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ABSTRACT

The growing availability of single-cell perturbation data called for novel meth-
ods to capture treatment response. While early attempts employed autoencoders,
neural optimal transport (OT) emerged as a more principled alternative because it
inherently accommodates the challenges of unpaired data induced by cell destruc-
tion during data acquisition. However, neural OT relied on casting the problem
to convex regression which induced practical challenges during training. The re-
cently introduced Monge Gap overcomes these challenges through a simple and
architecturally agnostic regularizer. While successful, this approach lacks an in-
trinsic mechanism for generating maps conditional on covariates present in per-
turbation response studies (e.g., dosage, time, drug, or cell type). Here, we extend
the Monge Gap and propose CMonge, an approach that learns Monge maps con-
ditionally on arbitrary context vectors. It is based on a two-step training procedure
combining an autoencoder with a Monge map estimator. We show its value for
predicting single-cell perturbation responses, conditional to a drug, a drug dosage,
or both. We verify that our conditional models achieve comparable results to the
condition-specific state-of-the-art and observe that it particularly excels at cap-
turing higher moments of distributions. Importantly, CMonge learns from data
aggregated across conditions which exploits cross-task benefits and allows to gen-
eralize to unseen conditions with promising performance.

1 INTRODUCTION

Understanding how cells change states in response to different stimuli is a long-standing question in
biology, with broad implications across a myriad of diseases. Single-cell RNA sequencing (scRNA-
seq) coupled to high-throughput screening (Srivatsan et al., 2020) allow to capture the response of
heterogeneous cell populations to thousands of drug perturbations at once. As the cost of these ex-
periments remains high, in silico modeling of perturbation responses has emerged as an appealing
alternative. Early methods to predict perturbations at a single-cell level relied on perturbation au-
toencoders and latent space arithmetics (Lotfollahi et al., 2019; 2023; Hetzel et al., 2022). One main
challenge of perturbation modeling is the fact that the scRNA-seq data acquisition is destructive to
the cells, resulting in unpaired measurements of unperturbed and perturbed cell populations which
motivates the use of optimal transport (OT) to model cells as probability distributions. The central
question of OT is to find a mapping between a source and a target distribution while minimizing the
cost of displacement. Cuturi (2013) proposed to solve the entropic regularized version instead of the
traditional Monge formulation. By using Sinkhorn’s matrix scaling algorithm, it is possible to com-
pute OT maps efficiently between samples, which motivates to use Wasserstein distance inspired
losses in a deep learning setting (Genevay et al., 2018). Recently, neural OT emerged, to parame-
terize the transportation map via a neural network architecture. By leveraging Brenier’s theorem, a
unique dual potential exists, which has a gradient equal to the transportation map. This potential can
be represented as a convex function, which gave rise to neural solvers based on input convex neural
networks (ICNNs) (Amos et al., 2017; Makkuva et al., 2020). Building on these results, Bunne et al.
(2023) suggested to model the scRNA-seq perturbation prediction task as a neural OT problem lever-
aging ICNNs. The method was extended to model perturbations conditioned on a context variable
(Bunne et al., 2022). However, one drawback of the dual approach is that Brenier’s theorem (1987)
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Figure 1: Overview of the CMonge approach. Instead of learning local maps for each perturbation separately
(see left), we propose to model perturbation responses via a global estimator that can be conditioned on a
potentially unseen context ci at inference time (see right).

only works when the cost function is the squared Euclidean distance. Moreover, training an ICNN
to model the dual potentials poses many architectural and training challenges: a special weight ini-
tialization scheme is required to make the initial gradients meaningful, and the non-negativity of the
weights exacerbates training. Furthermore, similarly to generative adversarial networks (GANs), the
dual training suffers from instability due to its min-max loss function. Recently, flow-based (Tong
et al., 2023; Pooladian et al., 2023) or regularization-based approaches (Uscidda & Cuturi, 2023)
and even quantum computing techniques (Mariella et al., 2023; Basu et al., 2023) have been pro-
posed to overcome some of these challenges. Among those, the Monge Gap (Uscidda & Cuturi,
2023) stands out due to its simplicity: it simply employs a regularizer to estimate OT maps with any
ground cost c. The Monge Gap allows to directly parameterize T and optimize the debiased version
of the primal objective, the Sinkhorn divergence along with the Monge gap, to ensure c-optimality
and fit a mapping between the source and the target distribution. However, the learned maps are
local (i.e., unconditional), implying that distinct models are fitted for each perturbation, which has
several shortcomings:
(1) Data for each perturbation is needed, so no inference can be made for new perturbations;
(2) The computational cost of training separate models can be significant;
(3) There is no inductive bias to accommodate any covariates present in the data;
(4) Potential cross-task benefits arising from training concurrently on drugs with comparable per-

