
Published as a conference paper at ICLR 2023

SEMI-PARAMETRIC INDUCING POINT NETWORKS AND
NEURAL PROCESSES

Richa Rastogi∗, Yair Schiff, Zhaozhi Li, Ian Lee, Mert R. Sabuncu, & Volodymyr Kuleshov∗
Cornell University
{rr568,yzs2,zl643,yl759,msabuncu,kuleshov}@cornell.edu

Alon Hacohen
Technion - Israel Institute of Technology
alonhacohen@campus.technion.ac.il

Yuntian Deng
Harvard University
dengyuntian@seas.harvard.edu

ABSTRACT

We introduce semi-parametric inducing point networks (SPIN), a general-purpose
architecture that can query the training set at inference time in a compute-efficient
manner. Semi-parametric architectures are typically more compact than parametric
models, but their computational complexity is often quadratic. In contrast, SPIN
attains linear complexity via a cross-attention mechanism between datapoints
inspired by inducing point methods. Querying large training sets can be particularly
useful in meta-learning, as it unlocks additional training signal, but often exceeds
the scaling limits of existing models. We use SPIN as the basis of the Inducing
Point Neural Process, a probabilistic model which supports large contexts in meta-
learning and achieves high accuracy where existing models fail. In our experiments,
SPIN reduces memory requirements, improves accuracy across a range of meta-
learning tasks, and improves state-of-the-art performance on an important practical
problem, genotype imputation.

1 INTRODUCTION

Recent advances in deep learning have been driven by large-scale parametric models (Krizhevsky
et al., 2012; Peters et al., 2018; Devlin et al., 2019; Brown et al., 2020; Ramesh et al., 2022). Modern
parametric models rely on large numbers of weights to capture the signal contained in the training set
and to facilitate generalization (Frankle & Carbin, 2018; Kaplan et al., 2020); as a result, they require
non-trivial computational resources (Hoffmann et al., 2022), have limited interpretability (Belinkov,
2022), and impose a significant carbon footprint (Bender et al., 2021).

This paper focuses on an alternative semi-parametric approach, in which we have access to the training
set Dtrain = {x(i),y(i)}ni=1 at inference time and learn a parametric mapping y = fθ(x | Dtrain)
conditioned on this dataset. Semi-parametric models can query the training set Dtrain and can
therefore express rich and interpretable mappings with a compact fθ. Examples of the semi-parametric
framework include retrieval-augmented language models (Grave et al., 2016; Guu et al., 2020; Rae
et al., 2021) and non-parametric transformers (Wiseman & Stratos, 2019; Kossen et al., 2021).
However, existing approaches are often specialized to specific tasks (e.g., language modeling (Grave
et al., 2016; Guu et al., 2020; Rae et al., 2021) or sequence generation (Graves et al., 2014)), and
their computation scales superlinearly in the size of the training set (Kossen et al., 2021).

Here, we introduce semi-parametric inducing point networks (SPIN), a general-purpose architecture
whose computational complexity at training time scales linearly in the size of the training set Dtrain

and in the dimensionality of x and that is constant in Dtrain at inference time. Our architecture is
inspired by inducing point approximations (Snelson & Ghahramani, 2005; Titsias, 2009; Wilson &
Nickisch, 2015; Evans & Nair, 2018; Lee et al., 2018) and relies on a cross-attention mechanism
between datapoints (Kossen et al., 2021). An important application of SPIN is in meta-learning,
where conditioning on large training sets provides the model additional signal and improves accuracy,

∗Correspondence to Richa Rastogi and Volodymyr Kuleshov

1



Published as a conference paper at ICLR 2023

but poses challenges for methods that scale superlinearly with Dtrain. We use SPIN as the basis
of the Inducing Point Neural Process (IPNP), a scalable probabilistic model that supports accurate
meta-learning with large context sizes that cause existing methods to fail. We evaluate SPIN and IPNP
on a range of supervised and meta-learning benchmarks and demonstrate the efficacy of SPIN on a
real-world task in genomics—genotype imputation (Li et al., 2009). In meta-learning experiments,
IPNP supports querying larger training sets, which yields high accuracy in settings where existing
methods run out of memory. In the genomics setting, SPIN outperforms highly engineered state-
of-the-art software packages widely used within commercial genomics pipelines (Browning et al.,
2018b), indicating that our technique has the potential to impact real-world systems.

Contributions In summary, we introduce SPIN, a semi-parametric neural architecture inspired by
inducing point methods that is the first to achieve the following characteristics:

1. Linear time and space complexity in the size and the dimension of the data during training.
2. The ability to learn a compact encoding of the training set for downstream applications. As

a result, at inference time, computational complexity does not depend on training set size.

We use SPIN as the basis of the IPNP, a probabilistic model that enables performing meta-learning
with context sizes that are larger than what existing methods support and that achieves high accuracy
on important real-world tasks such as genotype imputation.

2 BACKGROUND

Parametric and Semi-Parametric Machine Learning Most supervised methods in deep learning
are parametric. Formally, given a training set Dtrain = {x(i),y(i)}ni=1 with features x ∈ X and
labels y ∈ Y , we seek to learn a fixed number of parameters θ ∈ Θ of a mapping y = fθ(x) using
supervised learning. In contrast, non-parametric approaches learn a mapping y = fθ(x | Dtrain)
that can query the training set Dtrain at inference time; when the mapping fθ has parameters, the
approach is called semi-parametric. Many deep learning algorithms—including memory-augmented
architectures (Graves et al., 2014; Santoro et al., 2016), retrieval-based language models (Grave et al.,
2016; Guu et al., 2020; Rae et al., 2021), and non-parametric transformers (Kossen et al., 2021)—are
instances of this approach, but they are often specialized to specific tasks, and their computation scales
superlinearly in n. This paper develops scalable and domain-agnostic semi-parametric methods.

Meta-Learning and Neural Processes An important application of semi-parametric methods is
in meta-learning, where we train a model to achieve high performance on new tasks using only a
small amount of data from these tasks. Formally, consider a collection of D datasets (or a meta-
dataset) {D(d)}Dd=1, each defining a task. Each D(d) = (D(d)

c ,D(d)
t ) contains a set of context points

D(d)
c = {x(di)

c ,y
(di)
c }mi=1 and target points D(d)

t = {x(di)
t ,y

(di)
t }ni=1. Meta-learning seeks to produce

a model f(x;Dc) that outputs accurate predictions for y on Dt and on pairs (Dc,Dt) not seen
at training time. Neural Process (NP) architectures perform uncertainty aware meta-learning by
mapping context sets to representations rc(Dc), which can be combined with target inputs to provide a
distribution on target labels yt ∼ p(y|xt, rc(Dc)), where p is a probabilistic model. Recent successes
in NPs have been driven by attention-based architectures (Kim et al., 2018; Nguyen & Grover, 2022),
whose complexity scales super-linearly with context size Dc—our method yields linear complexity.
In concurrent work, Feng et al. (2023) propose a linear time method, using cross attention to reduce
the size of context datasets.

A Motivating Application: Genotype Imputation A specific motivating example for developing
efficient semi-parametric methods is the problem of genotype imputation. Consider the problem
of determining the genomic sequence y ∈ {A,T,C,G}k of an individual; rather than directly
measuring y, it is common to use an inexpensive microarray device to measure a small subset of
genomic positions x ∈ {A,T,C,G}p, where p ≪ k. Genotype imputation is the task of determining
y from x via statistical methods and a dataset Dtrain = {x(i),y(i)}ni=1 of fully-sequenced individuals
(Li et al., 2009). Imputation is part of most standard genome analysis workflows. It is also a natural
candidate for semi-parametric approaches (Li & Stephens, 2003): a query genome y can normally be
represented as a combination of sequences y(i) from Dtrain because of the biological principle of

2



Published as a conference paper at ICLR 2023

recombination (Kendrew, 2009), as shown in Figure 1. Additionally, the problem is a poor fit for
parametric models: k can be as high as 109 and there is little correlation across non-proximal parts of
y. Thus, we need an unwieldy number of parametric models (one per subset of y), whereas a single
semi-parametric model can run imputation across the genome.

Figure 1: Genotype recombination

Attention Mechanisms Our approach for
designing semi-parametric models relies
on modern attention mechanisms (Vaswani
et al., 2017), specifically dot-product attention
Att(Q,K,V), which combines a query matrix
Q ∈ Rdq×eq with key and value matrices
K ∈ Rdv×eq , V ∈ Rdv×ev as
Att(Q,K,V) = softmax(QK⊤/

√
eq)V

To attend to different aspects of the keys and
values, multi-head attention (MHA) extends this
mechanism via eh attention heads:

MHA(Q,K,V) = concat(O1, ...Oeh)W
O Oj = Att(QWQ

j ,KWK
j ,VWV

j )

Each attention head projects Q,K,V into a lower-dimensional space using learnable projection
matrices WQ

j ,W
K
j ∈ Req×eqh , WV

j ∈ Rev,evh and mixes the outputs of the heads using WO ∈
Rehevh×eo . As is commonly done, we assume that evh = ev/eh, eqh = eq/eh, and eo = eq. Given
two matrices X,H ∈ Rd×e, a multi-head attention block (MAB) wraps MHA together with layer
normalization and a fully connected layer1:

MAB(X,H) = O+ FF(LayerNorm(O)) O = X+MHA(LayerNorm(X),H,H)

Attention in semi-parametric models normally scales quadratically in the dataset size (Kossen et al.,
2021); our work is inspired by efficient attention architectures (Lee et al., 2018; Jaegle et al., 2021b)
and develops scalable semi-parametric models with linear computational complexity.

3 SEMI-PARAMETRIC INDUCING POINT NETWORKS

3.1 SEMI-PARAMETRIC LEARNING BASED ON NEURAL INDUCING POINTS

A key challenge posed by semi-parametric methods—one affecting both classical kernel methods
(Hearst et al., 1998) as well as recent attention-based approaches (Kossen et al., 2021)—is the
O(n2) computational cost per gradient update at training time, due to pairwise comparisons between
training set points . Our work introduces methods that reduce this cost to O(hn)—where h ≪ n is a
hyper-parameter—without sacrificing performance.

