

Fusion
Ratio FVD ↓ KVD ↓ FAD ↓

8 2 2 68.88 21.01 10.17
4 2 2 67.60 22.68 11.06
2 2 2 67.13 22.68 10.11
4 4 2 72.59 23.48 10.15
4 8 2 70.51 20.70 10.18
4 2 4 72.71 21.06 10.25
4 2 8 70.10 20.95 10.03

Ablation Study. We conducted the following ablation studies to investigate the proposed model.

Influence of Various Adapter Layers: To verify the effects of different adapter layers including LoRA,
temporal adapter, and FFN adapter on generative performance, we establish various reference models
by removing corresponding layers as shown in Table 2. First, omitting the temporal adapter leads
to an obvious performance drop in terms of FVD (from 68.88 to 365.71) and KVD (from 21.01
to 101.33), showing that keeping the temporal consistency is very crucial for video generation.
Second, the reference models without either an FFN adapter or LoRA in the audio branch attain a
worse performance than our AV-DiT, presenting that audio-specific adapters are useful for the frozen
pre-trained image generator to extend to joint audio and video generation. Finally, when removing
the LoRA from the fusion module, the performance will be decreased, demonstrating that directly
adapting the self-attention of the frozen DiT makes it hard to perform the multimodal interaction.

Different Adapter Ratio: To reduce the model complexity and computing burden, the downsampling
operation is applied in each adapter layer. Therefore, we conduct the ablation study to analyze the
influence of the choice of adapter ratios on generating performance as shown in Table 3. We find that
increasing the ratio of the video temporal adapter will lead to a performance drop in terms of FVD,
showing that properly increasing the trainable parameters of the temporal adapter is beneficial for
learning the temporal dependency towards better generated videos. Moreover, it is worth mentioning
that the best FAD score is achieved by setting a small ratio of audio adapters and a large ratio of
fusion adapters. By considering the trade-off between performance and computing complexity, we
determine (8, 2, 2) as the ratio for video, audio and fusion part, respectively.

4 Conclusion

In this paper, we propose AV-DiT, the first multimodal diffusion transformer designed for joint audio
and video generation. AV-DiT leverages a modality-shared, frozen DiT backbone pre-trained on
image-only data along with lightweight trainable layers to generate audio and video jointly. Extensive
experiments show that our AV-DiT achieves competitive or even better performance than recent
methods while having significantly reduced trainable parameters and enhanced inference efficiency.
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A Supplemental Material

This supplementary material provides some more related works including diffusion transformers,
joint audio-video generation, and parameter-efficient generative models. In addition, we summarize
the implementation details of the proposed method including architecture configuration and training
process. Finally, we present more generated examples to show that our AV-DiT can produce high-
quality, realistic videos with audio tracks.

A.1 Related Work

Revist Diffusion Transformers: Diffusion models [15] have presented impressive success in various
generative tasks including image synthesis [36, 35, 38], video generation [14, 39, 3, 1, 44], audio
generation [27, 8, 19], etc. In general, diffusion models include a forward diffusion process for
gradually corrupting real samples to learn a noise predictor and a reverse process to progressively
generate less noisy samples via a trained denoising network. To reduce the computational complexity,
latent diffusion models (LDMs) [36] employ U-Net architectures to perform the diffusion on the
latent space with lower feature dimensions. Recently, the diffusion transformer (DiT) [33] has
emerged as an effective replacement for the U-Net backbone in various diffusers like SiT [31],
SD3 [6], VDT [30], Latte [32], Sora [2], OpenSora [20], ViT-TTS [28], etc. However, existing
transformer-based diffusion models concentrate on generating a single modality, constraining its
potential application in multimodal generation. Hence, our AV-DiT is the first work to investigate
how to utilize the DiT structure for joint audio and video generation.

A vanilla diffusion transformer (DiT) adopts transformer structure [41] to replace the commonly
used U-Net denoiser, which follows the design of latent diffusion models (LDMs) [36] to operate
on the latent space for reducing the computational complexity as shown in the left part of Figure 2.
More specifically, the DiT first compresses the input image into the latent code z0 with a reduced
feature dimension by an encoder E from the pre-trained variational autoencoder (VAE). Then, the
transformer blocks consisting of multi-head self-attention (MHSA) and feed-forward network (FFN)
modules are operated on the latent space to perform the forward diffusion and backward denoising
processes [15], where the time embedding and class embedding are incorporated for conditioning
the generation by adaptive layer normalization. Note that, the patch embedding layer and position
encoding are used to transform the latent code into the input tokens of the transformer.

