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ABSTRACT

Learning the solution of partial differential equations (PDEs) with a neural net-
work is an attractive alternative to traditional solvers due to its elegance, greater
flexibility and the ease of incorporating observed data. However, training such
physics-informed neural networks (PINNs) is notoriously difficult in practice
since PINNs often converge to wrong solutions. In this paper, we address this
problem by training an ensemble of PINNs. Our approach is motivated by the
observation that individual PINN models find similar solutions in the vicinity of
points with targets (e.g., observed data or initial conditions) while their solutions
may substantially differ farther away from such points. Therefore, we propose to
use the ensemble agreement as the criterion for gradual expansion of the solution
interval, that is including new points for computing the loss derived from differ-
ential equations. Due to the flexibility of the domain expansion, our algorithm can
easily incorporate measurements in arbitrary locations. In contrast to the exist-
ing PINN algorithms with time-adaptive strategies, the proposed algorithm does
not need a pre-defined schedule of interval expansion and it treats time and space
equally. We experimentally show that the proposed algorithm can stabilize PINN
training and yield performance competitive to the recent variants of PINNs trained
with time adaptation.

1 INTRODUCTION

Partial differential equations (PDEs) are a powerful tool for modeling many real-world phenomena
(Evans, 1998; Courant & Hilbert, 1989). When derived from the first principles, partial differential
equations can serve as predictive models which do not require any data for tuning. When learned
from data, they often outperform other models by incorporating the inductive bias of the continuity
of the modeled domain (time or space) (Chen et al., 2018; Rubanova et al., 2019; Iakovlev et al.,
2021). Inference in this type of models is done by solving partial differential equations, that is by
finding a trajectory that satisfies the model equations and a set of initial and boundary conditions.
Since analytic solutions exist only for a limited number of models (most likely derived from the first
principles), inference is typically done by numerical solvers of differential equations.

One way of solving differential equations is to approximate the solution by a neural network which is
trained to satisfy a given set of differential equations, initial and boundary conditions. This approach
is known in the literature under the name of physics-informed neural networks (PINNs, Lagaris
et al., 1998; Raissi et al., 2019) and it can be seen as a machine learning alternative to classical
numerical solvers. Despite the conceptual simplicity and elegance of the method, training PINNs is
notoriously difficult in practice (Wang et al., 2021a; Krishnapriyan et al., 2021). It requires balancing
of multiple terms in the loss function (Wang et al., 2021a;c) and the commonly used neural network
architectures and parameter initialization schemes may not work best for PINNs (Wang et al., 2021b;
Sitzmann et al., 2020).

It has been noted by many practitioners that training PINNs often results in convergence to bad
solutions (see, e.g., Krishnapriyan et al., 2021; Sitzmann et al., 2020; Wang et al., 2022). Several
recent works (Wight & Zhao, 2020; Krishnapriyan et al., 2021; Mattey & Ghosh, 2022) address this
problem by splitting the time interval into sub-intervals and sequentially training PINNs on each
sub-interval. This idea is often referred in the literature as time adaptation or time marching. The
time-adaptive strategies make the training procedure of PINNs similar to classical numerical solvers
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Early stage Intermediate results Final results

Figure 1: The training procedure for the convection equation (Eqs. 9– 10) when the solution is
known for t = 0 and t = 2. Gradual expansion of the solution domain (represented by the blue
and black points) from both ends of the interval is possible due to the flexibility of the proposed
approach. The dot color scheme is from Fig. 4.

which compute the solution gradually moving from the initial conditions towards the other end of
the time interval. Similarly to classical solvers, many existing PINN algorithms are based on a
pre-defined schedule of time adaptation.
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Figure 2: The violin plots of the relative error r
for the proposed method (blue violins on the right)
and strong PINN baselines in solving three sys-
tems (Eqs. 9–14). The proposed method yields
stable training.

In this work, we follow the idea of the gradual
expansion of the solution interval when train-
ing PINNs. We propose to train an ensemble of
PINNs and use the ensemble agreement (confi-
dence) as the criterion for expanding the solu-
tion interval to new areas. Due to the flexibility
of the domain expansion, in contrast to existing
baselines, our algorithm can easily incorporate
measurements in arbitrary locations: the algo-
rithm will propagate the solution from all the
locations where supervision targets are known
(see Fig. 1 as an example). The proposed algo-
rithm does not need a pre-defined schedule of
interval expansion and it treats time and space
equally. We experimentally show that the proposed algorithm can stabilize PINN training (see Fig. 2)
and yield performance competitive to the recent variants of PINNs which use time adaptation.

2 BACKGROUND

2.1 PHYSICS-INFORMED NEURAL NETWORKS

Physics-informed neural networks are neural networks which are trained to approximate the solution
of a partial differential equation

∂u(x, t)

∂t
= f

(
∂2u(x, t)

∂x2
,
∂u(x, t)

∂x
, x, t

)
(1)

on the interval x ∈ [X1, X2], t ∈ [T1, T2] with initial conditions

u(x, T1) = u0(x), x ∈ [X1, X2] (2)

and boundary conditions
g(u(x, t)) = 0, x ∈ {X1, X2} . (3)

Functions f and u0 in Eqs. 1–2 are assumed to be known, function g in Eq. 3 is known as well and
it can represent different types of boundary conditions (e.g., Neumann, Dirichlet, Robin or periodic
boundary conditions). In the PINN approach, one approximates the solution with a neural network
which takes inputs x and t and produces u(x, t) as the output. The network is trained by minimizing
a sum of several terms:

L = LS + LB + LPDE. (4)
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LS is the standard supervised learning loss which makes the neural network fit the initial conditions:

LS =

KS∑
i=1

wi (u(xi, ti)− ui)
2
. (5)

where wi are point-specific weights, ti = T1, ui = u0(xi) and xi are sampled from [X1, X2]. LB is
the loss computed to satisfy the boundary conditions:

LB =

KB∑
j=1

wj ||g(u(xj , tj))||2 , (6)

where wj are point-specific weights, xj ∈ {X1, X2} and tj are sampled from [T1, T2]. LPDE is the
loss derived from the PDE in 1:

LPDE =

KPDE∑
k=1

wk

(
∂uk

∂t
− f

(
∂2uk

∂x2
,
∂uk

∂x
, xk, tk

))2

, (7)

where wk are point-specific weights and the partial derivatives duk

dt , ∂2uk

∂x2 , ∂uk

∂x are computed at
collocation points (xk, tk) sampled from the interval xk ∈ [X1, X2], tk ∈ [T1, T2]. Classical PINNs
use shared weights wS = wi,∀i, wB = wj ,∀j, wPDE = wk,∀k. The values of the weights vary
depending on the implementation and in the simplest case they are wS = 1/KS, wB = 1/KB,
wPDE = 1/KPDE.

The method can easily be extended to fit a sequence of observations {((x∗
i , t

∗
i ), u

∗
i )}Ni=1 by including

the observed data to the supervision loss in Eq. 5. In this case, the method can be seen as fitting
a neural network to the training data (containing the observations) while regularizing the solution
using the PDE loss in Eq. 7. One advantage of the PINN method compared to traditional numerical
solvers is the ability to work with ill-posed problems, for example, if the initial conditions are
known only in a subset of points. More details on existing extensions of PINNs can be found in
Appendix A.1.

2.2 PINNS WITH EXPANSION OF THE TIME INTERVAL

Recently, several papers have proposed to solve the initial-boundary value problem by gradually
expanding the interval from which points (xk, tk) in Eq. 7 are sampled. These versions of PINNs
are closest to our approach.

Time-adaptive strategies Wight & Zhao (2020) and Krishnapriyan et al. (2021) show the effec-
tiveness of the time marching strategy: the time interval [T1, T2] is split into multiple sub-intervals
and the equation is solved on each individual sub-interval sequentially by a separate PINN. The
solution at the border of the previous sub-interval is used as the initial condition for the next one.

A similar approach is based on progressive expansion of the time interval by gradually increasing the
end point T2 during training (Wight & Zhao, 2020; Mattey & Ghosh, 2022). Backward compatible
PINNs (bc-PINNs, Mattey & Ghosh, 2022) implement this idea such that the solution found during
the previous interval extension is used as the PINN targets during training on a newly expanded
interval to prevent catastrophic forgetting.

All these time adaptation strategies need a pre-defined schedule for the time interval expansion,
which makes them similar to classical numerical solvers which use pre-defined discretization
schemes.

Causality training The idea of time adaptation is closely related to the adaptive weighting scheme
that respects causality (Wang et al., 2022). The authors use adaptive weights for the individual terms
in Eq. 7 such that the weights are computed using the cumulative PDE loss for the preceding points:

wk = exp
(
−
∑

k′|tk′<tk
ϵLPDE(tk′)

)
, (8)

where LPDE(tk′) denotes an individual term in Eq. 7 that corresponds to time point tk′ . The idea is
to zero out the effect of the points that are far away from the initial conditions until the solution is
approximated well on all the points before them. The method assumes that the boundary conditions
are enforced as hard constraints and thus the total loss consists of LS and LPDE.
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(a) ground truth solution (b) PINN solution 1 (c) PINN solution 2

(d) PDE error for PINN solution 1 (e) PDE error for PINN solution 2

Figure 3: Example of solving the convection system (Eqs. 9–10) for β = 30, t ∈ [0, 1] using
PINNs with the LFBGS optimizer. (a): The ground truth solution. (b)-(c): Two solutions found
with different initializations of PINNs. (d)-(e): The logarithm of the individual terms in Eq. 7 as a
function of x and t for the solutions.

3 ENSEMBLES OF PINNS

3.1 MOTIVATION

To motivate our approach, we demonstrate failure cases of PINNs using an example from (Krish-
napriyan et al., 2021) on solving a convection equation. Fig. 3 shows the ground-truth solution of
the equation (Fig. 3a) and two inaccurate solutions (Figs. 3b, c) found by PINNs trained with the
same network architecture but different random seeds for weight initialization. The found PINN
solutions can be seen as a combination of two solutions: the correct solution near the initial condi-
tions (for small t) and a simpler solution farther away from the initial conditions (for large t). The
second row in Fig. 3 illustrates that the second, simpler solution satisfies well the solved PDEs. This
example illustrates that simple solutions can be attractive for PINNs, which can cause problems for
the optimization procedure. Once a PINN finds a simple, locally consistent solution in some areas
(for example, far away from the initial conditions), it may be very difficult to change it. This leads
to a final solution which is a combination of the correct solution and a wrong one.

This example provides the following intuition: when points located far away from the initial con-
ditions contribute to the PDE loss in Eq. 7, it may hurt the optimization procedure by pulling the
solution towards a bad local optimum. On the other hand, including those points in the PDE loss at
the beginning of training hardly brings any benefits: it makes little sense to regularize the solution
using the loss in Eq. 7 before we know its approximate shape. The ability to escape from wrong so-
lutions largely depends on the design choices made for the PINN training such as the optimizer type,
the use of mini-batches, type of the sampling utilized for points in LPDE term in Eq. 7, normalization
of the inputs, hard or soft encoding of the initial and boundary conditions and so on. While some
of these tricks can be beneficial for the PINN accuracy on particular systems, it is quite difficult to
select a common set of settings beneficial across a wider range of PDEs.