Neural Inducing Points Our approach is based on inducing points, a technique popular in ap-
proximate kernel methods (Wilson & Nickisch, 2015; Lee et al., 2018). A set of inducing points
H = {h(j)}hj=1 can be thought of as a “virtual” set of training instances that can replace the training
set Dtrain. Intuitively, when Dtrain is large, many datapoints are redundant—for example, groups of
similar x(i) can be replaced with a single inducing point h(j) with little loss of information.

The key challenge in developing inducing point methods is finding a good set H. While classical
approaches rely on optimization techniques (Wilson & Nickisch, 2015), we use an attention mech-
anism to produce H. Each inducing point h(j) ∈ H attends over the training set Dtrain to select
its relevant “neighbors" and updates itself based on them. We implement attention between H and
Dtrain in O(hn) time.

Dataset Encoding Note that once we have a good set of inducing points H, it becomes possible
to discard Dtrain and use H instead for all future predictions. The parametric part of the model
makes predictions based on H only. This feature is an important capability of our architecture;
computational complexity is now independent of D and we envision this feature being useful in
applications where sharing Dtrain is not possible (e.g., for computational or privacy reasons).

1We use the pre-norm parameterization for residual connections and omit details such as dropout, see Nguyen
& Salazar (2019) for the full parameterization.

3



Published as a conference paper at ICLR 2023

3.2 SEMI-PARAMETRIC INDUCING POINT NETWORKS

Next, we describe semi-parametric inducing point networks (SPIN), a domain-agnostic architecture
with linear-time complexity.

Notation and Data Embedding The SPIN model relies on a training set Dtrain = {x(i),y(i)}ni=1

with input features x(i) ∈ X and labels y(i) ∈ Y where X ,Y ∈ V , which is the input and output
vocabulary 2. We embed each dimension (each attribute) of x and y into an e-dimensional embedding
and represent Dtrain as a tensor of embeddings D = Embed(Dtrain), D ∈ Rn×d×e, where d = p+ k
is obtained from concatenating the sequence of embeddings for each x(i) and y(i).

The set Dtrain is used to learn inducing points H = {h(j)}hj=1; similarly, we represent H via a tensor
H ∈ Rh×f×e of h ≤ n inducing points, each being a sequence of f ≤ d embeddings of size e.

To make predictions and measure loss on a set of b examples Dquery = {x(i),y(i)}bi=1, we use the
same embedding procedure to obtain a tensor of input embeddings Xquery ∈ Rb×d×e by embedding
{x(i),0}bi=1, in which the labels have been masked with zeros. We also use a tensor Ygold ∈ Rb×d

to store the ground truth labels and inputs (the objective function we use requires the model to make
predictions on masked input elements as well, see below for details).

Figure 2: SPIN Model Structure

High-Level Model Structure Figure 2
presents an overview of SPIN. At a high level,
there are two components: (1) an Encoder
module, which takes as input Dtrain and returns
a tensor of inducing points H; and (2) a
Predictor module, which is a fully parametric
model that outputs logits Yquery from H and
Xquery.

D = Embed(Dtrain) H = Encoder(D) Yquery = Predictor(Xquery,H)

The encoder consists of a sequence of layers, each of which takes as input D ∈ Rn×d×e and two
tensors HA ∈ Rn×f×e and HD ∈ Rh×f×e and output updated versions of HA,HD for the next
layer. Each layer consists of a sequence of up to three cross-attention layers described below. The
final output H of the encoder is the HD produced by the last layer.

3.2.1 ARCHITECTURE OF THE ENCODER AND PREDICTOR

Each layer of the encoder consists of three sublayers denoted as XABA,XABD,ABLA. An encoder
layer takes as input HA,HD and feeds its outputs H′

A,H
′
D (defined below) into the next layer. The

initial inputs HA,HD of the first encoder layer are randomly initialized learnable parameters.

H′
A = XABA(HA,D) H′

D = XABD(HD,H′
A) HA = ABLA(H′

A)

Cross-Attention Between Attributes (XABA) An XABA layer captures the dependencies among
attributes via cross-attention between the sequence of latent encodings in H and the sequence of
datapoint features in D.

XABA(HA,D) = MAB(HA,D)

This updates the features of each datapoint in HA to be a combination of the features of the
corresponding datapoints in D. In effect, this reduces the dimensionality of the datapoints (from
n× d× e to n× f × e). The time complexity of this layer is O(ndfe), where f is the dimensionality
of the reduced tensor.

Cross-Attention Between Datapoints (XABD) The XABD layer is the key module that takes
into account the entire training set to generate inducing points.

First, it reshapes (“unfolds”) its input tensors H′
A ∈ Rn×f×e and HD ∈ Rh×f×e into ones of

dimensions (1× n× fe) and (1× h× fe) respectively. It then performs cross-attention between
2Here we consider the case where both input and output are discrete, but our approach easily generalizes to

continuous input and output spaces.

4



Published as a conference paper at ICLR 2023

Figure 3: SPIN Architecture. Each layer of the encoder consists of sublayers XABA, ABLA and
XABD, and the predictor consists of a cross attention layer. We omit feedforward layers for simplicity.
the two unfolded tensors. The output of cross-attention has dimension (1× h× fe); it is reshaped
(“folded”) into an output tensor of size (h× f × e).

XABD(HD,H′
A) = fold(MAB(unfold(HD),unfold(H′

A))

This layer produces inducing points. Each inducing point in HD attends to dimensionality-reduced
datapoints in H′

A and uses its selected datapoints to update its own representation. The computational
complexity of this operation is O(nhfe), which is linear in training set size n.

Self-Attention Between Latent Attributes (ABLA) The third type of layer further captures
dependencies among attributes by computing regular self-attention across attributes:

ABLA(H′
A) = MAB(H′

A,H
′
A)

This enables the inducing points to refine their internal representations. The dataset encoder consists
of a sequence of the above layers, see Figure 3. The ABLA layers are optional based on validation
performance. The input HD to the first layer is part of the learned model parameters; the initial HA

is a linear projection of D. The output of the encoder is the output H′
D of the final layer.

Predictor Architecture The predictor is a parametric model that maps an input tensor Xquery

to an output tensor of logits Yquery. The predictor can use any parametric model. We propose
an architecture based on a simple cross-attention operation followed by a linear projection to the
vocabulary size, as shown in Figure 3:

Predict(Xquery,H) = FF(MAB(unfold(Xquery),unfold(H)))

3.3 INDUCING POINT NEURAL PROCESSES

An important application of SPIN is in meta-learning, where conditioning on larger training sets
provides more information to the model, and therefore has potential to improve predictive accu-
racy. However, existing methods scale superlinearly with Dtrain, and may not effectively leverage
large contexts. We use SPIN as the basis of the Inducing Point Neural Process (IPNP), a scalable
probabilistic model that supports fast and accurate meta-learning on large context sizes.

An IPNP defines a probabilistic model p(y|x, r(x,Dc)) of a target variable y conditioned on an
input x and a context dataset Dc. This context is represented via a fixed-dimensional context vector
r(x,Dc), and we use the SPIN architecture to parameterize r as a function of Dc. Specifically, we
define rc = Encoder(Embed(Dc)), where Encoder is the SPIN encoder, producing a tensor of
inducing points. Then, we compute r(x, rc) = MAB(x, rc) via cross-attention. The model p(y|x, r)
is a distribution with parameters ϕ(x, r), e.g., a Normal distribution with ϕ = (µ,Σ) or a Bernoulli
with ϕ ∈ [0, 1]. We parameterize the mapping ϕ(x, r) with a fully-connected neural network.

We further extend IPNPs to incorporate a latent variable z that is drawn from a Gaussian p(z|Dc)
parameterized by ϕz = m(Encoder(Embed(Dc))), where m represents mean pooling across data-
points. This latent variable can be thought of as capturing global uncertainty (Garnelo et al., 2018).
This results in a distribution p(y, z|x,Dc) = p(y|z,x,Dc)p(z|Dc), where p(y|z,x,Dc) is parame-
terized by ϕ(z,x, rc), with ϕ itself being a fully connected neural network. See Appendix A.6 for
more detailed architectural breakdowns. Following terminology in the NP literature, we refer to our
model as a conditional IPNP (CIPNP) when there is no latent variable z present.

5



Published as a conference paper at ICLR 2023

3.4 OBJECTIVE FUNCTION

SPIN We train SPIN models using a supervised learning loss Llabels (e.g., ℓ2 loss for regression,
cross-entropy for classification). We also randomly mask attributes and add an additional loss term
Lattributes that asks the model to reconstruct the missing attributes, yielding the following objective:

LSPIN = (1− λ)Llabels + λLattributes

Following Kossen et al. (2021), we start with a weight λ of 0.5 and anneal it to lean towards zero. We
detail the loss terms and construction of mask matrices over labels and attrbutes in Appendix A.2.
Following prior works (Devlin et al., 2019; Ghazvininejad et al., 2019; Kossen et al., 2021), we use
random token level masking. Additionally, we propose chunk masking, similar to the span masking
introduced in (Joshi et al., 2019), where a fraction ρ of the samples selected have the mask matrix for
labels M (i) = 1, and we show the effectiveness of chunk masking in Table 5.

IPNP Following the NP literature, IPNPs are trained on a meta-dataset {D(d)}Dd=1 of context and
training points D(d) = (D(d)

c ,D(d)
t ) to maximize the log likelihood of the target labels under the

learned parametric distribution LIPNP = − 1
|D|

∑D
d=1

∑n
i=1 log p(y

(di)
t | D(d)

c ,x
(di)
t ). For latent

variable NPs, the objective is a variational lower bound; see Appendix A.6 for more details.

4 EXPERIMENTS

Semi-parametric models—including Neural Processes for meta-learning—benefit from large context
sets Dc, as they provide additional training signal. However, existing methods scale superlinearly
with Dc and quickly run out of memory. In our experiments section, we show that SPIN and IPNP
outperform state-of-the-art models by scaling to large Dc that existing methods do not support.

