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Abstract

Accurate identification and localization of objects in 3-D scenes are essential for ad-
vancing comprehensive 3-D scene understanding. Although diffusion models have
demonstrated impressive capabilities across a broad spectrum of computer vision
tasks, their potential in both 2-D and 3-D object detection remains underexplored.
Existing approaches typically formulate detection as a “noise-to-box” process, but
they rely heavily on direct coordinate regression, which limits adaptability for
more advanced tasks such as grounding-based object detection. To overcome these
challenges, we propose a promptable 3-D object recognition framework, which
introduces a diffusion-based paradigm for flexible and conditionally guided 3-D
object detection. Our approach encodes bounding boxes into latent representa-
tions and employs latent diffusion models to realize a “promptable noise-to-box”
transformation. This formulation enables the refinement of standard 3-D object
detection using textual prompts, such as class labels. Moreover, it naturally extends
to grounding object detection through conditioning on natural language descrip-
tions, and generalizes effectively to few-shot learning by incorporating annotated
exemplars as visual prompts. We conduct thorough evaluations on three key 3-D
object recognition tasks: general 3-D object detection, few-shot detection, and
grounding-based detection. Experimental results demonstrate that our framework
achieves competitive performance relative to state-of-the-art methods, validating
its effectiveness, versatility, and broad applicability in 3-D computer vision.

1 Introduction

Precise identification and accurate localization of objects constitute foundational tasks critical for
advancing the interpretation and analysis of visual data within computer vision. While numerous
methodologies [54, 55] have achieved remarkable outcomes in traditional 2-D settings, exemplified
by precise and efficient real-time detection in image domains, these approaches have increasingly
encountered performance plateaus. In contrast, object detection within 3-D environments introduces
substantial complexity, posing additional challenges that render direct adaptation of successful 2-D
methodologies inadequate for handling the intricate dynamics of 3-D data.

Recent advancements have leveraged diffusion-based models, showcasing considerable promise in
refining and enhancing solutions to conventional computer vision tasks. In particular, object detection
has benefited from these developments, as evidenced by the pioneering work of DiffusionDet [7],
which introduced the concept of diffusion processes as “noise-to-box” transformations within de-
tection frameworks. Subsequent extensions have successfully applied analogous diffusion concepts
to 3-D object detection, validating the versatility of diffusion methods across both 2-D and 3-D
modalities. Nevertheless, prevailing diffusion-based detection methodologies predominantly employ
the classical diffusion process, directly predicting the target outputs rather than noise distributions,
and operate entirely within the original feature space. Consequently, such methods exhibit limited
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Figure 1: Promptable 3-D object localization via latent diffusion models: Conventional diffusion-
based object detectors primarily apply stochastic perturbations directly to the bounding box coordi-
nates. In contrast, our proposed approach perturbs the entire bounding box representation within a
learned latent space, enabling a more structured and information-preserving diffusion process. This
latent formulation, combined with explicit conditioning mechanisms, supports a controlled and
adaptable diffusion framework. By incorporating these enhancements, the proposed method offers
improved flexibility and robustness, facilitating seamless adaptation to a wide range of downstream
tasks: e.g., (a) general 3-D object detection, (b) few-shot detection, and (c) grounding-based detection.

computational efficiency and operational flexibility, echoing the inherent limitations encountered by
DDPM [19] models in controlled image generation tasks.

Addressing these constraints, this research proposes an innovative diffusion-based object detection
framework motivated by conditional latent diffusion models commonly utilized in generative mod-
eling tasks. Specifically, as delineated in Figure 1, our approach draws conceptual parallels with
DETR-based architectures [61, 75, 10]. Initially, object anchor features indicative of potential object
presence within a scene are extracted and subsequently integrated with semantic textual embeddings
corresponding to relevant object classes, thereby enriching feature representations. Subsequently,
a variational autoencoder (box VAE) facilitates the mapping of object queries and their associated
initial bounding-box coordinates into a latent embedding space. Leveraging the conditional latent
diffusion paradigm, distinct conditioning criteria are systematically applied during the noise-to-box
diffusion process, specifically tailored to downstream object detection scenarios, including general
object detection, few-shot detection, and object grounding tasks. Distinguished from conventional ap-
proaches, the proposed methodology exhibits substantial adaptability, enabling seamless application
across diverse detection objectives. The primary contributions of our method are as follows:

* Introduction of a conditional latent diffusion framework for improved adaptability and
effectiveness in 3-D object detection over existing diffusion-based methods.

* Development of a versatile conditional latent diffusion paradigm capable of addressing
multiple object detection tasks through adjustments of conditioning parameters alone.

* Empirical demonstration of competitive performance and superior flexibility in general 3-D
object detection tasks and specialized downstream scenarios, notably 3-D few-shot detection
and 3-D grounding detection.

2 Related work

2.1 Diffusion models in 3-D vision

Although initially designed for 2-D generation tasks, diffusion models have recently gained significant
traction in 3-D applications. Common applications of diffusion models in 3-D include text to 3-D
generation [46, 82, 76, 48] image to 3-D generation [36, 41, 44], 3-D editing and manipulation [59, 8],
and novel view synthesis [37, 62, 21]. Due to their strong capability in modeling complex data
distributions, several studies have attempted to leverage diffusion models for visual perception tasks,
such as semantic segmentation [94] and language grounded classification [60], and human pose



estimation [14, 13, 20]. In this work, we focus on applying diffusion models to diverse 3-D object
identification and localization tasks, which remain relatively underexplored.

2.2 Diffusion models for object detection

Diffusion models have achieved remarkable success in numerous visual perception downstream tasks.
Chen et al. [7] proposed DiffusionDet, the first work to apply diffusion models to object detection.
DiffusionDet frames the process as ‘“noise-to-box”, which starts with a fixed number of noisy box
proposals and progressively refines them into the desired object boxes through a reverse denoising
process. Building upon this framework, several works [93, 52, 30, 3] extend 2-D object detection
to the 3-D domain and demonstrate promising results compared to previous anchor-based methods.
Diffusion-SS3D [17] and Diff3DETR [10] leverage diffusion models to refine both bounding box
proposals and class label distributions. This design, combined with a teacher-student framework,
facilitates semi-supervised 3-D object detection. Despite achieving promising results, prior works
directly predict box parameters, which limits their flexibility to generalize to other downstream tasks.
In contrast, our work introduces a unified framework that encodes bounding boxes into a latent
representation, enabling object identification and localization across diverse scenarios.

