
Published as a conference paper at ICLR 2022

TPU-GAN: LEARNING TEMPORAL COHERENCE FROM
DYNAMIC POINT CLOUD SEQUENCES

Zijie Li
Department of Mechanical Engineering
Carnegie Mellon University

Tianqin Li
School of Computer Science
Carnegie Mellon University

Amir Barati Farimani
Department of Mechanical Engineering
Carnegie Mellon University

ABSTRACT

Point cloud sequence is an important data representation that provides flexible
shape and motion information. Prior work demonstrates that incorporating scene
flow information into loss can make model learn temporally coherent feature
spaces. However, it is prohibitively expensive to acquire point correspondence
information across frames in real-world environments. In this work, we propose a
super-resolution generative adversarial network (GAN) for dynamic point cloud se-
quences without requiring point correspondence annotation. Our model, Temporal
Point cloud Upsampling GAN (TPU-GAN), can implicitly learn the underlying
temporal coherence from point cloud sequence, which in turn guides the gener-
ator to produce temporally coherent output. In addition, we propose a learnable
masking module to adapt upsampling ratio according to the point distribution.
We conduct extensive experiments on point cloud sequences from two different
domains: particles in the fluid dynamical system and human action scanned data.
The quantitative and qualitative evaluation demonstrates the effectiveness of our
method on upsampling task as well as learning temporal coherence from irregular
point cloud sequences.

1 INTRODUCTION

Temporally evolving point clouds are ubiquitous in various fields, e.g. particles in the N-body
system, or real-world moving objects captured by LiDAR sensor or RGB-D camera. Understanding
the spatiotemporal pattern lies in these sequential data are of great importance to engineering and
scientific disciplines. However, high-resolution point cloud sequences can be very expensive to obtain.
In practice, high-resolution physics simulation demands substantial computational resources and 3D
scanned data are often sparse and noisy due to hardware constraints. Impressive progress has been
made by applying learning-based algorithms (Yu et al., 2018b; Li et al., 2019; Wu et al., 2019; Yifan
et al., 2019; Qian et al., 2021) to reconstruct a dense and clean point cloud given the observed sparse
ones. While these works provide powerful framework for upsampling static point clouds, the change
of points with respect to time is not taken into consideration. Prantl et al. (2020) demonstrates that
supervising the scene flow (displacement of points) of generated points during the training process
can greatly stabilize the learned latent space for point cloud super-resolution task. Yet this requires
knowing the point correspondence across the frames to derive the scene flow , which is expensive
and sometimes impossible to acquire in real-world scenarios. For 3D scanned data, the point clouds
in two frames do not necessarily have correspondences and the number of points may change.

In this case, generative adversarial networks (GANs) (Goodfellow et al., 2014) provides an attractive
alternative for learning useful generative and discriminative representation without label and heuristic
loss function (e.g. L2 loss that penalizes the scene flow difference). Under the context of point
cloud sequence’s super-resolution, we can use the discriminator to learn both the spatial and temporal
patterns from data implicitly. With these learned spatiotemporal discriminative representation, we can
further use them to guide the generator to produce output that are spatially and temporally coherent.

1

Published as a conference paper at ICLR 2022

More formally, in this work we present a GAN framework for super-resolution on the dynamic point
cloud sequences. By experimenting on point cloud sequences from two very different domains - fluid
particles and 3D scanned human action, we show that the proposed upsampling model can produce
output that are spatially and temporally consistent with target data without explicit supervision on
the point displacements across frames. We also show that the discriminative representation learned
by temporal discriminator can be used for classification task and provides competitive performance.
Furthermore, we propose a learnable masking module to adaptively upsample points that have a
irregular density distribution. This allows model to produce non-uniform point distribution that
matches the target domain.