4.1 UCI DATASETS

We present experimental results for 10 standard UCI benchmarks, namely Yacht, Concrete, Boston-
Housing, Protein (regression datasets), Kick, Income, Breast Cancer, Forrest Cover, Poker-Hand
and Higgs Boson (classification datasets). We compare SPIN with Transformer baselines such as
NPT (Kossen et al., 2021) and Set Transformers (Set-TF) (Lee et al., 2018). We also evaluate against
Gradient Boosting (GBT) Friedman (2001), Multi Layer Perceptron (MLP) (Hinton, 1989; Glorot &
Bengio, 2010), and K-Nearest Neighbours (KNN) (Altman, 1992).

Table 1: Performance Summary on UCI Datasets
Traditional ML Transformer

GBT MLP KNN NPT Set-TF SPIN

Ranking ↓ 3.00±1.76 4.10±1.37 5.44±1.01 2.30±1.25 3.63±0.92 2.10±0.88

GPU Mem ↓ - - - 1.0x 1.39±0.67x 0.46±0.21x

Table 2: Effect of context size on the Poker Hand dataset
Context Size

Approach 4096 10K 15K 30K

NPT Acc↑ 80.11 OOM - -
Mem↓ 9.82 OOM - -

SPIN Acc↑ 82.98 95.99 96.06 99.43
Mem↓ 1.73 3.88 5.68 10.98

GBT MLP KNN

Acc↑ 71.88 ±5.91 66.09 ±9.88 54.75 ±0.03

Following Kossen et al. (2021), we
measure the average ranking of the
methods and standardize across all
UCI tasks. To show the memory ef-
ficiency of our approach, we also re-
port GPU memory usage peaks and
as a fraction of GPU memory used
by NPT for different splits of the test
dataset in Table 1.

Results SPIN achieves the best
average ranking on 10 UCI datasets
and uses half the GPU memory

6



Published as a conference paper at ICLR 2023

compared to NPT. We provide detailed results on each of the datasets and hyperparameter
details in Appendix A.4. Importantly, SPIN achieves high performance by supporting larger context
sets—we illustrate this in Table 2, where we compare SPIN and NPT on the Poker Hand dataset
(70/20/10 split) using various context sizes. SPIN and NPT achieve 80-82% accuracy with small
contexts, but the performance of SPIN approaches 99% as context size is increased, whereas NPT
quickly runs out of GPU memory and fails to reach comparable performance.

4.2 NEURAL PROCESSES FOR META-LEARNING

Experimental Setup Following previous work (Kim et al., 2018; Nguyen & Grover, 2022),
we perform a Gaussian process meta-learning experiment, for which we create a collection of
datasets (D(d))Dd=1, where each D(d) contains random points (x(di))mi=1, where x(di) ∈ R, and
target points y(di) = f (d)(x(di)) obtained from a function f (d) sampled from a Gaussian Pro-
cess. At each meta-training step, we sample B = 16 functions {f (b)}Bb=1. For each f (b), we
sample m ∼ U [min_ctx, max_ctx] context points and n ∼ U [min_tgt, max_tgt] target
points. The range for n is fixed across all experiments at [4, 64]. The range for m is varied from
[64, 128], [128, 256], [256, 512], [512, 1024], [1024, 2048]. We train several different NP models for
100,000 steps and evaluate their log-likelihood on 3,000 hold out batches, with B,m, n taking the
same values as at training time. We evaluate conditional (CIPNP) and latent variable (IPNP) variations
of our model (using h = 1

2 · min_ctx inducing points) and compare them to other attention-based
NPs: Conditional ANPs (CANP) (Kim et al., 2018), Bootstrap ANPs (BANP) (Lee et al., 2020), and
latent variable ANPs (ANP) (Kim et al., 2018).

Figure 4: Inducing Point NPs outperform
NP baselines and train much faster. Plots
display mean ± std. deviation from 5 runs
with different random seeds.

Results The IPNP models attain higher performance
than all baselines at most context sizes (Figure 4).
Interestingly, IPNPs generalize better—recall that
IPNPs are more compact models with fewer parameters,
hence are less likely to overfit. We also found that
increased context size led to improved performance for
all models; however, baseline NPs required excessive
resources, and BANPs ran out of memory entirely. In
contrast, IPNPs scaled to large context sizes using up
to 50% less resources.

4.3 GENOTYPE IMPUTATION

Genotype imputation is the task of inferring the
sequence y of an entire genome via statistical methods
from a small subset of positions x—usually obtained
from an inexpensive DNA microarray device (Li et al.,
2009)—and a dataset Dtrain = {x(i),y(i)}ni=1 of fully-
sequenced individuals (Li et al., 2009). Imputation is part of most standard workflows in genomics
(Lou et al., 2021) and involves mature imputation software (Browning et al., 2018a; Rubinacci et al.,
2020) that benefits from over a decade of engineering (Li & Stephens, 2003). These systems are fully
non-parametric and match genomes in Dtrain to x,y; their scalability to modern datasets of up to
millions of individuals is a known problem in the field (Maarala et al., 2020). Improved imputation
holds the potential to reduce sequencing costs and improve workflows in medicine and agriculture.

Experiment Setup We compare against one of the state-of-the-art packages, Beagle (Browning
et al., 2018a), on the 1000 Genomes dataset (Clarke et al., 2016), following the methodology described
in Rubinacci et al. (2020). We use 5008 complete sequences y that we divide into train/val/test splits
of 0.86/0.12/0.02, respectively, following Browning et al. (2018b). We construct inputs x by masking
positions that do not appear on the Illumina Omni2.5 array (Wrayner). Our experiments in Table 3
focus on five sections of the genome for chromosome 20. We pre-process the input into sequences
of K-mers for all methods (see Appendix A.3). The performance of this task is measured via the
Pearson correlation coefficient R2 between the imputed SNPs and their true value at each position.

7



Published as a conference paper at ICLR 2023

We compare against NPTs, Set Transformers, and classical machine learning methods. NPT-16,
SPIN-16 and Set Transformer-16 refer to models using an embedding dimension 16, a model depth
of 4, and one attention head. NPT-64, SPIN-64 and Set Transformer-64 refer to models using an
embedding dimension of 64, a model depth of 4, and 4 attention heads. SPIN uses 10 inducing points
for datapoints (h=10, f=10). A batch size of 256 is used for Transformer methods, and we train using
the lookahead Lamb optimizer (Zhang et al., 2019).

Table 3: Performance Summary on Genomic Sequence Imputation. (∗) represents parametric models.
A difference of 0.5% is statistically significant at pvalue 0.05.

GBT∗ MLP∗ KNN Beagle NPT-16 Set-TF-16 SPIN-16

Pearson R2 ↑ 87.63 95.31 89.70 95.64 95.84 ±0.06 95.97±0.09 95.92 ±0.12

Param Count↓ - 65M - - 16.7M 33.4M 8.1M

Results Table 3 presents the main results for genotype imputation. Compared to the previous
state-of-the-art commercial software, Beagle, which is specialized to this task, all Transformer-
based methods achieve strong performance, despite making fewer assumptions and being more
general. While all the three Transformer-based approaches report similar Pearson R2, SPIN achieves
competitive performance with a much smaller parameter count. Among traditional ML approaches,
MLP perform the best, but requires training one model per imputed SNP, and hence cannot scale
to full genomes. We provide additional details on resource usage and hyper-parameter tuning in
Appendix A.3.

4.4 SCALING GENOTYPE IMPUTATION VIA META-LEARNING

One of the key challenges in genotype imputation is making predictions for large numbers of SNPs.
To scale to larger sets of SNPs, we apply a meta-learning based approach, in which a single shared
model is used to impute arbitrary genomic regions.

Experimental Setup We create a meta-training set {D(d)}Dd=1, where each (D(d)
c ,D(d)

t ) corre-
sponds to one of D independent genomic segments, D(d)

c is the set of reference genomes in that
segment, and D(d)

t is the set of genomes that we want to learn to impute. At each meta-training step,
we sample a new pair (D(d)

c ,D(d)
t ) and update the model parameters to maximize the likelihood

of D(d)
t . We further create three independent versions of this experiment—denoted Full, 50%, and

25%—in which the segments defining (D(d)
c ,D(d)

t ) contain 400, 200, and 100 SNPs respectively.
We fit an NPT and a CIPNP model parameterized by SPIN-64 architecture and apply chunk-level
masking method instead of token-level masking.

Table 4: Multiple Windows Experiment
25% 50% Full

NPT-64 R2 ↑ 95.06 92.89 OOM
Mem ↓ 12.36 19.86 OOM

SPIN-64 R2 ↑ 95.38 93.55 93.90
Mem ↓ 5.33 8.30 16.44

Results Table 4 shows that both the CIPNP
(SPIN-64) and the NPT-64 model support the
meta-learning approach to genotype imputation and
achieve high performance, with CIPNP being more
accurate. We provide performance for each region
within the datasets in Appendix A.3, Table 8. How-
ever, the NPT model cannot handle full-length ge-
nomic segments and runs out of memory on the full experiment. This again highlights the ability of
SPIN to scale and thus solve problems that existing models cannot.

Table 5: Masking

Masking R2 ↑
Token 80.48
Chunk 95.32

Masking Table 5 shows the effect of chunk style masking over token level
masking for SPIN in order to learn the imputation algorithm. As the genomes are
created by copying over chunks due to the biological priniciple of recombination,
we find that chunk style masking of labels at train time provides significant
improvements over random token level masking for the meta learning genotype
imputation task.

