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ABSTRACT

Prompt tuning (PT), a parameter-efficient technique that only tunes the additional
prompt embeddings while keeping the backbone pre-trained language model
frozen, has shown promising results in language understanding tasks, especially
in low-resource scenarios. However, effective prompt design methods suitable
for generation tasks such as summarization are still lacking. At the same time,
summarization guided through instructions (discrete prompts) can achieve a de-
sirable double objective of higher quality and controllability in summary genera-
tion. Towards a triple goal of strong summarization performance with parameter-
efficiency, data-efficiency and controllability, we introduce PromptSum, a method
combining PT with a multi-task objective and discrete entity prompts for abstrac-
tive summarization. Our model achieves state-of-the-art results on several popular
few-shot benchmarks as well as a strong level of controllability through entities,
all while only tuning several orders of magnitude less parameters.

1 INTRODUCTION

Pre-training large-scale language models (LMs) and adapting them to downstream tasks through
fine-tuning has become the dominant paradigm in NLP (Raffel et al., 2019; Radford et al., 2019;
Lewis et al., 2019), including in summarization (Zhang et al., 2020). However, full-model fine-
tuning requires storing an entire set of weights for each downstream task, prohibiting simultaneous
multi-task inference as the models become larger (Chowdhery et al., 2022; Thoppilan et al., 2022).
Also, full model fine-tuning requires careful considerations to avoid overfitting, especially when the
dataset is small as in most few-shot tasks (Kaplan et al., 2020).

Prompt engineering has recently gained popularity as a low-cost alternative for adapting LMs to
downstream tasks. Such prompts are generally constructed either by finding suitable discrete task
instructions (e.g., “TL;DR” for summarization) with possibly a few examples (Brown et al., 2020;
Schick & Schütze, 2021) or by tuning embeddings of soft prompts (Li & Liang, 2021; Lester et al.,
2021). As a specific conditioning of the LM, prompt-based adaptation has achieved comparable (or
even better) performance to standard fine-tuning in low-resource scenarios, while using very few or
even zero learnable parameters (Brown et al., 2020; Li & Liang, 2021; Lester et al., 2021).

Specifically, soft prompt tuning (Lester et al., 2021) adapts the nature of discrete prompts to con-
tinuous soft prompts whose embeddings are learned with backpropagation. This way, the model
is offered greater flexibility and capacity in learning prompts, as opposed to manually finding an
effective discrete prompt. Soft prompts have brought great success in many language understanding
tasks (Qin & Eisner, 2021; Gu et al., 2022; Vu et al., 2022; Su et al., 2022), and have also shown
promising results in language generation (Li & Liang, 2021; Qin & Joty, 2022). Despite this, one
important drawback of soft prompt tuning is that it lacks the human-explainable nature of discrete
text prompts, thus sacrifices user controllability.

On the other hand, for a complex and less constrained generation task like abstractive summariza-
tion, guiding the model with additional discrete signals, such as entities or keywords, can signifi-
cantly enhance the performance as it helps the generative model to be faithful and on topic (Dou
et al., 2020). An entity chain (sequence of entities) can be viewed as a high-level content plan that
can bootstrap the generation process (Liu & Chen, 2021; Puduppully et al., 2019). Entities are also
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a strong proxy for topic saliency (Barzilay & Lapata, 2005). Intuitively, when a model is provided
with extra information on the important entities to incorporate into the output summaries, it is ex-
pected to be more accurate and controllable, and the summary will more likely cover the important
facts. Similar to Neuro-Symbolic approaches (Garcez et al., 2022), we try to approximate the human
reasoning process of plannning content with entities first before drafting the summaries. Control-
lability is an essential aspect in summarization as it is a subjective task, where several different yet
valid summaries can be generated from the same source, for instance when different aspects are
considered (Ahuja et al., 2022; Liu et al., 2020).

Recent work in summarization has indeed incorporated high-level content planning or controllabil-
ity. CTRLSum (He et al., 2020) takes a discrete instruction as input to enable control on several
summarization aspects such as output entities or summary length. Narayan et al. (2021; 2022) pro-
pose FROST that trains the same model to first generate an entity chain, and then a summary by
conditioning on the entity chain in an auto-regressive manner. They also adapt PEGASUS (Zhang
et al., 2020) pre-training objective to include an entity chain during pre-training. This leads to both
higher ROUGE scores and a powerful mechanism to control summary generation, which allows for
reducing hallucinations by dropping entities not present in the source. Nevertheless, these methods
require tuning the entire language model, on the entire dataset.

In this work, our goal is to combine the best of both worlds. On the one hand, we leverage soft
prompts to achieve parameter-efficiency in data-efficient setups. On the other hand, we use dis-
crete prompts to induce controllable summarization. Our mixture-of-prompts model maintains good
performance while operating under triple constraints of parameter-efficiency, data-efficiency and
controllability. Our model is multi-tasking, and can generate either the summary entity chain or the
summary itself. To control which task to activate, we use a dedicated soft prompt for each task.
After prompting with the entity chain soft prompt, we re-use the predicted entity chain for summary
generation. This enables great flexibility, as depending on the setup, the user can input desired en-
tities to condition on. We demonstrate the strength of our approach on four major summarization
benchmarks: CNN/DM (Hermann et al., 2015), XSum (Narayan et al., 2018), BillSum (Kornilova &
Eidelman, 2019) and SAMSum (Gliwa et al., 2019), and achieve state-of-the-art on several few-shot
scenarios. We also conduct extensive qualitative analysis for utilizing our new prompting mecha-
nism for controllable summary generation and show that we can reduce hallucinations.

Our main contributions in this paper are the following:

• We are the first to propose using a mixture of discrete and soft prompts for generation tasks. We
empirically show its effectiveness on abstractive summarization.

• We scale our approach by introducing a multi-task prompt-tuning pre-training framework.
• We demonstrate the performance of our method by reaching state-of-the-art few-shot ROUGE

summarization results.
• Using the input entity chain, we propose the first light-weight controllable summarization model,

which shows impressive levels of controllability of the summary even with few-shot supervision.

2 RELATED WORK

Prompt-based Learning (PL) In general, to learn new tasks, PL prepends a task-specific template
or prompt to the original input (Liu et al., 2021a). Since Brown et al. (2020) showed that a frozen
GPT-3 model can achieve promising results on various few-shot tasks through manually designed
prompts, many efforts have been made in PL. While early efforts mainly focus on designing discrete
prompts (Schick & Schütze, 2021; Gao et al., 2020), more recent work attempts to learn trainable
parameters, soft prompts (Li & Liang, 2021; Liu et al., 2021b; Lester et al., 2021; Qin & Joty, 2021),
showing impressive performance on a variety of tasks.

