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ABSTRACT

A prevalent assumption regarding real-world data is that it lies on or close to a
lower-dimensional manifold. When deploying a neural network on data manifolds,
the required size, i.e. the number of neurons, of the network heavily depends on the
intricacy of the underlying latent manifold. While significant advancements have
been made in understanding the geometric attributes of manifolds, it’s essential
to recognize that topology, too, is a fundamental characteristic of manifolds. In
this study, we delve into a challenge where a classifier is trained with data on
low-dimensional manifolds. We present an upper bound on the size of ReLU neural
networks. This bound integrates the topological facets of manifolds, with empirical
evidence confirming the tightness.

1 INTRODUCTION

The expressive power of deep neural networks (DNNs) is believed to play a critical role in their
astonishing performance. Despite a rapidly expanding literature, the theoretical understanding of such
expressive power remains limited. The well-known universal approximation theorems (Hornik, 1989;
Cybenko, 1989; Leshno et al., 1993; Hanin, 2017) guarantee that neural networks can approximate
vast families of functions with an arbitrarily high accuracy. However, the theoretical upperbound of
the size of such networks is rather pessimistic; it is exponential to the input space dimension. Indeed,
these bounds tend to be loose, because the analyses are often oblivious to the intrinsic structure
of the data. Real-world data such as images are believed to live in a manifold of a much lower
dimension (Roweis & Saul, 2000; van der Maaten & Hinton, 2008; Jolliffe & Cadima, 2016). Better
bounds of network size can be achieved leveraging such manifold’s structure. It has been shown that
the network size can be bounded by exponential of the manifold’s intrinsic dimension rather than
the encompassing input space dimension (Chen et al., 2019; Schmidt-Hieber, 2019). However, the
intrinsic dimension is only a small part of the manifold’s property. It is natural to wonder whether
other properties, such as topology and geometry of the manifold, may lead to improved bounds.
Safran & Shamir (2016) demonstrate that to approximate the indicator function of a d-dimensional
ball, one only needs a network of size quadratic to d. However, this work assumes a rather simplistic
input. To extend to a more general setting, one needs to incorporate the topology and geometry of the
manifold into the analysis.

Early research has probed the inherent structure of manifolds, with a particular emphasis on their
geometric and topological characteristics. Notably, Federer (1959); Amenta & Bern (1998) introduce
a pivotal curvature measure, known as the reach, which adeptly captures the geometric nuances of
manifolds. This metric has been embraced in manifold learning studies (Narayanan & Niyogi, 2009;
Narayanan & Mitter, 2010; Ramamurthy et al., 2019). On the topological front, descriptors like Betti
numbers have been formalized in the language of algebraic topology to characterized the numbers of
connected components and holes of a manifold (Hatcher, 2002; Bott et al., 1982; Munkres, 2018). In
their seminal work, Niyogi et al. (2008) integrate manifold’s geometry and topology, setting forth
conditions for topologically faithful reconstructions grounded in geometric metrics. With the advent
of the deep learning era, there has been a burgeoning interest in discerning the interplay between
network size and manifold’s intrinsic structural attributes. Beyond the previously mentioned studies
on function approximation, where functions are characterized over manifolds, Dikkala et al. (2021);
Schonsheck et al. (2019) investigate the interplay between network size and the geometric properties
of manifolds in diverse deep learning applications.
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Despite studies connecting network size and manifold geometry, there has not been any theoretical
framework that successfully ties network size and topological traits together. When it comes to
network size, the topological complexity of manifolds also plays a vital part in the learning problem.
Empirical findings (Guss & Salakhutdinov, 2018; Naitzat et al., 2020) indicate that data with greater
topological complexity necessitates a larger network. However, the theoretical relationship between
topological attributes of data and network size remains an uncharted territory. This gap is likely
due to the inherently discrete nature of topological descriptors, making their integration into neural
network size analyses a challenging endeavor.

In response to these challenges, our research seeks to bridge this theoretical gap, presenting an
innovative framework that integrates topology and neural network size. To capture the manifold’s
topological characteristics, we employ Betti numbers. These numbers specifically quantify the
number of connected components and holes within the manifold. Our result reveals for the first
time how the topology, as a global structural characterization of data manifold, affects the network
expressiveness.

While topology offers global structural insights, it alone is not sufficient for bounding network size.
To complement topology, we must also consider local properties, i.e., geometry. We introduce the
condition number as a geometric measure, describing the manifold’s overall flatness. Our theoretical
analysis delivers an upper bound for network size controled by both Betti numbers (topology) and the
condition number (geometry).

Our main theoretical result is informally summarized below.
Main Theorem. (Informal) Let M = M1∪M2 ⊂ RD be a d-dimensional manifold (d ≤ D, d ≤ 3)
with M1 and M2 representing two classes. Suppose M satisfies some mild manifold assumptions.
For any δ > 0, given a training set whose size is larger than a certain number N(δ), then for any
ϵ > 0, there exists a ReLU network classifier g with depth at most O(log β + log 1

τ ) and size at most

O(β
2

ϵ + poly( 1τ , log
1
δ )), such that P (R(g) ≤ ϵ) > 1− δ, where R(g) is the true risk of g regarding

any continuous distribution on M. β is the sum of Betti numbers and 1
τ is the condition number.

According to our bound, the network size scales quaratically in terms of total Betti number β. This
can be validated by our empirical observations. Conversely, in terms of the condition number 1

τ , it

scales as O
(
( 1τ )

d2/2
)

.

Our result provides a fresh theoretical perspective for further investigation of network expressiveness.
In the future, the theory could potentially guide us towards designing more efficient neural networks
based on manifold topology and geometry.

2 RELATED WORKS

Network size with manifold geometry. Multiple studies have formulated network size bounds
across varied manifold learning contexts based on geometry. Schonsheck et al. (2019) establish a
bound of O(LdDϵ−d−d2/2(− log1+d/2 ϵ)) on the network size for manifold reconstruction tasks.
L is the covering number in terms of the injectivity radius, a geometric property. They utilize an
auto-encoder, denoted as D ◦E, for the reconstruction of a manifold. Both the encoder E and the
decoder D are designed to function as homeomorphisms. As a result, the overarching objective
is the construction of a homeomorphism within the same space, which elucidates the absence of
topological considerations in their outcomes. Our findings include not only the homeomorphism but
also the classification network, with the latter being influenced by the manifold’s topology. Chen et al.
(2019) demonstrate the existence of a network of size O(ϵ−d/n log 1

ϵ +D log 1
ϵ +D logD) that can

approximate any smooth real function supported on a compact Riemannian manifold. In this context,
n denotes the order of smoothness of the function. Their primary objective is to illustrate that, in
manifold learning, the manifold dimension chiefly determines network size, with only a marginal
dependence on the ambient dimension. Moreover, their smoothness assumption is inapplicable to
classification tasks, where the target function lacks continuity. Yet, the interplay between manifold
properties and their impact on network size in manifold classification largely remains unexplored.

Classifier learned on manifold. Dikkala et al. (2021) investigates network size in classification
contexts. However, their foundational assumption is that a manifold’s essence can be distilled into just
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two parameters: a centroid and a surrounding perturbation. They further assume there is a sensitive
hashing property on manifolds. These assumptions are quite constrained, might not align with
real-world complexities, and also overlooks the intrinsic properties of the manifold. Nevertheless, the
aforementioned studies predominantly concentrate on network size and geometric traits, neglecting
the equally critical role of topological features. Buchanan et al. (2021) established a lower bound
on the size of classifiers for inputs situated on manifolds. However, their theoretical framework is
restricted to smooth, regular simple curves, which exhibit uniform topology. This constraint negates
the necessity to account for how variations in manifold topology might influence network size. Guss
& Salakhutdinov (2018) provides empirical evidence showing that classifiers, when trained on data
with higher Betti numbers, tend to have slower convergence rates. They also highlight that with
rising topological complexity, smaller networks face challenges in effective learning. These findings
underscore the need for a more comprehensive theoretical understanding.