Following denoising diffusion probabilistic models (DDPMs) [15], a forward noising process is
defined to gradually corrupt the real latent z0 with random Gaussian noise over a discrete time step t,
which can be formulated as q(zt|zt−1) = N(zt;

√
1− βtzt−1, βtI) where (β1, β2, . . . , βt, . . . , βT )

are noising schedule, and T is the pre-defined number of total diffusion steps. Therefore, the forward
process generates a series of corrupted samples (z1, z2, . . . , zt, . . . , zT ) with ascending levels of
noise via Markovian chain. By the re-parameterization method, the zt can be directly obtained by√
ᾱtz0 +

√
1− ᾱtϵ, where ᾱt =

∏t
i=1 αi, αt = 1− βt, and ϵ ∼ N(0, I).

To recover the original latent, the reverse process of DiT leverages a learned transformer network
θ to predict less noisy data zt−1 from the noisy input zt at each timestep via inverting the forward
process, which can be formulated as pθ(zt−1|zt) = N(zt−1;µθ(zt, t), σ

2
t I). The training objective

is to minimize a mean squire loss between the noise prediction ϵθ(zt, t) and ground truth, defined
as follows: minθ Lsimple = minθ Ezt,t,ϵ||ϵ− ϵθ(zt, t)||22. Afterwards, the data can be generated
by progressively sampling zt−1 from pθ(zt−1|zt) by a trained denoising transformer, yielding the
generated latent code ẑ0 which is recovered back to the generated image sample via learned decoder
D from VAE. In this work, we employ the DiT as the diffusion backbone and adapt it to address joint
audio-visual generation.

Problem Definition: Existing diffusion models typically perform forward and reverse processes to
generate single-modality outputs like images, videos, or audio. However, our work tackles the more
challenging problem of jointly generating high-quality audio and video. To simplify the problem,
we directly start from the reverse process to introduce how to generate audio and video modalities
from the Gaussian noises having the same feature sizes as those of audio and video latent code.
Given a paired noise (zaT , z

v
T ) randomly sampled from Gaussian distribution, the joint audio and

video generation aims to train a joint denoising network θav to fit the reverse process by taking
both modalities as the inputs and benefiting the generative quality of counterpart modality. In other
words, the reverse process adopts the trained θav to predict less noisy video and less noisy audio by
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considering their own and counterpart modalities, which can be formulated as follows:

pθav
(zat−1|(zat , zvt )) = N(zat−1;µθav(z

a
t , z

v
t , t), σ

2
t I) (1)

pθav
(zvt−1|(zvt , zat )) = N(zvt−1;µθav(z

v
t , z

a
t , t), σ

2
t I) (2)

where t = 1, 2, . . . , T denotes the diffusion steps. The training objective of joint denoising network
θav can be formulated as follows:

Lθav =Ezv
t ,z

a
t ,t,ϵv,ϵa

||ϵv − ϵθav (z
v
t , z

a
t , t)||

2
2 + ||ϵa − ϵθav (z

a
t , z

v
t , t)||

2
2

(3)

where ϵv and ϵa mean the ground noises for corrupting video and audio modality in the forward
process, respectively.

Our AV-DiT simultaneously generates audio and video by taming a modality-shared DiT pre-trained
on image data. It will address three key challenges: 1) Enabling pre-trained Image DiT for video
generation; 2) Adapting the pre-trained image DiT for audio generation by mitigating the domain
gap; 3) Generalizing the pre-trained DiT for feature interaction or alignment between audio and video
modalities2.

Joint Audio-Video Generation: Unlike video generators that only create silent videos, joint audio-
video generation aims to generate high-quality, realistic videos that can be watched and listened
to simultaneously. MM-Diffusion [37] is the pioneering work that adopts diffusion models for
generating audio-video pairs. It consists of separate video and audio branches to perform the joint
multimodal denoising, where a random-shift based attention module is incorporated to learn the
consistency between audio and video modalities. Furthermore, Seeing and Hearing [45] introduces
a multimodal latent aligner based on ImageBind [9] to align the well-learnt latent features from
pre-trained audio and video diffusion models, achieving the cross-modal generation without training
the model from scratch. Compared with existing joint audio-video generation models, our AV-DiT
leverages a modality-shared frozen diffusion model pre-trained on image data to generate audible
videos via introducing lightweight trainable adapters.