2 RELATED WORKS

Deep learning on static point clouds The pioneering work PointNet (Qi et al., 2017a) carries the
success of deep neural networks on 2D structured grid data to the field of unstructured 3D point
cloud processing. PointNet proposes a neural network architecture with multi-layer perceptron
(MLP) shared acrossed points and aggregation mechanism that respects permutation invariance in the
input. Following PointNet, a wide array of works had contributed to improve and extend the neural
representation learning paradigm on point cloud data (Qi et al., 2017b; Li et al., 2018; Wang et al.,
2019b; Wu et al., 2020; Zhao et al., 2019; Shen et al., 2018). These methods have shown to learn
good representation for static point cloud analysis task such as classification, semantic segmentation
and object detection.
Learning-based point cloud upsampling With the success in learning-based image super-
resolution (Dong et al., 2015; Ledig et al., 2017), a number of works transfer the learning-based
super-resolution concept to the 3D point cloud. PU-Net (Yu et al., 2018b) proposes the first learning-
based method that upsamples point cloud features with multi-level expansion units. Yu et al. (2018a)
extends and improves PU-Net by adding an edge-aware loss to consolidate the upsampled point
clouds. Yifan et al. (2019) proposes a progressive point cloud upsampling network which supervises
the upsampled point clouds at different levels. Li et al. (2019); Wu et al. (2019) leverage GANs to
learn high-quality upsampling result, which demonstrate adversarial training can benefit point cloud
upsampling task. Very recent work Qian et al. (2021) proposes Inception DenseGCN and NodeShuf-
fle, which significantly improves the upsampling quality. Another concurrent work PUGeo-Net (Qian
et al., 2020) proposes a geometric-centric deep learning framework for learning the local fundamental
forms.
Spatiotemporal representation learning on point clouds Different deep learning methodologies
for learning discriminative spatiotemporal representation for video classification have been proposed
(Ng et al., 2015; Donahue et al., 2016; Feichtenhofer et al., 2016; Carreira & Zisserman, 2018; Tran
et al., 2015), and been further explored on the generative tasks including video generation (Tulyakov
et al., 2017; Clark et al., 2019; Saito et al., 2020) and super-resolution (Xie et al., 2018; Wang et al.,
2019a; Haris et al., 2019; Chu et al., 2020). Following previous approaches that treat video data as
volumetric data, Choy et al. (2019); Luo et al. (2020) transform point cloud sequences into volumetric
voxel-based representation and apply convolution neural networks on it. Liu et al. (2019b; 2020)
extends the set convolution from PointNet++ (Qi et al., 2017b) by establishing neighborhood across
different frames. PSTNet (Fan et al., 2021b) proposes a spatiotemporal decoupled point convolution
for point cloud sequence processing. Recent works Fan et al. (2021a); Wang et al. (2021a) introduce
attention mechanism to better capture data correlation across frames. In terms of generative tasks,
Tranquil Clouds (Prantl et al., 2020) proposes a temporal loss that supervises the scene flow across
frames and stabilize the generation of point clouds. Rempe et al. (2020) proposes CaSPR, a deep
learning framework for learning continuous object-centric spatiotemporal representation from point
clouds. Lu et al. (2021) proposes interpolation network to enhance the temporal resolution of point
cloud sequence. Another recent work Wang et al. (2021b) proposes a learning-based recurrent
temporal alignment module for assimilating temporal information during upsampling sequential point
clouds.

In general, our work is closely related to PointNet++ (Qi et al., 2017b) and MeteorNet (Liu et al., 2020)
which use set abstraction with different grouping strategies to learn discriminative representation on
point clouds. In the generator, we adopt a similar multi-scale feature extractor architecture as the
one proposed in PU-GCN (Qian et al., 2021). Compared to PU-GAN (Li et al., 2019), our method
takes the change of points in time dimension into account, and uses hierarchical structures in the
discriminator instead of operating on full resolution point clouds. Under the hood of sequential
point cloud data generative modelling, Tranquil Clouds (Prantl et al., 2020), CaSPR (Rempe et al.,

2

Published as a conference paper at ICLR 2022

(c)(b)

(a)