8



Published as a conference paper at ICLR 2023

Table 6: Ablation Analysis

GEN ↑ BH ↓
SPIN 94.05 3.0 ±0.6
-XABD 93.50 3.1 ±0.8
-XABA 93.89 3.2 ±1.5

Ablation Analysis To evaluate the effectiveness of each module,
we perform ablation analysis by gradually removing components
from SPIN. We remove components one at a time and compare
the performance with default SPIN configuration. In Table 6,
we observe that for the genomics dataset (SNPs 424600-424700)
and UCI Boston Housing (BH) dataset, both XABD and XABA
are crucial components. We discuss ablation with a synthetic
experiment setup in Appendix A.7

5 RELATED WORK

Non-Parametric and Semi-Parametric Methods Non-parametric methods include approaches
based on kernels (Davis et al., 2011), such as Gaussian processes (Rasmussen, 2003) and support
vector machines (Hearst et al., 1998). These methods feature quadratic complexity (Bach, 2013),
which motivates a long line of approximate methods based on random projections (Achlioptas
et al., 2001), Fourier analysis (Rahimi & Recht, 2007), and inducing point methods (Wilson et al.,
2015). Inducing points have been widely applied in kernel machines (Nguyen et al., 2020), Gaussian
processes classification (Izmailov & Kropotov, 2016), regression (Cao et al., 2013), semi-supervised
learning (Delalleau et al., 2005), and more (Hensman et al., 2015; Tolstikhin et al., 2021).

Deep Semi-Parametric Models Deep Gaussian Processes (Damianou & Lawrence, 2013), Deep
Kernel Learning (Wilson et al., 2016), and Neural Processes (Garnelo et al., 2018) build upon classical
methods. Deep GPs rely on sophisticated variational inference methods (Wang et al., 2016), making
them challenging to implement. Retrieval augmented transformers (Bonetta et al., 2021) use attention
to query external datasets in specific domains such as language modeling (Grave et al., 2016), question
answering (Yang et al., 2018), and reinforcement learning (Goyal et al., 2022) and in a way that is
similar to earlier memory-augmented models (Graves et al., 2014). Non-Parametric Transformers
(Kossen et al., 2021) use a domain-agnostic architecture based on attention that runs in O(n2d2) at
training time and O(nd2) at inference time, while ours runs in O(nd) and O(d), respectively.

Attention Mechanisms The quadratic cost of self-attention (Vaswani et al., 2017) can be reduced
using efficient architectures such as sparse attention (Beltagy et al., 2020), Set Transformers (Lee
et al., 2018), the Performer (Choromanski et al., 2020), the Nystromer (Xiong et al., 2021), Long
Ranger (Grigsby et al., 2021), Big Bird (Zaheer et al., 2020), Shared Workspace (Goyal et al., 2021),
the Perceiver (Jaegle et al., 2021b;a), and others (Katharopoulos et al., 2020; Wang et al., 2020).
Our work most closely resembles the Set Transformer (Lee et al., 2018) and Perceiver (Jaegle et al.,
2021b;a) mechanisms—we extend these mechanisms to cross-attention between datapoints and use
them to attend to datapoints, similar to Non-Parametric Transformers (Kossen et al., 2021).

Set Transformers Lee et al. (2018) introduce inducing point attention (ISA) blocks, which replace
self-attention with a more efficient cross-attention mechanism that maps a set of d tokens to a new set
of d tokens. In contrast, SPIN cross-attention compresses sets of size d into smaller sets of size h < d.
Each ISA block also uses a different set of inducing points, whereas SPIN layers iteratively update the
same set of inducing points, resulting in a smaller memory footprint. Finally, while Set Transformers
perform cross-attention over features, SPIN performs cross-attention between datapoints.

6 CONCLUSION

In this paper, we introduce a domain-agnostic general-purpose architecture, the semi-parametric
inducing point network (SPIN) and use it as the basis for Induced Point Neural Process (IPNPs).
Unlike previous semi-parametric approaches whose computational cost grows quadratically with
the size of the dataset, our approach scales linearly in the size and dimensionality of the data by
leveraging a cross attention mechanism between datapoints and induced latents. This allows our
method to scale to large datasets and enables meta learning with large contexts. We present empirical
results on 10 UCI datasets, a Gaussian process meta learning task, and a real-world important task
in genomics, genotype imputation, and show that our method can achieve competitive, if not better,
performance relative to state-of-the-art methods at a fraction of the computational cost.

9



Published as a conference paper at ICLR 2023

7 ACKNOWLEDGMENTS

This work was supported by Tata Consulting Services, the Cornell Initiative for Digital Agriculture,
the Hal & Inge Marcus PhD Fellowship, and an NSF CAREER grant (#2145577). We would like to
thank Edgar Marroquin for help with preprocessing of raw genomic data. We would like to thank NPT
authors - Jannic and Neil for helpful discussions and correspondence regarding NPT architecture. We
would also like to thank the anonymous reviewers for their significant effort to provide suggestions
and helpful feedback, thereby improving our paper.

8 REPRODUCIBILITY

We provide details on the compute resources in Appendix A.1, including GPU specifications. Code
and data used to reproduce experimental results are provided in Appendix C. We provide error bars
on the reported results by varying seeds or a different test split, however for certain large datasets,
such as UCI datasets for Kick, Forest Cover, Protein, Higgs and Genomic Imputation experiments
with large output sizes, we reported results on a single run due to computational limitations. These
details are provided in Appendix A.3, Appendix A.4 and Appendix A.5.

REFERENCES

Dimitris Achlioptas, Frank McSherry, and Bernhard Schölkopf. Sampling techniques for kernel
methods. Advances in neural information processing systems, 14, 2001.

N. S. Altman. An introduction to kernel and nearest-neighbor nonparametric regression. The American
Statistician, 46(3):175–185, 1992. doi: 10.1080/00031305.1992.10475879. URL https://
www.tandfonline.com/doi/abs/10.1080/00031305.1992.10475879.

Francis Bach. Sharp analysis of low-rank kernel matrix approximations. In Conference on Learning
Theory, pp. 185–209. PMLR, 2013.

Yonatan Belinkov. Probing classifiers: Promises, shortcomings, and advances. Computational
Linguistics, 48(1):207–219, 2022.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Transparency, pp. 610–623, 2021.

Giovanni Bonetta, Rossella Cancelliere, Ding Liu, and Paul Vozila. Retrieval-augmented transformer-
xl for close-domain dialog generation. arXiv preprint arXiv:2105.09235, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Brian L. Browning, Ying Zhou, and Sharon R. Browning. A one-penny imputed genome from
next-generation reference panels. American Journal of Human Genetics, 2018a. doi: 10.1016/j.
ajhg.2018.07.015.

Brian L Browning, Ying Zhou, and Sharon R Browning. A one-penny imputed genome from
next-generation reference panels. The American Journal of Human Genetics, 103(3):338–348,
2018b.

Yanshuai Cao, Marcus A Brubaker, David J Fleet, and Aaron Hertzmann. Efficient optimization for
sparse gaussian process regression. Advances in Neural Information Processing Systems, 26, 2013.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, et al.
Rethinking attention with performers. In International Conference on Learning Representations,
2020.

10

https://www.tandfonline.com/doi/abs/10.1080/00031305.1992.10475879
https://www.tandfonline.com/doi/abs/10.1080/00031305.1992.10475879


Published as a conference paper at ICLR 2023

Laura Clarke, Susan Fairley, Xiangqun Zheng-Bradley, Ian Streeter, Emily Perry, Ernesto Lowy,
Anne-Marie Tassé, and Paul Flicek. The international Genome sample resource (IGSR): A
worldwide collection of genome variation incorporating the 1000 Genomes Project data. Nucleic
Acids Research, 45(D1):D854–D859, 09 2016. ISSN 0305-1048. doi: 10.1093/nar/gkw829. URL
https://doi.org/10.1093/nar/gkw829.

Phillip E. C. Compeau, Pavel A. Pevzner, and Glenn Tesler. How to apply de bruijn graphs to genome
assembly. Nature Biotechnology, 2011. doi: 10.1038/nbt.2023.

Andreas Damianou and Neil D Lawrence. Deep gaussian processes. In Artificial intelligence and
statistics, pp. 207–215. PMLR, 2013.

Richard A Davis, Keh-Shin Lii, and Dimitris N Politis. Remarks on some nonparametric estimates of
a density function. In Selected Works of Murray Rosenblatt, pp. 95–100. Springer, 2011.

Olivier Delalleau, Yoshua Bengio, and Nicolas Le Roux. Efficient non-parametric function induction
in semi-supervised learning. In International Workshop on Artificial Intelligence and Statistics, pp.
96–103. PMLR, 2005.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https:
//aclanthology.org/N19-1423.

Trefor W. Evans and Prasanth B. Nair. Scalable gaussian processes with grid-structured eigenfunctions
(gp-grief), 2018. URL https://arxiv.org/abs/1807.02125.

Leo Feng, Hossein Hajimirsadeghi, Yoshua Bengio, and Mohamed Osama Ahmed. Latent bot-
tlenecked attentive neural processes. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=yIxtevizEA.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2018.

Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. The Annals of
Statistics, 29(5):1189 – 1232, 2001. doi: 10.1214/aos/1013203451. URL https://doi.org/
10.1214/aos/1013203451.

Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Eslami, and
Yee Whye Teh. Neural processes. arXiv preprint arXiv:1807.01622, 2018.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict: Parallel
decoding of conditional masked language models. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pp. 6112–6121, Hong Kong, China, November
2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1633. URL https:
//aclanthology.org/D19-1633.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Yee Whye Teh and Mike Titterington (eds.), Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings of
Machine Learning Research, pp. 249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010.
PMLR. URL https://proceedings.mlr.press/v9/glorot10a.html.

Anirudh Goyal, Aniket Didolkar, Alex Lamb, Kartikeya Badola, Nan Rosemary Ke, Nasim Rahaman,
Jonathan Binas, Charles Blundell, Michael Mozer, and Yoshua Bengio. Coordination among
neural modules through a shared global workspace. CoRR, abs/2103.01197, 2021. URL https:
//arxiv.org/abs/2103.01197.