Few-shot Summarization Few-shot learning remains under-explored in abstractive summariza-
tion. PEGASUS (Zhang et al., 2020), which pre-trains the model on HugeNews with the gap-
sentence generation objective to predict salient sentences from the rest of the document, achieves
very strong 100-shot performance on several datasets, including XSum. WikiTransfer (Fabbri et al.,
2020) proposes to construct pseudo-samples from Wikipedia to fine-tune pre-trained models before
few-shot fine-tuning. This approach achieves great progress in zero-shot and few-shot summariza-
tion, but at the cost of using external data and performing an intermediate fine-tuning phase. Bi
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Figure 1: PromptSum training. In the pre-training stage (left), the model alternates between
the entity-chain prediction and summary prediction tasks, both with pseudo-labels and each with a
dedicated input soft prompt (E-Prompt for entity and S-Prompt for summary). Besides, all model
weights are updated in pre-training. In the Entity Generation stage, PEGASUS weights (initialized
from pre-training) are kept frozen, and E-Prompt is further optimized for entity chain generation
with the available entity-chain supervision. In the Summary Generation stage, PEGASUS weights
are also initialized from pre-training and kept frozen, and this time S-Prompt is tuned for summary
generation with the available summary labels. Besides, for summary generation, the model also
conditions on predicted entity chains from the first prompt tuning stage.

et al. (2021) adds auxiliary tasks such as object prediction and entailment to the cross-entropy train-
ing objective to boost few-shot summarization performance. PSP (Liu et al., 2022b) pre-trains soft
prompts and then fine-tunes them for summarization, outperforming the base BART (Lewis et al.,
2019) on few-shot benchmarks by a good margin.

Guidance and Planning for Summarization CTRLSum (He et al., 2020) trains the summariza-
tion model with input keywords which allow users to input any desired keywords at inference, en-
abling better controllability on the summarization process. GSum (Dou et al., 2020) uses a second
encoder to leverage external signals, such as keywords or salient sentences predicted by an extrac-
tive summarization model like MatchSum (Zhong et al., 2020), to guide the base encoder-decoder
abstractive summarization model, achieving state-of-the-art results. FROST (Narayan et al., 2021),
which is the most comparable to our work, modifies the PEGASUS (Zhang et al., 2020) summa-
rization pre-training objective to condition on entity chains. However, they condition through the
decoder by making the model generate first the entity chain, then the summary; while we input the
entity chain to the encoder. Besides, we use a mix of soft and discrete prompts for summary genera-
tion. To the best of our knowledge, there is no work proposing a controllable summarization model
while being parameter-efficient or data-efficient.

3 METHOD

3.1 PROBLEM FORMULATION

From an input text X , we divide the process of generating a summary Y into two subtasks:

• Entity Generation: generate a chain of salient (discrete) entities E from the input text X .

• Summary Generation: generate the summary Y conditioned on both X and E.

By dividing the traditional summarization process into two stages, we aim to mimic a human’s
thinking process of generating summaries by first planning out the content with a sequence of dis-
crete entities before writing down the final summary (Cao et al., 2018). The predicted entities in
Entity Generation will also aid Summary Generation performance by bootstrapping salient content
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selection. Following this more practical two-stage design, we can better control the summaries with
different entity chains (§5.2). Moreover, the model’s performance on the few-shot setup is enhanced
as the two-stage summarization process is more generalizable to unseen data points (§4.2).

3.2 MULTI-TASK PROMPT TUNING

To learn both the subtasks for summarization with the least amount of parameters and simplest
architecture, we employ multi-task prompt tuning, where we use the same Pre-trained Language
Model (PLM) for both tasks but with different prompts. We decide to use PEGASUS (Zhang et al.,
2020) as the backbone PLM, due to its strong generalization across many summarization tasks.
Given a training dataset Dtr = {(X1, Y1), . . . , (Xn, Yn)} for a task T and a PLM θ, prompt tuning
or PT (Lester et al., 2021) prepends the input text Xi with a sequence of tunable prompt tokens P ,
while all other parameters remain frozen during training.

For the Entity Generation task (i.e., predicting salient entities Ei from input Xi), we first formulate a
learning dataset Dtr

E = {(X1, E1), . . . , (Xn, En)} where Ei represents the entity chain tagged from
the ground truth summary Yi. Then, to prompt-tune, we use soft prompt tokens PE , parameterized
by prompt embeddings ϕE , optimized through gradient descent with the following objective:

LϕE
= L(ϕE , D

tr
E ) = −

n∑
i=1

log(p(Ei|[PE , Xi], ϕE , θ)) (1)

For Summary Generation, generating summaries Yi from input Xi and entity chain Ei, we formu-
late the training dataset Dtr

S = {(X1, E
′
1, Y1), . . . , (Xn, E

′
n, Yn)}, where E′

i is inferred from the
prompt-tuned model in the previous stage. Then, we use both soft prompt tokens PS and discrete
prompt E′

i to generate the summary Yi. Similar to the first prompt tuning stage, only prompt em-
beddings ϕS are optimized through gradient descent through the following objective:

LϕS
= L(ϕS , D

tr
S ) = −

n∑
i=1

log(p(Yi|[PS , Xi, E
′
i], ϕS , θ)) (2)

3.3 MODEL TRAINING

Pre-training To better help the model learn each task with the least number of trainable parameters
as a soft prompt, we perform pre-training. Similarly to PEGASUS (Zhang et al., 2020), we leverage
the C4 dataset for pre-training, first introduced in Raffel et al. (2019). We initialize our model, named
PromptSum, from the PEGASUS checkpoint pre-trained on C4 and HugeNews, and perform our
multi-task prompt tuning pre-training on the realnewslike subset of C4, containing 13M samples. We
construct pre-training labels that are similar to Narayan et al. (2021): labels for Summary Generation
follow the gap-sentences generation pre-training objective: they are salient sentences removed from
each document to form a pseudo-summary. Labels for Entity Generation simply consist of the
tagged entities found in each pseudo-summary. We initialize soft prompt embeddings for both tasks
from PEGASUS embeddings of the most frequent tokens. During pre-training, within each batch,
each pre-training document is used once for entity chain generation, and also once for summary
generation, each time with the corresponding soft prompt being inputted to the model. The final
pre-training loss is simply the sum of each subtask loss: Lϕ = LϕE

+ LϕS

Fine-tuning Fine-tuning the model on labeled data follows a two-stage approach. First, we ex-
tract entity chains from the available ground truth summaries, and train the soft prompt for Entity
Generation. Then, we infer the entity chain, and train the soft prompt for Summary Generation.
For each tuning stage, the model is intialized with weights from pre-training, and the corresponding
soft prompt is also initialized from its pre-training weights. Besides, during both pre-training and
Summary Generation, we found it beneficial to use teacher forcing for entity chains: at training
time, i.e., we input the ground truth entity chain to the model, instead of the predicted one. Not only
was such teacher forcing leading to higher performance, but it also sped up training due to avoiding
generation of entity chains on the whole training set. At inference, predicted entity chains are first
inferred on the whole validation or test set. We refer to Fig. 1 for an overview of the whole training
process of PromptSum, with multi-task pre-training on the left, and the prompt-tuning stages in the
center (entity) and right (summary).
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Dataset # Data points # Words # Tokens (PEGASUS) # Entities New summary n-grams (%)
Train Val Test Doc. Summ. Doc. Summ. Doc. Summ. 1-grams 2-grams 3-grams