Input

N x 3

Feature Extractor

Encoding

N x C Upsampling Module

Masking Module

Mask

N x 1

Residuals

N x 3r

Masked
Residuals

rN x 3

Rearrange

Output

r’N x 3

rN x 3

Duplicate x r times

Generator

Temporal Discriminator

Input

3 x rN x 3

Set Abstraction

Set Abstraction

Set Abstraction

Flow Module

3 x (rN /) x

 rN / x

Set Abstraction

x L layers Confidence

1 x 1

Remove
duplicate points

Spatial Discriminator

Input

rN x 3

Set Abstraction

x L layers

MLP

1 x

MLP

 1 x C

Confidence

1 x 1

t - 1

t

t + 1

Figure 1: Overview of TPU-GAN’s architecture, it comprises a generator, a temporal discriminator
and a spatial discriminator. (a) The Generator takes a coarse point cloud as input and predicts a
refined point cloud. Inside the generator, the input is first project into a high-dimensional latent
encoding, the encoding is then transformed into residuals by Upsampling Module and a binary mask
by Masking Module. Through an element-wise multiplication�, residuals of unnecessary upsampling
will be masked to zeros. (b) The Temporal Discriminator takes three consecutive frames of point
clouds as input, extracts features via set abstraction layesr and flow embedding layers, and predicts
the confidence if it is temporally coherent. (c) The Spatial Discriminator takes a point cloud as
input, extracts features via set abstraction layers, and outputs the confidence if it is spatially coherent.
(Detailed schematic of each sub-module can be found in Appendix A.1)

2020), and SPU (Wang et al., 2021b) share similar target with our work. CaSPR focuses on object-
centric tasks and thus is not available for processing multi-object collections or scenes. Tranquil
Clouds requires point correspondence across frames to evaluate the first-order and second-order
finite difference loss, which our method does not require during the training phase. Compared to
SPU (Wang et al., 2021b), we avoid processing the high resolution outputs multiple times by using
temporal discriminator instead of recurrent architectures to learn the temporal coherence.

3 METHODS

3.1 HIERARCHICAL SPATIAL FEATURE LEARNING

Set abstraction Point clouds are irregular and unordered data where traditional convolution opera-
tions usually do not fit. To cope with this irregularity, we adopt the set abstraction layer from Qi et al.
(2017a;b) to extract features from point clouds for discriminative models in our proposed framework.
Inside a set abstraction layer, point cloud is divided into different groups, and then a universal set
function approximator is applied to extract the local features of each group

F ′i = γ

(
max

j∈N (i)
h(Fj , rj − ri)

)
, (1)

where F denotes features of points, r denotes the positions of points,N (i) denotes the neighborhood
of point i, γ and h are learnable functions which are usually implemented as multi-layer perceptrons
(MLPs).

Multi-scale graph convolution networks Recent work PU-GCN (Qian et al., 2021) proposes a
GCN-based architecture (Inception DenseGCN and NodeShuffle) and demonstrates the superiority of
using GCN on the point cloud upsampling tasks. Similar to the set abstraction layer from PointNet, the
GCN layer in PU-GCN divides the point cloud into different groups and applies learnable functions to

3

Published as a conference paper at ICLR 2022

these groups to extract local features. The major differences are that first, the GCN layer in PU-GCN
constructs the neighborhood following DGCNN’s (Wang et al., 2019b) formulation by dynamically
querying k-nearest neighbors in the latent space instead of Euclidean space, and second, in PU-GCN,
each layer aggregates features from different scales of neighborhood at each layer. These differences
make the Inception DenseGCN layer in PU-GCN more effective at extracting features from different
scales and improve the overall performance of model. However, since it is more computationally
intensive than the standard set abstraction, we only apply similar GCN layers to the generator, where
it is most effective.

3.2 TEMPORAL FEATURE LEARNING

To capture the underlying patterns of point cloud sequences over the time dimension, we construct a
module that operates on the temporal neighborhood. We adapt the flow embedding layer from Liu
et al. (2019b; 2020) to operate on neighborhood across frames. Given two consecutive frames of
point clouds {Xt, Xt+1} and their corresponding features {F t, F t+1}, we use the flow embedding
layer to mix points across frames and extract temporal features. The mixture of features {F t, F t+1}
across two consecutive frames via flow embedding layer is defined as:

F̃ t
j = γ

(
max

j∈N (i)
h(F t

i , F
t+1
j , rt+1

j − rti)

)
, (2)

where j denotes the index of points from frame t+ 1 and i denotes the index of points from frame t.

3.3 ENFORCING TEMPORAL COHERENCE VIA TEMPORAL DISCRIMINATOR

When the target data are point cloud sequences that come from physical processes like particle
dynamics or camera-scanned human action, these data are highly correlated in the time dimension.
One way to capture this temporal coherence would be directly using the scene flow information in
the ground truth data (i.e. displacements of points) to supervise the training process, i.e. adding an
additional loss term that evaluates the scene flow difference between ground truth and prediction.
However, for many real-world scenarios, there are often no clear correspondences between point
clouds from two frames. Therefore, the displacement of points between different frames are not
annotated and cannot be used for training. To enforce the temporal coherence without manually
encoding scene flow information, we propose a discriminator to learn the temporal pattern from
ground truth data implicitly and use the discriminator to guide generator predicting temporally
coherent output.