11

https://doi.org/10.1093/nar/gkw829
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://arxiv.org/abs/1807.02125
https://openreview.net/forum?id=yIxtevizEA
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://aclanthology.org/D19-1633
https://aclanthology.org/D19-1633
https://proceedings.mlr.press/v9/glorot10a.html
https://arxiv.org/abs/2103.01197
https://arxiv.org/abs/2103.01197


Published as a conference paper at ICLR 2023

Anirudh Goyal, Abram L. Friesen, Andrea Banino, Theophane Weber, Nan Rosemary Ke, Adria Puig-
domenech Badia, Arthur Guez, Mehdi Mirza, Peter C. Humphreys, Ksenia Konyushkova, Laurent
Sifre, Michal Valko, Simon Osindero, Timothy Lillicrap, Nicolas Heess, and Charles Blundell.
Retrieval-augmented reinforcement learning, 2022. URL https://arxiv.org/abs/2202.
08417.

Edouard Grave, Armand Joulin, and Nicolas Usunier. Improving neural language models with a
continuous cache. arXiv preprint arXiv:1612.04426, 2016.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Jake Grigsby, Zhe Wang, and Yanjun Qi. Long-range transformers for dynamic spatiotemporal
forecasting. arXiv preprint arXiv:2109.12218, 2021.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Realm: Retrieval-
augmented language model pre-training. arXiv preprint arXiv:2002.08909, 2020.

Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bernhard Scholkopf. Support vector
machines. IEEE Intelligent Systems and their applications, 13(4):18–28, 1998.

James Hensman, Alexander G Matthews, Maurizio Filippone, and Zoubin Ghahramani. Mcmc for
variationally sparse gaussian processes. Advances in Neural Information Processing Systems, 28,
2015.

Geoffrey E. Hinton. Connectionist learning procedures, 1989.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Pavel Izmailov and Dmitry Kropotov. Faster variational inducing input gaussian process classification.
arXiv preprint arXiv:1611.06132, 2016.

Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David
Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, et al. Perceiver io: A
general architecture for structured inputs & outputs. arXiv preprint arXiv:2107.14795, 2021a.

Andrew Jaegle, Felix Gimeno, Andrew Brock, Andrew Zisserman, Oriol Vinyals, and João Carreira.
Perceiver: General perception with iterative attention. CoRR, abs/2103.03206, 2021b. URL
https://arxiv.org/abs/2103.03206.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld, Luke Zettlemoyer, and Omer Levy. Spanbert:
Improving pre-training by representing and predicting spans. CoRR, abs/1907.10529, 2019. URL
http://arxiv.org/abs/1907.10529.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International Conference on Machine
Learning, pp. 5156–5165. PMLR, 2020.

John Kendrew. The Encylopedia of Molecular Biology. John Wiley & Sons, 2009.

Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosenbaum, Oriol
Vinyals, and Yee Whye Teh. Attentive neural processes. In International Conference on Learning
Representations, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

12

https://arxiv.org/abs/2202.08417
https://arxiv.org/abs/2202.08417
https://arxiv.org/abs/2103.03206
http://arxiv.org/abs/1907.10529


Published as a conference paper at ICLR 2023

Jannik Kossen, Neil Band, Clare Lyle, Aidan N. Gomez, Tom Rainforth, and Yarin Gal. Self-
attention between datapoints: Going beyond individual input-output pairs in deep learning. CoRR,
abs/2106.02584, 2021. URL https://arxiv.org/abs/2106.02584.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Advances in neural information processing systems, 25, 2012.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam R. Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer. CoRR, abs/1810.00825, 2018. URL http://arxiv.org/abs/1810.00825.

Juho Lee, Yoonho Lee, Jungtaek Kim, Eunho Yang, Sung Ju Hwang, and Yee Whye Teh. Boot-
strapping neural processes. Advances in neural information processing systems, 33:6606–6615,
2020.

Na Li and Matthew Stephens. Modeling linkage disequilibrium and identifying recombination
hotspots using single-nucleotide polymorphism data. Genetics, 165(4):2213–2233, 2003.

Yun Li, Cristen Willer, Serena Sanna, and Gonçalo Abecasis. Genotype imputation. Annual review
of genomics and human genetics, 10:387–406, 2009.

Runyang Nicolas Lou, Arne Jacobs, Aryn P Wilder, and Nina Overgaard Therkildsen. A beginner’s
guide to low-coverage whole genome sequencing for population genomics. Molecular Ecology, 30
(23):5966–5993, 2021.

Altti Ilari Maarala, Kalle Pärn, Javier Nuñez-Fontarnau, and Keijo Heljanko. Sparkbeagle: Scalable
genotype imputation from distributed whole-genome reference panels in the cloud. In Proceedings
of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health
Informatics, pp. 1–8, 2020.

Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. Dataset meta-learning from kernel ridge-
regression. In International Conference on Learning Representations, 2020.

Toan Q. Nguyen and Julian Salazar. Transformers without tears: Improving the normalization
of self-attention. In Proceedings of the 16th International Conference on Spoken Language
Translation, Hong Kong, November 2-3 2019. Association for Computational Linguistics. URL
https://aclanthology.org/2019.iwslt-1.17.

Tung Nguyen and Aditya Grover. Transformer neural processes: Uncertainty-aware meta learning
via sequence modeling. arXiv preprint arXiv:2207.04179, 2022.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee,
and Luke Zettlemoyer. Deep contextualized word representations. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers), pp. 2227–2237, New Orleans, Louisiana,
June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1202. URL https:
//aclanthology.org/N18-1202.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances in
neural information processing systems, 20, 2007.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer school on machine
learning, pp. 63–71. Springer, 2003.

Simone Rubinacci, Olivier Delaneau, and Jonathan Marchini. Genotype imputation using the
positional burrows wheeler transform. PLOS Genetics, 2020. doi: 10.1371/journal.pgen.1009049.

13

https://arxiv.org/abs/2106.02584
http://arxiv.org/abs/1810.00825
https://aclanthology.org/2019.iwslt-1.17
https://aclanthology.org/N18-1202
https://aclanthology.org/N18-1202


Published as a conference paper at ICLR 2023

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-
learning with memory-augmented neural networks. In International conference on machine
learning, pp. 1842–1850. PMLR, 2016.

Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes using pseudo-inputs. In
Y. Weiss, B. Schölkopf, and J. Platt (eds.), Advances in Neural Information Processing Systems,
volume 18. MIT Press, 2005. URL https://proceedings.neurips.cc/paper/2005/
file/4491777b1aa8b5b32c2e8666dbe1a495-Paper.pdf.

Michalis Titsias. Variational learning of inducing variables in sparse gaussian processes. In David
van Dyk and Max Welling (eds.), Proceedings of the Twelth International Conference on Artificial
Intelligence and Statistics, volume 5 of Proceedings of Machine Learning Research, pp. 567–574,
Hilton Clearwater Beach Resort, Clearwater Beach, Florida USA, 16–18 Apr 2009. PMLR. URL
https://proceedings.mlr.press/v5/titsias09a.html.

Ilya O. Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas
Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and
Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision. CoRR, abs/2105.01601, 2021.
URL https://arxiv.org/abs/2105.01601.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Yali Wang, Marcus Brubaker, Brahim Chaib-Draa, and Raquel Urtasun. Sequential inference for
deep gaussian process. In Artificial Intelligence and Statistics, pp. 694–703. PMLR, 2016.

Andrew Wilson and Hannes Nickisch. Kernel interpolation for scalable structured gaussian processes
(kiss-gp). In International conference on machine learning, pp. 1775–1784. PMLR, 2015.

Andrew Gordon Wilson, Christoph Dann, and Hannes Nickisch. Thoughts on massively scalable
gaussian processes. arXiv preprint arXiv:1511.01870, 2015.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep kernel learning.
In Artificial intelligence and statistics, pp. 370–378. PMLR, 2016.

Sam Wiseman and Karl Stratos. Label-agnostic sequence labeling by copying nearest neighbors.
In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pp. 5363–5369, Florence, Italy, July 2019. Association for Computational Linguistics. doi:
10.18653/v1/P19-1533. URL https://aclanthology.org/P19-1533.

Wrayner. Human omni marker panel. URL https://www.well.ox.ac.uk/~wrayner/
strand/.

Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and
Vikas Singh. Nyströmformer: A nystöm-based algorithm for approximating self-attention. In
Proceedings of the... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial
Intelligence, volume 35, pp. 14138. NIH Public Access, 2021.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question answer-
ing. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pp. 2369–2380, Brussels, Belgium, October-November 2018. Association for Computational Lin-
guistics. doi: 10.18653/v1/D18-1259. URL https://aclanthology.org/D18-1259.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in Neural Information Processing Systems, 33:17283–17297, 2020.

Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E Hinton. Lookahead optimizer: k steps
forward, 1 step back. Advances in Neural Information Processing Systems, 32, 2019.

14

https://proceedings.neurips.cc/paper/2005/file/4491777b1aa8b5b32c2e8666dbe1a495-Paper.pdf
https://proceedings.neurips.cc/paper/2005/file/4491777b1aa8b5b32c2e8666dbe1a495-Paper.pdf
https://proceedings.mlr.press/v5/titsias09a.html
https://arxiv.org/abs/2105.01601
https://aclanthology.org/P19-1533
https://www.well.ox.ac.uk/~wrayner/strand/
https://www.well.ox.ac.uk/~wrayner/strand/
https://aclanthology.org/D18-1259


Published as a conference paper at ICLR 2023

APPENDIX: SEMI-PARAMETRIC INDUCING POINT NETWORKS AND NEURAL
PROCESSES

A EXPERIMENTAL DETAILS

A.1 COMPUTE RESOURCES

We use 24GB NVIDIA GeForce RTX 3090, Tesla V100-SXM2-16GB and NVIDIA RTX A6000-
48GB GPUs for experiments in this paper. A result is reported as OOM if it did not fit in the
24GB GPU memory. We do not use multi-GPU training or other memory-saving techniques such as
gradient checkpointing, pruning, mixed precision training, etc. but note that these are orthogonal to
our approach and can be used to further reduce the computational complexity.