2.3 Few-shot 3-D object detection

The goal of few-shot 3-D object detection is to identify and localize objects in 3-D data by learning
from base classes with abundant labeled data and generalizing them to new object categories with
only a few labeled instances. Several existing approaches are based on the prototype learning
paradigm [32, 90, 68]. Prototype learning extracts useful information from labeled data and utilizes
the learned “prototype” to guide detection in unlabeled data. These methods [32, 90] are often
built upon the VoteNet [50] architecture. Tang et al. [68] employ a VAE-based model to learn
representative prototypes. Other works, such as Liu et al. [35], focus on few-shot 3-D object detection
in outdoor scenes and autonomous driving scenarios. Meta-Det3D [84] addresses the few-shot 3-D
object detection problem using meta-learning approach.

2.4 3-D visual grounding

3-D visual grounding aims to detect target objects that align with the given text description. A number
of works formulate 3-D visual grounding as a segmentation task [91, 47, 87, 92, 11, 27, 80, 6, 31,
73, 67, 2, 28]. In contrast, our focus is on localizing objects that match the language query using
bounding boxes. Methods for 3-D visual grounding can be roughly categorized into single-stage
methods and two-stage methods. Single-stage methods [26, 42, 77, 51, 74, 16, 2] fuse text and
vision features and directly output the predicted boxes based on the fused representations. In contrast,
two-stage pipeline methods [5, 23, 81, 85, 12, 42, 26, 77, 95, 63, 51, 74, 57, 24, 88] first generate a
fixed set of box proposals. In the second stage, each box candidate is matched with the text input
to produce the final predictions. Our method extracts candidate object representations and encodes
these features along with their corresponding coordinates into a structured latent space. A video
stable diffusion model is then utilized to fuse this information with the provided text description.
This fusion framework follows a structure similar to that of a two-stage pipeline. There are also
works such as [22, 72, 86, 79, 95, 96] that leverage the power of large language models to tackle
3-D visual grounding tasks. Although these works do not specifically focus on 3-D visual grounding
problems, our approach achieves stronger results under our evaluation protocol in most scenarios
without relying on heavily pretrained large language models or complex fusion pipelines.

3 Method

Inspired by the “noise-to-box” paradigm employed in diffusion-based object detectors, we introduce
a promptable latent diffusion detector designed to enhance the adaptability and precision of 3-D
object detection. The architecture comprises three primary components: (1) A 3-D scene feature
extraction module that encodes visual features, which are subsequently fused with semantic features
to generate object anchor representations for the diffusion process (Section 3.2). (2) These object
anchor representations, along with associated bounding box coordinates initialized with random
perturbations, are processed through a box encoder module to obtain a compact latent representation



of the bounding box (Section 3.3). (3) The latent representation is then refined via a conditional
latent diffusion model, which iteratively adjusts the bounding box parameters through a learned
diffusion process conditioned on the latent space (Section 3.4). This structured approach ensures more
flexible and accurate 3-D object localization by leveraging conditional priors, making it well-suited
for applications that require precise and adaptable object detection in complex scenes.

3.1 Preliminaries

3-D object detection The task of 3-D object detection is fundamental in computer vision, involving
the identification and precise localization of objects within a three-dimensional scene. Given a
point cloud representation of a scene, {p; € R3}™ ,, where n denotes the number of points,
along with a task-dependent promptable conditioning input c, the goal is to predict a set of 3-D
bounding boxes that accurately encapsulate target objects. Each bounding box is parameterized as
b = (z,y,2,h,w,l,04,0y,0,) € R, where (z,y, z) represents the centroid of the box, (h,w,)
specifies its spatial dimensions, and (o, oy,oz) encodes its orientation. However, in practice,
orientation data poses significant challenges due to inconsistencies between ground truth annotations
and model predictions, as noted in [17, 83]. For instance, ScanNet [9] and SUN RGB-D [65]
datasets either assign a default orientation of zero or contain inconsistent orientation data across
scenes. Following the approach of [10, 83], we therefore consider only the centroids and sizes of
the bounding boxes. The objective of generative object detection is to produce bounding boxes that
effectively delineate individual object instances. In our formulation, by incorporating task-specific
constraints defined by the promptable conditioning input c, we explore generative approaches to
produce bounding boxes adapted to various 3-D detection scenarios, including but not limited to 3-D
object detection based on a few shots and grounding.

Diffusion-based object detector Recent advances in object detection have increasingly embraced
the “noise-to-box” paradigm, as explored in both 2-D [7] and 3-D [17, 3, 10] settings. During training,
the diffusion-based detection decoder fy estimates the clean bounding box by from a corrupted version
by, the visual features x, and the corresponding timestep ¢. Unlike traditional diffusion models that
predict the noise, this approach directly regresses by by minimizing the objective:

Lo = || fo(Rol(x,by),t) — b, (1

where Rol() denotes the region-of-interest alignment operation, used to extract relevant visual
features. During inference, an initial set of randomly sampled noise boxes b is iteratively refined
via the detection decoder and DDIM sampling steps [64], ultimately yielding the final predictions by.

Unlike prior diffusion-based detection methods that directly regress bounding box coordinates, the
proposed approach introduces a conditional latent diffusion model that predicts the noise in a latent
space. This formulation is consistent with the prevalent practice in other diffusion-based generative
modeling and offers improved flexibility for handling complex detection scenarios. Accordingly, the
training objective is defined as:

Lo = |lea(by,c.t) — €%, 2
where b, denotes the noisy latent representation obtained after applying ¢ forward diffusion steps to
the encoded representation b = £(b, 0). Here, £ denotes the Box VAE encoder, o represents the
object anchor features, and c is the conditional input. While conceptually analogous to the object
queries in DETR-style architectures, our anchors are enhanced with semantic information through

cross-modal alignment between visual and textual embeddings, leading to more informative and
context-aware representations. Further details are provided in Section 3.2 and Section 3.3.

3.2 Language-guided object anchor features

As illustrated in Figure 2 and aligned with prior works [10, 7], the proposed methodology adopts
a DETR-based framework employing learned object anchors. For 3-D visual feature extraction,
rather than exclusively utilizing conventional pretrained visual backbones such as PointNet++ [49]
or PVCNN [39], we leverage a foundation model composed of two feature extractors, f, and f;, to
generate semantically coherent 3-D visual representations, thereby enriching the encoded features
with enhanced contextual relevance. Given a point cloud representation of a scene, {p; € R3}7_,,
where n is the number of points, the visual features {z? };*; are extracted via:

fo: R?® — R% and {zi 2 = folln, ({Pi}iz1)), 3
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Figure 2: Model architecture. The proposed framework comprises three key components: (i) a
vision-language foundation model that extracts object anchor features, serving as candidate object
representations; (ii) a pretrained variational autoencoder (VAE) designed to encode bounding box
coordinates into a structured latent space representation; and (iii) a latent-conditioned diffusion model
that leverages conditioning features extracted by a dedicated encoder, facilitating adaptability across
diverse downstream tasks by incorporating task-specific constraints within the latent space.

where |, (-) denotes performing downsampling via Farthest Point Sampling (FPS) to yield a
reduced set of nq points. To augment the object anchor features with semantic context beyond visual
information, we introduce a cross-attention mechanism in which the extracted visual features {z} }"*
serve as queries, and the latent semantic representations {z}}1'',, obtained from the text encoder
ft (with token length n;), act as keys and values. (See Figure 2.) This cross-attention produces the

conditioned object query features {o;};*, by:

QN =4, KV =gl@), v =) er?, )
z = MHCAD (QW) K v(Ny e R o=y (z) e RY, 5)

where @éf )(-), gp,(cf )() and o )() correspond to single-layer MLPs while 5 )() is a two-layer

MLP to project the conditioned features effectively. The operator MHCA () refers to a multi-head
cross-attention module [71] that facilitates semantic alignment between modalities.