There are some intriguing studies not primarily centered on manifold learning. Specifically, Bianchini
& Scarselli (2014) establish a bound for the Betti number of a neural network’s expression field
based on its capacity. Nevertheless, their proposed bound is loose, and it exclusively addresses the
regions a network can generate, neglecting any consideration of input manifold. Safran & Shamir
(2016) explore the challenge of approximating the indicator function of a unit ball using a ReLU
network. While their primary objective is to demonstrate that enhancing depth is more effective than
expanding width, their approach has provided valuable insights. Naitzat et al. (2020) empirically
examines the evolution of manifold topology as data traverses the layers of a proficiently trained
neural network. We have adopted their concept of topological complexity. A number of studies, such
as those by Hanin & Rolnick (2019) and Grigsby & Lindsey (2022), concentrate on exploring the
potential expressivity of neural networks. However, these works primarily focus on the network’s
inherent capabilities without extensively considering the characteristics of the input data.

3 ASSUMPTIONS AND PRELIMINARIES

To explore the influence of manifold topology on network size, our analysis framework primarily
leverages manifold classification theorems. Unlike the concept of classification as understood in
machine learning, the classification referred to here pertains to theorems in topology. These theorems
are focused on categorizing manifolds based on their structural properties. However, classifying
manifolds beyond three dimensions is known to be equivalent to the word problem on groups
(Markov, 1958), and is undecidable. The classification of 3-manifolds is also intricately complex
(this is Thurston’s geometrization, proved by Perelman (2003)), and beyond the scope of this work.
As such, we restrict our study to solid manifolds of dimension three or less, which we define next.

Assumption 1 (Solid Manifold). In this paper, we assume the manifold M possesses a property as
being ’solid’. The d-dimensional manifold M ⊂ RD is termed solid if the following conditions hold:

(A1): M can be embedded into Rd, where d ≤ 3 and d ≤ D.
(A2): M is compact, orientable, and with boundary.

Remark 1. The solid manifold assumption aligns with our intuitive understanding of a ‘solid shape’,
but embedded in a high-dimensional space. (A1) ensures that M possesses a d-dimensional volume
in Rd. This is essential for tasks like classification. This assumption rules out closed manifold like
spheres. In certain cases, it is impossible to classify such manifolds because they lack a volume
property. For instance, consider classifying a sphere along with its interior. Moreover, such perfectly
closed shapes are seldom found in the real world due to sampling sparsity. (A2) imposes common
topological properties on the manifold. This assumption excludes non-orientable manifolds such as
the Klein bottle and projective planes.

Betti numbers. We employ Betti number βk(M) to quantify topology of solid manifolds. k is
the dimension of that Betti number. 0-dimension Betti number β0(M) is the number of connected
components in M, and βk(M) (k ≥ 1) can be informally described as the number of k-dimensional
holes. 1-dimensional hole is a circle and 2-dimensional hole is a void. For the sake of coherence, we
defer the formal definition of Betti numbers to Appendix A.1. Following Naitzat et al. (2020), we
utilize the total Betti number of M as its topological complexity.
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Definition 1 (Topological Complexity). M is a d-dimensional manifold. βk(M) is the k-dimensional
Betti number of M. The topological complexity is defined as

β(M) =

d−1∑
k=0

βk(M). (1)

(a) (b)

𝜏

𝜏

(c)

𝜏

𝜏

(d)
Figure 1: Illustration of Betti numbers and reach. (a) A 2-manifold with β0 = 1, β1 = 0. (b) A
2-manifold with β0 = 1, β1 = 1. (c) A 1-manifold with large reach. (d) A 1-manifold with small
reach, which is the radius of the dashed circle.
Reach and conditional number. We then introduce metrics that encapsulate these geometric
properties. For a compact manifold M, the reach τ is the largest radius that the open normal bundle
about M of radius τ is embedded in Rd, i.e., no self-intersection.
Definition 2 (Reach and Condition Number). For a compact manifold M ⊂ RD, let

G = {x ∈ RD|∃p,q ∈ M,p ̸= q, ||x− p|| = ||x− q|| = inf
y∈M

||x− y||}. (2)

The reach of M is defined as τ(M) = infx∈M,y∈G ||x−y||. The condition number 1
τ is the inverse

of the reach.

Niyogi et al. (2008) prove that the condition number controls the curvature of the manifold at
every point. A modest condition number 1/τ signifies a well-conditioned manifold exhibiting low
curvature.

Problem setup. In this paper, we examine the topology and geometry of manifolds in the classification
setting. We have access to a training dataset {(xi, yi)|xi ∈ M, yi ∈ [L]}ni=1, where M =

⋃L
l=1 Ml.

Each sample is drawn i.i.d. from a mixture distribution µ over L disjoint manifolds with the
corresponding label. For the simplification of notation, we build our theory on binary classification.
It can be extended to multi-class without efforts in a one-verses-all setting. In binary case, the dataset
is {(xi, yi)|xi ∈ M, yi ∈ {0, 1}}ni=1, where M = M1 ∪M0 ∈ RD. M1 and M0 are two disjoint
d-dimensional solid manifolds representing two classes. Note that M is also a solid manifold (with
two parts). The label yi is determined by the indicator function

IM1
(x) =

{
1, x ∈ M1,

0, otherwise.
(3)

A neural network h(x) : RD → [0, 1] approaches the classification problem by approximating the
indicator function IM1

(x). In the scope of this study, we focus on neural networks utilizing the
ReLU (Rectified Linear Unit) activation function.
Definition 3 (Adapted from Arora et al. (2018)). A ReLU multi-layer feed-forward network h :
Rw0 → Rwk+1 with k + 1 layers is defined as

h(x) = hk+1 ◦ hk ◦ · · · ◦ h1(x), (4)
where hi : Rwi−1 → Rwi , hi(x) = σ(Wix+ bi) for 1 ≤ i ≤ k are ReLU layers, and hk+1 : Rwk →
Rwk+1 , hk+1(x) = Wk+1x+ bk+1 is a linear layer. σ is the ReLU activation function. The depth of
the ReLU network is defined as k + 1. The width of the ReLU network is max{w1, . . . , wk}. The
size of the ReLU network is

∑k
i=1 wi.

The approximation error of a ReLU network is determined by the true risk.
Definition 4 (Approximation Error). Let’s consider the indicator function IM1 for a manifold M1

in a binary classification problem where M = M1 ∪M0. A neural network operates as a function
h(x) : M → R. The approximation error of the neural network h is then defined as:

True Risk: R(h) =

∫
M
(h− IM1

)2µ(x)dx. (5)

µ is any continuous distribution over M.
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4 MAIN RESULTS

In this section, we explore how the topology of manifolds influence network size in classification
scenarios. Our results, derived methodically through construction, follow two steps. First, we
approximate a homeomorphism between the input manifold and a latent one; second, we carry out
classification within this latent manifold. This latent manifold is designed to have simple geometric
features, akin to those found in spheres and tori, while retaining the intrinsic topological characteristics
of the original manifold. By design, the first phase is purely geometric, as the topological traits remain
unaltered, while the subsequent classification phase is predominantly topological. Consequently,
the required network size can be delineated into two distinct parts. We employ Betti numbers and
the condition number as metrics to gauge topological and geometric complexities, respectively.
Specifically, Betti numbers quantify the number of connected components and holes within the
manifold, whereas the condition number characterizes the manifold’s overall curvature.

4.1 COMPLEXITY ARISING FROM TOPOLOGY

In order to discard the geometric properties of the manifold, we concentrate on the basic shapes
characterizing each dimension. These are balls in R2, R3 and solid torus in R3. We formally define
them in Definition 5 and 6.