A.2 TRAINING OBJECTIVE

We define a binary mask matrix for a given sample i as M (i) = [m
(i)
1 ,m

(i)
2 , · · ·m(i)

l ], where l = k
for labels and l = p for attributes. Then the loss over labels and attributes for each sample i is given
by,

Llabels,(i)(y
(i)
pred,y

(i)
true,M

labels,(i)) =

k∑
j=1

m
(i)
j L(y(i)

pred,j ,y
(i)
true,j)

Lattributes,(i)(x
(i)
pred,x

(i)
true,M

attributes,(i)) =

p∑
j=1

m
(i)
j L(x(i)

pred,j ,x
(i)
true,j)

where L(y(i)
pred,j ,y

(i)
true,j) = −

∑C
c=1 y

(i)
true,j,c log(softmax(y(i)

pred,j,c)) Cross Entropy Loss for C-way

Classification and L(y(i)
pred,j ,y

(i)
true,j) = (y

(i)
true,j − y

(i)
pred,j)

2 for MSE Loss. L(x(i)
pred,j ,x

(i)
true,j) for

attributes that are reconstructed is computed analogously

For chunk masking, a fraction ρ of the samples selected have the mask matrix for labels M (i) = 1

M (i) =

{
1, with probability ρ
0, otherwise

A.3 GENOMIC SEQUENCE IMPUTATION

Imputation is performed on single-nucleotide polymorphisms (SNPs) with a corresponding marker
panel specifying the microarray. We randomly sample five sections of the genome for chromosome 20
for conducting experiments. Each section is selected with 100 SNPs to be predicted and 150 closest
SNPs are obtained. For compact encoding of SNPs, we form K-mers, which are commonly used in
various genomics applications (Compeau et al., 2011), where K is a hyper-parameter that controls the
granularity of tokenization (how many nucleotides are treated as a single token). This now becomes
a 2K-way classification task. We set K to 5 for all the genomics experiments, so that there are 20
(100/5) target SNPs to be imputed and 30 (150/5) attributes per sampled section. We report pearson
R2 for each of the five sections in Table 7 with error bars per window for five different seeds. For
computational load, we report peak GPU memory usage in GB where applicable, an average of train
time per epoch in seconds, and parameter count per method. Table 8 provides Pearson R2 for each of
the 10 regions using a single model, thus learning the Genotype imputation algorithm.

In Table 9, we analyze the effect of increasing reference haplotypes during training on pearson R2

computed by NPT and SPIN. The reference haplotypes in the train dataset are gradually increased
from a small fraction of 1% to 100% available. Pearson R2 is reported cumulatively for 10 randomly
selected regions with window size=300. We observe that the performance for both SPIN and NPT
improves with increasing reference dataset. However, NPT cannot be used beyond a certain set of
reference samples due to its GPU memory footprint, while SPIN yields improved performance.

15



Published as a conference paper at ICLR 2023

Hyperparameters In Table 10, we provide the range of hyper-parameters that were grid searched
for different methods. Beagle is a specialized software using dynamic programming and does not
require any hyper-parameters from the user.

Table 7: Performance on Genomics Imputation

Approach Pearson Peak GPU Params Avg. Train
R2 ↑ Mem (GB) ↓ Count ↓ time/epoch(s) ↓

Genomics Dataset (SNPs 68300-68400)

Traditional ML
GBT 81.12 - - -
MLP 97.63 - - -
KNN 86.96 - - -

Bio Software Beagle 98.07 - - -

Transformer
NPT-16 96.96 ±0.28 0.45 16.7M 2.22
STF-16 97.02 ±0.23 0.76 33.4M 2.93
SPIN-16 97.13 ±0.21 0.28 8.1M 2.23

Genomics Dataset (SNPs 169500-169600)

Traditional ML
GBT 91.53 - - -
MLP 97.19 - - -
KNN 95.65 - - -

Bio Software Beagle 97.87 - - -

Transformer
NPT-16 97.44 ±0.08 0.45 16.7M 1.98
STF-16 98.07 ±0.15 0.76 33.4M 2.99
SPIN-16 97.50 ±0.12 0.28 8.1M 2.76

Genomics Dataset (SNPs 287600-287700)

Traditional ML
GBT 81.12 - - -
MLP 96.20 - - -
KNN 95.56 - - -

Bio Software Beagle 92.62 - - -

Transformer
NPT-16 97.07 ±0.06 0.45 16.7M 2.24
STF-16 97.09 ±0.07 0.76 33.4M 2.99
SPIN-16 97.11 ±0.04 0.28 8.1M 2.60

Genomics Dataset (SNPs 424600-424700)

Traditional ML
GBT 82.77 - - -
MLP 91.98 - - -
KNN 84.39 - - -

Bio Software Beagle 93.72 - - -

Transformer
NPT-16 93.49 ±0.70 0.45 16.7M 2.23
STF-16 93.38 ±0.90 0.76 33.4M 2.90
SPIN-16 93.83 ±0.65 0.28 8.1M 2.21

Genomics Dataset (SNPs 543000-543100 )

Traditional ML
GBT 72.66 - - -
MLP 89.56 - - -
KNN 78.22 - - -

Bio Software Beagle 94.58 - - -

Transformer
NPT-16 91.30 ±1.14 0.45 16.7M 2.35
STF-16 91.49 ±0.39 0.76 33.4M 2.52
SPIN-16 91.36 ±0.18 0.28 8.1M 2.28

16



Published as a conference paper at ICLR 2023

Table 8: Pearson R2 ↑ for each region for the Multiple Windows Experiment

Small Medium Large

Runs SPIN NPT SPIN NPT SPIN NPT

1 97.34 96.85 94.30 93.86 97.55 OOM
2 98.09 97.80 83.82 81.70 90.38 -
3 96.98 97.13 97.04 96.91 87.46 -
4 93.39 93.61 95.46 95.24 95.93 -
5 92.12 91.66 93.19 92.53 97.05 -
6 95.59 94.39 94.39 93.99 91.30 -
7 94.58 93.86 89.97 88.63 93.66 -
8 93.34 92.67 93.70 93.39 94.48 -
9 85.01 85.82 94.30 93.54 94.39 -

10 97.70 97.31 95.52 94.80 87.94 -

Total 95.39 95.06 93.55 92.89 93.90 OOM

Table 9: Cumulative Pearson R2 ↑ for 10 randomly selected genomic windows

Reference Samples Pearson R2 ↑ Peak GPU (GB)

SPIN NPT SPIN NPT

44 (1%) 84.87 85.00 8.64 18.07
219 (5%) 86.25 85.54 8.77 18.43
658 (15%) 87.55 86.35 9.1 19.69
1316 (30%) 90.33 - 9.59 OOM
4388 (100%) 92.91 - 12.83 OOM

Table 10: Hyperparameters for Genomics Dataset

Model Hyperparameter Setting

NPT, SPIN,
Set Transformer

Embedding Dimension [16, 128]
Depth [2, 8]
Label Masking [0, 0.5]
Target Masking [0.3]
Learning rate [1e− 5, 1e− 2]
Dropout [0.4, 0.6]
Batch Size [256, 5008 (No Batching)]
Inducing points [3,100]

Gradient Boosting
Max Depth [5, 10]
n_estimators [100]
Learning rate [1e− 2]

MLP

Hidden Layer Sizes [(500, 500, 500)]
Batch Size [128, 256]
L2 regularization [0, 1e− 2]
Learning rate init [1e− 4, 1e− 2]

KNN

n_neighbors [2, 1000]
weights [distance]
algorithm [auto]
Leaf Size [10, 100]

Bio Software None None

17



Published as a conference paper at ICLR 2023

A.4 UCI REGRESSION TASKS

In Table 11, we report results for 10 cross-validation (CV) splits for Yacht and Concrete datasets, 5
CV splits for Boston-Housing datasets, and 1 CV split for Protein dataset. Number of splits were
chosen according to computational requirements. Below we provide details about each dataset.

• Yacht dataset consists of 308 instances, 1 continuous, and 5 categorical features.
• Boston Housing dataset consists of 506 instances, 11 continuous, and 2 categorical features.
• Concrete consists of 1030 instances, and 9 continuous features.
• Protein consists of 45,730 instances, and 9 continuous features.

Table 11: Performance on UCI Regression Datasets

Approach RMSE ↓ Peak GPU Params Avg. Train
Mem (GB) ↓ Count ↓ time/epoch(s) ↓

Boston-Housing

Traditional ML
GBT 3.44±0.22 - - -
MLP 3.32±0.39 - - -
KNN 4.27±0.37 - - -

Transformer
NPT 2.92±0.15 8.2 168.0M 1.45
STF 3.33±1.73 16.5 336.0M 1.99
SPIN 3.01 ±0.55 6.3 127.2M 1.63

Yacht

Traditional ML
GBT 0.87±0.37 - - -
MLP 0.83±0.18 - - -
KNN 11.97±2.06 - - -

Transformer
NPT 1.42±0.643 2.1 42.7M 0.10
STF 1.29±0.34 4.1 85.4M 0.19
SPIN 1.28±0.66 1.6 32.2M 0.07

Concrete

Traditional ML
GBT 4.61±0.72 - - -
MLP 5.29±0.74 - - -
KNN 8.62±0.77 - - -

Transformer
NPT 5.21±0.20 3.4 69.9M 0.13
STF 5.35±0.80 6.8 139.9M 0.21
SPIN 5.17±0.87 1.9 39.4M 0.21

Protein

Traditional ML
GBT 3.61 - - -
MLP 3.62 - - -
KNN 3.77 - - -

Transformer
NPT 3.34 13.1 86.1M 18.13
STF 3.39 5.3 172.3M 8.34
SPIN 3.31 3.2 43.0M 24.28

A.5 UCI CLASSIFICATION TASKS

In Table 12, we report results for 10 CV splits for Breast Cancer dataset and 1 CV split for Kick,
Income, Forest Cover, Poker-Hand and Higgs Boson datasets. Number of splits were chosen according
to computational requirements. Below we provide details about each dataset.

3NPT reports a mean of 1.27 on this task that we could not reproduce. However, we emphasize that for UCI
experiments, all the model parameters are kept same for all the transformer methods.