Our proposed temporal discriminator is built upon set abstraction layer and flow embedding layer
discussed in the previous section. The temporal discriminator takes three consecutive frames of
point clouds as input. These point clouds are first downsampled and transformed by several layers
of set abstraction. Then we apply the flow module, which consists of two flow embedding layers,
to assimilate temporal information from the point cloud sequences. Finally, we use set abstraction
layer and a MLP to aggregate global information and predict whether the input sequence is valid
(temporally coherent) or not.

3.4 ADAPTIVE UPSAMPLING

In most of the learning-based point cloud upsampling methods, all the points in the input will be
upsampled and the ratio between the number of input points and output points is fixed. Given an
upsampling network with a upsampling ratio of r, for the point xi in the input point cloud, there will
be r points in the upsampled point cloud that is directly upsampled from the input point xi. Since
these networks are trained and operates on local patches, the locality will drive the upsampled points
to be very close to the original input point. Every input point will have r neighbors very close to them
in the upsampled point cloud. However, not all point clouds are distributed in a uniform way such
that every point has similar amount of points in their neighborhood. For instance, in particle-based
fluid dynamics, near-surface or flying away particles will have very different density compared to
particles in the center of fluid field.

To suppress unnecessary upsampling, we propose a learnable masking module, which predicts a
mask M that tells the network if it needs to upsample a point. Concretely, for each point in the input
point cloud, the masking module will predict a confidence value pi, which forms the soft mask vector

4

Published as a conference paper at ICLR 2022

Mp = [p1, p2, . . . , pN]T . The soft mask is then quantized and transformed into a binary mask Mb

based on predefined threshold ε

[Mb]i =

{
1, [Mp]i ≥ ε
0, [Mp]i < ε

. (3)

In practice we set this threshold value to a small number (e.g. ε = 0.011) so that the upsampling of a
point will be suppressed only when the confidence level is low. Finally, we use the binary mask to
modulate the predicted residuals by doing an element-wise multiplication, so that the residuals of
unnecessary upsampling will be masked to zero. Note that here we use the binary mask to modulate
the output residuals instead of the input encoding of the upsampling module. The reason is that if we
mask the features of some points to zero, then the upsampling module cannot aggregate features from
these points when predicting the residuals.

During training, we generate the label Mt for masking module by counting the number of neighbors
of input points in the target point cloud Q

[Mt]i =

{
1, |N (i)| ≥ 3

0, |N (i)| < 32 , (4)

where the neighbor set: N (i) = {j| ||rj − ri||2 < r0, j ∈ Q} is derived by querying the neighbor of
point i in the target point cloud Q. The search radius r0 is set to be slightly larger than the average
nearest distance between points in the target point cloud. Based on the generated labels, we use L1
norm to evaluate the loss between soft mask Mp and ground truth Mt:

Lmask =
1

N

N∑
i=1

||[Mp]i − [Mt]i||1 . (5)

3.5 TRAINING

Model architectures We follow the design of PU-GCN to build the feature extractor in the gen-
erator, where we first Inception DenseGCN to extract features from the input points. Inside the
upsampling and the masking module, we use two layers of GCN to aggregate features from neighbor-
hood and use MLP to project the latent encoding into prediction. As for discriminators, we adopt the
hierarchical structure similar to the PointNet++, where we use set abstraction layer/flow embedding
layer to extract features at different scales and continue to downsample the point cloud through
network layers. (Model details can be found in Appendix A.1)

Loss function We adopt the least-squared GAN (Mao et al., 2017) setting to train our model. Based
on LS-GAN’s formulation, we can derive the adversarial loss for temporal discriminator Dt and
spatial discriminator Ds,

LDt
= [1−Dt (Yt)]

2
+Dt(Ỹt)

2, (6)

LDs
= [1−Ds(Y)]

2
+Ds(G(X))2, (7)

where X denotes the low-resolution input, Y denotes the high-resolution target, Yt, Ỹt denotes three
consecutive frames of point clouds: Yt = {Yt−1, Yt, Yt+1}, Ỹt = {G(Xt−1), G(Xt), G(Xt+1)}.
The corresponding adversarial losses for generator are:

LG,t = [1−Dt(Ỹt)]
2, (8)

LG,s = [1−Ds(G(X))]
2
. (9)

To encourage the output of generator lies close to the ground truth point clouds, we use Chamfer
Distance (CD) to evaluate and penalize the distance between generator output Ỹ and ground truth Y

LCD =
1

|Ỹ |

∑
ỹ∈Ỹ

min
y∈Y
||ỹ − y||22 +

1

|Y |
∑
y∈Y

min
ỹ∈Ỹ
||ỹ − y||22 , (10)

1This threshold can be set loosely (e.g. 0.1) without influencing final results too much, since in practice most
of the mask values are very close to 1.0 or 0.0 after training.