The illustrated problem is avoided by the classical numerical solvers because they usually “prop-
agate” the solution from the initial and boundary conditions to cover the entire interval using a
schedule determined by the discretization scheme.

3.2 METHOD

In this paper, we propose to gradually expand the areas from which we sample collocation points
(xk, tk) to compute loss LPDE. Our approach is based on training an ensemble of PINNs: a set
of neural networks initialized with different weights but trained using the same loss function. Since
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PINN ensemble members typically converge to the same solution in the vicinity of observed data but
may favor distinct wrong solutions farther away from the observations (Fig. 3b-c), we can use the
ensemble agreement as the criterion for including new points for computing loss LPDE. Optionally,
if all ensemble members agree on the solution in a particular point, we can create a pseudo-label
(taken as the median of the ensemble predictions) for that point and make this point contribute to
the supervision loss LS in Eq. 5.

At initialization After 5000 updates After 24000 updates

Figure 4: Illustration of the proposed algorithm on solving the convection system with β = 20 on
t ∈ [0, 1]. Top row: ensemble median, bottom row: log-variance of ensemble predictions. Dark
blue dots: set DL of points which contribute to loss LS; light blue dots: set DPL of points with
pseudo-labels (contribute either to LS or LPDE); black dots: points that contribute to loss LPDE; red
dots: points that contribute to loss LB.

Algorithm 1 Training PINNs with label propagation
Hyperparameters: ∆PDE, ∆, σ2 and ϵ

1: DL = {((xi, ti), ui)} ▷ Points with targets (blue dots)
2: DPL = {} ▷ Points with pseudo-labels (light blue dots)
3: IB = {(xj , tj)} ▷ Sample candidate points for computing LB (empty red circles)
4: IPDE = {(xm, tm)} ▷ Sample candidate points for computing LPDE (empty black circles)
5: while not converge do
6: D = DL ∪DPL
7: I ′B = {(xj , tj) ∈ IB | DISTANCE((xj , tj), D) < ∆PDE} ▷ red dots
8: I ′PDE = {(xm, tm) ∈ IPDE | DISTANCE((xm, tm), D) < ∆PDE} ▷ black dots
9: Train L networks fl for N iterations using DL ∪DPL (’PL’ version) or DL (’Ens’ version),

I ′B, I ′PDE to compute LS, LB, LPDE, respectively.
10: for (xm, tm) ∈ I ′PDE do
11: ûl = fl(xm, tm), ∀l ∈ 1, ..., L ▷ Prediction of each ensemble network
12: vm = variance(û1, . . . , ûL) ▷ Variance of predictions
13: ūm = median(û1, . . . , ûL) ▷ Median of predictions
14: if vm < σ2 & DISTANCE((xm, tm), D) < ∆ then
15: DPL ← DPL ∪ ((xm, tm), ūm) ▷ Add a point with a pseudo-label
16: end if
17: end for
18: end while
19:
20: function DISTANCE((x, t), D)
21: D′ = {(xi, ti) ∈ D | || 1L

∑
l fl(xi, ti)− ui|| < ϵ} ▷ Points with good fit to targets

22: return min(xi,ti)∈D′ ||(xi, ti)− (x, t)||
23: end function

The proposed algorithm is illustrated in Fig. 4. At the beginning of training, the supervision loss LS
is computed using points sampled at the initial conditions (the blue dots in Fig. 4a) and losses LPDE
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and LB are computed using only points that are close enough to the initial conditions (the black and
red dots in Fig. 4a respectively). The proximity is measured by thresholding the Euclidean distance
to the closest point among the blue dots. After N training iterations, we compute the median and
the variance of the ensemble predictions (see Fig. 4b-c). If the variance in a particular location is
small enough, we use the median of the ensemble predictions at that point as a pseudo-label and
add that point to the data set which is used to compute the supervision loss LS (the light blue dots
in Fig. 4b). Points for pseudo-labeling are selected among the collocation points (the black dots in
Fig. 4a). Locations which are close enough to the data points with labels or pseudo-labels are added
to the set which contributes to LPDE and LB (the black and red dots in Fig. 4b). Then, we train the
ensemble of PINNs for a fixed number of iterations and again increase the sets of inputs which are
used to compute the losses in a similar way (Fig. 4d-e). The iterations continue until all collocation
points (which are pre-sampled at the beginning of the training procedure) are included in the loss
computations.

More formally, the training procedure is presented in Algorithm 1. The dots and the circles in the
algorithm refer to Fig. 4. In the experiments, we test two versions of the proposed algorithm:

1. Pseudo-labels (PL): a version with pseudo-labels in which the points with a high degree of
ensemble agreement are used to compute both LPDE and LS;

2. PINN Ensemble (Ens): a version without pseudo-labels, in which the points with a high
degree of ensemble agreement are used to compute LPDE but not LS.

Each member of the ensemble is trained to minimize the loss in Eq. 4 with shared weights wB =
1/|IB|, wPDE = 1/|IPDE| and wS = 1/|D| for the PINN Ensemble version and wS = 1/|D ∪ IPDE|
for the version with pseudo-labels. Other weighting strategies (e.g., Wight & Zhao, 2020; Wang
et al., 2021a;c) could be combined with our approach as well.