18



Published as a conference paper at ICLR 2023

• Breast Cancer dataset consists of 569 instances, 31 continuous features, and 2 target classes.
• Kick dataset consists of 72,983 instances, 14 continuous and 18 categorical features, and 2

target classes.
• Income consists of 299,285 instances, 6 continuous and 36 categorical features, and 2 target

classes.
• Forest Cover consists of 581,012 instances, 10 continuous and 44 categorical features, and

7 target classes.
• Poker-Hand consists of 1,025,010 instances, 10 categorical features, and 10 target classes.
• Higgs Boson consists of 11,000,000 instances, 28 continuous features, and 2 target classes.

We provide the range of hyperparameters for UCI datasets in Table 13. Additionally, we provide aver-
age ranking separated by Regression and Classification tasks in Table 14 and Table 15, respectively.

19



Published as a conference paper at ICLR 2023

Table 12: Performance on UCI Classification Datasets

Approach Accuracy ↑ Peak GPU Params Avg. Train
Mem (GB) ↓ Count ↓ time/epoch(s) ↓

Breast Cancer

Traditional ML
GBT 94.03±2.74 - - -
MLP 94.03±3.05 - - -
KNN 95.26±2.48 - - -

Transformer
NPT 95.79±1.22 2.6 51.3M 0.15
STF 94.91±1.53 5.2 102.6M 0.21
SPIN 96.32±1.54 0.9 16.9M 0.18

Kick

Traditional ML
GBT 90.20 - - -
MLP 89.96 - - -
KNN 87.71 - - -

Transformer
NPT 90.04 14.9 232.6M 56.22
STF 90.03 15.0 465.0M 52.35
SPIN 90.06 3.6 73.7M 27.76

Income

Traditional ML
GBT 95.8 - - -
MLP 95.4 - - -
KNN 94.8 - - -

Transformer
NPT 95.6 24 1504M -
STF - OOM - -
SPIN 95.6 11.5 418.9M 68.02

Forest Cover

Traditional ML
GBT 96.70 - - -
MLP 95.20 - - -
KNN 90.70 - - -

Transformer
NPT 96.73 18.0 644.7M 230.47
STF - OOM - -
SPIN 96.11 5.4 162.7M 138.38

Poker-Hand

Traditional ML
GBT 78.71 - - -
MLP 56.40 - - -
KNN 54.75 - - -

Transformer
NPT 80.11 9.8 104.0M 93.56
STF 79.89 3.1 52.1M 83.13
SPIN 82.98 1.7 11.8M 72.05

Higgs Boson

Traditional ML
GBT 76.50 - - -
MLP 78.30 - - -
KNN - - - -

Transformer
NPT 80.70 14.7 179.5M 1,569.39
STF 80.48 12.8 359.0M 1,796.94
SPIN 80.01 4.9 62.1M 983.44

20



Published as a conference paper at ICLR 2023

Table 13: Hyperparameters for UCI Dataset

Model Hyperparameter Setting

NPT, SPIN,
Set Transformer

Embedding Dimension [16, 128]
Depth [8]
Label Masking [0, 0.5]
Target Masking [0.3]
Learning rate [1e− 5, 1e− 2]
Dropout [0.4, 0.6]
Batch Size [2048, No Batching]
Inducing points [5,10]

Gradient Boosting
Max Depth [3, 10]
n_estimators [50, 1000]
Learning rate [1e− 3, 0.3]

Hidden Layer Sizes [(25)− (500), (25, 25)− (500, 500),
(25, 25, 25)− (500, 500, 500)]

MLP (Boston Housing Batch Size [32, 256]
Breast Cancer, Concrete, L2 regularization [0, 1]
and Yacht) Learning rate [constant, invscaling, adaptive]

Learning rate init [1e− 5, 1e− 1]

MLP (Kick, Income)

Hidden Layer Sizes [(25, 25, 25)− (500, 500, 500)]
Batch Size [128, 256]
L2 regularization [0, 1e− 2]
Learning rate [constant, invscaling, adaptive]
Learning rate init [1e− 5, 1e− 1]

n_neighbors [2, 100]
KNN (Boston Housing weights [uniform, distance]
Breast Cancer, Concrete, algorithm [ball_tree, kd_tree, brute]
and Yacht) Leaf Size [10, 100]

KNN (Kick, Income)

n_neighbors [2, 1000]
weights [distance]
algorithm [auto]
Leaf Size [10, 100]

Table 14: Average Ranking on UCI Regression Dataset (Yacht, Boston Housing, Concrete, Protein)
based on RMSE

Approach Average Ranking order ↓ Peak GPU Mem
(relative to NPT)↓

Traditional ML
GBT 3.00±1.83 -
MLP 3.25±1.71 -
KNN 6.00±0.00 -

Transformer
NPT 2.75±1.71 1.0x
STF 4.00±0.82 1.71±0.48x
SPIN 2.00±0.82 0.65±0.09x

21



Published as a conference paper at ICLR 2023

Table 15: Average Ranking on UCI Classification Dataset (Breast Cancer, Kick, Income, Forest
Cover, Poker-Hand, Higgs-Boson based on Classification Accuracy

Approach Average Ranking order ↓ Peak GPU Mem
(relative to NPT)↓

Traditional ML
GBT 3.00±1.90 -
MLP 4.67±0.82 -
KNN 5.00±1.22 -

Transformer
NPT 2.00±0.89 1.0x
STF 3.25±0.96 1.05±0.70x
SPIN 2.17±0.98 0.31±0.10x

A.6 NEURAL PROCESSES

Variational Lower Bound The variational lower bound objective used to train latent NPs is as
follows:

LIPNP,ELBO = − 1

|D|

D∑
d=1

[ n∑
i=1

log pθ(y
(di)
t | z,D(d)

c ,x
(di)
t ) + KL(q(z | D(d)

t ,D(d)
c ) ∥ p(z | D(d)

c )
]

where KL is the Kullback–Leibler divergence, q(z | D(d)
t ,D(d)

c ) is the posterior distribution condi-
tioned on target and context sets, and p(z | D(d)

c ) is the prior conditioned only on the context.

Hyperparameters Learning rates for all experiments were set to 5e−4 with a Cosine Annealing
learning rate scheduler applied. Model parameters were optimized using the ADAM optimizer
(Kingma & Ba, 2014).

Architectures In Table 16 and 17, we detail the architecture for the conditional NPs (CANP, BANP,
CIPNP) and latent variable NPs (ANP, IPNP) used in Section 4.2, respectively. Note that although the
conditional NPs do not have a latent path, in order to make them comparable in terms of number of
parameters we add another deterministic encoding Pooling Encoder to these models, as described in
Lee et al. (2020). In these tables, we remark where XABD is used as opposed to regular self attention
between context data points. We use the following shorthand notation below: Xc are context features
for a batch of datasets stacked into a tensor of size B ×m× 1× 1, and Xt is defined similarly. D
denotes the full dataset, features and labels for both context and target, stacked into a tensor of size
B ×m+ n× 2× 1.

Note, although the equations described in Section 3.3 and in Table 16 and 17 use tensors of order 4,
in practice we use tensors of order 3 and permute the dimensions of the tensor in order to ensure that
attention is performed along the correct dimension (i.e., data points).

Finally, in Figure 5, we provide a more detailed diagram of the (conditional) IPNP architecture, which
excludes the additional Pooling Encoder.

22



Published as a conference paper at ICLR 2023

Figure 5: CIPNP architecture diagram

Table 16: CANP / BANP / CIPNP architecture (no latent path)

Input Layer(s) Output
Cross Attention Encoder

Xt ∈ RB×n×1×1 MLP (1 hidden layer, ReLU activation) Q ∈ RB×n×128×1

Xc ∈ RB×m×1×1 MLP (1 hidden layer, ReLU activation) K ∈ RB×m×128

D ∈ RB×m×2×1 (1) MLP (1 hidden layer, ReLU activation),

V = rc ∈ RB×m×128×1

(2) MAB(D,D) (Self attn between data points)
for CANP/BANP
MAB(HD,D) (XABD) for CIPNP

Q,K,V Cross attn between query and context points r ∈ RB×n×128×1

Pooling Encoder
D ∈ RB×m×2×1 (1) MLP (1 hidden layer, ReLU activation),

r′ ∈ RB×n×128×1

(2) MAB(D,D) (Self attn between data points)
for CANP/BANP
MAB(HD,D) (XABD) for CIPNP

(3) Mean pooling (on context points)
(4) MLP (1 hidden layer, ReLU activation)
(5) Repeat n times

Decoder
concat(Xt, r, r

′) (1) FC
ϕ ∈ RB×n×2∈ RB×n×257×1 (2) MLP (2 hidden layer, ReLU activation)

ϕ chunk (splits input into 2 tensors of equal size) µ,Σ ∈ RB×n×1

µ,Σ Sampler Yt ∈ RB×n×1

∼ N (µ,Σ2)

23



Published as a conference paper at ICLR 2023

Figure 6: Predicted mean ± standard deviation of y for different NP models given varying context
sizes: 4 (top), 8 (middle), and 16 (bottom).

Table 17: ANP / IPNP architecture (latent path)

Input Layer(s) Output
Cross Attention Encoder

Same as CANP / BANP / CIPNP (Table 16)

Latent Pooling Encoder
D ∈ RB×m×2×1 (1) MLP (1 hidden layer, ReLU activation),

ϕ′
z ∈ RB×256

(2) MAB(D,D) (Self attn between data points)
for ANP
MAB(HD,D) (XABD) for IPNP

(3) Mean pooling (on context points)
(4) MLP (1 hidden layer, ReLU activation)

ϕz chunk (splits input into 2 tensors of equal size) µz,Σz ∈ RB×128×1

µz,Σz (1) Sampler
(2) Repeat n times z ∈ RB×n×128×1

∼ N (µz,Σ
2
z)

Decoder
concat(Xt, r, z) (1) FC

ϕ ∈ RB×n×2∈ RB×n×257×1 (2) MLP (2 hidden layer, ReLU activation)
ϕ chunk (splits input into 2 tensors of equal size) µ,Σ ∈ RB×n×1

µ,Σ Sampler Yt ∈ RB×n×1

∼ N (µ,Σ2)

Qualitative Uncertainty Estimation Results In Figure 6, we show baseline and inducing point NP
models trained with context sizes ∈ [64, 128] and display the output of these models on new datasets
with varying numbers of context points (4, 8, 16). We observe that the CIPNP and IPNP models
better capture uncertainty in regions where context points have not been observed.