Parameter-efficient Generative Models: Training or fine-tuning large diffusion models for down-
stream tasks is computationally expensive. Therefore, parameter-efficient generative models have
been proposed to adopt the parameter-efficient fine-tuning (PEFT) strategy [17, 26, 5, 43, 42] to only
tune partial layers while keeping the majority weights of pre-trained frozen. PEFT technologies
primarily consist of adapter tunning for inserting bottleneck adapters [17], prompt tuning for injecting
learnable prompt tokens at input space [21], and low-rank adaptation (LoRA) for approximating
the model weights by a low-rank factorization [18]. To sufficiently leverage the pre-trained image
generator to produce video, various lightweight adapters or temporal layers are inserted into frozen
LDMs to capture the temporal consistency across video frames [46, 12, 10]. Besides, the trainable
LoRA layers can be injected into frozen pre-trained LDM to introduce controllable conditions,
guiding the generation of personalized images without relying on full fine-tuning [47]. Different
from these works on closed-domain adaptation (i.e. image-to-image or image-to-video), our AV-DiT
adapts the frozen image generator to address the joint audio and video generation via lightweight
trainable layers (i.e. LoRA or adapters).

A.2 More Implementation Details

Datasets: Landscape is a high-fidelity audio-visual dataset and it features nine different nature
scenes including raining, splashing water, thunder, etc. The dataset contains 928 videos crawled
from YouTube as listed in [24] and creates 1,000 video clips of 10 seconds without overlap, spanning
approximately 2.7 hours in total. AIST++ is acquired from the AIST dataset [40], featuring dancing
videos with 60 copyright-cleared songs. The dataset consists of 1,020 video clips having a total
duration of 5.2 hours.

Implementation. We summarize the implementation details in table 4.

Data Pre-processing: Following the work [37], 16 video frames are sampled to construct a video
clip and are then cropped into 256× 256 resolution. Based on the duration of each video clip, we
crop out the corresponding audio signal and then truncate or pad it into a 1.6-second waveform at the
sampling rate of 16 KHz.

2Hereafter, the abbreviation DiT will refer to the diffusion transformer pre-trained on images unless otherwise
specified.
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Table 4: Model and Training Configurations

Model Configuration Audio-Visual Diffusion Transformer (AV-DiT)
Architecture

Feature Dimension 1152
Attention Head 16

Transformer Depth 28
Compression Ratio in Video Temporal Adapter 8

Compression Ratio in Audio LoRA and FFN Adapter 2
Compression Ratio in Fusion LoRA 2

Diffusion Process
Diffision Steps 1000

Diffusion Noise Scheduler Linear
Prediction Objective Noise Prediction

Sampling Method DDPM
Sampling Steps 250

Input Data
Video Shape 16× 256× 256× 3

Video FPS 10
Audio Spectrogram Shape 160× 64

Audio Sample Rate 16K
Training Setting

Learning Rate 5e-4
Optimizer AdamW
Batch Size 16

Loss Function MSE
Training Iteations 100k
Training Hardware NVIDIA RTX 6000 Ada Generation

Training OS Linux-5.15.0-101-generic-x86_64-with-glibc2.35

Model Structure: We adopt the off-the-shelf pre-trained VAEs from Stable Diffusion to transform
the input video into latent code with the size of (32× 32× 4). Meanwhile, the STFT operator and
pre-trained VAE from audio LDM (i.e. Tango [8]) are used to project the input audio into a latent
feature with size of (40× 16× 8). Our AV-DiT adopts the frozen pre-trained DiT XL/2 backbone as
well as lightweight trainable layers to predict the noise during the forward process. Moreover, the
used DiT is pre-trained on the ImageNet with the resolution of 256× 256 by using 28 transformer
layers with 16 attention heads and a feature dimension of 1152.