CNN/DM 287,113 13,334 11,490 786.68 55.06 851.53 64.57 64.13 5.71 12.07 51.05 71.38
XSum 204,045 11,332 11,334 414.51 22.96 456.96 26.01 38.26 2.85 33.98 83.33 95.52
BillSum 17,055 (ours) 1,894 (ours) 3,269 1,659.13 203.88 1,759.92 209.19 109.05 14.01 10.22 37.77 54.87
SAMSum 14,732 818 819 124.07 23.42 133.07 25.66 11.45 3.25 33.88 79.02 90.10

Table 1: Statistics on the datasets that we used for experiments. Doc. is short for document, and
Summ. for summary. Tokens counts are calculated based on PEGASUS tokenization.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Before our pre-training on C4, we initialize PromptSum with the google/pegasus-large checkpoint
pre-trained on HugeNews and C4. The checkpoint is downloaded from HuggingFace transformers
library (Wolf et al., 2020). To detect entities as ground-truth, the spacy library is used. The datasets
used are downloaded with the HuggingFace datasets library (Lhoest et al., 2021).

Following PEGASUS (Zhang et al., 2020), we use Adafactor (Shazeer & Stern, 2018) as optimizer
for all experiments. We pre-train for 400k steps, using an effective batch size of 256 and data par-
allelism over multiple GPUs, evaluating every 5k steps. We will release our pre-trained checkpoint
publicly. We use 300 tokens per soft prompt, each with embedding size 1024 (as per PEGASUS),
leading to a total of 614,400 trainable parameters (sum over both soft prompts) during fine-tuning.
We concatenate each soft prompt to the right of the source document, as we observed a slight per-
formance gain compared to concatenating left.

We fine-tune PromptSum on four popular summarization benchmarks:

• CNN-DailyMail (Hermann et al., 2015) consists of 93k and 220k news articles from the CNN
and DailyMail newspapers, respectively, with corresponding highlighted bullet points serving as
summaries. We follow the non anonymized version from See et al. (2017).

• XSum (Narayan et al., 2018) is the task of extreme summarization: compressing an entire news
article into a single, highly abstractive sentence. It is made of 227k BBC articles from 2010-2017.

• BillSum (Kornilova & Eidelman, 2019) contains 22k US Congressional bills and human-written
reference summaries from several sessions of the American Congress.

• SAMSum (Gliwa et al., 2019) is a corpus of 16k daily-life conversations. The input is significantly
shorter than the other datasets, and it is as abstractive as XSum.

We refer the reader to Table 1 for detailed statistics on each dataset. Datasets were selected to cover
multiple domains (news, legal, dialogue), abstractiveness levels, and compression ratios.

In few-shot fine-tuning experiments, we fine-tune each task for 60 epochs and evaluate every epoch,
using a learning rate of 5e-3 for all experiments. We subsample three random pairs of training and
validation sets of the corresponding few-shot size from the training set, and fine-tune a model on
each pair, then report results on the test averaged over the three models. For Entity Generation, we
early stop on the F-1 score of the generated entity chain, and on the mean ROUGE of generated
summaries for the Summary Generation task.

In the full-shot experiments, we train the model for 5 epochs for each task on CNN/DM and XSum,
20 epochs on BillSum and 30 epochs on SAMSum. We found that in this setup, results could
drastically vary depending on the choice of learning rate, and perform a grid search on the validation
set over {0.0005, 0.005, 0.05, 0.5, 5.0} to find a good learning rate for each dataset. We settle on
0.005 for XSum and SAMSum, 5.0 for CNN/DM and 0.5 for BillSum. We use an effective batch
size of 256 and validate every 500 optimization steps on CNN/DM and XSum, every 50 steps on
BillSum and SAMSum.

4.2 RESULTS

We evaluate PromptSum summarization performance using the standard ROUGE metric (Lin, 2004),
in its three commonly used versions of ROUGE-1, ROUGE-2, and ROUGE-L; in all three supervi-
sion scenarios: zero-shot, few-shot (with 1, 10, and 100 labels) and full-shot.

5



Under review as a conference paper at ICLR 2023

Dataset Model Trainable
Params (M)

0-shot 1-shot 10-shot 100-shot
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

CNN/DM

T5-large (ours) 783 29.11 8.71 26.97 29.88 8.99 27.60 34.47 11.63 31.76 36.47 13.32 33.63
BART-large (ours) 406 23.63 2.45 19.94 24.65 3.99 21.57 30.01 5.87 26.31 32.96 7.47 29.24
PEGASUS-large (Zhang et al., 2020) 568 32.90 13.28 29.38 37.25 15.84 33.49 40.28 18.21 37.03
PEGASUS-large (ours) 568 35.15 13.93 31.15 35.09 13.89 31.01 36.47 15.06 32.39 39.30 16.56 35.81
WikiTransfer (Fabbri et al., 2020) 336 39.39 16.92 36.00 42.08 18.93 38.83
BART-auxiliary tasks (Bi et al., 2021) 336 39.50 16.67 25.15 40.73 17.84 26.73
PromptSum 0.6 28.35 8.37 24.53 29.46 9.13 25.62 31.82 11.09 27.89 37.79 15.75 34.40

XSum

T5-large (ours) 783 22.02 4.40 14.8 22.32 4.52 14.96 25.26 6.10 16.92 27.90 7.92 19.54
BART-large (ours) 406 18.87 2.11 11.91 19.32 2.61 12.49 23.05 4.40 16.11 28.22 7.44 20.99
PEGASUS-large (Zhang et al., 2020) 568 19.27 3.00 12.72 19.39 3.45 14.02 39.07 16.44 31.27
PEGASUS-large (ours) 568 18.81 2.87 12.90 18.81 2.88 12.92 29.36 10.04 22.38 41.72 18.82 33.38
WikiTransfer (Fabbri et al., 2020) 336 35.17 12.76 26.80 37.26 14.20 28.85
UL2 20B (Tay et al., 2022) 20,000 25.50 8.60 19.80
PSP (Liu et al., 2022b) 0.2 32.50 10.83 25.03
PromptSum 0.6 30.12 11.34 21.81 30.23 11.43 21.94 31.56 12.04 23.16 41.73 18.63 33.55

BillSum

T5-large (ours) 783 24.10 6.69 15.31 20.19 5.92 12.50 36.35 12.32 20.28 41.13 19.83 26.56
BART-large (ours) 406 22.87 3.43 12.19 25.67 4.69 14.45 35.24 8.74 18.85 39.65 12.16 21.82
PEGASUS-large (Zhang et al., 2020) 568 41.02 17.44 25.24 40.48 18.49 27.27 44.78 26.40 34.40
PEGASUS-large (ours) 568 37.74 15.57 23.33 38.58 16.19 23.85 39.46 18.18 25.80 46.01 25.57 32.89
PromptSum 0.6 34.08 12.62 22.07 34.06 12.52 22.20 38.04 16.22 24.95 43.96 23.30 30.81