turbation effects cannot be exploited.
Here, we propose CMonge, an extension the Monge Gap that learns a global map and can be con-
ditioned on different context variables or covariates (cf. Figure 1). Instead of leveraging Brenier’s
theorem, we contextualize through the primal objective and directly learn the transportation maps be-
tween the source and different target measures. Our main contribution is a conditional loss function,
which enables to model perturbation responses via global estimators. Our proposed CMonge model
family is tested on different context variables (drug dosage, drug type and combinations thereof) and
different data splits and in and out-of-distribution settings. We experiment with different encodings
including fingerprint-based drug representations and effect-driven drug embeddings.

2 METHODS

2.1 BACKGROUND

The Monge formulation of OT seeks an optimal map T : Rd → Rd between probability measures
(µ, ν) ∈ P(Rd)× P(Rd), s.t. T pushes forward µ onto ν, while minimizing a displacement cost:

T ∗ := arg inf
T♯µ=ν

∫
Rd

c(x, T (x))dx. (1)

In practice, when measures are data samples µ = 1
n

∑n
i=1 δxi

and ν = 1
n

∑n
j=1 δyj

, the OT problem
is solved through the entropic regularized Kantorovich relaxation, which reads:

Wϵ(µ, ν) := min
P∈Un

⟨P,C⟩+ ϵH(P ), (2)
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Un = {P ∈ Rn×n
+ : P1n =

1

n
1n, P

T 1n =
1

n
1n} (3)

where H(P ) = −
∑

i,j Pij log(Pij) is the entropy, with ϵ > 0, P describes the amount of mass
flowing between the samples and

⟨P,C⟩ =
∑
i,j

Pi,jCi,j (4)

is the transportation cost Ci,j = c(xi, yj). We can construct a differentiable loss function, the
Sinkhorn divergence, by debiasing the objective, such that Wϵ(µ, µ) = 0 holds with the modification

∆ϵ(µ, ν) = Wϵ(µ, ν)−
1

2
(Wϵ(µ, µ) +Wϵ(ν, ν)). (5)

2.2 CONDITIONAL OT ESTIMATORS

In a machine learning setting, we learn a parametrized map Tθ, by minimizing the Sinkhorn diver-
gence along with the Monge Gap regularizer (Uscidda & Cuturi, 2023) and λ ≥ 0,

min
θ

∆ϵ(Tθ♯µ, ν) + λMϵ(Tθ), (6)

where the Monge Gap ensures cost optimality w.r.t. the squared Euclidean distance c(x, y) = ||x−
y||2 between the source and transported samples and can be estimated from samples, by

Mϵ(Tθ) =
1

n

n∑
i=1

c(xi, Tθ(xi))−Wϵ(µ, Tθ♯µ). (7)

However, in a conditional setting, multiple target probability measures are labeled with a context ci
(note the difference from the cost c), such that (ci, µ, νi) ∈ P(Rk×Rd)×P(Rd) for i ∈ {1, . . .K}.
Instead of learning distinct mappings Ti♯(µ) ≈ νi we build a global parametrization Tθ : Rk×Rd →
Rd that captures information contextually. Our proposed loss extends Equation 6, by simultaneously
optimizing for each of the K conditions

min
θ

K∑
i=1

∆ϵ(Tθ(ci)♯µ, νi) + λMϵ(Tθ(ci)). (8)