Definition 5 (2-Dimensional Fundamental Manifold). The 2-dimensional fundamental manifold is
the disk B2

r (c) = {x ∈ R2 : ||x− c||22 ≤ r}, with r the radius and c the center.

Definition 6 (3-Dimensional Fundamental Manifold). The 3-dimensional fundamental manifolds are
the following two classes,

1. A ball with radius r and center c, B3
r (c) = {x ∈ R3 : ||x− c||22 ≤ r},

2. A solid torus (genus-1) with tunnel radius r and tunnel center radius R, T1 = {Px + c :

x ∈ R3, x2
3 + (

√
x2
1 + x2

2 −R)2 ≤ r2}, where P is the 3D rotation matrix.

We refer to these manifolds as ‘fundamental’ because they encompass all potential topological
configurations and present only trivial geometric features. This is evident when considering Betti
numbers. For 2-dimensional solid manifolds, β0 = 1 corresponds to a single B2

r , while β1 =
1 is depicted by excluding a small disk from a larger one. For 3-dimensional solid manifolds,
representations for β0 = 1 and β2 = 1 are analogous. However, β1 = 1 is typified by a solid torus.
Put simply, solid manifolds can be characterized by their Betti numbers. Central to our approach
is the application of the manifold classification theorems (Lee, 2010). Combined with our solid
manifold assumption, we can prove that solid manifolds are homeomorphic to a combination of
fundamental manifolds. We provide a formal exposition of this in Lemma 1, whose proof can be
found in the Appendix A.4.

Lemma 1 (Topological Representative). If M ⊂ RD is a solid manifold, then there exists a manifold
M′ ⊂ Rd(d ≤ 3) that is homeomorphic to M, where M′ is constructed by a finite set of fundamental
manifolds {Fi}mi=1 via union and set subtraction. m ≤ β(M) is a constant integer. We term M′ as
the topological representative of M.

Our preliminary analysis focuses on the network size associated with these fundamental manifolds.
Using this as a foundation, we then explore how various topological configurations of solid manifolds
impact the size of neural networks. Given that both rotation and shift can be executed within a single
linear layer, it suffices to examine a ball centered at the origin and a torus centered at the origin and
aligned with the z-axis. Proposition 1 determines the network size required to approximate a Rd ball.
While the original result is found in Safran & Shamir (2016), our study utilizes fewer parameters and
offers a different way to approximate the threshold function. Proposition 2 outlines a network size
bound for the approximation of a solid torus.

Proposition 1 (Approximating a Rd Ball, adapted from Theorem 2 in Safran & Shamir (2016)).
Given ϵ > 0, there exists a ReLU network h : Rd → R with 3 layers and with size at most
4d2r2/ϵ+ 2d+ 2, which can approximate the indicator function IBd

r
within error R(h) ≤ ϵ for any

continuous distribution µ(x).
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Proposition 2 (Approximating a Solid Torus). Given ϵ > 0, there exists a ReLU network h : R3 → R
with 5 layers and with size at most 2d

ϵ (4(d− 1)(R+ r)2+8r2+ r√
R−r

)+9, which can approximate
the indicator function IT1

within error R(h) ≤ ϵ for any continuous distribution µ(x).

Proposition 1 and 2 address the network size associated with approximating fundamental manifolds
in R2 and R3. Detailed proofs can be found in the Appendix A.3. Building on this, we can infer
the network size for approximating topological representatives by combining the complexities of
approximating fundamental manifolds with those of union and set subtraction operations. This
consolidated insight is captured in Theorem 1.

Theorem 1 (Complexity Arising from Topology). Suppose M′ is the topological representative
of a solid manifold. Given ϵ > 0, there exists a ReLU network h : Rd → R (d ≤ 3) with depth at
most O(log β) and size at most O(d

2β2

ϵ ), that can approximate the indicator function IM′ with error
R(h) ≤ ϵ for any continuous distribution µ over Rd. β is the topological complexity of M′.

The detailed proof can be found in Appendix A.4. This theorem offers an upper bound on the network
size required to approximate the indicator function of a topological representative. It is important to
note that this captures the full range of complexities arising from the topology of a solid manifold
M, given that M and M′ are homeomorphic. To the best of our knowledge, this is the first result
bounding neural network size in terms of a manifold’s Betti numbers.

4.2 OVERALL COMPLEXITY

General solid manifolds, due to their inherent complexity, often defy explicit expression. This hinders
the direct use of function analysis for approximating their indicator functions, as was done in previous
studies. To tackle this issue, we construct a homeomorphism, a continuous two-way transformation,
between the solid manifold and its corresponding topological representative. This method only alters
the geometric properties, preserving the object’s topological attributes. Therefore, the network size in
approximating the indicator function of general solid manifolds are constructed by the approximation
of the homeomorphism and the classification of topological representatives. The network size of
constructing the homeomorphism is exclusively influenced by the geometric properties, whereas
the network size of classifying topological representatives pertains solely to topological properties.
The latter we already figured in previous section. This methodology enables us to distinguish the
influence of topology and geometry of manifold on classifiers. In this section, we aim to obtain the
overall network size for a classifier.

To build a homeomorphism from M, we first need to recover the homology of M. The subsequent
proposition outlines a lower limit for the number of points essential to recover the homology of the
initial manifold M.

Proposition 3 (Theorem 3.1 in Niyogi et al. (2008)). Let M be a compact submanifold of RD with
condition number 1/τ . Let X = {x1,x2, ..xn} be a set of n points drawn in i.i.d. fashion according
to the uniform probability measure on M. Let 0 < ϵ < τ

2 . Let U =
⋃

x∈X Bϵ(x) be a corresponding
random open subset of RD. Then for all

n > λ1(log(λ2) + log(
1

δ
)), (6)

U is a ϵ-cover of M, and the homology of U equals the homology of M with high confidence
(probability > 1− δ). Here

λ1 =
vol(M)

(cosdθ1)vol(Bd
ϵ/4)

and λ2 =
vol(M)

(cosdθ2)vol(Bd
ϵ/8)

, (7)

θ1 = arcsin(ϵ/8τ) and θ2 = arcsin(ϵ/16τ). d is the latent dimension of M, and vol(Bd
ϵ )

denotes the d-dimensional volume of the standard d-dimensional ball of radius d. vol(M) is the
d-dimensional volume of M.

This result stipulates a lower bound for the training set size necessary to recover the homology of
the manifold, which is the foundation to learn the homeomorphism between a solid manifold M
and its topological representative M′. However, directly constructing this homeomorphism remains
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challenging. As a workaround, we develop a simplicial homeomorphism to approximate the genuine
homeomorphism. Notably, this simplicial approach lends itself readily to representation via neural
networks.

Combined with the topological representative classification network in Theorem 1, we can construct
a classification network for solid manifolds in the following manor, as depicted in Figure 2. Initially,
we project M to its simplicial approximation |K| using a neural network Np. This is succeeded by a
network Nϕ that facilitates the simplicial homeomorphism between |K| and |L|, the latter being the
simplicial approximation of the topological representative M′. Finally, a network h is utilized to
classify between |L1| and |L0|. Consequently, the network’s size is divided into two main parts: one
focused on complexities related to geometric attributes and the other concerning topological aspects.
This distinction separates topology from geometry in classification problems.

In Theorem 2, we design such a neural network based on this training set, ensuring that approximation
errors are effectively controlled. The detailed proof is provided in Appendix A.5. Our proof strategy
begins with the construction of a ReLU network, followed by an evaluation of the network’s size.
Subsequently, we place bounds on the involved approximation errors.

𝑁!

ℳ" |𝐾"| ℳ"′
|𝐿"|

𝑁# ℝ
ℎ

Figure 2: Construction of the network g. While the diagram illustrates only the process for the
manifold of the positive class, the procedure for M0 mirrors this operation identically.