3.3 RELATED WORK

PINNs and their extensions The proposed algorithm is built on the idea of the gradual expansion
of the solution interval, which makes it similar to the time-adaptive techniques (Wight & Zhao, 2020;
Krishnapriyan et al., 2021; Mattey & Ghosh, 2022) and the adaptive weighting method that respects
causality (Wang et al., 2022). The advantage of the proposed algorithm is its greater flexibility in
the way of expanding the area covered by collocation points: instead of expanding the time interval
with a pre-defined (Wight & Zhao, 2020; Krishnapriyan et al., 2021; Mattey & Ghosh, 2022) or an
automatic (Wang et al., 2022) schedule, our algorithm considers each collocation point individually
during the expansion and it treats time and space equally. This feature allows the application of the
algorithm to datasets with an arbitrary layout of the points with known targets. We illustrate this by
solving the convection system (Eqs. 9– 10) on the interval t ∈ [0, 2] when the solution is known for
t = 0 and t = 2. As illustrated in Fig. 1, the algorithm finds a reasonable schedule for expanding
the area starting from both ends of the interval.

Label propagation and ensembles Training an ensemble of PINNs with pseudo-labeling is re-
lated to how label propagation is done in semi-supervised classification tasks (see, e.g, Lee et al.,
2013; Sohn et al., 2020): when a classifier becomes confident in the predicted class of an unlabeled
example, that example is added to the labeled set. Model ensembles (Laine & Aila, 2017) or predic-
tion ensembles (Berthelot et al., 2019) are often used in those tasks to generate better targets. Since
PINNs are trained on real-valued targets, one can view PINNs as regression models regularized by
the loss in Eq. 7. Label propagation in regression tasks is less studied with only a few existing
works on semi-supervised regression (Jean et al., 2018; Li et al., 2017). In our algorithm, we use the
confidence of the ensemble predictions to decide whether the solution interval can be extended and
which points can be assigned pseudo-labels.

4 EXPERIMENTS

We test the proposed algorithm on finding the solutions of the following differential equations:
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Start of training Intermediate results Final results

(a) reaction equation (Eqs. 11–12), ρ = 8

(b) reaction-diffusion equation (Eqs. 13–14), ρ = 5, ν = 5

(c) diffusion equation with periodic boundary conditions (Eqs. 15–16), d = 10

Figure 5: The training progress of PINN ensembles with pseudo-labels. The dot color scheme is
from Fig. 4.

• convection equation used to model transport phenomena

∂u

∂t
=− β

∂u

∂x
, x ∈ [0, 2π], t ∈ [0, 1], β = const (9)

u(x, 0) = sin(x), u(0, t) = u(2π, t) (10)

• reaction system for modelling chemical reactions

∂u

∂t
=ρu(1− u), x ∈ [0, 2π], t ∈ [0, 1], ρ = const (11)

u(x, 0) = exp
(
−8(x− π)2/π2

)
, u(0, t) = u(2π, t) (12)

• reaction-diffusion equation that models reactions together with diffusion of substances

∂u

∂t
=ν

∂2u

∂x2
+ ρu(1− u), x ∈ [0, 2π], t ∈ [0, 1], ν, ρ = const, (13)

u(x, 0) = exp
(
−8(x− π)2/π2

)
, u(0, t) = u(2π, t), ux (0, t) = ux (2π, t) (14)

• diffusion equation with periodic boundary conditions

∂u

∂t
=

1

d2
∂2u

∂x2
, x ∈ [0, 2π], t ∈ [0, 1], d = const (15)

u(x, 0) = sin(dx) u(0, t) = u(2π, t), ux (0, t) = ux (2π, t) (16)

• diffusion equation in 15 with boundary conditions of the Dirichlet type:

u(0, t) = u(2π, t) = 0 (17)
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Table 1: The means (and standard deviations) across 10 random seeds of the relative l2 errors in
Eq. 18 for the convection (Eqs. 9–10), reaction (Eqs. 11–12) and reaction-diffusion (Eqs. 13–14)
systems. All numbers should be multiplied by 10−3. The rows marked with ∗ show the results
obtained with KPDE = 25600 collocation points, otherwise KPDE = 1000. In bold: the best three
results.

Method Convection, β Reaction, ρ Reaction-diffusion, ν
β = 30 β = 40 ρ = 5 ρ = 7 ν = 3 ν = 4

PINN, LBFGS 827 (39) 887 (21) 985 (7) 997 (2) 726 (346) 799 (257)
PINN, Adam 13.4 (3.2) 16.2 (4.1) 11.9 (6.2) 887 (269) 252 (375) 437 (433)

PINN, Adam+LBFGS 9.02 (2.03) 13.1 (2.7) 10.8 (3.5) 967 (26) 170 (328) 426 (427)
SA-PINN 925 (35) 980 (58) 4.48 (0.94) 11.5 (2.3) 5.11 (0.53) 5.94 (1.63)
Causality 1425 (4) 1393 (3) 41.4 (4.2) 220 (23) 700 (4) 713 (3)
Causality∗ 436 (496) 1104 (228) 6.01 (1.87) 43.8 (8.0) 6.51 (0.24) 6.56 (0.17)

bc-PINN, Adam 212 (251) 405 (331) 5.37 (2.69) 8.45 (2.14) 6.80 (2.70) 8.94 (4.44)
bc-PINN, Adam+LBFGS 21.2 (40.8) 580 (301) 1.86 (0.81) 3.23 (2.99) 6.65 (0.11) 6.51 (0.13)

PL, Adam (our) 21.3 (1.5) 51.0 (4.8) 21.3 (2.5) 55.7 (4.1) 8.35 (0.42) 7.95 (0.47)
PL, Adam+LBFGS (our) 5.42 (1.23) 6.72 (1.37) 2.41 (0.44) 6.02 (0.85) 6.59 (0.01) 6.45 (0.03)