3 EXPERIMENTAL SETUP

3.1 DATASET

We evaluate our models on the Sci-Plex3 dataset (Srivatsan et al., 2020) which contains single-cell
profiles from three human cancer cell lines (namely A549, K562 , and MCF7) that were exposed to
a total of 188 compounds, each one administered at four different doses (10 nM, 100 nM, 1000 nM,
and 10000 nM). We test our models on 9 different drugs. Different preprocessing steps (library size
normalization, cell and gene filtering, and log1p transformation) were inherited from Lotfollahi
et al. (2019). The dataset consists of 762, 039 single-cell measurements, out of which 17, 565 belong
to the control population, and on average 4, 032 observations to each drug and drug dosage condition.
We only consider the 1000 highly-variable genes (HVG), computed on the training set only.

The 4i dataset contains cellular and nuclear measurements of 97, 748 cells (10, 995 controls) of two
lines of melanoma tumors treated with one of 35 cancer therapies each involving ∼ 2, 500 cells. We
inherit the preprocessing from Bunne et al. (2022), resulting in 48 features.

3.2 ARCHITECTURE

Training consists of a two-step procedure. First, we follow Bunne et al. (2023): instead of learning in
the gene expression space, we encode the data into a 50-dimensional latent space by training a vanilla
autoencoder with an encoder Eϕ : R1000 → R50 and a decoder Dθ : R50 → R1000. Both Eϕ and Dθ

are parameterized by multi-layer perceptrons (MLP). The objective of the network is to minimize
the reconstruction loss. Secondly, using the same training set, an OT map is learned between the
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encoded unperturbed and perturbed cells by optimizing Equation 8. The map is parameterized by
vi = Tφ(ci, zi), where zi ∈ R50 is the encoded gene expression, and ci is the context (either a
scalar, a sparse or dense vector). Throughout this paper, we will refer to Tφ as the Monge network.
Predictions are made in the cell space by shifting with the learned perturbation and decoding the
result Dθ(Eϕ(xi) + vi). The weights of the autoencoder are frozen during this phase. We next
describe how to encode the contextual information and how to incorporate it into the architecture.

3.3 ENCODING THE CONDITION

We test different settings for encoding the conditions. Firstly, we only condition on dosage and
attempt to predict perturbation responses per drug. We encode the dosage with the transformation
dose → log (dose). Secondly, we attempt to train a single model capable of making inferences on
any observation, conditioned on both the specific drug and dosage. We consider two approaches
for encoding drug information: (i) CMonge-RDKit, a fingerprint-based molecular representation,
where 194 RDKit features such as atom type, number of bonds, formal charge, atom mass or num-
ber of hydrogen atoms, along one-hot-encoded bond features (for full list see Yang et al. (2019))
are extracted from the SMILES representation of the underlying drug, following Lotfollahi et al.
(2023), and (ii) CMonge-MoA, a data-driven approach, where multidimensional scaling (MDS)
embeddings were generated by calculating pairwise Wasserstein distances between individual target
populations, following Bunne et al. (2022). This approach ensures that perturbations with similar
Modes-of-Action (MoA) effects are accurately represented in close proximity within the embed-
ding. We calculate a 10-dimensional MDS embedding by employing the majorization algorithm
SMACOF (De Leeuw, 2005) to minimize stress. Following Lotfollahi et al. (2023), we consider an
initial drug embedding hi ∈ Rm, and the transformed dosage si ∈ R. These vectors are passed to
a drug embedder Wdrug : Rm → R50, and drug-dosage embedder Wdose : Rm+1 → R networks,
which uses the drug and dosage information as well. We get the final embedding by concatenating

Wdrug(hi) = zdrug
i , Wdose(hi, si) = zdose

i , ci = (zdrug
i , zdose

i ). (9)

Our context ci ∈ R50×R, along with the unperturbed single-cell observation (ci, zi) is passed to the
Monge network, which is an MLP, with GELU (Hendrycks & Gimpel, 2016) activation functions.