SAMSum

T5-large (ours) 783 21.02 4.46 16.62 21.30 4.49 16.68 30.28 10.56 21.53 34.01 4.73 27.83
BART-large (ours) 406 22.07 2.56 14.24 18.77 2.07 12.62 31.42 7.27 23.45 37.05 10.49 27.37
PEGASUS-large (ours) 568 26.34 6.14 20.48 26.34* 6.14* 20.48* 32.93 10.65 26.15 41.97 17.56 33.67
PromptSum 0.6 23.94 5.41 18.42 23.48 5.23 18.25 27.24 7.32 21.37 39.77 16.84 32.99

Table 2: Zero-shot & few-shot ROUGE results on the test set of several summarization datasets
for PromptSum and other leading full-weights (top sub-blocks) and parameter-efficient (bottom
sub-blocks) summarization models. Few-shot results are averaged over three random seeds.
* The results are the same as in 0-shot because we validate before the first epoch in few-shot setups.

Model Trainable
Params (M)

CNN/DM XSum BillSum SAMSum
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

T5-large Raffel et al. (2019) 783 42.50 20.68 39.75
BART-large Lewis et al. (2019) 406 44.16 21.28 40.90 45.14 22.27 37.25
PEGASUS-large Zhang et al. (2020) 568 44.17 21.47 41.11 47.21 24.56 39.25 57.31 40.19 45.82 52.01* 27.35* 43.27*
CTRLSum He et al. (2020) 406 45.65 22.35 42.50
FROST Narayan et al. (2021) 568 45.11 22.11 42.01 47.80 25.06 39.76
Prefix-Tuning Li & Liang (2021) 0.4 42.92 20.03 35.05
PromptSum 0.6 38.16 17.67 35.08 43.12 19.96 35.18 45.20 29.19 35.24 47.43 23.50 39.48

Table 3: Full-shot ROUGE results on the four summarization test sets. The bottom block corre-
sponds to parameter-efficient methods. * means our run.

We report zero-shot and mean few-shot results in Table 2, with corresponding standard deviations
available in Appendix A. We compare against prior summarization work tuning all parameters: T5
(Raffel et al., 2019), BART (Lewis et al., 2019), PEGASUS (Zhang et al., 2020), WikiTransfer
(Fabbri et al., 2020), BART with auxiliary tasks (Bi et al., 2021), UL2 (Tay et al., 2022); as well as
a parameter-efficient method: PSP (Liu et al., 2022b).1 As seen, compared to T5 and BART, which
suffer from over-fitting when there are few labels, PEGASUS provides largely superior few-shot
performance due to its summarization-specific pre-training objective, which motivates our choice
of backbone PLM. Despite containing three order of magnitude less parameters than the former
type of models, PromptSum achieves several state-of-the-art results on XSum few-shot, and wildly
outperforms the comparabale parameter-efficient PSP on XSum. When not achieving SOTA, it is
consistently a strong few-shot summarization baseline. The fact that PromptSum outperforms UL2
(Tay et al., 2022) on XSum 1-shot echoes recent work arguing for parameter-efficient fine-tuning
instead of in-context learning with extremely large models (Liu et al., 2022a).

We show full-shot results in Table 3. PromptSum outperforms comparable parameter-efficient
method Prefix-Tuning (Li & Liang, 2021) on XSum, and is a few ROUGE points behind lead-
ing full-weights summarization models such as FROST (Narayan et al., 2021). We also include
an entity-specific evaluation in Appendix B, where we obtain with spacy entities from summaries
generated by PromptSum and compare against ground-truth entity chains.

1We could not evaluate FROST in few-shot due to some compatibility issues with HuggingFace.
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Model Freezing
weights?

Pre-
training?

Entity
chain?

Oracle
entities?

Trainable
Params (M)

CNN/DM XSum BillSum SAMSum
100-shot Full-shot 100-shot Full-shot 100-shot Full-shot 100-shot Full-shot

Fine-tuning (PEGASUS-large) ✗ ✗ ✗ ✗ 568 16.56 20.51 18.82 23.76 25.57 37.29 17.56 27.35
Soft PT / full weights ✗ ✗ ✗ ✗ 568 16.11 21.14 19.01 23.75 25.30 37.75 17.52 27.59
Soft PT / full weights (pre-trained) ✗ ✓ ✗ ✗ 568 15.73 21.14 19.81 23.74 28.23 38.05 18.42 27.15
PromptSum / full weights (no pre-training) ✗ ✗ ✓ ✗ 568 8.51 11.21 10.61 17.95 15.58 34.08 14.49 21.89
PromptSum / full weights ✗ ✓ ✓ ✗ 568 15.55 17.06 18.82 20.91 26.89 30.70 16.60 22.48
PromptSum-oracle / full weights ✗ ✓ ✓ ✓ 568 16.39 21.25 17.88 23.34 27.89 36.77 18.33 27.67
Soft PT ✓ ✗ ✗ ✗ 0.3 16.37 18.84 18.56 21.23 18.40 29.61 13.90 21.20
Soft PT (pre-trained) ✓ ✓ ✗ ✗ 0.3 16.67 19.53 19.30 21.22 24.37 31.23 18.59 24.88
PromptSum (no pre-training) ✓ ✗ ✓ ✗ 0.6 10.52 18.06 13.11 20.13 13.40 28.22 11.63 16.02
PromptSum ✓ ✓ ✓ ✗ 0.6 15.75 17.67 18.63 19.96 23.30 29.19 16.79 23.50
PromptSum-oracle ✓ ✓ ✓ ✓ 0.6 16.55 19.34 18.79 21.00 22.58 30.80 17.95 25.16

Table 4: Model analysis (ROUGE-2 results). PT refers to prompt tuning. We experiment with re-
moving PromptSum components such as freezing weights, pretraining, or using the entity chain. We
report ROUGE-2 results on CNN/DM and XSum test sets, both in 100-shot and full-shot. ROUGE-
1 and ROUGE-L results are in Appendix C. 100-shot results are averaged over three random seeds.

4.3 MODEL ANALYSIS

To better understand the contribution of each design choice to PromptSum performance, we experi-
ment with multiple variants of the model. Specifically, we relax each of the following components:

• Freezing weights: whether to freeze the backbone PLM weights or not.

• Pre-training: whether to perform the pre-training described in §3.3.

• Entity chain: whether to use the entity chain. Removing it from PromptSum falls back to standard
soft prompt tuning (PT).

• Oracle entities: when using the entity chain, whether to use the ground truth entities. This is only
applicable to PromptSum and not to the soft prompt tuning (PT) baseline.