Ens, Adam (our) 7.00 (2.74) 12.6 (3.0) 7.21 (1.57) 13.4 (3.9) 6.68 (0.37) 6.63 (0.30)
Ens, Adam+LBFGS (our) 8.69 (10.5) 14.0 (11.8) 6.83 (1.34) 7.07 (2.14) 6.62 (0.01) 6.48 (0.02)

Table 2: The means (and standard deviations) across 10 random seeds of the relative l2 errors
in Eq. 18 for the diffusion system (Eq. 15) with periodic and Dirichlet (Eqs. 16– 17) boundary
conditions. All numbers should be multiplied by 10−3. The rows marked with ∗ show the results
obtained with KPDE = 20000, otherwise KPDE = 1000. In bold: the best three results.

Method periodic boundary conditions Dirichlet boundary conditions
d = 5 d = 7 d = 10 d = 5 d = 7 d = 10

PINN, LBFGS 997 (.1) 999 (.1) 999 (.1) 998 (.1) 999 (.1) 999 (.1)
PINN, Adam 7.16 (5.61) 20.1 (18.2) 36.6 (18.1) 10.6 (12.0) 15.4 (14.8) 17.9 (10.8)

PINN, Adam+LBFGS 0.30 (0.04) 0.60 (0.42) 1.00 (0.27) 0.32 (0.07) 0.39 (0.08) 0.54 (0.08)
SA-PINN, Adam 5.28 (1.68) 5.94 (1.00) 9.52 (2.61) 4.85 (1.38) 6.76 (1.46) 8.08 (2.69)

SA-PINN, Adam+LBFGS 2.59 (1.07) 3.10 (1.62) 6.46 (3.29) 2.71 (0.96) 3.53 (1.28) 5.68 (2.85)
bc-PINN, Adam 16.4 (6.1) 82.2 (176) 163 (212) 13.6 (6.1) 22.0 (7.6) 50.4 (50.7)
bc-PINN∗, Adam 10.7 (5.1) 18.7 (6.9) 48.1 (38.1) 16.9 (12.2) 20.5 (8.8) 29.7 (16.1)

bc-PINN, Adam+LBFGS 4.49 (4.67) 70.0 (190) 108 (257) 3.77 (2.87) 6.14 (2.44) 28.1 (44.2)
PL, Adam (our) 8.26 (3.52) 11.5 (3.4) 27.0 (8.0) 9.15 (3.59) 10.3 (4.0) 25.9 (13.5)
Ens, Adam (our) 5.67 (3.02) 10.1 (4.0) 18.2 (6.7) 8.07 (4.95) 10.1 (5.2) 14.5 (7.3)

PL, Adam+LBFGS (our) 0.30 (0.05) 0.53 (0.04) 1.64 (0.59) 0.29 (0.06) 0.55 (0.07) 1.73 (0.58)
Ens, Adam+LBFGS (our) 0.12 (0.02) 0.41 (0.13) 1.59 (0.43) 0.11 (0.01) 0.33 (0.14) 2.03 (1.25)

In all the experiments, we use a multi-layer perceptron with four hidden layers with 50 neurons and
the tanh activation in each hidden layer as a backbone PINN. Our ensemble of PINNs contains five
such networks. The two inputs x and t of the network are normalized to [−1, 1], which has a positive
effect on the accuracy in our experiments. The models are trained either with the Adam optimizer
(Kingma & Ba, 2014) with learning rate 0.001 or with Adam followed by fine-tuning with LBFGS
(Liu & Nocedal, 1989). The LBFGS fine-tuning is done before each update of the collocation points
which contribute to loss LPDE and at the very end of training.

Illustrations of the training procedure for the considered systems can be found in Figs. 4 and 5. The
plots show that the proposed algorithm finds accurate solutions for the considered systems.

To evaluate the accuracy of the proposed algorithm, we compute metrics used in the previous works
(Krishnapriyan et al., 2021; Wang et al., 2022): we report the relative l2 error

r = l2(û− u)/l2(u) , (18)

where u is a vector of the ground-truth values in the test set, û is the corresponding PINN predictions
and l2() denotes l2 norm. Our test set consists of points on a regular 256× 100 grid.
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In Table 1, we compare the accuracy of the proposed method with several strong baselines proposed
recently in the literature. We present the means and standard deviations of the solution errors ob-
tained in 10 runs with different initializations. Since most of the considered methods benefit from
longer training, we limit the number of network updates for all the comparison methods. We use
the following comparison methods: (1) Vanilla PINN trained with the LBFGS optimizer, (2) Vanilla
PINN trained with the Adam optimizer, (3) Causality (Wang et al., 2022), (4) SA-PINN (McClenny
& Braga-Neto, 2020), (5) bc-PINN (Mattey & Ghosh, 2022). More details on the methods and the
selection of hyperparameters can be found in Appendix A.2.

The results in Table 1 show that vanilla PINNs trained with LBFGS struggle to find accurate solu-
tions for all the considered systems. Vanilla PINNs trained with Adam yield more accurate results
but the results are unsatisfactory for the reaction and reaction-diffusion systems. The causality
weighting scheme seems to require many more collocation points to find satisfactory solutions. SA-
PINN and bc-PINN work very well on the reaction and reaction-diffusion systems but do not find
good solutions for the convection system. The proposed ensemble method provides stable training
(see the summary of the results in Fig. 2) and shows competitive performance in all the considered
systems. We can also observe that the LBFGS fine-tuning has positive effect on the accuracy when
a good approximation is found during pre-training with Adam.