2If an input point can only find 0∼2 neighbors in the ground truth point cloud, then we will mark this point
as "no need to upsample", as upsampling it is likely to introduce redundant points and violates point distribution.

5

Published as a conference paper at ICLR 2022

where y denotes point in Y , ỹ denotes point in Ỹ , and | · | denotes the number of points in the
corresponding point cloud. Compared to other advanced distance metrics, Chamfer Distance is
simpler and thus much faster to evaluate.

Combining with the masking loss discussed in the previous section, the total loss for generator is
defined as:

LG = LG,t + LG,s + λ1LCD + λ2Lmask. (11)

In practice we choose λ1, λ2 such that all loss terms have similar magnitude (roughly 0∼1).

Stabilizing GAN’s Training We implement two techniques to stabilize the training process. The
first one is spectral normalization proposed by Miyato et al. (2018), which constrains the Lipschitz
constant of the discriminator by setting the spectral norm of weights to 1. We found this technique
is crucial especially when training on the fluid dataset. We hypothesize the main reason is that
the irregular distribution and complex dynamics of fluid particles can make discriminator prone to
produce large gradients and thus make the training unstable. The second technique we adopt is label
smoothing from Salimans et al. (2016), which softens the target label in the adversarial loss.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

Dataset We train and evaluate our model on two different datasets. The first dataset is generated
from particle-based fluid dynamics simulation, where particles distribute and move under the physics
governing equation. We use DFSPH (Bender & Koschier, 2015) solver from SPlisHSPlasH3 and
geometric assets from Ummenhofer et al. (2020) to generate the training data. We set the upsampling
ratio to be r = 8 on the fluid dataset. The second dataset is from scanned human action - the
MSR-Action3D dataset (Li et al., 2010), which consists of 567 Kinect depth videos of 20 action
categories. In this dataset, points from two different frames do not necessarily have correspondence
and number of points varies in different frames. We adopt the same preprocessing and splitting
strategy from previous works (Liu et al., 2020; Fan et al., 2021b). The upsampling ratio is set to be
r = 16 on the action dataset.

Evaluation metrics In addition to the Chamfer distance discussed in the prvious section, we
introduce three other spatial distance metrics to further evaluate the model performance. The first
metric is Earth Mover’s Distance (EMD), which has been reported by previous work are more reliable
and discriminative than Chamfer Distance in dense point clouds’ evaluation (Liu et al., 2019a). EMD
evaluates the distance between two clouds by solving a linear assignment problem. Other than EMD,
we use Maximum Mean Discrepancy (MMD) to evaluate the spatial distribution difference between
prediction and ground truth. MMD discriminates the point clouds by measuring their high-level
similarity instead of difference within pairs of matched points. In practice we found MMD is most
discriminative on dense point clouds, thus we only report MMD on the fluid dataset. We also report
the Hausdorff distance (HD) following previous works in static point cloud upsampling task. The
evaluation of the temporal coherence are depending on the specific tasks, so we will discuss them in
the corresponding sub-sections.

Baseline To demonstrate the effectiveness of our proposed methods, we compare our model against
two recent state-of-the-art works, PU-GCN (Qian et al., 2021) and Tranquil Clouds (Prantl et al.,
2020). Tranquil clouds proposes the first learning-based method for upsampling point clouds in
temporally coherent manner. Note that Tranquil Clouds uses mingling loss to encourage the points to
spread and expand, this results in its much higher Chamfer Distance during evaluation, since Chamfer
Distance favors upsampled points lying closer to their original input points. The second baseline
PU-GCN is the state-of-the-art model on static point cloud upsampling.