3.3 Box representation

Unlike existing diffusion-based detectors, which estimate the final bounding boxes solely based on
their noisy versions, we propose leveraging a conditional latent diffusion processor to enhance flexi-
bility. Similar to conventional latent diffusion approaches, the first step involves using a VAE module
to project the input modality into a latent space. Specifically, we adopt a V-DETR [61]-like module
as the VAE for the 3-D box representation, given its efficiency and high performance as demonstrated
in [10]. As illustrated in Figure 3, object queries {0, };,, along with their corresponding bounding
boxes {b; }i*, = (24, Yi, 2i, hi, w;, [;) and the global visual features of the scene {z} };2; (ng is not
equal to n1), are passed through a box encoder to extract the latent box representation. The first
component of the encoder is a variant of the multi-head self-attention (MHSA) module (including
attention and residual operators) applied to object anchors:

b* =(b), Q°=1vy(b”+0), K*=1y(b*+0), V®=1,(0) R’ (6)
b® = MHSA(Q®, K*%,V?) € RY, (7

where 15(-), ¥q(-), ¥i(-), and 1, (-) represent single-layer MLPs. The second component is a
cross-attention module that takes the output b® from the self-attention module and the visual features
of the scene {z };2, as inputs:

Q° = ¢q(b* +b°), K°= (2" + RPE), V°=p,(z") € RY, (8)
b = MHCA(Q®, K¢, V°) € R%, ©)
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Figure 3: The Box VAE takes as input object anchor features, 3-D spatial coordinates, and scene
representations. Initial box centers (x;, y;, z;) are determined via FPS on anchor positions, while
box sizes (h;, w;, ;) are initialized using the dataset’s normalized average dimensions. In the box
encoder, self-attention is applied with queries and keys formed by summing object anchor features
and coordinate embeddings, and values taken as the anchor features. A cross-attention module further
refines this representation by conditioning on scene-level features, enhancing spatial-contextual
awareness. The box decoder employs two feedforward networks: one predicts final bounding boxes,
while the other updates query anchor features, enabling robust refinement and precise localization.

where ¢4(-), ¢r(-), and @, (-) are single-layer MLPs, while RPFE represents the relative position

encoding. In the original V-DETR, the output of the cross-attention module, b, is passed through three
independent FFN heads to predict the class, rotation angle, and bounding box. In our formulation,
we treat the two attention modules as the encoder of the box VAE and the FFN heads as the decoder.
Since our approach requires utilizing b as the latent representation of the bounding boxes for the
latent diffusion process, we modify the architecture accordingly.

3.4 Box refinement via conditional latent diffusion

Latent diffusion models (LDMs) [58] project the original data x into a latent space z using an encoder
tailored to the data modality—e.g., VQ-VAE [70, 53] for images or audio VAE [34] for audio—prior
to applying the diffusion process. When combined with classifier-free guidance [18], LDMs enable
conditional generation. The model is trained by minimizing the following objective:

Lo = ||l€g(zs,c.,t) — €| (10)

Here, €g(z¢, ¢, t) incorporates a cross-attention mechanism [71], allowing the conditional embedding
c,, to influence the latent variable z. The conditional score estimation is then defined as:

€g(zi|c,) = (1 +w)ep(ze, csyt) — wep(zy, D, t) (11)

where w modulates the strength of classifier-free guidance, and & denotes the unconditional embed-
ding. To integrate the latent representations of bounding boxes b into the diffusion process, we adapt

the conditioning mechanism defined in Equations (10) and (11) by substituting z, with by, the noisy
latent representation of the bounding boxes. This conditional latent diffusion process enables iterative
refinement of box features through dedicated decoder heads, which generate updated object anchors
and bounding boxes conditioned on contextual information. In our implementation, the model is
initialized using a pretrained video-based LDM from Stable Diffusion, providing a strong prior for
temporal and spatial coherence in the latent space.

Model training and inference As depicted in Figure 2, the proposed framework jointly optimizes
a cross-attention-based object anchor generator and a conditional latent diffusion model. The overall
training objective integrates a latent-space denoising loss with detection losses applied to the decoded
bounding boxes. Specifically, the total loss is defined as:

Liotal = Adif - Ldiff + Adet - Ldet, (12)

where Lq4;¢ denotes the mean squared error between the predicted and true noise in the latent space,
as defined in Equation (2), and Lg.t includes classification and regression losses computed on the de-
coded bounding boxes. We adopt a DETR-style pipeline, incorporating Hungarian bipartite matching
and non-maximum suppression (NMS). To further enhance detection accuracy and robustness, focal
loss [33] and asymmetric classification losses [60, 56] are additionally employed. The weighting
coefficients \gig and A\get are dynamically adjusted throughout training, as detailed in Section 4.



At inference time, each bounding box is initialized with a noisy latent representation br, correspond-
ing to the final timestep of the forward diffusion process. This representation is iteratively refined
via DDIM sampling, guided by the detection decoder and conditioned on object anchor features and

task-specific prompts, ultimately producing the final bounding box predictions bg.

Promptable 3-D vision tasks Owing to its conditional and modular design, the proposed framework
supports a wide range of 3-D object detection tasks, including general detection, few-shot detection,
and grounding. Each task is described as follows:

* General 3-D object detection: The objective is to detect all objects present in a 3-D scene.
During training, the conditional prompt c,, is expressed as a textual description: “The [class
namel, class name?2, ... class nameN] objects in the 3D scene.” This aligns semantic cues
with visual features to enhance representation learning. As class names are already used in
anchor generation, their inclusion in the prompt is optional and omitting them incurs only a
minor performance drop.

* Few-Shot 3-D object detection (FS3D): Following prior work [90, 68], the full class set
C is divided into base classes Cpase With ample labels and novel classes Chove; With
limited samples, where Chase N Crovel = . To address this setting, we adopt an episodic
training strategy and introduce architectural modifications to support FS3D (detailed in the
supplementary material). The query input consists of a 3-D scene, while the support set is
processed by a 3-D encoder to extract visual exemplars. These exemplars, combined with
textual class names, form the conditioning input c.