In Table 2, we compare the accuracy of the proposed algorithm on solving the diffusion system
with the two types of boundary conditions: periodic (Eq. 16) and Dirichlet-type (Eq. 17) boundary
conditions. In this comparison, we omit the causality-motivated baseline (Wang et al., 2022) because
the periodic boundary conditions in the existing implementations are enforced as hard constraints.
The results in Table 2 show that training ensembles of PINNs yields competitive performance in
these settings as well.

In Appendix A.3, we study the sensitivity of the ensemble training of PINNs to its hyperparameters.
The results show that the PINN Ensemble algorithm is generally stable at solving the considered sys-
tems with little sensitivity to the hyperparameter values. We note the importance of hyperparameter
∆PDE which determines how far the points considered for inclusion can be from the points already
included in the loss calculations. The performance of the algorithm drops when ∆PDE is too large.
This happens because ensemble members may be attracted by the same trivial solution in areas too
far away from the initial conditions, the effect caused by commonly used network architectures and
initialization schemes (see, e.g., Wong et al., 2022; Rohrhofer et al., 2022), which may negatively
affect the ensemble diversity.

5 DISCUSSION AND FUTURE WORK

In this paper, we propose to stabilize training of PINNs by gradual expansion of the solution interval
based on the agreement of an ensemble of PINNs. The obtained results suggest that the proposed
approach can reduce the number of failure cases during PINN training. Another potential advan-
tage of the proposed algorithm is that the PINN ensemble produces confidence intervals which can
be viewed as uncertainty estimates of the found solution (see Fig. 4c, e). Although the proposed
algorithm is more computationally expensive compared to vanilla PINNs, ensemble training can be
effectively parallelized in which case the wall clock time of training does not grow significantly. The
method shows good results for simple systems such as convection and reaction-diffusion.

This work can be extended in a number of ways. One potential direction is to use different
ways of creating model ensembles, for example, by dropout (Hinton et al., 2012) or pseudo-
ensembles (Bachman et al., 2014). It is interesting to investigate how the proposed algorithm can
be combined with other tricks from the PINN literature, for example, adaptive balancing of the loss
terms (Wang et al., 2021c). Another direction is to find alternative ways of the solution interval ex-
pansion (e.g., update sets I ′PDE, I ′B more frequently), which may increase the convergence speed. It
should also be possible to improve the PINN architecture such that the knowledge of a found (local)
solution in one area could be used in finding the solution in another area. Using neural networks
with the right inductive bias (e.g., similar to the ones proposed by Sanchez-Gonzalez et al., 2020;
Iakovlev et al., 2021; Brandstetter et al., 2022), might provide a solution for that.
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A APPENDIX

A.1 PINN EXTENSIONS

Despite the elegance of the PINN approach, the method is known to be prone to failures, especially
when the solution has a complex shape on the considered interval (see, e.g., Wang et al., 2021a;
Krishnapriyan et al., 2021; Wang et al., 2021c;b; 2022; Wight & Zhao, 2020). The optimization
problem solved while training PINNs is very hard and the accuracy of the found solution is very
sensitive to the hyperparameters of PINNs (see, e.g., Markidis, 2021): the weights wS, wB, wPDE
of the loss terms, the parameterization used in the neural network and the strategy for sampling the
points in which the loss terms are computed.

Balancing shared weights wS, wB, wPDE of the individual loss terms in Eqs. 5–7 is a popular way
to improve the accuracy of the PINN solution. Wight & Zhao (2020) propose using larger weights
wS relative to wB and wPDE because the initial conditions largely determine the shape of the so-
lution. Several works propose different schemes for dynamically adapting wS, wB, wPDE during
training such that the weights that correspond to problematic loss terms get higher values. Wang
et al. (2021a;c) propose to adjust the weights either based on the magnitudes of the gradients of
the corresponding loss terms or based on the eigenvalues of the limiting Neural Tangent Kernel.
Liu & Wang (2021) propose to treat weights wS, wB, wPDE as trainable parameters and adjust them
jointly with the PINN parameters solving a minimax optimization problem. Self-Adaptive PINNs
(SA-PINNs, McClenny & Braga-Neto, 2020) increase point-wise weights wi, wj and wk of the
loss terms in Eqs. 5–7 during training such that the changes of the weights are proportional to the
corresponding loss terms.

The accuracy of PINNs can also be improved by using a different parameterization for the trained
neural network instead of the most standard multilayer perceptron architecture. Several works (see,
e.g., Lagaris et al., 1998; Dong & Ni, 2021; Lu et al., 2021b; Sukumar & Srivastava, 2022) pro-
pose neural network parameterizations which guarantee that the initial or boundary conditions are
satisfied exactly, thus eliminating terms LS and LB from Eq. 4. Wang et al. (2021b) propose to use
Fourier features as the inputs of the neural network, which is motivated by the success of Fourier
feature networks (Tancik et al., 2020) in preserving high-frequencies in the modeled solution. The
method called SIREN (Sitzmann et al., 2020) proposes to use a multilayer perceptron with periodic
activation functions and adjusts the weight initialization schemes to work better with such activa-
tion functions. This parameterization can also improve learning of high frequencies in the modeled
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solution. Wang et al. (2021a) propose to add multiplicative connections to the standard multilayer
perceptron architecture to account for possible multiplicative interactions between different input
dimensions.