Theorem 2 (Main Theorem). Let M = M1

⋃
M0 ⊂ RD be a d-dimensional solid manifold. M1

and M0 are two disjoint sub-manifolds of M representing two classes and both are also solid.
The condition number of M is 1

τ and the total Betti number of M1 is β. Given a training set
{(xi, yi)|xi ∈ M, yi ∈ {0, 1}}ni=1, where xi are sampled i.i.d. from M by a uniform distribution,
and yi = IM1(xi). For any δ > 0, if inequality (6) holds, then for any ϵ > 0, there exists a
ReLU network g with depth at most O(log β + d log 1

τ + log log 1
τδ ) and size at most O(d

2β2

ϵ +

τ−d2/2 logd/2 1
τδ +Dτ−d log 1

τδ ), such that

P (R(g) ≤ ϵ) > 1− δ, (8)

where R(g) =
∫
M(g − IM1)

2µ(x)dx with any continuous distribution µ.

Upon examining the depth and size of the neural network, it becomes evident that the topological
complexity, denoted by β, and the geometric complexity, symbolized by τ , are distinctly delineated.
The topological complexity contributes O

(
d2β2

ϵ

)
to the overall network size. In contrast, geometry

contributes O
(
τ−d2/2 logd/2 1

τδ +Dτ−d log 1
τδ

)
.

It is important to note that our result is constructed as an upper bound. In practical scenarios, a neural
network trained without specific constraints might not follow a strict sequence of first learning a
homeomorphism to latent representations and then executing classification. Instead, it could adopt a
more integrated approach, intertwining classification information during the representation learning
process. This means that the actual network size could be significantly less than our provided
bound. However, the tightness of topological bound O

(
d2β2

ϵ

)
can be empirically verified with fixed

dimension. We delve into this in the subsequent section.

5 EMPIRICAL VALIDATION

In this section, we present numerical results that showcase our topological bound O
(

d2β2

ϵ

)
in fixed

dimension. Even though this bound is derived through construction and serves as an upper limit, it is
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(b) Solid torus of genus 2.
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Figure 3: Validation of topological complexity. (a,b) are samples from two solid tori with different
topological complexity. Samples from the negative class, which is not shown, are sampled uniformly
from the background. (c) showcases the linear regression results between the network size and the
square of topological complexity. A 5-layer neural network with adaptive width is trained to fit tori
of varying genus g. The width of the network is increased until the training accuracy exceeds 0.95.

intriguing to discover that the bound is tight and can be readily observed in experimental settings.
In practical scenarios, when training networks of varying sizes on data drawn from manifolds with
different total Betti numbers β, and achieving the same error rate, we anticipate a linear relationship
between the network size and β2.

We utilize manifolds characterized as solid genus-g tori, with g spanning from 1 to 10. Each genus-g
torus is synthesized by overlapping two identical tori. For each torus, we consistently sample g× 104

points from a surrounding bounding box. The labels for these points are generated using the indicator
function of the solid torus.

For training, we deploy a 5-layer ReLU network, gradually increasing its width until the training
accuracy surpasses 0.95. Figure 3c presents a regression line charting the relationship between
network size and the squared topological complexity, β2. This regression underscores a pronounced
linear association between network size s and β2, with a correlation coefficient r = 0.9698.

6 CONCLUSION

In this study, we delved into the intricate relationship between network size, and both geometric
and topological characteristics of manifolds. Our findings underscored that while many existing
studies have been focused on geometric intricacies, it is important to also appreciate the manifold’s
topological characteristics. These characteristics not only offer an alternative perspective on data
structures but also influence network size in significant ways.

Although our proposed network size bounds represent theoretical upper limits, our empirical valida-
tions concerning the topological bound are promising. Nevertheless, real-world implementations may
yield efficiencies beyond these confines. To attain a more direct and refined theoretical bound, we
may need more comprehensive descriptors of manifolds that go beyond merely the Betti numbers
and the condition number. We leave this exploration for future work. We hope that our study acts as
a catalyst for further research, pushing the boundaries of manifold learning and its applications in
modern AI systems.
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A APPENDIX

In this section, we formally prove the theoretical findings presented in the primary manuscript.
Initially, we utilize some necessary definitions and existing results. Then we prove the network size
bound for fundamental solid manifolds and general topological representatives.

A.1 ADDITIONAL DEFINITIONS

The first definition is Betti number, which is a vital part of this paper. The k-th Betti number is
defined as the rank of k-th homology group. Therefore, we have to properly define homology group
first. Our definition follows Hatcher (2002) but is tailed for simplification. We first define simplicial
homology for simplicial complexes. (Actually for ∆-complexes. we simplify it to avoid introducing
∆-complexes.) Then extend it to singular homology that can be applied to manifolds.

Simplicial Homology. Let K be a simplicial complex, and let Kk be the set of all k-dimensional
simplices in K. The set of Kk together with the field Z2 forms a group Ck(K). It is a vector
space defined on Z2 with Kk as a basis. The element of Ck(K) is called a k-chain. Let σ ∈ Kk

be a k-simplex. The boundary ∂k(σ) is the collection of its (k − 1)-dimensional faces, which is a
k − 1-simplicial complex. The boudnary operator is linear, i.e.

∂k(z1σ1 + z2σ2) = z1∂k(σ1) + z2∂k(σ2).

The boundary operator ∂k : Ck(K) → Ck−1(K) introduces a chain complex

· · · −→ Cd
∂d−→ Cd−1

∂d−1−−−→ Cd−2 −→ · · · −→ C0
∂0−→ ∅.

d is the maximum dimension of K. Ker ∂k is the collection of k-chains with empty boundary and
Im ∂k is the collection of (k − 1)-chains that are boundaries of k-chains. Then we can define the
k-th homology group of the chain complex to be the quotient group Hk = Ker ∂k/Im ∂k+1. The k-th
Betti number is defined by

βk = rankHk.

Singular Homology. Given a topological space X , the k-th singular chain group Ck(X) is defined
as the free Abelian group generated by the continuous maps ϕ : Kk → X , where Kk is the standard
k-simplex in Rk. Each such map is referred to as a singular k-simplex in X .

A boundary operator ∂k : Ck(X) → Ck−1(X) can be defined as:

∂ϕ =

n∑
i=0

(−1)iϕ|[v0,··· ,v̂i,··· ,vn],

where ϕ|[v0,··· ,v̂i,··· ,vn] represents the restriction of σ to the i-th face of Kk.

The k-th singular homology group Hk(X) is then represented as the quotient:

Hk(X) = Ker ∂k/Im ∂k+1.

The k-th Betti number is still defined as βk = rankHk(X).

A.2 PRELIMINARY RESULTS

We present some pre-established results regarding the network size associated with learning a 1-
dimensional piecewise linear function, as well as basic combinations of functions.
Lemma 2 (Theorem 2.2. in Arora et al. (2018)). Given any piecewise linear function R → R with p
pieces there exists a 2-layer ReLU network with at most p nodes that can represent f . Moreover, if
the rightmost or leftmost piece of a the piecewise linear function has 0 slope, then we can compute
such a p piece function using a 2-layer ReLU network with size p− 1.

Lemma 3 (Function Composition, Lemma D.1. in Arora et al. (2018)). If f1 : Rd → Rm is
represented by a ReLU DNN with depth k1 + 1 and size s1, and f2 : Rm → Rn is represented by
a ReLU DNN with depth k2 + 1 and size s2, then f2 ◦ f1 can be represented by a ReLU DNN with
depth k1 + k2 + 1 and size s1 + s2.
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Lemma 4 (Function Addition, Lemma D.2. in Arora et al. (2018)). If f1 : Rn → Rm is represented
by a ReLU DNN with depth k + 1 and size s1,and f2 : Rn → Rm is represented by a ReLU DNN
with depth k + 1 and size s2, then f1 + f2 can be represented by a ReLU DNN with depth k + 1 and
size s1 + s2.
Lemma 5 (Taking maximums, Lemma D.3. in Arora et al. (2018)). Let f1, ..., fm : Rn → R be the
functions that each can be represented by ReLU networks with depth ki + 1 and size si, i = 1, ...,m.
Then the function f : Rn → R defined as f = max{f1, ..., fm} can be represented by a ReLU
network of depth at most max{k1, ..., km}+ log(m)+1 and size at most s1+ ...+ sm+4(2m− 1).