3.4 EVALUATION SETTINGS

We test our methods in a homogeneous setting, i.e., data among all conditions is aggregated. We
use a 80/20 train/test split for each condition. In an OOD setting, we test the model’s ability to
generalize to unseen dosages. As many genes are left unaffected, instead of evaluating in the 1000-
dimensional gene space, we restrict ourselves to only the top 50 marker genes obtained through gene
ranking (Wolf et al., 2018). We evaluate with the R2 metric between the perturbed and predicted
feature means and the Wasserstein distance (Equation 2) and report the mean across batches of
observations sampled from the test set. The experiments used the same hyperparameters (for more
details, see Appendix A.2.1). We train and evaluate models in the following scenarios:

1. Monge: As a hypothetical upper bound on performance, we fit separate Monge Gap models, one
per drug-dosage pair. These models do not have any context (cf. Uscidda & Cuturi (2023)).

2. Monge Homo: To motivate the contextual settings, we fit a homogeneous model for each drug,
using data from all four dosages, but discarding the dosage information.

3. CMonge: We fit conditional models for each drug with the scalar dose as context. We leave out
different dosages during training, thus creating interpolation and extrapolation settings.

4. CMonge Homo: We fit conditional models for each drug, where the context is a scalar repre-
senting the dose, using a homogeneous split, where each dosage is present in the training set.

5. CMonge RDKit / MoA: A single model fitted to all data, combining drug and dosage context.
To encode the drug, we compare fingerprints (RDKit) to a data-driven approach (MoA).

4 EXPERIMENTAL RESULTS

In our experiments, we seek to confirm that adding contextual information enhances the perfor-
mance of inferring single-cell perturbation responses. Among the zoo of perturbation modeling
techniques, we first verified our choice of extending the Monge Gap by comparing it against an
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ICNN and other methods in an unconditional setting on the 4i data. This experiment revealed supe-
riority of the Monge Gap (cf. Appendix Figure A1 and Table A1). We then trained and evaluated
our novel conditional Monge map technique on the SciPlex data, as summarized in Table 1 and Fig-
ure 2. We compare the conditional models against unconditional Monge models and the Identity

Table 1: Evaluation of drug effect perturbations, treated with 9 different drugs. Results are compared based
on the Correlation Coefficient between the predicted and target feature means (R2). The average and standard
deviation are reported of the 9 experiments per model. Results averaged across nine drugs.

Model Split Context Dosage (nM)
Drug Dose 10 100 1000 10000

Identity 0.747± 0.126 0.654± 0.260 0.503± 0.332 0.227± 0.212

Monge 10 0.950± 0.019 − − −
Monge 100 − 0.934± 0.041 − −
Monge 1000 − − 0.960 ± 0.024 −
Monge 10000 − − − 0.977± 0.028

Monge Homo 0.749± 0.253 0.767± 0.231 0.885± 0.098 0.694± 0.271

CMonge 10-ood ✓ 0.863± 0.197 0.944± 0.040 0.953± 0.039 0.987± 0.008
CMonge 100-ood ✓ 0.931± 0.069 0.931± 0.058 0.940± 0.052 0.987± 0.008
CMonge 1000-ood ✓ 0.960 ± 0.029 0.958± 0.024 0.877± 0.118 0.989 ± 0.007
CMonge 10000-ood ✓ 0.940± 0.075 0.962 ± 0.034 0.940± 0.052 0.526± 0.311

CMonge Homo ✓ 0.882± 0.185 0.905± 0.123 0.904± 0.092 0.973± 0.026

CM-RDKit Homo ✓ ✓ 0.619± 0.268 0.690± 0.172 0.868± 0.056 0.352± 0.320
CM-MoA Homo ✓ ✓ 0.912± 0.039 0.912± 0.046 0.902± 0.048 0.938± 0.079

Figure 2: Comparison of the different conditional and unconditional Monge methods, grouped by drug, using
the mean R2 metric. Each point represents the mean performance of the model, out of the four dosages, along
with uncertainty around that estimate using error bars.