Diffusion Stage: We retain the diffusion configuration as ADM [4] which uses a linear noise schedule
ranging from 1× 10−4 to 2× 10−2 via 1,000 time steps. In addition, we train our proposed AV-DiT
for 100K iterations with a batch size of 16 and a constant learning rate of 5× 10−4 via AdamW [29]
optimizer. Note that, only newly inserted layers (e.g., adapters, LoRA, audio patch embedding and
decoding layers), and bias terms are trainable, while the pre-trained DiT backbone is kept frozen
during the training.

Efficient Training: We implement our AV-DiT by PyTorch framework and utilize one Nvidia RTX
A6000 (48GB) GPU card for all experiments. To achieve efficient training and reduce the usage
of computing memory, we first extract the latent features of audio and video input by using the
off-the-shell STFT operator (from Tango [8]), audio VAE (from Tango [8]), and visual VAE (Stable
Diffusion [36]). Then, we save the extracted audio-visual features locally and load them for latent
denoising, saving remarkable computing memory so that we can run the experiments with only one
GPU card. To further enhance the training speed, we adopt mixed precision training and gradient
checkpointing during the training process. To present the training efficiency of our AV-DiT, we give
the estimated usage of computing memory with the global batch size in Table 5. We can find that our
AV-DiT can be trained in an affordable GPU machine.
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Table 5: Estimated Costs of Computing Memory
Global Batch Size Memory Usage per GPU Card Number of GPU Cards

8 About 14-15GB 1

16 About 30GB 1

24 About 42GB 1

Evaluataion: In our experiments, we randomly generate 2,048 samples by using our trained AV-DiT
to calculate objective evaluation scores, where the original generated and real videos are cropped out
64× 64 resolution for computation efficiency. For a fair comparison, we evaluate all experiments by
averaging 5 runs to reduce randomness.

A.3 More Ablation Studies

Scaling Backbone: When replacing AV-DiT’s frozen DiT backbone with one pre-trained on larger
image resolutions (i.e., 512x512), Table 6 shows improved performance. This validates that our
parameter-efficient AV-DiT benefits from more powerful pre-trained image generators.

Cross-attention Fusion: Our AV-DiT adopts a joint self-attention for connecting the audio and video
features for multimodal alignment. To explore the efficiency of our audio-video fusion mechanism,
we also design the other reference model using cross-attention based fusion. More specifically, in
each AV-DiT block, two cross-attention blocks are separately inserted before the FFN module of each
branch for bi-directional conditioning audio and video. As shown in Table 7, we can find that our
AV-DiT with self-attention fusion outperforms better than the one with cross-attention fusion while
involving lower model complexity and trainable parameters.

Table 6: Different DiT backbones
Model FVD ↓ KVD ↓ FAD ↓
AV-DiT

(256*256 Backbone)
68.88 21.01 10.17

AV-DiT (ours)
(512*512 Backbone)

67.26 20.02 10.23

Table 7: Self-attention fusion V.S. Cross-
attention fusion

Model FVD ↓ KVD ↓ FAD ↓ Param.
AV-DiT (ours)

(Self-attention) Fusion 68.88 21.01 10.17 159.91M

AV-DiT (ours)
(Cross-attention) Fusion 71.57 20.19 11.43 289.82M

A.4 Limitations:

Our experiments mainly focus on unconditional audio and video generation. It is meaningful to
explore the effectiveness of the proposed AV-DiT in class-conditional and text-conditional generation
of audio and video. Notably, our AV-DiT can be flexibly extended into the conditional joint generation
of audio and video by injecting additional text prompts or audio-visual captions with minimal
adjustment. Although our AV-DiT is more efficient than MM-Diffusion, further improvements
are necessary for deployment in real-time applications. Lastly, due to the limited computational
resources, our proposed AV-DiT was only implemented on the small datasets used in MM-Diffusion.
In future work, we plan to evaluate our AV-DiT on large-scale datasets with real-world scenarios like
VGGSound, and further improve the generative efficiency of joint audio and video by accelerating
the inference speed.

A.5 Additional Qualitative Examples

For additional results on Landscapes, please check Fig. 3.

For more results on AIST++, please refer to Fig. 4.
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Figure 3: More results from our AV-DiT model on Landscape dataset. The generated audio and video
are consistent with each other.
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Figure 4: More results from our AV-DiT model on AIST++ dataset. The dance movements and music
beats are well aligned.
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