(More details on metrics, baseline, and dataset generation can be found in Appendix A.2, A.3, A.4)

3https://github.com/InteractiveComputerGraphics/SPlisHSPlasH

6

https://github.com/InteractiveComputerGraphics/SPlisHSPlasH

Published as a conference paper at ICLR 2022

Input

TPU-GAN

Tranquil
Clouds

PU-GCN

Fluids Action

Figure 2: Qualitative comparison of TPU-GAN against other models on different datasets. To fully
evaluate the temporal coherence of upsampled point cloud sequences, we refer readers to the rendered
videos, which are available at: [Videos].

4.2 DENSE AND NON-UNIFORM POINT CLOUDS FROM PHYSICAL SIMULATION

Advection consistency In fluids, particles’ motion are subject to the underlying governing equation,
such that given the current position xt and vt, there exists an continuous advection function: Ψ :
xt+1 = Ψ(xt,vt) that advects particles from current state to next time step. Therefore we can
evaluate the temporal coherence of generated sequences by checking if they are consistent with
the underlying advection function. Given the ground truth data, we can use the kernel model in
Smooth Particle Hydrodynamics (SPH) (Gingold & Monaghan, 1977) to approximate the value of
advection function at arbitrary locations (for more details on SPH and kernel model, please refer to
the Appendix A.5). Based on the approximated advection function Ψ and the generator G, we define
the advection consistency for generator as:

Ladv = D (G(Xt+1),Ψ [G(Xt), Vt]) , (12)

where Xt, Vt denotes the positions and velocities of particles at time step t, and D(P,Q) denotes the
distance between two point clouds P,Q, which can be evaluated using the aforementioned spatial
distance metrics.

Model
Static Advection Consistency

CD↓
×10−4

EMD↓
×10−2

MMD↓
×10−5

HD ↓
×10−2

CD↓
×10−4

EMD↓
×10−2

MMD↓
×10−5

HD ↓
×10−2

TPU-GAN 2.856 2.694 5.373 3.978 1.963 1.582 5.069 5.835
TPU-GAN + vel 2.964 2.722 5.058 4.009 1.632 1.434 3.545 5.593

PU-GCN 2.733 2.933 6.077 3.942 2.238 1.823 6.222 5.878
Tranquil Clouds 5.713 3.088 7.293 5.793 1.999 1.157 4.347 6.473

Table 1: Quantitative comparison of model performance on Fluids dataset. The Static column
reports the per-frame difference between upsampled point clouds and ground truth. The Advection
Consistency column reports the temporal coherence of two consecutive frames of upsampled point
clouds.

7

https://drive.google.com/file/d/10DSvIB3C5-TOmITcG_26toZ9gCGZfqy0/view?usp=sharing

Published as a conference paper at ICLR 2022

Comparison with other models We tested out two versions of the proposed model - with or
without using velocities as input features. The quantitative evaluation results are shown in the Table 1
and the visualization of sequence upsampled from real coarse fluid simulation are shown in the left
column of Figure 2. Compared to PU-GCN which does not take temporal coherence into account,
TPU-GAN improves the advection consistency without the information of displacements across
frames, which demonstrates the effectiveness of temporal discriminator. TPU-GAN also outperforms
PU-GCN on high-level distance metrics (EMD, MMD), which highlights the superiority of our
proposed method in terms of reconstruction quality on irregular point clouds. Furthermore, we
showcase that with velocity features, TPU-GAN is on par with Tranquil Clouds in terms of temporal
coherence, while improves the static upsampling quality on all the metrics. Note that Tranquil Clouds
is strongest when using EMD to evaluate advection consistency, in part because it is trained with a
temporal loss that is essentially equivalent to evaluating the advection consistency using EMD, with
advection function approximated by EMD assignment instead of SPH’s kernel interpolation.

4.3 REAL-WORLD SCANNED POINT CLOUDS

Model
Frame Sequence

CD↓
×10−3

EMD↓
×10−2

HD ↓
×10−1

PL↓

TPU-GAN 1.231 5.720 1.500 0.145
PU-GCN 1.173 5.884 1.503 0.156

Tranquil Clouds (8x) 2.262 5.987 1.669 0.201
Tranquil Clouds (16x)4 2.483 6.243 1.697 0.224

Table 2: Quantitative comparison of different models on
MSR-Action3D dataset.

Model # Frames Accuracy
(%) ↑

PointNet++ 1 61.75
PSTNet 3 77.78

SA & MLP 3 42.39

TempoDis Feature
+ SA & MLP 3 74.07

Table 3: MSR-Action 3D classification results
using Temporal Discriminator’s feature.