* Grounding 3-D object detection: This task aims to localize only the objects referred to
by a natural language query, rather than detecting all instances in the scene. Referring
expressions are more flexible than fixed category names and may include spatial, relational,
or attribute-based cues. These expressions serve as the conditional input ¢, to the latent
diffusion process. To handle grounding scenarios in which a single query may correspond
to multiple target objects, as in Multi3DRefer, we extend the inference pipeline with non-
maximum suppression and top-K filtering. This allows the DETR-style framework to return
multiple high-confidence predictions per query. The query-conditioned diffusion process
then refines candidate boxes for accurate localization.

4 Experiments

In this section, we present experimental results aimed at demonstrating the effectiveness of the
proposed method.

Training and loss functions The training process involves two primary stages: (1) training the
diffusion model with a frozen VAE, and (2) fine-tuning the decoder. In the first stage, contrary to
previous works [10, 17] that typically use mean values of 0.25 for size noise and 1 /1.y, for label
sampling, we set the latent noise mean to 0.1, empirically demonstrating improved performance.
Optimization employs the Adam optimizer with an initial learning rate of 5 x 10~%, a cosine annealing
schedule featuring a 500-step linear warm-up, and a minimum learning rate of 1 x 1076 to ensure
stable convergence.

During the diffusion stage, the loss function follows Equation (2), combining latent-space denoising
loss Lqi and auxiliary detection loss Lget, as defined in the Method section. To reuse pretrained
video LDM weights, we add a lightweight MLP adapter between the V-DETR box-latent and the

diffusion backbone. Concretely, given b e RV*d 3 two-layer MLP projects it to a 4-channel canvas

b’ € RYH»xWo with Hy, x W, = N on which the video-LDM U-Net operates. Its output is mapped
back via another two-layer MLP to RN %4 and decoded to boxes. We compute the diffusion loss Lqig

on the noised canvas b’; and the detection loss L.t after the inverse projection and the box decoder.
This matches the 4-channel latent convention in Stable Video Diffusion. The model trains for 18K
iterations with a batch size of 8, accumulating gradients over 16 steps. The decoder remains frozen
at this stage, with Ldet indirectly guiding latent refinement. In the second stage, we unfreeze the
VAE decoder, keeping the encoder fixed, and fine-tune the decoder with detection losses, using a
reduced learning rate and regularization to maintain pretrained decoder stability. To balance training
objectives, the loss coefficients initially set as Agig = 1.0, Aget = 0.2 gradually adjust to Agi¢g = 0.5,



Table 1: General object detection on Table 2: Few-shot object detection on FS-SUNRGBD.
SUN RGB-D and ScanNetV2 datasets. Bold texts denote the best results on each scenario.

Method SUN RGB-D [9] ScanNetV2 [65] FS-SUNRGBD [90]
mAP@25 mAP@50 mAP@25 mAP@S0 Method I-shot 3-shot 5-shot
VoteNet [50] 57.9 293 51.8 36.0 mAP@25 mAP@50 mAP@25 mAP@50 mAP@25 mAP@50
3DETR [45] 59.1 327 65.0 47.0
Group-Free [40] 63.0 452 69.1 52.8 VoteNet [50] 5.46 0.22 13.73 2.20 22.99 5.90
Uni3DETR [75] 67.0 50.3 71.7 583 GeneralizedFS3D [35] 6.81 1.58 17.52 4.69 22.84 6.76
V-DETR [61] 67.5 50.4 774 65.0 PointContrast-VoteNet [78] 7.03 117 20.32 4.19 21.03 6.71
 detecton Fractal-VoteNet [75] 754 139 21.08 425 22,01 6.77
Di 3D [17] ) ) 64.1 32 Meta-Det3D [84] 6.77 0.73 1537 2.99 24.22 5.68
Diff3DETR [10] . 657 449 Prototypical-VoteNet [90] 12.39 1.52 2151 6.13 29.95 8.16
CatFree3D [3] R _/520t - Prototypical-VAE [68] 14.36 242 27.70 8.73 33.21 13.98
Ours 674  502/545° 728 60.3 Ours 20.69 6.52 34.72 13.52 40.52 20.25

T Training on 31 categories (including background) and testing on the other 7.

Table 3: Few-shot object detection on FS-ScanNet. Bold texts denote the best results on each scenario.

FS-ScanNet [90]

Method Split-1 Split-2
1-shot 3-shot 5-shot 1-shot 3-shot 5-shot
mAP@25 mAP@50 mAP@25 mAP@50 mAP@25 mAP@50 mAP@25 mAP@50 mAP@25 mAP@50 mAP@25 mAP@50

VoteNet [50] 11.72 8.02 21.13 9.57 28.63 15.69 8.79 1.71 18.19 5.52 22.68 11.64
GeneralizedFS3D [35] 12.03 8.19 24.90 10.26 29.29 16.67 9.19 1.87 19.41 6.80 25.18 12.74
PointContrast-VoteNet [78] 12.59 8.52 20.12 11.16 25.83 15.49 9.55 1.97 18.44 5.23 20.06 10.19
Fractal-VoteNet [75] 11.81 7.57 21.38 10.11 24.66 14.73 9.16 1.68 15.65 4.88 20.35 10.26
Meta-Det3D [84] 10.28 4.03 23.42 10.64 25.65 13.88 5.21 1.32 15.44 4.37 2213 7.09
Prototypical-VoteNet [90] 15.34 8.25 31.25 16.01 32.25 19.52 11.01 221 21.14 8.39 28.52 12.35
Prototypical-VAE [68] 16.00 10.22 31.60 19.37 32.84 22.39 12.66 4.15 21.27 10.09 31.70 14.43
Ours 20.34 13.64 36.75 24.42 3745 26.54 17.23 6.37 25.63 13.53 41.36 19.75

Adet = 1.0. We present the training and inference process in Algorithm | and 2. All experiments
utilize eight NVIDIA RTX A6000 Ada GPUs.

4.1 General 3-D object detection

Datasets and evaluation metrics We evaluate the proposed method on two standard indoor
benchmarks: SUN RGB-D and ScanNet. SUN RGB-D includes 5,285 training scenes along with
corresponding validation scenes, while ScanNet comprises 1,201 training and 312 validation scenes
reconstructed from 2.5 million RGB-D frames. Following prior works [17, 10, 50, 61], we evaluate
on the 10 most common object classes for SUN RGB-D and 18 semantic classes for ScanNet.
Performance is measured using mean Average Precision (mAP) at IoU thresholds of 0.25 and 0.5. All
results are averaged over three random splits, and we report both the mean and standard deviation.