We synthesize results from all these model ablations in Table 4 over all datasets, both in 100-shot
and full-shot. We draw several important conclusions from this table. First, it is interesting to
see that simply adding a learnable soft prompt can improve performance compared to standard
fine-tuning (almost +3 ROUGE-2 on BillSum 100-shot). Then, standard soft prompt tuning only
moderately benefits from the pre-training in full-shot setups (except for SAMSum). However, the
gain is larger in few-shot: +0.74 for XSum, compared to -0.01 in full-shot. Next, we confirm that
freezing the model weights maintains most of the performance, especially in few-shot, motivating
our choice to work under the parameter-efficiency constraint. In fact, PromptSum / full weights
performs worse than PromptSum on average. Lastly, unlike soft PT, PromptSum relies heavily on
the pre-training and its performance drops by a lot when not using our pre-trained checkpoint, even
when tuning all weights, and in both few-shot and full-shot. Our introduced prompt multi-task pre-
training is necessary to maintain performance of parameter-efficient controllable summarization.
In the following section, we showcase PromptSum capacity to control summaries, a key aspect of
our model not reflected in the performance comparison with Soft PT and Fine-tuning variants from
Table 4.

5 SUMMARY CONTROL

5.1 CAUSAL OVERVIEW

X Y

E

Input: text Output: summary

Entities

link b link c

link a

Figure 2: PromptSum’s causal graph for
controllability.

As PromptSum incorporates entity chains as discrete
prompts, it is able to explicitly control the summary gen-
eration by altering the entity chains. From a causal per-
spective demonstrated in Fig. 2, traditional models with-
out entity planning only follow link a, where the output
Y is conditioned only on the input text X . PromptSum,
however, provides a more controllable and realistic two-
stage process: first, PromptSum with the entity prompt
predicts the entity chain E from the input text X . Then,
the output summary Y is predicted given both X and E, utilizing link c combined with link a, which
allows for additional controllability.
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Model Train Data Success Rate(%)
K=1 K=2 K=5 Oracle entities

PromptSum Full 80.5 73.3 51.1 52.0
CTRLsum 91.3 25.5 3.3 26.0

PromptSum
100-shot

76.6 65.7 47.5 50.0
– no pretraining 21.2 13.8 16.2 30.0
CTRLsum 44.9 28.1 4.2 26.0

Table 5: Controllability results on CNN/DM.
Success rate is the percentage of generated sum-
maries that mention all entities in the given entity-
chain. K = n denotes entity chain including n
unique entities randomly selected from source in-
put. Oracle entities denotes entity chain extracted
from ground truth summary.

Dataset Entities Controlled Hal. % Mean R F-1

CNN/DM
Non-Hal. N 2.5 25.2 35.5

Hal. N 9.5 26.2 33.3
Hal. Y 3.6 24.9 32.9

XSum
Non-Hal. N 14.8 19.5 37.4

Hal. N 62.7 20.9 32.3
Hal. Y 48.8 19.3 28.8

BillSum
Non-Hal. N 28.1 30.5 33.2

Hal. N 39.2 32.6 27.3
Hal. Y 31.9 31.9 26.8

SAMSum
Non-Hal. N 0 14.9 54.0

Hal. N 22.7 14.6 41.0
Hal. Y 4.6 15.0 46.5

Table 6: Hallucination results on each dataset
with PromptSum trained in 100-shot. Hal. %
stands for Hallucination, and lower is better. F-1
is computed between generated entities and enti-
ties in ground truth summaries.

5.2 INTERVENTION ON THE ENTITY CHAINS

To test controllability on entities (the strength of link c), we perform the following experiments with
intervention on the entity chain: We sample 100 documents from test set of CNN/DM. On these
documents, we randomly choose K entities from source texts or use oracle entities extracted from
ground truth summaries, and compute the success rate that all the selected entities appear in the
generated summaries. We report controllability results of PromptSum and CTRLsum (He et al.,
2020) both on 100-shots and full-shot of CNN/DM in Table 5. We can see that PromptSum is
significantly more controllable than CTRLsum in 100-shots for all settings, and in full shots when
K ≥ 2. When K increases, CTRLsum quickly loses its ability to condition on all entities while
PromptSum is able to maintain a strong performance. This shows that PromptSum is significantly
better at conditioning on multi-entities than CTRLsum while having three order of magnitude less
parameters. Besides, PromptSum without pre-training struggles to effectively condition on entities,
reaffirming our conclusion in Section 4.3 that pre-training is critical for PromptSum.

To better understand how PromptSum conditions on multiple entities, we show some qualitative
examples in Table 7. The examples demonstrate that PromptSum can produce summaries focusing
on different aspects, conditioned on the given entity chain, while still producing fluent, factual and
informative summaries. This controllability has the potential of being useful in many downstream
tasks, such as producing summaries on different topics, expanding summary candidates, and con-
trolling hallucinations. We will next investigate controlling hallucinations as a critical use case for
abstractive summarization.

5.3 CONTROLLING HALLUCINATIONS

As hallucinations, i.e., generating entities that do not appear in the inputs, are becoming an important
threat to the factuality in summarization. Detecting (Maynez et al., 2020), preventing (Narayan et al.,
2021) and analyzing (Cao et al., 2022) hallucinations remain major open problems in abstractive
summarization research. We now show that the controllable PromptSum model has the potential of
mitigating hallucinations, even under strong parameter-efficiency and data-efficiency constraints.

To test this hypothesis, we conduct the following experiments: given the prompts learned from 100-
shot entity and summary tuning, we divide the test set Dte = {(X1, E

′
1, Y1), . . . (Xn, E

′
n, Yn)} into

two subsets: a set where the predicted salient entities E′ are not hallucinated (Dte
nh), and another set

where at least one entity of E′ is hallucinated (Dte
h ). Then, we perform summarization inference on

both sets as-is and document the percentage of hallucinated entities in the predicted summaries. To
test PromptSum’s ability to reduce hallucinations, we also infer on Dte

h with non-hallucinated entity
chains, which are produced by manually removing hallucinated entities from E′. If the hypothesis
holds, the hallucination percentage should decrease after such controlling.

The hallucination experiment results are shown in Table 6. On all four datasets, the set Dte
h , where

the prompt-tuned tagger generated hallucinated entities, contains a significantly higher percentage
of hallucinations in generated summaries. This behavior shows that the summarization model has

8
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Entity Chain Summary
Ground Truth Three passengers report a loss of consciousness on SkyWest flight . But officials say there is no

evidence of a pressurization problem .
Buffalo The flight attendant told passengers that the plane was going to make an emergency landing in

Buffalo because of a “pressurization issue,” according to a passenger on board
Cunningham, 84 Cunningham, who was on board with 84 other passengers, said the flight attendant told her to ad-

minister oxygen to a woman near the middle of the plane.
SkyWest Airlines, FAA A SkyWest Airlines spokeswoman said in a statement that the airline is cooperating with the FAA’s

investigation into the incident, but declined to comment further.
Buffalo, 84, FAA SkyWest Flight 5622 made an emergency landing in Buffalo after a number of passengers became

ill on board the plane, which was carrying 84 people. The FAA said it is aware of media...