Another popular way of improving the accuracy of PINNs is to use adaptive strategies for sampling
collocation points (xk, tk) to compute LPDE in Eq. 7. Wight & Zhao (2020) propose to sample more
collocation points in the areas with large values of LPDE, which helps to learn solutions with fast
transitions. Daw et al. (2022) propose an evolutionary strategy for sampling the collocation points:
the points with large contribution to LPDE are kept for the next iteration while the rest of the points
are re-sampled uniformly from the domain. These approaches resemble the strategy of the classical
solvers to reduce the discretization interval when the solution cannot be estimated accurately. More
details on the sampling strategies for PINN and empirical comparison can be found in (Wu et al.,
2022).

Many of the improvements proposed to PINNs can be combined, which is supported by existing
software libraries (Lu et al., 2021a; Zubov et al., 2021; Hennigh et al., 2021).

A.2 TRAINING DETAILS

For all comparison methods (similarly to Krishnapriyan et al. (2021)), we use KPDE = 1000 collo-
cation points randomly sampled from a regular 256 × 100 grid on the solution interval. We use
KS = 256 points to fit the initial conditions, these points are selected from a regular grid on
x ∈ [0, 2π] with t = 0. We use KB = 100 for the boundary condition loss LBC. These points
are selected form a regular grid on t ∈ [0, 1].

For the proposed ensemble method, we use the following hyperparameters: σ2 = 0.0004, ϵ = 0.001,
∆ = 0.05 and ∆PDE = 0.1. We perform N = 1000 gradient updates before extending sets I ′PL,
I ′PDE, IB, except for the first set extension which is done after N1 = 5000 training steps. We also
set weighting coefficient ws = 64/|D ∪ IPDE| for runs with pseudo-labels trained with Adam and
LBFGS similar to the closest baseline.

For the baseline methods we adapted the authors’ implementations with the following adjustments.

• Causality (Wang et al., 2022): PINN with an adaptive weighting scheme that respects
causality. We report results for the values of hyperparameter ϵ in Eq. 8 that worked best
for the considered systems: ϵ = 0.01 for the convection system, ϵ = 100 for the re-
action system and ϵ = 1 for the reaction-diffusion systems. We train the model until
all the adapted weights become greater than 0.99 (the stopping criterion used by Wang
et al. (2022)). As the existing implementation requires a regular grid, we use a grid of
KPDE = 32 × 32 = 1024 collocation points to compute loss LPDE. We also report results
with a denser grid of KPDE = 256 × 100 = 25600 points for this algorithm. We do not
add normalization for network inputs x and t to [−1, 1] and follow input encoding of the
original implementation.

• SA-PINN (McClenny & Braga-Neto, 2020) with trainable point-specific weights. We
switch off finetuning with the LBFGS optimizer after Adam due to observed training insta-
bilities. We also add normalization of network inputs to [−1, 1] similar to our method.

• bc-PINN (Mattey & Ghosh, 2022): a technique of expanding the time interval with a pre-
defined schedule. We expand the time interval four times and sample 250 collocation points
on each interval to compute loss LPDE and 25 points per interval to compute LB. We report
the results obtained with the Adam optimizer and with the Adam optimizer followed by
LBFGS on each time interval.

For all of the methods, we train convection equation (Eqs. 9–10) with β = 30 for 104000 gradient
updates and with β = 40 for 154000 updates, reaction (Eqs. 11–12) and reaction-diffusion (Eqs. 13–
14) equations are trained for 64000 updates, diffusion (Eqs. 15–17) equation with d = 5 and d = 7
for 84000 updates and with d = 10 for 104000 (unless an automatic stopping criterion is used).
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A.3 HYPERPARAMETER SENSITIVITY

In Table 3, we test the sensitivity of the ensemble training of PINNs to its hyperparameters. In these
experiments, we use the number of updates as described in Appendix A.2. We consider that a run
has not converged if less than 95% of the sampled points have been added to the set which is used
to compute LPDE by the last update. Such runs are excluded from the statistics reported in Table 3.
This step is done only in the hyperparameter sensitivity experiments.

The most important hyperparameters are the variance threshold σ2 and the distance parameters ∆
and ∆PDE which determine how quickly the algorithm expands the solution interval. When σ2 is
small then the interval is expanded more slowly and the algorithm may require more iterations to
converge. Too large values of σ2 can result in adding new regions in the training procedure too
early. The distance hyperparameters ∆ and ∆PDE have a similar effect. However, for the considered
systems, the model performance is stable with little sensitivity to the values of these hyperparameters
as well as to the number KPDE of collocation points and the number of networks in the ensemble.

Table 3: The results obtained with the proposed ’PINN Ensemble’ algorithm using different hyper-
parameter values. We report the same metric for the same systems as in Table 1. The superscript (n)

indicates how many runs among the 10 runs did not converge after a fixed number of updates. We
assume that the algorithm has converged if more than 95% of the sampled points have been added
to the set used to compute loss LPDE.