mapping. In Table 1, the Identity shows that the average drug effect is weak on the DEGs over
the lower dosages, while dosage 10000 nM, has significantly stronger effect, making it harder to
learn the perturbation responses. The dosage-specific Monge models are highly performant but can-
not be applied to other dosages. The homogeneous model (Monge homo) that did not receive any
contextual information fails to generalize among different dosages, the model learned the average
effect as a response. This motivates us to introduce the Conditional counterpart, CMonge-Homo,
which outperforms its homogeneous baseline. Importantly, CMonge-Homo even achieves similar
results compared to the upper bound (i.e., the specific Monge models), for example in the 10000nM
dosage case. Notably, the inclusion of extra context even enhances performance; the dosage-specific
Monge models for 10, 100 and 10000nM are outperformed by CMonge models that were addi-
tionally trained on other dosages. This points to strong cross-task learning benefits and suggests
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Figure 3: Comparison between the unconditional OT-based models, and the conditional counterparts in the
homogeneous setting based on the R2 of feature means (left) and the Wasserstein distance (right).

that conditional Monge models are generally preferable to unconditional models. However, when
10, 000 nM is not included in the training set, the models experience a substantial performance
drop, but still outperform the identity prediction. The difficulty of learning to generalize to the high-
est dosage is, beyond the lower performance of the identity model on this condition, also evidenced
by the UMAPs in Figure A4. For all nine drugs, cells from the three cell types form distinct clusters
and for a majority of drugs the cells belonging to the 10, 000nM condition sit on the edge of the
cell-type-clusters, sometimes even forming their own clusters.

We next sought to investigate the even more challenging setting of learning a global map contextual-
ized on both drug and dosage. Table 1 shows that the 194 dimensional fingerprint seems to introduce
too much noise, compared to the 50 dimensional data signal, resulting in poor performance across
dosages. On the other hand, the CMonge-MoA model demonstrates strong generalization perfor-
mance across varying dosages as well as drugs. It outperforms the drug-specific Monge models by
a wide margin and is largely better than CMonge-Homo, suggesting cross-task benefits among the
nine drugs. In Figure 2 it can be seen that the performance of the fingerprint varies highly among
drugs whereas the MoA embeddings consistently yield performance very close to the upper bound
(i.e., drug and dosage specific Monge models). However, the MoA, unlike the RDKit features re-
quires availability of a small population of perturbed cells to compute the embedding.

But can we actually replace condition-specific models with a single conditional one? To assess this
ambitious question, Figure 3 aggregates performance across drugs and compares the 36 individual
ICNN and Monge Gap models to the nine, drug-specific CMonge-Homo models as well as the
single CMonge-MoA model. Albeit the unfair comparison of a single model to 36 individual and
unconditional models of identical size, the CMonge-MoA achieves a good, yet overall inferior R2
in capturing DEG feature means. It seems that the CMonge models were predominantly driven by
the highest dosage (cf. Figure 3) which induced the strongest perturbation effect (cf. Figure A4), but
could potentially be mitigated with more careful training. Importantly, however, the CMonge-MoA
model captures better the higher moments of the distribution than the 36 condition-specific models
(as measured by the Wasserstein distance, Figure 3 right). This is a critical finding that underlines
the advantages of our method and is further supported by the numerical performances (Table A3)
and the barplot (cf. Figure A5) of the Wasserstein distance.

5 CONCLUSION

In this paper, we proposed CMonge, a novel approach to learn Monge maps conditionally. Instead
of contextualizing the Kantorovich dual, we relied on the debiased version of the primal OT loss
by extending the Monge Gap. We illustrated our approach on single-cell perturbation response pre-
diction and showcased that our global model can infer cell states across multiple drugs and dosages
and even extrapolate to unseen dosages. Our results were especially encouraging, when considering
effect-driven embeddings, compared to molecular signatures. Future work could investigate the im-
pact of larger or more expressive architectures than the three-layer MLP utilized in the Monge Gap,
e.g., by integrating it with the emerging single-cell foundation models (Cui et al., 2024; Yang et al.,
2022).
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CODE AVAILABILITY

The source code for reproducing the experiments is available at: https://github.com/
AI4SCR/Conditional-Monge.
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Yann Brenier. Décomposition polaire et réarrangement monotone des champs de vecteurs. CR Acad.
Sci. Paris Sér. I Math., 305:805–808, 1987.

Charlotte Bunne, Andreas Krause, and Marco Cuturi. Supervised training of conditional monge
maps. Advances in Neural Information Processing Systems, 35:6859–6872, 2022.