Ground Truth Joel Parker, 33, was riding the bus in St Johns County, Florida . Police said he threatened the driver
and was disruptive during the ride ...

33, St Johns County Police said the 33-year-old was about to get off the Sunshine Bus in St Johns County when he asked
the driver if he would like a Snickers bar.

250, Joel Parker He posted a $250 bond and was issued a trespass warning, but he is never allowed to use the bus
again, according to police. Joel Parker was arrested for ...

none The driver told police that the man had been “disruptive” during the ride, and when he asked him if
he would like a Snickers bar, he threatened to ...

Table 7: Controllability qualitative examples on CNN/DM 100-shot. Ground Truth: target summaries.

explicitly learned to include entity prompts in generated summaries, which further supports the ob-
servations in §5.2. Then, after manually removing the hallucinated entities from entity chain prompts
E′ (shown as Controlled Y in the table), the hallucination percentage decreased significantly (by 5.9
to 18.1 points) on all four datasets, showing promising abilities to control hallucinations.

6 DISCUSSION

To better understand the quality of the summaries generated by PromptSum, we asked five humans
to compare 50 random outputs generated by PromptSum and PEGASUS on CNN/DM, with both
models trained on 100 data points. The evaluators are volunteers, who are graduate students with
professional English competency.

Summary aspect evaluated Informative Factually consistent Relevant Fluent Coherent

PEGASUS / PromptSum / Tie 19.6 / 23.4 / 7.0 11.2 / 11.6 / 20.0 21.0 / 22.6 / 6.4 17.6 / 18.0 / 14.4 15.6 / 15.2 / 19.2
Human agreement* 62.8% 64.8% 62.8% 59.6% 52.4%

Table 8: Human evaluation on CNN/DM, comparing PEGASUS with PromptSum in 100-shot.
* We follow the procedure in (Durmus et al., 2020) to compute human agreement.

Results of this human evaluation are shown in Table 8. Both models are on par with regards to
factual consistency, fluency and coherence (as shown by similar scores and high number of ties), but
summaries produced by PromptSum are more informative and more relevant. We believe that these
results are due to the additional entity chain, which PromptSum conditions on, making the generated
summary more likely to cover key aspects embodied through entities.

We also investigate the impact of PromptSum on the abstractive nature of generated summaries.
As seen in Appendix D, intriguingly, soft prompt-tuning makes summaries more extractive, but
PromptSum pushes back up abstractiveness on CNN/DM, BillSum and SAMSum.

PromptSum is the first model enabling controllability in summarization while being parameter-
efficient and using few-shot supervision. Its performance is competitive in few-shot, especially
on XSum, where it reaches state-of-the-art. In full-shot, PromptSum remains behind leading models
tuning all parameters. This is inline with the findings from (Lester et al., 2021) that prompt tun-
ing requires a larger backbone model (10B parameters) to match full-shot fine-tuning performance.
PromptSum provides an easy-to-use and strong control mechanism of the summary through the in-
put entity chain, outperforming CTRLSum in few-shot and some full-shot setups. Besides, pruning
hallucinated entities from the input chain drastically reduces hallucinations in the output summary.

As we saw in §4.3 our tailored pre-training is necessary to unlock PromptSum’s full capacity. We
highlight that our introduced pre-training using soft prompts could be extended to other parameter-
efficient multi-tasking. Future work includes studying the use of other signals than entities (e.g.,
salient sentences) in the discrete prompt.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Ojas Ahuja, Jiacheng Xu, Akshay Gupta, Kevin Horecka, and Greg Durrett. Aspectnews: Aspect-
oriented summarization of news documents. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 6494–6506, 2022.

Regina Barzilay and Mirella Lapata. Modeling local coherence: An entity-based approach. In
Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, ACL ’05,
pp. 141–148, Ann Arbor, Michigan, 2005. Association for Computational Linguistics.

Qiwei Bi, Haoyuan Li, and Hanfang Yang. Boosting few-shot abstractive summarization with aux-
iliary tasks. In Proceedings of the 30th ACM International Conference on Information & Knowl-
edge Management, pp. 2888–2893, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Meng Cao, Yue Dong, and Jackie Chi Kit Cheung. Hallucinated but factual! inspecting the factuality
of hallucinations in abstractive summarization. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 3340–3354, 2022.

Ziqiang Cao, Wenjie Li, Sujian Li, and Furu Wei. Retrieve, rerank and rewrite: Soft template
based neural summarization. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 152–161, Melbourne, Australia, July
2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-1015. URL https:
//aclanthology.org/P18-1015.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Zi-Yi Dou, Pengfei Liu, Hiroaki Hayashi, Zhengbao Jiang, and Graham Neubig. Gsum: A general
framework for guided neural abstractive summarization. arXiv preprint arXiv:2010.08014, 2020.

Esin Durmus, He He, and Mona Diab. Feqa: A question answering evaluation framework for
faithfulness assessment in abstractive summarization. arXiv preprint arXiv:2005.03754, 2020.

Alexander R Fabbri, Simeng Han, Haoyuan Li, Haoran Li, Marjan Ghazvininejad, Shafiq Joty,
Dragomir Radev, and Yashar Mehdad. Improving zero and few-shot abstractive summarization
with intermediate fine-tuning and data augmentation. arXiv preprint arXiv:2010.12836, 2020.

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. arXiv preprint arXiv:2012.15723, 2020.

Artur d’Avila Garcez, Sebastian Bader, Howard Bowman, Luis C Lamb, Leo de Penning, BV Illu-
minoo, Hoifung Poon, and COPPE Gerson Zaverucha. Neural-symbolic learning and reasoning:
A survey and interpretation. Neuro-Symbolic Artificial Intelligence: The State of the Art, 342:1,
2022.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. Samsum corpus: A human-
annotated dialogue dataset for abstractive summarization. arXiv preprint arXiv:1911.12237,
2019.

Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang. PPT: pre-trained prompt tuning for few-shot
learning. In ACL (1), pp. 8410–8423. Association for Computational Linguistics, 2022.
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A STANDARD DEVIATIONS

In Table 9, we report the standard deviations over the three random seeds used in each few-shot
setup, for our models from Table 2: baseline T5-large, BART-large, and PEGASUS-large models,
as well as PromptSum.