Results Table | presents the results on the general 3-D object detection task. The proposed method
achieves approximately a 5% improvement in mAP on ScanNetV?2 compared to other diffusion-based
detectors, and it demonstrates competitive performance on SUN RGB-D compared to state-of-the-art
approaches. Note that while V-DETR uses a three-layer cascade structure, we use only a single layer.
Additionally, for fair comparison, we also report results under CaTFree3D’s experimental setting.

4.2 Few-shot 3-D object detection

Datasets and evaluation metric We test our method on two few-shot 3-D object detection bench-
marks: FS-SUNRGBD and FS-ScanNet [90]. FS-SUNRGBD contains 5,000 point-cloud scenes
spanning 10 object categories, while FS-ScanNet includes 1,513 scenes across 18 categories. The
base/novel splits are 6/4 for FS-SUNRGBD and 12/6 for FS-ScanNet. Following standard proto-
cols [68, 90], we report mAP at IoU thresholds of 0.25 and 0.5 under varying shot settings.

Results As described in Section 3.4, following [68, 90], we adopt an episodic training strategy.
To adapt the scenario, we leverage support sets consisting of annotated point cloud features and
text prompts as conditional inputs to the latent diffusion model. The results on FS-SUNRGBD and
FS-ScanNet under 1-shot, 3-shot, and 5-shot settings are summarized in Tables 2 and 3. Across all
settings, the proposed method achieves approximately a 4% improvement in mAP, demonstrating its
superior performance and strong generalization capability in the few-shot regime.

4.3 Grounding 3-D object detection

Datasets and evaluation metrics We evaluate the proposed method on three benchmarks for 3-D
visual grounding: ScanRefer [5], Multi3DRefer [89], and ViGiL3D [72]. Specifically, ScanRefer



Table 4: Grounding object detection on ScanRefer, Table 5: Zero-shot grounding object de-

Multi3DRefer, and ViGiL3D. tection on the open-vocabulary benchmark

Method ScanRefer [5] Multi3DRefer [89] ViGiL3D [72] OpenLexSD.
Acc@25 Acc@50 F1@25 FI@50 Acc@25 Acc@50 OpenLex3D [25]

ScanRefer [3] 373 243 B B B B Method Replica [5] ScanNete+ [30] HM3D [72]
Multi3DRefer [89] 519 44.7 42.8 38.4 - - Acc@25 Acc@50 F1@25 F1@50 Acc@25 Acc@50
ConcreteNet [69] 46.5 46.5 - - OpenMask3D [67] 215 15.1 9.8 42 82 53
D-LISA [88] - 46.9 - 51.2 - - ConceptGraphs [15] 19.4 16.2 115 54 9.4 6.6
Chat-Scene [22] 55.5 50.2 57.1 524 11.0t 9.7t Ours 195 179 13 54 99 76
PQ3D [96] 57.0 51.2 - 50.1 10.8 10.8
Ours 59.5 527 59.4 538 157 133

" Results produced by our evaluations with the provided code.

focuses on single-object grounding, Multi3DRefer involves multi-object grounding per query, and
ViGiL3D serves as a diagnostic benchmark featuring a mixture of single, multiple, and no-target
queries. Following their respective evaluation protocols, we report Acc@25 and Acc@50 for
ScanRefer, and F1@25 and F1@50 for both Multi3DRefer and ViGiL3D. During training, we
adopt a DETR-style matching strategy using Hungarian bipartite assignment. At inference time,
we retain high-confidence predictions via non-maximum suppression (NMS), which is consistently
applied across all tasks. Notably, while Hungarian matching is suited for single-object settings
such as ScanRefer, it cannot directly support multi-object queries. Therefore, for Multi3DRefer
and ViGiL3D, we follow prior work [89] and apply a multi-match evaluation strategy based on IoU
thresholds and label agreement to compute precision, recall, and F1 scores. We further evaluate our
method in a zero-shot setting on the open-vocabulary benchmark OpenLex3D [28]. Since the dataset
provides only semantic segmentation masks and synonym lists, we construct axis-aligned bounding
boxes (AABB) from the segmentation results and use the first synonym in each list as the reference
label. Accuracy is reported at IoU thresholds of 0.25 and 0.5.

Results Table 4 shows that our method achieves strong performance across all three grounding
benchmarks, demonstrating robustness in both single- and multi-object scenarios. In Table 5, it
also achieves competitive results on OpenLex3D under a zero-shot setting, highlighting strong
generalization in open-vocabulary 3D understanding. While OpenMask3D and ConceptGraphs report
slightly higher scores on some subsets, they rely on complex multi-stage pipelines involving multi-
view fusion, explicit mask decoding, or large language models like CLIP, LLaVA, and GPT-4. In
contrast, our approach leverages CLIP2Point for visual-language alignment and achieves comparable
or better performance without external LLMs, handcrafted scene graphs, or post-processing. This
underscores the efficiency of promptable latent diffusion for open-vocabulary 3-D object grounding.

4.4 Ablation study and discussion

. . . General
As shown in Figure 4, we perform three ablation (ScanNetv2)
studies across eight 3-D benchmarks to evaluate Grounding %3

58.4 General
three key components of our method. (Opentexsb) 55 SUNRCED)

13

Language-guided object anchors Replacing the
cross-attended anchors with purely visual features
leads to consistent performance drops, particu-  crounding
larly on open-vocabulary benchmarks such as %
ViGiL3D (-2.9) and OpenLex3D (-2.7), where
semantic alignment is crucial. The degradation n A
on Multi3DRefer (-4.4) and ScanRefer (-5.2) fur- 538 e 65 et

1-shot

.3 )13.6
(FS-ScanNet)

133 104(97 63
‘

ighli i —oui Grounding (FS-SUNRGBD)
ther highlights the importance of language-guided o o e
anchoring for accurate grounding. Grounding ~— wio Diffusion

(ScanRefer) —— w/o Language Anchor
wl/o Prompt

Latent diffusion refinement Substituting our
diffusion module with direct regression signifi-
cantly degrades few-shot performance, with FS-
ScanNet dropping from 13.64 to 8.24 (-5.4) and
FS-SUNRGBD from 6.52 to 4.32 (-2.2). Ground-
ing accuracy also declines, e.g., ViGiL3D: (-4.1),
Multi3DRefer: (-6.4), indicating the value of iter-
ative refinement under limited data.

Figure 4: Ablation study on eight 3-D detec-
tion and grounding benchmarks, comparing the
full model with versions without latent diffusion,
language-guided anchors, or prompt condition-
ing. Each component contributes significantly,
especially in open-vocabulary grounding tasks.



Table 6: Summary of key characteristics of diffusion-based approaches versus the proposed method.