Charlotte Bunne, Stefan G Stark, Gabriele Gut, Jacobo Sarabia Del Castillo, Mitch Levesque,
Kjong-Van Lehmann, Lucas Pelkmans, Andreas Krause, and Gunnar Rätsch. Learning single-
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cellular responses to novel drug perturbations at a single-cell resolution. Advances in Neural
Information Processing Systems, 35:26711–26722, 2022.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings, 2014.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Mohammad Lotfollahi, F Alexander Wolf, and Fabian J Theis. scgen predicts single-cell perturba-
tion responses. Nature methods, 16(8):715–721, 2019.

7

https://github.com/AI4SCR/Conditional-Monge
https://github.com/AI4SCR/Conditional-Monge


Machine Learning for Genomics Explorations workshop at ICLR 2024

Mohammad Lotfollahi, Anna Klimovskaia Susmelj, Carlo De Donno, Leon Hetzel, Yuge Ji, Igna-
cio L Ibarra, Sanjay R Srivatsan, Mohsen Naghipourfar, Riza M Daza, Beth Martin, et al. Predict-
ing cellular responses to complex perturbations in high-throughput screens. Molecular Systems
Biology, pp. e11517, 2023.

Ashok Makkuva, Amirhossein Taghvaei, Sewoong Oh, and Jason Lee. Optimal transport mapping
via input convex neural networks. In International Conference on Machine Learning, pp. 6672–
6681. PMLR, 2020.

Nicola Mariella, Jannis Born, Albert Akhriev, Francesco Tacchino, Christa Zoufal, Eugene Koskin,
Ivano Tavernelli, Stefan Woerner, Marianna Rapsomaniki, and Sergiy Zhuk. Quantum theory and
application of contextual optimal transport. In NeurIPS 2023 Workshop Optimal Transport and
Machine Learning, 2023. URL https://openreview.net/forum?id=DW3a9czPGx.

Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lip-
man, and Ricky Chen. Multisample flow matching: Straightening flows with minibatch couplings.
arXiv preprint arXiv:2304.14772, 2023.
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Théo Uscidda and Marco Cuturi. The monge gap: A regularizer to learn all transport maps. arXiv
preprint arXiv:2302.04953, 2023.

F Alexander Wolf, Philipp Angerer, and Fabian J Theis. Scanpy: large-scale single-cell gene ex-
pression data analysis. Genome biology, 19:1–5, 2018.

Fan Yang, Wenchuan Wang, Fang Wang, Yuan Fang, Duyu Tang, Junzhou Huang, Hui Lu, and
Jianhua Yao. scbert as a large-scale pretrained deep language model for cell type annotation of
single-cell rna-seq data. Nature Machine Intelligence, 4(10):852–866, 2022.

Kevin Yang, Kyle Swanson, Wengong Jin, Connor Coley, Philipp Eiden, Hua Gao, Angel Guzman-
Perez, Timothy Hopper, Brian Kelley, Miriam Mathea, et al. Analyzing learned molecular repre-
sentations for property prediction. Journal of chemical information and modeling, 59(8):3370–
3388, 2019.

8

https://openreview.net/forum?id=DW3a9czPGx


Machine Learning for Genomics Explorations workshop at ICLR 2024

A APPENDIX

A.1 BENCHMARKING

We first benchmarked different state of the art methods for unconditional perturbation modeling.

4i dataset We trained each method on each of the 35 therapies with a 80/20 train/validation split.
We note that the original scGen (Lotfollahi et al., 2019) relies on a Variational formulation (Kingma
& Welling, 2014) formulation. Instead, in our experiments, we follow the setup in Bunne et al.
(2022), i.e., we utilized a vanilla AE, and both the encoder and the decoder are parametrized with
fully-connected layers. The results in Table A1 and Figure A1 confirm the finding by Uscidda &
Cuturi (2023), i.e., the Monge Gap achieves the overall best result with respect to each of the evalua-
tion metrics and also shows lower standard deviation. On Figure A1, the subplot on the Wasserstein
distance clearly shows that the Monge model (which directly optimizes this metric) performs con-
sistently, regardless of the perturbation, while the autoencoder is struggling to capture perturbation
effects in some cases. On the other hand, the ICNN results are only skewed by one outlier. Re-
markably, the optimal transport-based models are outperforming the autoencoder on MMD, R2, and
Drug Signatures, even though they are trained to optimize the primal and dual OT loss.