We proceed to disclose the network size involved in learning a 1-dimensional Lipschitz function.
Lemma 6 (Lipschitz Function Approximation, adapted from Lemma 11 in Eldan & Shamir (2016)).
For any L-Lipschitz function f : R → R which is constant outside a bounded interval [a, b], and for
any ϵ > 0, there exits a two-layer ReLU network h(x) with at most ⌈L(b−a)/ϵ⌉+1 nodes, such that

sup
x∈R

|f(x)− h(x)| < ϵ.

Proof. We follow the original proving idea but adapt it for better understanding. We prove the lemma
by estimate the Lipschitz function by a piece-wise linear function within error ϵ and use a two-layer
ReLU network to represent the piece-wise linear function.

We first cut the interval equally into m sections [a, b] =
⋃m

i=1[a + (i − 1)δ, a + iδ], where δ =
(b− a)/m. For each interval Ii = [a+ (i− 1)δ, a+ iδ], we denote fi(x) = f |Ii . Then ∀x1, x2 ∈ Ii,
|fi(x1)− fi(x2)| ≤ L|x1 − x2| ≤ Lδ. Let hi(x) be the linear function defined on this interval and
connect (a+ (i− 1)δ, fi(a+ (i− 1)δ)) and (a+ iδ, fi(a+ iδ)). Then we can bound the difference
between fi(x) and hi(x) by

|fi(x)− hi(x)| ≤ max{|max fi(x)−minhi(x)|, |min fi(x)−maxhi(x)|}
= max{|max fi(x)− fi(a+ (i− 1)δ)|, |min fi(x)− fi(a+ iδ))|}
≤ Lδ.

(A.1)

The second line assumes hi(x) is non-decreasing. The other case can also be easily verified. By
setting m = ⌈L(b−a)

ϵ ⌉, for every interval, the error is controlled by ϵ. Let h(x) be the collection of
all hi and also the constant outside of [a, b], so we have supx∈R |f(x)− h(x)| < ϵ.

h(x) is a piece-wise linear function with m+ 2 pieces. According to Lemma 2, there exists a 2-layer
ReLU network with at most m+ 1 pieces that can represent h(x). Proof done.

A.3 APPROXIMATING FUNDAMENTAL SOLID MANIFOLDS

Now we are in a good position to prove Proposition 1 and 2.
Proposition 1 (Approximating a Rd Ball, adapted from Theorem 2 in Safran & Shamir (2016)).
Given ϵ > 0, there exists a ReLU network h : Rd → R with 3 layers and with size at most
4d2r2/ϵ+ 2d+ 2, which can approximate the indicator function IBd

r
within error R(h) ≤ ϵ for any

continuous distribution µ(x).

Proof. We generally follow the original proof but derive a slightly different bound with fewer
parameters. The proof is organized by first using a non-linear layer to approximate a truncated square
function and then using another non-linear layer to approximate a threshold function. Consider the
truncated square function

l(x; r) = min{x2, r2}. (A.2)
Clearly l(x; r) is a Lipschitz function with Lipschitz constant 2r. Applying Lemma 6, we have a
2-layer ReLU network h11 that can approximate l(x; r) with

sup
x∈R

∣∣h11(x)− l(x)
∣∣ ≤ ϵ1, (A.3)

with at most 2r2/ϵ1 + 2 nodes. Now for x ∈ Rd, let

h1(x) =

d∑
i=1

h1i(xi). (A.4)

12



Under review as a conference paper at ICLR 2024

Note that h1 is also a 2-layer network because no extra non-linear operation is introduced in equa-
tion A.4, and has size at most 2dr2/ϵ1 + 2d. This can also be verified by Lemma 4. Let

L(x) =

d∑
i

L(xi; r), (A.5)

and we have
sup
x

∣∣h1(x)− L(x)
∣∣ ≤ dϵ1. (A.6)

Let ϵ1 = dϵ1, then h1 has size at most 2d2r2/ϵ1 + 2d. Although L(x) is different from
∑

x2
i , the

trick here is to show Bd
r = {x : L(x) ≤ r2}.

On the one hand, if L(rvx) ≤ r2, remember that

L(x) =

d∑
i=1

min{x2
1, r

2} ≤ r2. (A.7)

This means for all xi, xi ≤ r2. Therefore, L(x) =
∑d

i=1 x
2
i . On the other, L(x) > r2 only happens

when there exists a i, such that x2
i > r2. Thus, x /∈ Bd

r . Consequently, one can represent IBd
r

by
L(x) ≤ r2.

The next step towards this proposition is to construct another 2-layer ReLU network to threshold
L(x). Consider

f(x) =


1, x < r2 − δ,
r2−x

δ , x ∈ [r2 − δ, r2],

0, x > r2.

(A.8)

Note that f is a 3-piece piece-wise linear function that approximates a threshold function. According
to Lemma 2, a 2-layer ReLU network h2 with size 2 can represent f . The function f ◦L(x) can then
be estimated by a 3-layer network h = h2 ◦ h1, whose size is 2d2r2/ϵ1 + 2d+ 2. The next step is
to bound the error between h and IBd

r
. We consider the L2-type bound ||h(x) − IBd

r
(x)||L2(µ) =∫

Rd(h(x)− IBd
r
(x))2µ(x)dx. We divide the integral into two parts

||h(x)− IBd
r
(x)||L2(µ)

≤ ||f ◦ L(x)− IBd
r
(x)||L2(µ) + ||f ◦ L(x)− h2 ◦ h1(x)||L2(µ)

= I1 + I2.

(A.9)

Since µ(x) is continuous, there exists δ such that∫
Sδ

µ(x)dx ≤ ϵ2. (A.10)

Sδ = {x ∈ R3 : r2 − δ ≤
∑d

i=1 x
2
i ≤ r2}. Combine equation A.8 we have

I1 =

∫
R3

(f ◦ L(x)− IBd
r
(x))2µ(x)dx

=

∫
Sδ

(f ◦ L(x)− IBd
r
(x))2µ(x)dx

=

∫
Sδ

(f ◦ L(x)− 1)2µ(x)dx

≤
∫
Sδ

µ(x)dx

≤ ϵ2.

(A.11)

The first inequality is because f ∈ [0, 1], such that (f ◦L(x)− 1)2 ≤ 1. The second part of the error
can be easily bounded by its infinity norm.

I2 = ||f ◦ L(x)− h2 ◦ h1(x)||L2(µ) ≤ ||f ◦ L(x)− h2 ◦ h1(x)||∞ ≤ ϵ1. (A.12)
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The last inequality is because h2 is the exact representation of f , the error only occurs between L(x)
and h1. Combine A.11 and A.12, and let ϵ1 = ϵ2 = ϵ/2, we have

||h(x)− I(x)||L2(µ) ≤ ϵ. (A.13)

The size of network h is then bounded by 4d2r2/ϵ+ 2d+ 2.

Proposition 2 (Approximating a Solid Torus). Given ϵ > 0, there exists a ReLU network h : R3 → R
with 5 layers and with size at most 2d

ϵ (4(d− 1)(R+ r)2+8r2+ r√
R−r

)+9, which can approximate
the indicator function IT1 within error R(h) ≤ ϵ for any continuous distribution µ(x).

Proof. The proof is done by two steps. We first use layers to estimate a truncated function. Then
estimate a threshold function by another layer.