Method Prompt modality Detection task Representative score
DiffusionDet [7] - 2-D detection COCO: 45.8 mAP@50
GroundingDINO [38] text 2-D detection LVIS : 32.5 mAP@50
Diffusion-SS3D [17] - 3-D detection ScanNetV2: 43.2 mAP@50
Diff3DETR [10] - 3-D detection ScanNetV2: 44.9 mAP@50
Ours text, image 3-D detection, Few-shot, Grounding 8 datasets w/ prompt + 3% (1)

Promptable conditioning Removing prompt conditioning causes the most severe degradation across
grounding tasks. Performance on ScanRefer drops from 52.7 to 39.2 (-13.5), Multi3DRefer from 53.8
to 39.7 (-14.1), and ViGiL3D from 13.3 to 6.3 (-7.0). Even in one-shot settings, e.g., FS-SUNRGBD:
(-3.1), performance declines, confirming the necessity of prompts for semantic guidance, particularly
in ambiguous or data-scarce conditions.

Overall, the ablation results are consistent with our design goals: promptable conditioning is critical
for language-driven tasks, diffusion enables robust learning in low-data regimes, and language-guided
anchors improve semantic grounding, particularly in open-vocabulary settings.

Core contributions of the proposed method As shown in Table 6, our diffusion-based detector is
built upon the concept of a noise-to-box, reflecting the recent advancements of diffusion models across
computer vision, including both discriminative tasks and dense prediction scenarios. Recent methods
such as Marigold [29] for depth estimation further highlight the flexibility of diffusion-based models.
However, existing diffusion-based detectors, such as DiffusionDet [7] and Diffusion-SS3D [17],
typically diffuse only raw box coordinates. This design restricts their ability to incorporate arbitrary
language inputs or exemplar-based prompts directly, thereby limiting their generalization capacity.
Our method addresses these limitations by leveraging latent diffusion models, which can seamlessly
integrate diverse multimodal inputs. By embedding an aligned foundational model into the diffusion
process, our approach achieves a high degree of flexibility and adaptability across a wide range of
tasks and modalities. Unlike standard detectors, our framework natively supports various input types,
allowing for flexible and precise prediction control via prompt-based conditioning. This feature
significantly broadens the practical utility of diffusion-based detection frameworks. The main novelty
of our method is the integration of prompt conditioning into the diffusion-based detector through
a noise-to-box paradigm, as emphasized in the Introduction and Conclusion. Our approach draws
inspiration from recent findings, such as the work “Multimodality Helps Few-shot 3-D Point Cloud
Semantic Segmentation”, which demonstrates the benefits of leveraging multiple modalities [1]. We
specifically employ a latent diffusion model due to its intrinsic ability to fuse multimodal information
effectively. While existing diffusion-based detectors are usually restricted to a single task or modality
(e.g., DiffusionDet is limited to 2-D detection, Diffusion-SS3D and Diff3DETR [10] only address
closed-set 3D detection without prompt conditioning, and GroundingDINO [38], although promptable,
is confined to 2D detection tasks), our proposed framework overcomes these barriers. By utilizing a
latent box VAE, our method enables a single trained model to flexibly support closed-set detection,
few-shot adaptation, and language-driven 3D detection, all by simply modifying the prompts (e.g.,
class names, visual exemplars, or natural language descriptions).

5 Conclusion

We propose a unified and flexible framework for 3-D object detection that reformulates the diffusion
process as a conditioned noise-to-box transformation. Unlike prior diffusion-based detectors, our
method introduces a conditional latent diffusion model that enables promptable box generation within
a latent space. By incorporating task-specific prompts, our approach seamlessly adapts to diverse 3-D
detection settings, including general, few-shot, and grounding-based scenarios. To enhance detection
quality, we adopt a DETR-style architecture to generate semantically rich object anchors, which serve
as informative inputs to the diffusion process. Extensive experiments across various benchmarks
demonstrate the versatility and strong performance of our method, highlighting both its generalization
capabilities and the potential of diffusion-based modeling in 3-D object detection.
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A Additional implementation details
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Figure 5: Model architecture for the few-shot setting.

Architecture for few-Shot object detection We adopt an episodic training paradigm to address
few-shot object detection and introduce architectural modifications tailored to the FS3D setting.
Unlike general or grounding-based 3-D detection, our FS3D framework employs a dual-branch
architecture that separately processes a query point cloud and a small set of annotated support scenes.
Each query input is a complete 3-D scene represented as a point cloud {p; € R3}"_,, which is
processed by a backbone network to produce per-point features {z; € }R"l}Z 1> where d denotes the
feature dimension.

For the support set, each support sample is also a full 3-D scene ({p$ € R3*}™ ;. However, only the
points enclosed within ground-truth bounding boxes are used to represent the relevant object instances.
Specifically, for each bounding box (b® = (z,y, z, h, w, ), we extract the subset of points within
the region of interest (Rol) and obtain their corresponding features via the backbone network. These
features are then aggregated using max pooling to produce an instance-level representation of the
object:

= MaxPool( f; (RoI(p®, b*))). (13)

In the FS3D prompt encoder, these instance-level features are passed through an additional MLP and
a cross-attention module to produce class-aware and instance-aware latent representations. These
latents are subsequently used to condition the diffusion-based detector. This design differs from
prior FS3D approaches that typically fuse support and query features via cross-attention at detection
time. Instead, the proposed method treats the support set as an explicit conditioning signal for the
generative latent process, promoting flexibility and compatibility with generalizable multimodal
prompts.

Language-guided object anchor features For object anchor generation, we employ two vision-
language pretrained models, CLIP2Point [25] and Uni3D [92], whose vision encoders align with
the CLIP text encoder, facilitating seamless multimodal integration. As detailed in Section 3.2, we
generate n; = 128 object anchors {0, };,, initializing the corresponding bounding boxes {b;}}*,
using Farthest Point Sampling (FPS) for centroids. The dimensions of the box are initialized with the
average dimensions of the dataset or randomly within a normalized range [0, 1].

Box representation For the Box VAE, we utilize a pretrained one-layer V-DETR module [61],
omitting the ordinal prediction branch and adapting the global feature from the visual encoder
(n2 = 1024). Note that the original V-DETR employs a three-stage cascade architecture, whereas
our approach leverages a simplified, single-layer adaptation.
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Algorithm 1: Training Algorithm 2: Inference

def train(pc, gt_b, gt_l, clsn, cond, T): def inference(pc, clsn, cond, T, steps):

# Extract 3-D scene features # Extract 3-D scene features

pts, zv = foundation.encoder.v(pc) pts, zv = foundation.encoder.v(pc)

zt = foundation.encoder.t(clsn) zt = foundation.encoder.t(clsn)

# Compute conditional embeddings # Compute conditional embeddings

cz = prompt.encoder(cond) cz = prompt.encoder (cond)

# Generate object anchor features # Generate object anchor features

bo = cross_attention(zv, zt) bo = cross_attention(zv, zt)

# Initialize bounding boxes # Initialize noisy latent boxes

bb_init = init_boxes(bo) bb_init = init_boxes(bo)