Quantitative Calibration Results To provide more quantitative results of how well our NP models
capture uncertainty relative to baselines, we take models trained with context sizes ∈ [64, 128] and
evaluate them on 1,000 evaluation batches each with number of targets points ranging from 4 to 64.
We repeat this experiment three times with varying numbers of context points (4, 8, 16) available for

24



Published as a conference paper at ICLR 2023

Figure 7: Calibration of NP models given varying context sizes: 4 (left), 8 (middle), and 16 (right).

Table 18: Calibration scores (↓) for NP models across context sizes. Calibration score equals mean
squared deviation from 45◦ line of number of target points falling within confidence intervals ranging
from 0 to 1 by intervals of 0.1, see Equation (1). Best (lowest) scores for each context size are bolded.

Calibration score ↓
Context CANP BANP ANP CIPNP IPNP

4 0.065 0.062 0.065 0.006 0.023
8 0.025 0.024 0.026 0.002 0.004

16 0.006 0.005 0.005 0.011 0.008

each evaluation batch. In Figure 7, we see that in lower context regimes, CIPNP and IPNP models
are better calibrated than the other baselines. As context size increases, the calibration of all the
models deteriorates. This is further reflected in Table 18, where we display model calibration scores.
Letting CI be confidence intervals ranging from 0 to 1.0 by intervals of 0.1, pCI be the fraction of
target labels that fall within confidence interval CI, and n be the number of confidence intervals, this
calibration score is equal to:

1

n

1∑
CI=0

(pCI − CI)2 (1)

This score measures deviation of each model’s calibration plot from the 45◦ line. Future work will
explore the mechanisms that enable inducing point models to better capture uncertainty.

A.7 ABLATION ANALYSIS WITH SYNTHETIC EXPERIMENT

We formulate a synthetic experiment where the model can only learn via XABD layers. First, we
initialize a random binary matrix with 50% probability of 1’s, number of rows=5000, and number of
columns=50. We set the last 20 columns to be target labels. Next, we copy a section of the dataset
and divide it into three equal and disjoint parts for train query, val query, and test query. Since there is
no correlation between the features and the target, the only way for the model to learn is via XABD
layers (for a small dataset the model can also memorize the entire training dataset). This is similar
to the synthetic experiment in NPT (Kossen et al., 2021), except that there is no relation between
the features and target in our setup. We find that both default SPIN and SPIN with XABD only
component achieves 100% binary classification accuracy, whereas SPIN with XABA only component
achieves 70.01% classification accuracy, indicating the effectiveness of XABD component.

A.8 QUALITATIVE ANALYSIS FOR CROSS-ATTENTION

In order to understand what type of inducing points are learnt by the latent HD, we formulate a toy
synthetic dataset as shown in Figure 8. We start with two centroids consisting of binary strings with
120 bits and add bernoulli noise with p = 0.1. We create the labels as another set of 4 bit binary
strings and apply bernoulli noise with p = 0.1. In this way we create a dataset with datapoints
belonging to two separate clusters. Figure 8 (a) shows the projection of this dataset with two principal

25



Published as a conference paper at ICLR 2023

Figure 8: Synthetic Experiment analyzing cross-attention: (a)-(b) Data generating process to form
two distinct clusters and data matrix with duplicate query samples and their labels masked. (c)
Cross-attention map between query samples and the latent HD

components when projected with PCA, highlighting that the dataset consists of two distinct clusters.
We duplicate a part of this data to form the query samples so that they can be looked up from the
latent via the cross attention mechanism. Figure 8 (b) shows the schematic of dataset with masked
values for query labels. We use a SPIN model with a single XABD module, two induced latents (h=2)
and input embedding dimension of 32 and inspect the cross-attention mechanism of the decoder. In
Figure 8 (c), we plot the decoder cross attention map between test query and the induced latent and
observe that the grouped query datapoints attend to the two latents consistent with the data generating
clusters.

A.9 IMAGE CLASSIFICATION EXPERIMENTS

We conducted additional experiments comparing SPIN and NPT on two image classification datasets.
Following NPT, we compare the results for image classification task using a linear patch encoder
for MNIST and CIFAR10 dataset (which is the reason for the lower accuracies compared to using
CNN-based encoders). Table 19 shows that for the linear patch encoder, SPIN and NPT both perform
similarly in terms of accuracy, but SPIN uses far fewer parameters.

Table 19: Image Classification Experiments

Dataset Approach Classification Accuracy ↑ Peak GPU (GB) Params Count

MNIST NPT 97.92 1.33 33.34M
SPIN 97.70 0.37 8.68M

CIFAR-10 NPT 68.20 18.81 900.36M
SPIN 68.81 5.13 217.53M

A.10 EFFECT OF NUMBER OF INDUCED POINTS

We conducted sensitivity analysis of SPIN’s performance with respect to h and f and found that SPIN
is fairly robust to the choice of these hyper-parameters, as evidenced by the low standard deviations
in Table 20. This reflects redundancy in data and why attending to the entire dataset is inefficient.

Table 20: Effect of induced points h, f for one genomic window (SNPs 424600-424700)

Induced Points h Induced Points f Pearson R2 ↑ Peak GPU (GB)

{5 · · · 30} 10 94.03 ±0.50 0.28 ±0.
10 {5 · · · 30} 94.15 ±0.25 0.32 ±0.05
{5 · · · 30} {5 · · · 30} 94.03 ±0.28 0.32 ±0.05

B COMPLEXITY ANALYSIS

We provide time complexity for one gradient step, with nl as the number of layers, batch size b equal
to training dataset size n during training, and one query sample during inference for transformer
methods in Table 21. There are two operations that contribute heavily to the time complexity. First is

26



Published as a conference paper at ICLR 2023

computation of Q.KT , second is the four times expansion in the feedforward layers. For NPT, the
time complexity is given by maximum of ABD, ABA, and four times expansion in feedforward layers
during ABD, that is max(nln

2de, nlnd
2e, 4nlnd

2e2) during training and inference. Set Transformer
consists of ISAB blocks that perform one cross-attention between latent and dataset to project into
smaller space and a cross attention between dataset and latent to project back into input space for
each layer. This results in complexity that is max(2nlndfe, 2nlnhfe, 8nlnd

2e2) during training
and inference. For SPIN, the time complexity is given by maximum of XABD, XABA, ABLA,
four times expansion in feedforward layers and one cross-attention for Predictor module. This can
be formulated as max(nlnhfe, nlndfe, nlnf

2e, 4nlnf
2e, nhde, 4nd2e2). At inference, SPIN only

uses the Predictor module, with the resultant complexity as max(hde, 4d2e2).

We note that during training for NPT, if n >4de, then Q.KT computation in ABD dominates,
otherwise the four times expansion of feedforward for ABD dominates. For Set Transformer, usually
the four times expansion of feedforward dominates. For SPIN, depending on values for nl, d, f, h, e,
different computations can dominate, however it is always linear in dataset size n. During inference
SPIN’s time complexity is independent of number of layers nl and dataset size n and depends entirely
on inducing datapoints h, model embedding dimension e, and feature+target space d.

Table 21: Time Complexity

Approach Time Complexity

Train Test

NPT max(nln
2de, nlnd

2e, max(nln
2de, nlnd

2e,
4nlnd

2e2) 4nlnd
2e2)

STF max(2nlndfe, 2nlnhfe, max(2nlndfe, 2nlnhfe,
8nlnd

2e2) 8nlnd
2e2)

SPIN max(nlnhfe, nlndfe, nlnf
2e, max(hde, 4d2e2)4

4nlnf
2e, nhde, 4nd2e2)

C CODE AND DATA AVAILABILITY

UCI and Genomic Task Code The experimental results for UCI and genomic task can be repro-
duced from here.

Neural Processes Code The experimental results for the Neural Processes task can be reproduced
from here.

Data for Genomics Experiment The vcf file containing genotypes can be downloaded from
1000Genomes chromosome 20 vcf file. Additionally, the microarray used for genomics experiment
can be downloaded from HumanOmni2.5 microarray. Beagle software, used as baseline, can be
obtained from Beagle 5.1.

UCI Datasets All UCI datasets can be obtained from UCI Data Repository.

4The complexity at test time for SPIN is max(nhde, 4nd2e2) when either using the optional cross-attention
in the predictor module or when the encoder is enabled at test time, such as in the multiple windows genomic
experiment.

27

https://github.com/RichRast/SPIN
https://github.com/yair-schiff/IPNP
https://www.internationalgenome.org/category/phase-3/
https://www.well.ox.ac.uk/~wrayner/strand/
https://faculty.washington.edu/browning/beagle/b5_1.html
https://archive.ics.uci.edu/ml/datasets.php

	Introduction
	Background
	Semi-Parametric Inducing Point Networks
	Semi-Parametric Learning Based on Neural Inducing Points
	Semi-Parametric Inducing Point Networks
	Architecture of the Encoder and Predictor

	Inducing Point Neural Processes
	Objective Function

	Experiments
	UCI Datasets
	Neural Processes for Meta-Learning
	Genotype Imputation
	Scaling Genotype Imputation via Meta-Learning

	Related Work
	Conclusion
	Acknowledgments
	Reproducibility
	Experimental Details
	Compute Resources
	Training Objective
	Genomic Sequence Imputation
	UCI Regression Tasks
	UCI Classification Tasks
	Neural Processes
	Ablation Analysis with Synthetic Experiment
	Qualitative Analysis for cross-attention
	Image Classification Experiments
	Effect of number of induced points

	Complexity Analysis 
	Code and Data Availability