Consider the truncated square function and root function,

l1(x; γ) = min{x2, γ2},
l2(x; γ1, γ2) = min{max{

√
x, γ1}, γ2}, (γ1 < γ2).

The Lipschitz constants for l1 and l2 are 2γ and 1
2
√
γ1

, respectively. By Lemma 6, there is a 2-layer
ReLU network to approximate l1 and l2 with size ⌈4γ2/ϵ1⌉ + 1 and ⌈(γ2 − γ1)/(2ϵ1

√
γ1)⌉ + 1,

respectively. Let

L(x) = l1(x3; r) + l1(l2(l1(x1;R+ r) + l1(x2;R+ r);R− r,R+ r)−R; r). (A.14)

Then it is time to show T1 = {x ∈ R3 : x2
3 + (

√
x2
1 + x2

2 − R)2 ≤ r2} = {x : L(x) ≤ r2}. For
x ∈ IT1

(x), the following inequalities hold

x2
1 ≤ (R+ r)2, x2

2 ≤ (R+ r)2, (A.15)

R+ r ≥
√

x2
1 + x2

2 ≥ R− r, (A.16)

x2
3 ≤ r2, (

√
x2
1 + x2

2 −R)2 ≤ r2. (A.17)

These indicate that L(x) = x2
3 + (

√
x2
1 + x2

2 − R)2 ≤ r2, when x ∈ T1. And when x /∈ T1, if
L(x) = x2

3 + (
√

x2
1 + x2

2 −R)2 still holds, clearly L(x) > r2. Otherwise, one of the inequalities in
A.15, A.16 and A.17 must break. If one of A.17 breaks, then clearly L(x) > r2. If A.16 does not
hold, then (

√
x2
1 + x2

2 −R)2 > r2, resulting L(x) > r2. The violation of A.15 resulting violation
of A.16, which then leads to L(x) > r2.

To see how a ReLU network can estimate L(x), we start by estimating each of its component. We
define the following 2-layer networks. To make the overall network take x ∈ R3 as input, we consider

Network Target Size
h11 l1(x1;R+ r) s11 = ⌈4(R+ r)2/ϵ1⌉+ 1
h12 l1(x2;R+ r) s12 = ⌈4(R+ r)2/ϵ1⌉+ 1
h2 l2(x1;R− r,R+ r) s2 = ⌈r/(ϵ1

√
R− r)⌉+ 1

h31 l1(x1; , r) s31 = ⌈4r2/ϵ1⌉+ 1
h32 l1(x3; , r) s32 = ⌈4r2/ϵ1⌉+ 1

the following structure,

By Lemma 4 and Lemma 3 and the given structure, a ReLU network L̃ with depth 4 and size
(d− 1)s11 + s2 + s31 + s32 + 2, where d = 3, can approximate L(x) such that

sup
x

|L(x)− L̃(x)| ≤ dϵ1. (A.18)

The next step is to threshold L(x). Consider a function

f(x) =


1, x < r2 − δ,
r2−x

δ , x ∈ [r2 − δ, r2],

0, x > r2.

(A.19)
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x1

x2

x3

h11

h12

x3 x3

h2 h31

h32

+

−R

This function approximates a thresholding function I[x ≤ r2] but with error inside the interval
[r2 − δ, r2]. By Lemma 2, a 2-layer ReLU network f̃ with size 2 can represent f(x). Then f̃ ◦ L̃ is a
ReLU network with depth 5 and size (d− 1)s11 + s2 + s31 + s32 + 4, such that

sup
x

|f ◦ L(x)− f̃ ◦ L̃(x)| ≤ ϵ1, (A.20)

with letting ϵ1 = ϵ1/d.

Let h(x) = f̃ ◦ L̃(x). We claim that h(x) is the desired network with depth 5 and size

(d− 1)s11 + s2 + s31 + s32 + 4

=
d

ϵ1
(4(d− 1)(R+ r)2 + 8r2 +

r√
R− r

) + 9

= O(
d2

ϵ1
).

(A.21)

To finalize our proof, we just need to bound the error ||h(x)− IT1
(x)||L2(µ). The proof follows proof

of Proposition 1. The error is divided into two parts and is bounded separately. The only difference is
we define Sδ to be Sδ = {x ∈ R3 : r2 − δ ≤ z2 + (

√
x2 + y2 −R)2 ≤ r2}, such that∫

Sδ

µ(x)dx ≤ ϵ2. (A.22)

We can get I1 ≤ ϵ2, and I2 ≤ ϵ1. Let ϵ1 = ϵ2 = ϵ/2, we have

||h(x)− I(x)||L2(µ) ≤ ϵ. (A.23)

And h has size at most 2d
ϵ (4(d− 1)(R+ r)2 + 8r2 + r√

R−r
) + 9.

A.4 APPROXIMATING TOPOLOGICAL REPRESENTATIVES

After getting the size arising from fundamental manifolds, we proceed to study the combination of
them. We start by proving the representative property.
Lemma 1 (Representative Property). If M ⊂ RD is a solid manifold, then there exists a manifold
M′ ⊂ Rd(d ≤ 3) that is homeomorphic to M, where M′ is constructed by a finite set of fundamental
manifolds {Fi}mi=1 via set union and subtraction. m ≤ β(M) is a constant integer. We term M′ as
the topological representative of M.

Proof. When d = 2, M is a 2-dimensional solid manifold. By the definition of solid manifolds,
the boundary ∂M of M is a closed 1-manifold. According to the classification theorem of closed
1-manifold, ∂M is homeomorphic to either:

1. A circle S1,

2. A disjoint union of a finite number of circles.

Note that a circle is the boundary of a disk, i.e., S1 = ∂B2. Next we check the disjoint union of m
circles S1

1 , S
1
2 , ..., S

1
m. Every circle S1

i is a boundary of a disk B2
i . The disjoint property ensures that

for any pair i, j, only one of the three situations can hold, B2
i ∩B2

j = ∅, B2
i ⊂ B2

j or B2
j ⊂ B2

i .
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(C1): If B2
i ∩B2

j = ∅, then S1
i ∪ S1

j = ∂(B2
i ∪B2

j ),

(C2): if B2
j ⊂ B2

i , S1
i ∪ S1

j = ∂(B2
i \B2

j ),

(C3): if B2
i ⊂ B2

j , S1
i ∪ S1

j = ∂(B2
j \B2

i ).

Every operation of (C1) introduces an additional 0-dimensional Betti number β0, and (C2) or (C3)
introduces an additional 1-dimensional Betti number β1. In the light of this, the total number of disks
m = β0(M) + β1(M) = β. Now we have proved the proposition in the case of d = 2.

For d = 3, similarly ∂M is a closed oriented 2-manifold. Based on the classification of closed
oriented 2-manifolds, ∂M is homeomorphic to one or the disjoint union of some members from the
following two classes:

1. A sphere S2,

2. A genus-g torus ∂Tg .

Note that we use Tg to represent the solid genus-g torus, so ∂Tg is the genus-g torus. A genus-g torus
is the connected sum of g tori. In another word, there exists g solid tori, such that Tg is the union
of these g solid tori. With S2 = ∂B3 and a similar discussion as d = 2, we know that M can be
obtained by union or set subtraction of a number m of balls and solid tori. Since a solid torus has
β0 = 1 and β1 = 1, m ≤ β0(M) + β1(M) + β2(M) = β.

Lemma 7 (Manifold Union and Subtraction). M1 and M2 are two manifolds in Rd. IM1
can be

approximated by a ReLU network h1 with depth d1 + 1 and size at most s1 with error R(h1) < ϵ1,
IM2

can be approximated by a ReLU network h2 with depth d2 + 1 and size at most s2 with error
R(h2) < ϵ2. Then IM1∪M2 and IM1\M2

can be approximated within error ϵ1 + ϵ2 by a ReLU
network with depth at most max{d1, d2}+ 2 and size at most s1 + s2 + 2.