Dataset Model 1-shot 10-shot 100-shot
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

CNN/DM

T5-large (ours) 1.76 0.56 1.50 0.95 0.55 0.84 0.26 0.14 0.14
BART-large (ours) 3.73 0.94 3.07 1.88 0.70 0.98 0.23 0.21 0.72
PEGASUS-large (ours) 0.06 0.06 0.08 0.43 0.19 0.42 0.38 0.14 0.38
PromptSum 0.63 0.42 0.60 0.63 0.45 0.63 0.82 0.59 0.75

XSum

T5-large (ours) 0.41 0.16 0.21 1.46 1.00 1.45 1.59 0.52 0.91
BART-large (ours) 0.79 0.87 1.01 4.17 2.11 3.06 0.25 0.11 0.19
PEGASUS-large (ours) 0.01 0.01 0.03 5.77 4.14 5.17 0.91 0.69 0.82
PromptSum 0.08 0.12 0.19 0.85 0.49 0.72 0.19 0.29 0.40

BillSum

T5-large (ours) 9.71 2.86 5.89 2.22 5.06 3.72 0.53 0.31 0.47
BART-large (ours) 4.21 1.59 2.00 2.61 1.01 0.71 1.59 0.34 0.74
PEGASUS-large (ours) 1.69 0.91 0.69 1.52 0.20 0.34 0.67 0.12 0.26
PromptSum 0.36 0.24 0.12 0.25 0.21 0.31 0.85 1.09 0.42

SAMSum

T5-large (ours) 0.38 0.20 0.33 0.71 0.33 0.33 2.64 0.41 1.15
BART-large (ours) 5.70 0.85 2.80 3.50 1.79 1.76 0.53 0.69 1.04
PEGASUS-large (ours) 0.00 0.00 0.00 1.76 1.06 1.32 1.64 0.91 1.08
PromptSum 0.22 0.04 0.14 0.43 0.11 0.54 0.72 0.34 0.59

Table 9: Few-shot standard deviations. For each dataset and in each few-shot setup, we train a
model on three different subsets of the training set of the corresponding few-shot size, and report
the standard deviation over the tree models for ROUGE-1, ROUGE-2 and ROUGE-L.

As expected, standard deviations in 100-shot are significantly lower than in 10-shot. We noticed
extreme variance in some 1-shot cases.
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B ENTITY EVALUATION

In Table 10, we conduct an entity-focused evaluation over all our model variants introduced in
Table 4. Specifically, we single out the entity chain from generated summaries with spacy, and
compare it with the entity-chain from the ground truth using Precision, Recall, and F1-Score.

Dataset Model Freezing
weights?

Pre-
training?

Entity
chain?

Oracle
entities?

Trainable
Params (M)

100-shot Full-shot
Precision Recall F1 Precision Recall F1

CNN/DM

Fine-tuning ✗ ✗ ✗ ✗ 568 38.15 37.41 35.27 41.61 43.96 40.49
Soft prompt-tuning / full weights ✗ ✗ ✗ ✗ 568 37.84 37.26 35.24 42.79 44.95 41.63
Soft prompt-tuning / full weights (pre-trained) ✗ ✓ ✗ ✗ 568 38.71 35.86 34.78 42.61 45.08 41.62
PromptSum no pre-training / full weights ✗ ✗ ✓ ✗ 568 25.65 20.73 20.90 24.17 17.42 18.47
PromptSum / full weights ✗ ✓ ✓ ✗ 568 40.28 34.61 34.74 47.36 28.13 32.91
PromptSum-oracle / full weights ✗ ✓ ✓ ✓ 568 36.49 39.92 35.62 42.68 45.10 41.69
Soft prompt-tuning ✓ ✗ ✗ ✗ 0.3 36.90 37.08 34.43 40.18 39.73 37.45
Soft prompt-tuning (pre-trained) ✓ ✓ ✗ ✗ 0.3 37.94 35.77 34.23 41.00 40.68 38.45
PromptSum no pre-training ✓ ✗ ✓ ✗ 0.6 29.08 24.53 24.17 42.23 38.21 37.61
PromptSum ✓ ✓ ✓ ✗ 0.6 40.36 35.19 35.15 45.70 36.25 38.10
PromptSum-oracle ✓ ✓ ✓ ✓ 0.6 37.99 35.40 34.06 42.74 39.09 38.35

XSum

Fine-tuning ✗ ✗ ✗ ✗ 568 37.74 36.98 35.72 46.03 43.09 42.84
Soft prompt-tuning / full weights ✗ ✗ ✗ ✗ 568 38.05 37.21 35.95 46.11 43.55 43.12
Soft prompt-tuning / full weights (pre-trained) ✗ ✓ ✗ ✗ 568 42.50 36.93 37.82 46.22 43.25 43.04
PromptSum no pre-training / full weights ✗ ✗ ✓ ✗ 568 22.20 21.94 20.82 31.66 29.52 28.97
PromptSum / full weights ✗ ✓ ✓ ✗ 568 43.82 34.32 36.74 45.99 35.60 38.32
PromptSum-oracle / full weights ✗ ✓ ✓ ✓ 568 38.55 35.27 35.14 45.80 43.15 42.73
Soft prompt-tuning ✓ ✗ ✗ ✗ 0.3 35.89 38.46 34.98 40.98 38.96 38.26
Soft prompt-tuning (pre-trained) ✓ ✓ ✗ ✗ 0.3 42.92 35.17 36.97 42.41 38.70 38.80
PromptSum no pre-training ✓ ✗ ✓ ✗ 0.6 25.79 26.43 24.59 38.50 37.18 36.22
PromptSum ✓ ✓ ✓ ✗ 0.6 43.56 33.83 36.32 45.84 35.78 38.55
PromptSum-oracle ✓ ✓ ✓ ✓ 0.6 40.28 33.96 35.17 41.76 38.19 38.21

BillSum

Fine-tuning ✗ ✗ ✗ ✗ 568 48.80 42.81 41.37 58.98 54.81 52.41
Soft prompt-tuning / full weights ✗ ✗ ✗ ✗ 568 48.27 42.48 40.97 60.61 54.87 53.14
Soft prompt-tuning / full weights (pre-trained) ✗ ✓ ✗ ✗ 568 50.75 44.09 42.73 61.15 55.55 53.73
PromptSum no pre-training / full weights ✗ ✗ ✓ ✗ 568 32.58 27.69 26.66 60.49 41.13 44.45
PromptSum / full weights ✗ ✓ ✓ ✗ 568 52.89 38.20 40.08 45.73 30.61 32.26
PromptSum-oracle / full weights ✗ ✓ ✓ ✓ 568 50.09 44.47 42.86 62.54 52.38 52.30
Soft prompt-tuning ✓ ✗ ✗ ✗ 0.3 37.54 24.33 25.82 54.98 42.53 43.04
Soft prompt-tuning (pre-trained) ✓ ✓ ✗ ✗ 0.3 42.03 30.45 31.05 56.16 41.38 42.62
PromptSum no pre-training ✓ ✗ ✓ ✗ 0.6 29.06 16.52 18.09 51.61 42.46 42.03
PromptSum ✓ ✓ ✓ ✗ 0.6 42.02 30.67 31.22 52.39 33.91 36.95
PromptSum-oracle ✓ ✓ ✓ ✓ 0.6 38.48 31.02 29.92 60.23 37.65 41.59