Table A1: Evaluation of perturbation prediction on the 4i dataset. Average performance is reported over the 35
treatments along with the standard deviation in the 48 dimensional feature space.

Model Wasserstein MMD R2 Drug Signature Sinkhorn Div

•Monge 2.345 ± 0.219 0.009 ± 0.001 0.901 ± 0.087 0.333 ± 0.067 1.812 ± 0.221
•AE 2.455± 0.396 0.024± 0.014 0.804± 0.110 0.523± 0.150 1.921± 0.398
•ICNN 2.632± 0.512 0.009± 0.007 0.878± 0.104 0.433± 0.406 2.097± 0.515
•Identity 2.881± 0.736 0.033± 0.027 0.309± 0.209 1.285± 0.891 2.347± 0.738
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Figure A1: Evaluation of perturbation prediction on the 4i dataset. Each point corresponds to a model trained
on one out of the 35 treatments.
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SciPlex For each of the nine drug and each of the four dosages we fitted a different model, resulting
in 36 models per method. We included the identity mapping as a baseline, which simply predicts the
unperturbed cell states. Table A2 and Figure A2 shows the performance of the different methods.
Our main evaluation metric is still the correlation coefficient of the HVG feature means (R2), but
we also report the entropy-regularized Wasserstein distance, which is closely related to the objective
function of ICNN and Monge models. The ICNN and Monge models used the 50 dimensional latent
representation learned by the autoencoder.

All model predictions were decoded and evaluated in the cell space on the 50 HVGs. We observe,
that the neural optimal transport based solvers significantly outperforms the autoencoder based ap-
proach.

The results of Figure A3 shows that, although the ICNN based solver slightly outperforms the Monge
based counterpart, their results are highly correlated, they have almost identical performance with
respect to the Wasserstein distance. Combining this with the fact that we are expanding upon the
Monge based methodology, we did not include ICNN based benchmarks in Table 1.
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Figure A2: Performance of the benachmarked models for the 4 different dosages, averaged over 9 drugs.

Table A2: Evaluation of drug effect perturbations, treated with 9 different drugs. Results are compared based
on the Correlation Coefficient between the predicted and target feature means (R2). The average and standard
deviation are reported of the 9 experiments per model.

Model Dosage (nM)
10 100 1000 10000

Monge 0.947± 0.024 0.931± 0.043 0.951± 0.022 0.962± 0.027
scGen 0.859± 0.106 0.839± 0.134 0.847± 0.067 0.886± 0.079
ICNN 0.969± 0.013 0.955± 0.034 0.962± 0.017 0.972± 0.012
Identity 0.666± 0.177 0.575± 0.276 0.426± 0.288 0.215± 0.189
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Figure A3: Comparison of neural optimal transport solvers, the scatter plot consists of (xi, yi) points, where
xi represents the target metric (R2 or Wasserstein) obtained by the ICNN solver, and yi is the performance of
the corresponding Monge model on the same drug-dose split. Each drug is denoted with a different color. In
case of the R2 metric, each time an (xi, yi) point is under the x = y line, the ICNN outperforms the Monge
model.

A.2 DATA AND EXPERIMENTAL DETAILS

A.2.1 HYPERPARAMETERS OF THE CONDITIONAL EXPERIMENTS

In all experiments, we use the AdamW optimizer (Loshchilov & Hutter, 2017), with initial learning
rate 10−4 and weight decay regularization 10−5. Both the encoder and decoder consist of two
hidden layers of 512 dimensions each. The 50-dimensional latent representation is learned through
50 epochs with a batch size of 256. We trained separate autoencoders for the different train-test
splits. The Monge network is built out of 4 hidden layers with 64 neurons each. The dose and drug
embedders are parameterized with one dense layer. The Euclidean distance is used as displacement
cost and the Monge Gap regularizer is set to λ = 10−2. During the OT training phase, we repeatedly
sample a batch 256 observations from the source and target distributions for 1000 iterations for local
models (without condition, or conditioned on dosage), while 10000 iterations for the global models
(RDKit and MoA). Each batch only contains samples from one context, which is uniformly sampled.
All models are implemented using the OTT-JAX package (Cuturi et al., 2022).
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Figure A4: UMAP projection of the 1000-dimensional feature space, filtered on control cells and cells treated
with different dosages. We can observe a greater perturbation effect with higher dosage. Moreover, the three
clusters are associated with the three different cell types (see black text).
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A.3 ADDITIONAL RESULTS ON CONDITIONAL MONGE