Proof. We represent IM1∪M2
= Ix>0 ◦ (IM1

+ IM2
) by a threshold function Ix>0. The threshold

function can be approximate by a function

f(x) =


0, x ≤ 0
x
δ , x ∈ (0, δ)

1, x ≥ δ.

(A.24)

with errors only in (0, δ). f can be represented by a 2-layer ReLU network hf with size 2. Then if let
h = hf ◦ (h1 + h2), according to Lemma 4 and 3, h is a neural network with depth max{d1, d2}+2
and size s1 + s2 + 2. Then we bound the error

||h− IM1∪M2
||L2(µ) = ||hf ◦ (h1 + h2)− Ix>0 ◦ (IM1

+ IM2
)||L2(µ)

≤ ||hf ◦ (h1 + h2)− f ◦ (IM1
+ IM2

)||L2(µ)

+ ||f ◦ (IM1 + IM2)− Ix>0 ◦ (IM1 + IM2)||L2(µ)

≤ ||hf ◦ (h1 + h2)− hf ◦ (IM1
+ IM2

)||L2(µ)

≤ ||hf ||∞||(h1 + h2)− (IM1 + IM2)||L2(µ)

≤ ||(h1 + h2)− (IM1
+ IM2

)||L2(µ)

≤ ϵ1 + ϵ2

(A.25)

Similarly, IM1\M2
can be represented by Ix>0 ◦ (IM1

− IM2
). Following the same discussion, we

can have the proposition proved.

Theorem 1 (Complexity Arising from Topology). Suppose M′ is the topological representatives
of a solid manifold. Given ϵ > 0, there exists a ReLU network h : Rd → R (d ≤ 3) with depth at
most O(log β) and size at most O(d

2β2

ϵ ), that can approximate the indicator function IM′ with error
R(h) ≤ ϵ for any continuous distribution µ over Rd. β is the topological complexity of M′.
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Proof. Since M′ is a topological representative, according to Lemma 1, there is a set of fundamental
manifolds {F1,F2, ..,Fm}, such that M′ can be obtained from these m fundamental manifolds by
set nion and subtraction. According to proposition 7, IF1⋊⋉F2⋊⋉..⋊⋉Fm

can be approximated by a ReLU
network h with depth at most max{d1, d2, ..., dm}+ logm and size at most

∑m
i=1 si + logm, with

error R(h) ≤
∑m

i=1 ϵi. ⋊⋉ is either set union or subtraction. Then according to Proposition 1 and 2,
si ∼ O(d2/ϵi), di ∼ O(1) and take ϵi to be all the same for all i = [m]. Let ϵ = mϵi and note that
m ≤ β. We have h has depth at most O(log β) and size at most O(d

2β2

ϵ ), and can approximate IM′

with error R(h) ≤ ϵ.

A.5 OVERALL COMPLEXITY

We present a result from Gonzalez-Diaz et al. (2019), which gives a bound of network size to represent
a simplicial map.
Proposition 6 (Adapted from Theorem 4 in Gonzalez-Diaz et al. (2019)). Let us consider a simplicial
map ϕc : |K| → |L| between the underlying space of two finite pure simplicial complexes K and L.
Then a two-hidden-layer feed-forward network Nϕ such that ϕc(x) = Nϕ(x) for all x ∈ |K| can
be explicitly defined. The size of Nf is D + d + k(D + 1) + l(d + 1), where D = dim(|K|) and
d = dim(|L|), k and l are the number of simplices in K and L, respectively.
Theorem 2 (Main Theorem). Let M = M1

⋃
M0 ⊂ RD be a d-dimensional solid manifold. M1

and M0 are two disjoint sub-manifolds of M representing two classes and both are also solid. The
reach of M is τ and the total Betti number of M1 is β. Given a training set {(xi, yi)|xi ∈ M, yi ∈
{0, 1}}ni=1, where xi are sampled i.i.d. from M by a uniform distribution, and yi = IM1(xi). For
any δ > 0, if inequality (6) holds, then for any ϵ > 0, there exists a ReLU network g with depth at
most O(log β + d log 1

τ + log log 1
τδ ) and size at most O(d

2β2

ϵ + τ−d2/2 logd/2 1
τδ +Dτ−d log 1

τδ ),
such that

P (R(g) ≤ ϵ) > 1− δ, (A.26)
where R(g) =

∫
M(g − IM1

)2µ(x)dx with any continuous distribution µ.

Proof. Since M = M1 ∪ M0 is a solid manifold, it has a topological representative M′ =
M′

1 ∪M′
0 ∈ Rd, where M′

1 and M′
0 are topological representatives of M1 and M2, respectively.

The proof follows by first constructing simplicial approximations |K| and |L| of M and M′, re-
spectively. Then we represent a simplicial homeomorphism ϕ : |K| → |L| by a neural network
Nϕ, where K is constructed from M and L from M′. Built on the top of this, a projection from
M to its simiplicial approximation |K| is represented by another network Np. The overall network
can be constructed by g = h ◦ Nϕ ◦ Np. Note that h is the function to approximate IM′

1
, but the

data after projection and homeomorphism is from |L1|. There should be an error in this approx-
imation. However, we will show that by using the true risk, having |L1| ⊆ M′

1 will make sure
||I|L1| − IM′

1
||L2(µ′) = 0. We move ahead by first constructing the network g, and then bound the

approximation error.

Network Construction. Given M is a compact submanifold of RD and xi are sampled according
to a uniform distribution, by Proposition 3, for all 0 < r < τ/2 and n > λ1(log(λ2) + log( 1δ ))

(n ∼ O(τ−d log(1/τδ))), U =
⋃

i B
D
r (xi) has the same homology as M with probability higher

than 1− δ. Note that every BD
r (xi) is contractible because r ≤ τ . Therefore by the nerve theorem

(Edelsbrunner & Harer, 2022), the nerve of U is homotopy equivalent to M. Note that U is a
collection of ϵ-balls. The nerve of U is the Čech complex, which is an abstract complex constructed
as Čech(r) = {σ ⊆ X|

⋂
x∈σ Br(x) ̸= 0}. But since the dimension of M is d, it suffices to only

consider simplices with dimension ≤ d. Delaunay complex is such a geometric construction that
limits the dimension of simplices we get from a nerve. And in the other hand, we also do not
want to lose the radius constraint. Here we construct the Alpha complex, a sub-complex of the
Delaunay complex. It is constructed by intersecting each ball with the corresponding Voronoi cell,
Rx(r) = Br(x) ∩ Vx. The alpha complex is defined by

Alpha(r) = {σ ⊆ X|
⋂
x∈σ

Rx(r) ̸= 0}. (A.27)

Based on the construction, Alpha(r) also has the same homotopy type as U . Bern et al. (1995)
provided the number of simplices in a Delaunay complex of n vertices is bounded by O(n⌈d/2⌉).
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Since the Alpha complex is a sub-complex of Delaunay complex, the number of simplices in Alpha(r)
is also bounded by

O(n⌈d/2⌉) = O(τ−d2/2 logd/2
1

τδ
) (A.28)

Denote K = Alpha(r).

We claim that there exists a a vertex map ϕ : xi → x′
i for i = 1, ..., n, such that with probability

higher than 1− δ, U ′ =
⋃

i B
d
r′(x

′
i) has the same homology of M. We prove this claim at the after

the proof. We can construct an alpha complex from {x′
i}ni=1 in a similar way, L = Alpha(r). The

number of simiplices is also bounded by O(τ−d2/2 logd/2 1
τδ ).