SAMSum

Fine-tuning ✗ ✗ ✗ ✗ 568 66.12 57.92 58.57 66.90 66.17 63.71
Soft prompt-tuning / full weights ✗ ✗ ✗ ✗ 568 65.47 57.97 58.34 71.53 69.65 68.08
Soft prompt-tuning / full weights (pre-trained) ✗ ✓ ✗ ✗ 568 67.40 59.34 60.02 69.80 69.85 67.38
PromptSum no pre-training / full weights ✗ ✗ ✓ ✗ 568 58.30 48.33 49.73 54.85 49.99 49.67
PromptSum / full weights ✗ ✓ ✓ ✗ 568 67.22 58.11 59.29 70.25 61.42 62.51
PromptSum-oracle / full weights ✗ ✓ ✓ ✓ 568 65.91 61.22 60.57 70.34 70.64 68.14
Soft prompt-tuning ✓ ✗ ✗ ✗ 0.3 62.92 50.91 53.06 64.95 53.64 55.75
Soft prompt-tuning (pre-trained) ✓ ✓ ✗ ✗ 0.3 67.55 52.95 56.26 64.90 59.84 59.45
PromptSum no pre-training ✓ ✗ ✓ ✗ 0.6 61.52 47.58 50.26 60.37 48.37 50.46
PromptSum ✓ ✓ ✓ ✗ 0.6 67.57 53.67 56.90 66.88 59.38 59.94
PromptSum-oracle ✓ ✓ ✓ ✓ 0.6 65.86 53.14 55.54 69.46 65.26 64.67

Table 10: Entity evaluation on the test set of all datasets. PromptSum and its variants (PromptSum-
oracle, Prompt tune weights) tend to outperform other categories of model like Fine-tuning and Soft
prompt-tuning.
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C ANALYSIS RESULTS WITH ROUGE-1 AND ROUGE-L

In Table 11 and Table 12, we conduct the same model ablation as in Table 4 but report results with
the ROUGE-1 and ROUGE-L metrics, respectively.

Model Freezing
weights?

Pre-
training?

Entity
chain?

Oracle
entities?

Trainable
Params (M)

CNN/DM XSum BillSum SAMSum
100-shot Full-shot 100-shot Full-shot 100-shot Full-shot 100-shot Full-shot

Fine-tuning (PEGASUS-large) ✗ ✗ ✗ ✗ 568 39.30 43.26 41.72 46.69 46.01 55.04 41.97 52.01
Soft PT / full weights ✗ ✗ ✗ ✗ 568 39.37 44.15 42.04 46.77 46.64 55.70 42.53 51.76
Soft PT / full weights (pre-trained) ✗ ✓ ✗ ✗ 568 38.92 44.23 43.34 46.85 48.31 55.82 43.30 51.77
PromptSum / full weights (no pre-training) ✗ ✗ ✓ ✗ 568 29.16 29.80 30.69 39.90 38.22 50.84 38.22 43.74
PromptSum / full weights ✗ ✓ ✓ ✗ 568 37.57 38.71 41.99 43.85 45.61 48.39 40.79 47.53
PromptSum-oracle / full weights ✗ ✓ ✓ ✓ 568 39.93 44.34 41.24 46.43 48.75 53.81 43.38 52.21
Soft PT ✓ ✗ ✗ ✗ 0.3 38.60 40.96 40.78 44.45 37.23 45.80 35.79 44.64
Soft PT (pre-trained) ✓ ✓ ✗ ✗ 0.3 39.05 41.66 42.53 44.35 44.33 47.11 41.09 48.59
PromptSum (no pre-training) ✓ ✗ ✓ ✗ 0.6 31.67 39.83 34.31 43.29 32.27 46.56 32.36 39.95
PromptSum ✓ ✓ ✓ ✗ 0.6 37.79 38.16 41.73 43.12 43.96 45.20 39.43 47.43
PromptSum-oracle ✓ ✓ ✓ ✓ 0.6 38.66 40.92 41.91 44.19 43.12 44.48 41.10 48.60

Table 11: Model analysis (ROUGE-1 results).

Model Freezing
weights?

Pre-
training?

Entity
chain?

Oracle
entities?

Trainable
Params (M)

CNN/DM XSum BillSum SAMSum
100-shot Full-shot 100-shot Full-shot 100-shot Full-shot 100-shot Full-shot

Fine-tuning (PEGASUS-large) ✗ ✗ ✗ ✗ 568 35.81 39.92 33.38 38.57 33.24 42.95 33.67 43.27
Soft PT / full weights ✗ ✗ ✗ ✗ 568 36.14 40.86 33.71 38.47 32.66 43.45 33.80 43.53
Soft PT / full weights (pre-trained) ✗ ✓ ✗ ✗ 568 35.64 41.02 34.88 38.58 34.52 43.73 34.99 43.36
PromptSum / full weights (no pre-training) ✗ ✗ ✓ ✗ 568 26.45 27.30 23.66 32.15 24.62 39.79 30.31 36.60
PromptSum / full weights ✗ ✓ ✓ ✗ 568 34.13 35.68 33.86 35.88 33.32 36.64 32.98 38.74
PromptSum-oracle / full weights ✗ ✓ ✓ ✓ 568 35.93 41.03 32.84 38.16 34.25 42.45 34.81 43.76
Soft PT ✓ ✗ ✗ ✗ 0.3 34.96 37.65 32.48 36.08 26.47 35.94 29.28 37.29
Soft PT (pre-trained) ✓ ✓ ✗ ✗ 0.3 35.62 38.40 34.26 36.24 31.04 37.19 34.55 40.83
PromptSum (no pre-training) ✓ ✗ ✓ ✗ 0.6 28.39 36.52 26.75 34.89 22.69 35.03 26.30 32.46
PromptSum ✓ ✓ ✓ ✗ 0.6 34.40 35.08 33.55 35.18 30.81 35.24 32.86 39.48
PromptSum-oracle ✓ ✓ ✓ ✓ 0.6 35.21 37.81 33.66 36.02 30.81 36.42 33.96 40.99

Table 12: Model analysis (ROUGE-L results).
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D ABSTRACTIVENESS

In Fig. 3, we analyze the level of abstractiveness in generated summaries through percentage counts
of novel n-grams. Interestingly, Soft prompt-tuning is less abstractive than the Fine-tuning baseline
on CNN/DM, BillSum, and SAMSum, but PromptSum pushes back abstractiveness level higher. On
the very abstractive XSum dataset, we do not observe such pattern, but all models are already very
abstractive.

Figure 3: Abstractiveness. We show the percentage of new n-grams (being present in the output
summary but not in the source text) for n=1,2,3,4 on the test of each dataset for Fine-tuning, Soft
prompt-tuning (with our pre-training), and PromptSum, all trained in 100-shot. Results are averaged
over three random seeds.
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