# Encode to latent space # Encode to latent space

bb_latent = box_vae.encoder(bb_init, bo) bb_latent = box_vae.encoder(bb_init, bo)

# Sample random diffusion timestep # Add random noise in latent domain

t = randint(1, T) eps = normal(mean=0, std=1,
size=bb_latent.shape)

# Add noise to latent bb_noisy = corrupt(bb_latent, t=T, noise=eps)

eps = normal(mean=0, std=1)

bb_noisy = corrupt(bb_latent, t, eps) # Prepare sampling schedule
time_points = linspace(-1, T, steps)

# Predict noise with diffusion model times = reversed(time_points)

eps_pred = ldm(bb_noisy, cz, t) pairs = list(zip(times[:-1], times[1:]))

# Compute diffusion loss for t_cur, t_next in pairs:

L_diff = mse(eps_pred, eps) # Predict noise at current step

eps_pred = ldm(bb_noisy, cz, t_cur)
# Decode latent to boxes

bb_pred = box_vae.decoder (bb_latent) # DDIM update of latent
bb_noisy = ddim(bb_noisy, eps_pred, t_cur,
# Compute detection loss t_next)
L_det = detection_loss(bb_pred, gt_b, gt_1)
loss = L_diff + L_det # Decode final latent to boxes
update(model, loss) bb_final = box_vae.decoder(bb_noisy)
return loss return bb_final
corrupt (x, t, eps):sqrt( alpha_cumprod(t)) * x + linspace:generate evenly spaced values
sqrt(1 - alpha_cumprod(t)) * eps
alpha_cumprod(t): le a;

Box Refinement via Conditional Latent Diffusion We use the DDIM [64] noise scheduler with
a maximum of 1000 timesteps, initializing the latent diffusion model from pre-trained stable video
diffusion weights [4]. Classifier-free guidance [18] is applied with a guidance scale of 3.5. For the
prompt encoder, we adopt the CLIP text encoder for general and grounding object detection tasks,
benefiting from its well-established alignment and widespread use in latent diffusion models.

B More experimental results

B.1 Performance consistency and stability

As mentioned above, due to space constraints, only the mean performance is reported in the main
paper. To support the reported main results in the paper, we include the performance over three
independent runs with different random seeds for each benchmark. As shown in Table 7, the proposed
method achieves consistent results with low variance on general, few shot, and grounding 3-D object
detection tasks. This demonstrates the stability and robustness of the approach despite the diverse
task settings.

B.2 Ablation study

In addition to the core components discussed in the main paper, we further investigate the impact of
different box initialization strategies. Specifically, we compare random initialization with a strategy
that uses the average object size computed from the training set as a prior. As shown in Table 8,
using average size initialization consistently improves performance across all three benchmarks:
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Table 7: Performance of the proposed method across different 3-D detection and grounding bench-
marks. We report the mean and standard deviation over three independent runs with different random
seeds, illustrating the consistency and robustness of the method.

Dataset mean Average Precision Accuracy F1-Score
mAP@25 mAP@50  Acc@25  Acc@50 F1@25 F1@50

General 3-D object detection

SUN RGB-D [9] 67.4 £ 09 50.2 £ 05 - - - -

ScanNetV2 [65] 72.8 £ 13 60.3 07 - - - -

Few-shot 3-D object detection

FS-SUNRGBD (1-shot) [90] 20.69 132 652+ 062 - - - -

FS-SUNRGBD (3-shot) [90] 3472 £111 1352+ 053 - - - -

FS-SUNRGBD (5-shot) [90] 40.52 £ 145 20.25 £+ 095 - - - -

20.34 150 13.64 + 054 - - - -
36.75 £ 153 2442 + 063 - - - -
3745+ 172 26.54 097 - - - -
17.23 194 6.37 £ 1.13 - - - -
25.63 153 13.54 075 - - - -
41.36 =145 19.75+ 056 - - - -

FS-ScanNet Split 1 (1-shot) [90
FS-ScanNet Split 1 (3-shot) [90
FS-ScanNet Split 1 (5-shot) [90
FS-ScanNet Split 2 (1-shot) [90
FS-ScanNet Split 2 (3-shot) [90
FS-ScanNet Split 2 (5-shot) [90

St R St B et

Grounding 3-D object detection

ScanRefer [5] - - 595+17 527409 - -
Multi3DRefer [89] - - - - 594 +13 53.8+0s5
ViGiL3D [72] - - 157+16 133+ 11 - -
OpenLex3D (Replica) [28] - - 19.5+t09 179406 - -
OpenLex3D (ScanNet++) [28] - - - - 113+07 54+o04
OpenLex3D (HM3D) [28] - - 9.9 + 06 7.6 £ 04 - -

Table 8: Ablation study on three 3-D detection and grounding benchmarks comparing box initial-
ization strategies. Using average box size as a prior leads to consistent improvements over random
initialization.

Method ScanNetV2 [65] FS-SUNRGBD (1-shot) [90] ScanRefer [5]
mAP@25 mAP@50 mAP@25 mAP@50 Acc@25  Acc@50
Method w/ random initial 712 +16 595409 19.52+ 183 6.49 + 083 572+18 514+ 1.1

Method w/ average size of boxes 72.8 £13 60.3 £07 20.69 &+ 1.32 6.52 + 062 595+17 527 +09

ScanNetV2 [65], FS-SUNRGBD [90], and ScanRefer [5]. This confirms that incorporating simple
geometric priors leads to more stable and accurate predictions in both detection and grounding tasks.

Box initialization strategy We adopt a strategy that uses the average size of bounding boxes in the
dataset to provide a strong prior for initialization. As shown in Table 8, this approach outperforms
random initialization across all benchmarks, confirming our hypothesis that informed priors lead to
more stable and accurate performance. We also observe that the variance in performance is notably
higher under random initialization, which is intuitive since randomly sampled box sizes introduce
greater variability in the optimization process.

Foundation models For extracting object query features, we leverage two vision-language foun-
dation models: CLIP2Point [25] and Uni3D [92]. As shown in Table 9, the overall performance is
slightly better when using Uni3D across all three benchmarks. While CLIP2Point and Uni3D differ
more significantly in zero-shot 3-D scene recognition settings, their impact on object query features
is more subtle. This is likely because the downstream detection performance relies more heavily on
the diffusion process and latent refinement, rather than the initial feature representation alone.

Number of object anchors Following prior diffusion-based detectors, we adopt 128 initial object
anchors as the default setting for a fair comparison. As shown in Table 10, increasing the number
of anchors from 64 to 256 leads to improved performance in both general and few-shot 3-D object
detection tasks. However, the gains are marginal for grounding tasks such as ScanRefer. This is
expected, as ScanRefer typically involves a single target object per query, and 128 anchors already
provide sufficient coverage for localizing one bounding box.
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Table 9: Ablation study comparing different foundation models for extracting object query features.
Using Uni3D leads to slightly better performance than CLIP2Point across three 3-D detection and
grounding benchmarks.