ϕ can be extended to a simiplicial map ϕ : |K| → |L| by

ϕ(x) =

n∑
i=1

bi(x)ϕ(xi). (A.29)

The map bi : |K| → R maps each point to its i-th barycentric coordinate. According to Proposition 6,
there exists a ReLU network Nϕ with depth 4 and size O(τ−d2/2 logd/2 1

τδ ), such that ϕ(x) = Nϕ(x)
for all x ∈ |K|.
Next we construct a network Np that projects M to its simplicial approximation |K|. The point is
projecting x ∈ M to its closest simplex σx. According to the proof of theorem 3 in Schonsheck
et al. (2019), such projection can be represented as a neural network Np with depth at most log n+ 1
and size at most O(nD). Lastly, by Theorem 1, a neural network h with depth at most O(log β)

and size at most O(d
2β2

ϵ1
) can approximate IM′

1
with error R(h) ≤ ϵ1. And by Lemma 3, g =

h ◦ Nϕ ◦ Np has depth at most O(log(nβ)) and size O(d
2β2

ϵ1
+ τ−d2/2 logd/2 1

τδ + nD). Given
n ∼ O(τ−d log(1/τδ)), g has depth at most O(log β + d log 1

τ + log log 1
τδ ) and size at most

O(d
2β2

ϵ1
+ τ−d2/2 logd/2 1

τδ + Dτ−d log 1
τδ ). Note that the probability of the existence for such

network is larger than (1− δ)2 = 1− 2δ + δ2 > 1− 2δ. We let δ = 2δ, such that with probability
larger than 1− δ, neural network g exists and g has depth at most O(log β + d log 1

τ + log log 1
τδ )

and size at most O(d
2β2

ϵ1
+ τ−d2/2 logd/2 1

τδ +Dτ−d log 1
τδ ).

Bounding Approximation Error. Now it is time to bound the approximation error R(g). We split
R(g) into two parts.

R(g) = ||g − IM1
||L2(µ)

≤ ||h ◦Nϕ ◦Np − IM′
1
◦ ϕ ◦Np||L2(µ) + ||IM′

1
◦ ϕ ◦Np − IM1

||L2(µ)

= I1 + I2.

(A.30)

We first show that I2 = 0. Note that Np : M → |K|, and ϕ : |K| → |L|. We claim that for x ∈ M1,
ϕ ◦Np(x) ∈ L1 and if x ∈ M0, ϕ ◦Np(x) ∈ L0. This is true because M1 and M2 are disjoint and
L is homotopy equivalent to M. Consequently, IL1

◦ ϕ ◦Np = IM1
.

Now it suffices to show ||IL1
−IM′

1
||L2(µ′) = 0. Note that µ′ is a distribution supported on |L|, it can

be naturally extended to M′ by set µ′(x′) = 0 if x′ ∈ M′ but x′ /∈ |L|. Although this way µ′ may
not be continuous, Theorem 1 still holds for it, because the claim, ∃δ such that

∫
Sδ

µ′(x′)dx′ ≤ ϵ,
still holds.

The term ||IL1
− IM′

1
||L2(µ′) is not likely to be zero because there are points x′ ∈ |L1| but x′ /∈ M′

1,
which will raise error. Note that points x′ ∈ M′

1 but x′ /∈ |L1| will not cause any error because
µ′(x′) = 0. However, the topological representative M′ is flexible in a way that we can adjust its
radius. We claim that one can extent the boundary of M′

1, such that |L1| ⊂ M′
1 and M′

1 is still the
topological representative of M1. We prove this in Claim 2. After the expansion, |L1| ⊆ M′

1 because
|L1| is constructed within a r-cover of the old M′

1. As a conclusion, ||IL1
− IM′

1
||L2(µ′) = 0.

Now we settle I1 with the new M′
1. Given Nϕ is an exact representation of the simplicial map ϕ,

I1 = ||h− IM′
1
||L2(µ′). (A.31)

As we discussed, Theorem 1 still holds for µ′. Therefore I1 ≤ ϵ1. Combined together, we have
R(g) ≤ ϵ1. (A.32)
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Note that this inequality holds only with probability larger than 1 − δ because that is the proba-
bility we successfully recover the homology of M by the training set and construct a simplicial
homeomorphism.

Claim 1. M ∈ RD is a d-dimensional solid manifold. Suppose there exists a set {xi ∈ M}ni=1 and
radius r, such that U =

⋃
i B

D
r (xi) is a cover of M and has the same homology. Then there exists a

M′ ∈ Rd that is a topological representative of M. Denote the homeomorphism between them f .
Then with probability larger than 1− δ, U ′ =

⋃
i B

d
r′(f(xi)) has the same homology as M.

Proof. We let

c(r, τ,M) =
vol(M)

(cosdθ1)vol(Bd
r/4)

(
log

vol(M)

(cosdθ2)vol(Bd
r/8)

+ log
1

δ

)
, (A.33)

where θ1 = arcsin r
8τ , θ2 = arcsin r

16τ and 0 < r < τ/2. Given a set {f(xi)}ni=1, apply proposi-
tion 3 to M′. If

n > c(r′, τ ′,M′), (A.34)
then with probability 1− δ, U ′ =

⋃
i B

d
r′(f(xi)) has the same homology as M′, with r′ < τ ′/2.

Note that n already satisfy that n > c(r, τ,M), it suffices to show c(r, τ,M) > c(r′, τ ′,M′). Since
M′ is one of topological representatives of M, we can always choose the radius of the fundamental
members in M′ and choose the distance between M′

1 and M′
2, to make sure that τ ′ > τ and

vol(M′) < vol(M). Hence, we can choose r and r′, such that Bd
r′ > Bd

r . With the same δ, we have
proved that c(r, τ,M) > c(r′, τ ′,M′).

𝐱!"

𝐱#"

𝜏′

𝜏′

3
2
𝜏′

Figure A.1: The worst case in 2 dimension.

Claim 2. M′
1 is a topological representative of M1, |L1| is the alpha complex constructed from the

r′-cover U ′ =
⋃

i B
d
r′(x

′
i), where r′ < τ ′/2. There is a way to extend M′

1, such that |L1| ⊂ M′
1,

and M′
1 is still a topological representative of M1.

To prove this claim, we need to think about this question: what is the worst case among |L1| ̸⊂ M′
1?

Or in another word, what is their largest distance could be?

Note that |L1| is constructed from a r′-cover, in a way that there will be an edge only if two balls
have intersection. Hence, for any edge (x′

i,x
′
j) ∈ |L1|, the length lij of it satisfies lij < 2r′ < τ ′.

And notice τ ′ is also the smallest radius that an inner hold can hold. So the worst case goes with, an
inner ball/circle with two center points x′

i and x′
j on it, where lij = τ ′. The boundary of M′

1 can be
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categorised into exterior boundary ∂+M′
1 and interior boundary ∂−M′

1. The difference between
M′

1 and |L1| can only occurs in the interior boundary ∂−M′
1. We prove that, under the worst cases,

one can extend the interior boundary ∂−M′
1 inward, such that |L1| ⊂ M′

1.

In 2-dimension, illustrated in Figure A.1. We can easily calculate that the furthest distance between
(x′

i,x
′
j) and the circle is ∆ = (1 −

√
3
2 )τ ′. So if we shrink the circle by ∆, (x′

i,x
′
j) will be inside

the manifold. That is, we let M′
1 = M′

1 ∪
(⋃

x′∈∂−M′
1
Bd

∆(x
′)
)

. Note M′
1 is still the topological

representative of M1 because topology does not change and it still can be composed by disks.

In 3-dimension, the only difference is, we need to calculate the largest distance between an equilateral
triangle (x′

i,x
′
j ,x

′
k) with side length τ ′ and its circumscribed sphere with radius τ ′. This distance is

also easy to be calculated as τ ′

2 . If let M′
1 = M′

1 ∪
(⋃

x′∈∂−M′
1
Bd

τ ′/2(x
′)
)

, then |L1| ⊂ M′
1.
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