Convection, β Reaction, ρ Reaction-diffusion, ν
β = 30 β = 40 ρ = 5 ρ = 6 ρ = 7 ν = 2 ν = 3 ν = 4

default 7.00 (2.7) 12.6 (3) 7.21 (1.6) 11.0 (2) 13.4 (4) 6.93 (.3) 6.68 (.4) 6.63 (.3)

Varying the threshold for the ensemble disagreement, default σ2 = 0.0004

σ2 = 10−4 8.15 (2.7)(1) 14.0 (2) 7.16 (1.6) 11.3 (2) 12.3 (3)(3) 6.67 (.4) 6.73 (.6) 6.60 (.5)
σ2 = 10−3 8.11 (2.0) 14.5 (4) 7.16 (1.5) 11.3 (2) 13.0 (4) 6.68 (.3) 6.79 (.4) 6.63 (.4)

Varying the distances which determinate candidate collocation points, default ∆PDE = 0.1, ∆ = 0.05

∆PDE = .07 10.1 (4.4) 17.6 (10)(2) 6.80 (1.1) 11.5 (3) 10.7 (3)(2) 7.03 (.3) 6.76 (.6) 6.68 (.6)
∆PDE = .2 5.33 (0.9) 11.5 (2) 7.61 (2.) 12.7 (3) 11.6 (4) 7.13 (.4) 6.89 (.4) 6.49 (.4)
∆ = .07 7.82 (1.6) 13.2 (2) 7.67 (1.5) 12.0 (2) 15.3 (4) 6.70 (.6) 6.64 (.5) 6.63 (.4)

∆PDE = .25
& ∆ = .125

6.25 (1.6) 13.0 (2) 8.42 (2.) 14.2 (3) 14.5 (8) 6.97 (.4) 6.88 (.6) 6.75 (.4)

∆ = 105 8.98 (1.9) 13.7 (2) 8.33 (1.6) 13.6 (2) 18.4 (3) 6.69 (.2) 6.91 (.6) 6.62 (.4)
∆PDE = 105 11.1 (1.2) 16.9 (3) 8.22 (1.5) 56 (71) 36.3 (53) 455 (143) 242 (164) 74 (82)

Varying the prediction error which determinate candidate collocation points, default ϵ = 0.001

ϵ = 5 · 10−4 8.94 (2.3) 13.9 (6) 7.13 (1.5) 11.2 (2) 12.9 (4)(1) 6.66 (.3) 6.93 (.7) 6.61 (.4)
ϵ = 10−2 7.65 (1.7) 12.3 (2) 7.15 (1.5) 11.4 (2) 13.0 (4)(1) 6.72 (.4) 6.93 (.7) 6.63 (.3)
ϵ = 105 7.19 (1.4) 12.2 (2) 7.11 (1.5) 11.4 (2) 12.9 (4)(1) 6.72 (.4) 6.93 (.7) 6.61 (.4)

Varying the number of the collocation points, default KPDE = 1000
KPDE = 5000 8.02 (1.9) 14.1 (2) 6.75 (1.4) 10.7 (2) 10.4 (3) 6.88 (.4) 6.52 (.5) 6.55 (.5)
KPDE = 104 7.71 (1.7) 16.8 (4) 7.00 (1.3) 9.89 (2) 10.3 (4) 6.94 (.4) 6.71 (.5) 6.55 (.4)

Number of training epochs for the first iteration, default N1 = 5000

N1 = 103 7.12 (1.0) 15.6 (3) 7.86 (1.3) 12.6 (2) 14.8 (2)(2) 6.89 (.3) 6.45 (.4) 6.58 (.2)
N1 = 104 10.8 (7) 15.0 (8)(1) 6.26 (1.4) 9.18 (2) 9.73 (3.2) 6.79 (.3) 6.67 (.4) 6.66 (.5)

Number of training epochs between adding new points, default N = 1000

N = 700 7.64 (1.4) 15.1 (7) 7.53 (1.7) 12.1 (2) 14.3 (3)(1) 6.91 (.4) 6.66 (.4) 6.65 (.2)
N = 2000 9.95 (1.7) 14.4 (5) 6.62 (1.3) 9.99 (2) 11.8 (3) 6.96 (.4) 6.87 (.4) 6.54 (.5)

Number of networks, default L = 5

L = 3 8.96 (3.7) 12.2 (4) 6.45 (1.4) 11.6 (4) 14.4 (6)(3) 6.83 (.3) 6.60 (.3) 6.75 (.6)
L = 7 6.68 (1.6) 12.3 (2) 6.07 (.81) 11.4 (2) 11.9 (3)(5) 6.88 (.2) 6.78 (.4) 6.57 (.2)
L = 10 7.94 (1.4) 13.6 (2) 6.48 (.58) 10.6 (.9) 12.5 (3) 7.05 (.3) 6.72 (.1) 6.59 (.2)
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A.4 MORE EXPERIMENTAL RESULTS

In this section we report additional experimental results for reaction (Eqs. 11–12) with ρ = 6 and
reaction-diffusion (Eqs. 13–14) with ν = 2.

Table 4: The means (and standard deviations) across 10 random seeds of the relative l2 errors in
Eq. 18 for reaction (Eqs. 11–12) and reaction-diffusion (Eqs. 13–14) systems. All numbers should
be multiplied by 10−3. The rows marked with ∗ show the results obtained with KPDE = 25600
collocation points otherwise KPDE = 1000. In bold: the best three results.

Method Reaction, ρ Reaction-diffusion, ν
ρ = 6 ν = 2

PINN, LBFGS 993 (2) 608 (469)
PINN, Adam 592 (459) 7.01 (0.74)

PINN, Adam+LBFGS 678 (433) 6.83 (0.03)
SA-PINN 8.12 (1.40) 6.97 (0.54)
Causality 102 (35) 678 (5)
Causality∗ 18.9 (4.1) 7.06 (0.27)

bc-PINN, Adam 5.66 (2.02) 7.11 (1.35)
bc-PINN, Adam+LBFGS 2.96 (1.25) 6.89 (0.08)

PL, Adam (our) 38.5 (3.5) 8.83 (0.42)
PL, Adam+LBFGS (our) 4.17 (0.58) 6.83 (0.02)

Ens, Adam (our) 11.0 (2.3) 6.93 (0.32)
Ens, Adam+LBFGS (our) 9.73 (2.02) 6.85 (0.02)
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