Table A3: Evaluation of drug effect perturbations, treated with 9 different drugs. Results are compared based
on the Wasserstein distance between the predicted and target samples. The average and standard deviation are
reported for the 9 experiments per model.

Model Split Context Dosage (nM)
Drug Dose 10 100 1000 10000

Identity 3.444± 0.810 3.511± 0.683 4.102± 1.000 6.399± 1.720

Monge 10 3.120± 0.692 − − −
Monge 100 − 3.162± 0.709 − −
Monge 1000 − − 3.163± 0.603 −
Monge 10000 − − − 3.199± 0.465

Monge homo 3.326± 0.531 3.291± 0.511 3.175± 0.516 4.129± 0.981

CMonge 10-ood ✓ 3.255± 0.592 3.182± 0.595 3.125± 0.602 2.916± 0.545
CMonge 100-ood ✓ 3.169± 0.622 3.148± 0.599 3.108± 0.603 2.906 ± 0.552
CMonge 1000-ood ✓ 3.108± 0.636 3.101± 0.618 3.197± 0.543 2.906± 0.553
CMonge 10000-ood ✓ 3.046± 0.611 3.018± 0.601 3.059± 0.576 4.122± 0.745

CMonge homo ✓ 3.210± 0.568 3.177± 0.585 3.290± 0.563 3.110± 0.544

CM-RDKit homo ✓ ✓ 3.229± 0.291 3.143± 0.181 3.057± 0.238 5.170± 1.639
CM-MoA homo ✓ ✓ 2.852 ± 0.193 2.846 ± 0.208 2.952 ± 0.213 3.329± 0.182
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Figure A5: Comparison of the different conditional and unconditional Monge methods, grouped by drug, using
the Wasserstein distance. Each point represents the mean performance of the model, out of the four dosages,
along with uncertainty around that estimate using error bars.

13



Machine Learning for Genomics Explorations workshop at ICLR 2024

10 100 1000 10000
Dose in nM

0.00

0.25

0.50

0.75

1.00

me
an

 R
2 

on
 D

EG
s

Abexinostat

10 100 1000 10000
Dose in nM

0.00

0.25

0.50

0.75

1.00

me
an

 R
2 

on
 D

EG
s

Belinostat

10 100 1000 10000
Dose in nM

0.00

0.25

0.50

0.75

1.00

me
an

 R
2 

on
 D

EG
s

Dacinostat

10 100 1000 10000
Dose in nM

0.00

0.25

0.50

0.75

1.00

me
an

 R
2 

on
 D

EG
s

Entinostat

10 100 1000 10000
Dose in nM

0.00

0.25

0.50

0.75

1.00

me
an

 R
2 

on
 D

EG
s

Givinostat

10 100 1000 10000
Dose in nM

0.00

0.25

0.50

0.75

1.00

me
an

 R
2 

on
 D

EG
s

Mocetinostat

10 100 1000 10000
Dose in nM

0.00

0.25

0.50

0.75

1.00

me
an

 R
2 

on
 D

EG
s

Pracinostat

10 100 1000 10000
Dose in nM

0.00

0.25

0.50

0.75

1.00

me
an

 R
2 

on
 D

EG
s

Tacedinaline

10 100 1000 10000
Dose in nM

0.00

0.25

0.50

0.75

1.00

me
an

 R
2 

on
 D

EG
s

Trametinib

Model Type
Mode-of-Action RDKit Identity

Figure A6: Drug-wise comparison between identity model and the two global conditional models, where we
condition based on drug and dosage as well.
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