ScanNetV2 [65] FS-SUNRGBD (1-shot) [90] ScanRefer [5]
mAP@25 mAP@50 mAP@25 mAP@50 Acc@25 Acc@50

Method w/ CLIP2Point [25] 722 +13 59.0408 19.11 135 6.34 £ 0.61 58.7+17 51.6+09
Method w/ Uni3D [92] 728 213 60.3+07 20.69 * 1.32 6.52 062 595 +17 52.7 409

Method

Table 10: Ablation study on the number of object anchors used in the detection pipeline. While
increasing the number of anchors improves general and few-shot detection performance, the effect is
limited in single-object grounding scenarios such as ScanRefer.

ScanNetV2 [65] FS-SUNRGBD (1-shot) [90] ScanRefer [5]
mAP@25 mAP@50 mAP@25 mAP@50 Acc@25  Acc@50

Method w/ 64 693 +13 567x09 17234131 5.74 £+ 0.62 574 +17 51.6+09
Method w/ 128 72.8 £ 13 60.3 =07 20.69 + 132 6.52 + 0.62 595417 527 +o09
Method w/ 256 732412 61.2+07 21454127 6.67 £ 0.60 597+ 16 52.8+0s8

Method

Table 11: Ablation study on loss weighting strategies. The proposed scheduled weights improve
stability and generalization across detection tasks, compared to fixed or single-objective settings.

Loss Weights (\ifrs Adct) ScanNetV2 [65] FS-SUNRGBD (1-shot) [90] ScanRefer [5]
mAP@25 mAP@50 mAP@25 mAP@50 Acc@25  Acc@50
(1.0,0.2) = (0.5, 1.0) 728 £13 603 £07 20.69 + 132 6.52 £ 0.62 595+17 527 %09
(1.0, 1.0) — (1.0, 1.0) 712 +14 59.1 08 1892+ 151 6.07 + 0.60 60.1 £15 512408
(1.0,0.2) — (1.0, 0.2) 703 +15 584409 1753+ 144 5.71 + 067 584 +t16 50.7 %09
(0.0, 1.0) — (0.0, 1.0) 66.1 £17 53.6t12 1241+ 165 4.38 + 082 542419 473+ 11

Loss weight scheduling We study the impact of different loss weighting strategies between the
latent space denoising loss L4;¢ and the detection loss L4et. As shown in Table 11, our proposed
scheduling scheme starting from (Agig, Adet) = (1.0, 0.2) and gradually transitioning to (0.5, 1.0)
achieves the best overall performance in general, few-shot and grounding benchmarks.

Using equal weights (1.0, 1.0) improves grounding slightly but performs worse in low-data scenarios
such as FS-SUNRGBD, suggesting overemphasis on detection loss early in training. Keeping a fixed
low weight on detection loss without scheduling, as in (1.0,0.2), leads to underfitting and degraded
overall accuracy. Complete removal of diffusion loss (0.0, 1.0) results in significant performance
drops in all tasks, confirming that the latent denoising objective is essential for effective and robust
localization.

Accelerated variants for efficiency For completeness, we report two accelerated variants of our
method: a 4-step and a 2-step LCM-LoRA [43] model. Due to the limited timeframe for the rebuttal,
the newly introduced hyperparameters, such as learning-rate warm-up and cosine decay schedules for
the LoRA adapter, have not yet been fully optimized. We anticipate further improvements with more
extensive tuning. As shown in Table 12, although our base model is relatively large, its end-to-end
runtime matches or exceeds the FPS throughput of competing methods, while consistently achieving
higher accuracy. The promptable design also naturally extends to few-shot and grounding tasks
without requiring retraining, which highlights the versatility of our framework. In addition, standard
engineering optimizations, including mixed precision, quantization, and channel scaling or sparse
coding approaches such as Matryoshka representations, could further enhance the efficiency of our
method. Nevertheless, we wish to emphasize that the primary focus of this paper is to introduce
the promptable concept within a diffusion-based detection framework and to explore the broader
potential of diffusion models.
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Table 12: Performance of the proposed method and its accelerated variants on general 3D object
detection, evaluated on ScanNetV2.

ScanNetV2 [65]

Method

mAP@50 (1) Model Parameters (}) Latency/scene () FPS ()
Diffusion-SS3D [17] 64.1 - - 30.07
Diff3DETR [10] 65.7 - - -
Ours (DDIM-8) 72.8 1.03B 0.28s 3.60
Ours (LCM-LoRA-4 [43]) 72.3 1.03B + 70M LoRA 0.05s 22.23
Ours (LCM-LoRA-2 [43]) 71.9 1.03B + 70M LoRA 0.03s 30.07

B.3 Qualitative results

Figure 6 presents qualitative examples from the ScanNetV2 and Multi3DRefer datasets. The proposed
method produces accurate and well-localized 3-D bounding boxes in both general object detection
and grounding tasks, with predicted boxes closely matching the ground truth. These results highlight
the model’s robustness and adaptability across different types of 3-D scenes.

C Limitations

While the proposed method demonstrates strong versatility across various 3-D detection tasks,
the denoising process inherent to latent diffusion models relies on iterative refinement, which
can be computationally expensive. Future work may explore integrating one-step alternatives (e.g.
Consistency models or Rectified flow models) to improve efficiency. Moreover, although the proposed
framework supports promptable conditioning, our experiments primarily focus on text and visual
modalities. Leveraging more complex prompts (e.g. audio or video) remains an open direction for
future research.

D Broader impacts

The proposed method has the potential to benefit a range of applications in embodied Al, robotics,
and interactive world models, especially in scenarios where labeled 3-D data is limited. However,
as the approach builds upon foundation models for vision-language alignment, it may inherit biases
present in those models. This could lead to skewed predictions when deployed in real world settings.
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Figure 6: Qualitative results on general 3-D object detection and grounding-based object detection.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The authors discuss the limitations of the work in the main content
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
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* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Guidelines:
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All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all the information needed to reproduce the main
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Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: The paper discloses all the implementation details and information needed to
reproduce the main experimental results.
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* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide experiment details in our paper necessary to understand the results.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the statistical significance of our experiments in the supplementary
materials. We present only the mean performance in the main paper due to space limitations.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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10.

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide sufficient information on the computer resources needed to repro-
duce the experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have carefully reviewed the NeurIPS Code of Ethics and con-
formed with it.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss both potential positive societal impacts and negative societal
impacts of the work in the appendix.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credited the creators or original owners of assets used in the paper
and explicitly mentioned and properly respected the license and terms of use.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We have not yet released new assets in our paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing experiments nor research with
human subjects

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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