Perceptual loss for point cloud sequences For real-world scanned data, we often don’t know
the corresponding points in the next frame given the current frame. Therefore it is difficult to
directly compare the motion of upsampled sequence and target sequence. Inspired from previous
video generation works which use pretrained I3D network (Carreira & Zisserman, 2018; Unterthiner
et al., 2018) to evaluate the spatio-temporal quality of generated videos at sequence level, we use a
pretrained point cloud classifier to extract sequence-level spatio-temporal features. The pretrained
classifier we used here is PSTNet (Fan et al., 2021b), the state-of-the-art model on point cloud
sequence classification. We use the feature map from the middle of the network as the extracted
features (more details can be found in Appendix A.3), and based the on the extracted features we
define the perceptual loss (PL) for point cloud sequences as:

LPL =
∣∣∣∣∣∣φ(Y)− φ(Ỹ)

∣∣∣∣∣∣
1
, (13)

where Y = {Y1, Y2, . . . , YT } denotes the reference sequence, Ỹ = {Ỹ1, Ỹ2, . . . , ỸT } denotes the
predicted sequence and φ denotes the feature extractor.

Comparison with other models The quantitative evaluation result on MSR-Action 3D dataset is
shown in the Table 2 and visualization of upsampled point clouds is shown on the right column of
the Figure 2. As indicated in the quantitative result, TPU-GAN can improve the upsampling quality
in both frame-level and sequence-level under a scenario that no point correspondence annotation is
available.

Self-supervised temporal feature learning To further evaluate the representation learned by tem-
poral discriminator, we apply it as a feature extractor for classification task. We freeze all the layers
before the last set abstraction layer (SA) and MLP, then test the network’s performance on action
classification. In Table 3, we report the video-level accuracy for three supervised methods and
classifier based on feature extracted by temporal discriminator. By leveraging spatiotemporal feature
extracted by the temporal discriminator, the classifier outperforms PointNet++ that only utilizes
single-frame features and outperforms model which uses only the set abstraction layer and MLP.
PSTNet still leads the performance, as it is trained in a fully-supervised way (i.e. all parameters are
trained on the classification task) and contains more parameters (PSTNet: 7.4M, TempoDis: 0.88M).

4We tested two version of Tranquil Clouds - 8x upsampling version (with 256 input points) following the
original paper, and a 16x upsampling version (with 128 input points).

8

Published as a conference paper at ICLR 2022

Table 4: Ablation on model architecture

Model
Frame Sequence

CD↓
×10−3

EMD↓
×10−2

HD ↓
×10−1

PL↓

Full model 1.231 5.720 1.500 0.145
w/o SpatialDis 1.356 6.021 1.508 0.156
w/o TempoDis 1.185 5.821 1.458 0.155

Input two frames 1.206 5.743 1.489 0.149
Input five frames 1.295 5.946 1.535 0.159

Figure 3: Comparison of distribution of
points’ top 0.1% furthest distance

4.4 ABLATION STUDY

Architectural choice We investigate the influence of our architectural choice to the model per-
formance on the MSR-Action 3D dataset. The result is shown in the Table 4. The result indicates
that: first, increasing the frame number of point clouds exposed to the temporal discriminator can
improve the the sequence level accuracy. However too long input sequence ("Input five frames") will
deteriorate the frame-level upsampled quality. As it will make points cluster around input points and
exhibit halo artifacts. (See Figure 10 in the Appendix for visualization)

Ground truth

TPU-GAN

PU-GCN

Tranquil Clouds

Figure 4: Quantitative com-
parison of density distribu-
tion of different upsampling
methods on Fluid dataset.

Moreover, we find that spatial discriminator is important for the non-
uniform dense point cloud upsampling. The upsampled points will shrink
towards the center of the point cloud without spatial discriminator. We
calculates the top 0.1% furthest distances between every pair of points
in the upsampled patches from fluid dataset, and we normalize all the
distances using the furthest distance in ground truth. As shown in the
Figure 3, without spatial discriminator, the upsampled point clouds’
furthest distance distribution will shift to the left.

Adaptive upsampling We analyze the point distribution in the up-
sampled results from different methods by comparing their density to
the ground truth. The analysis was conducted on the fluid data, where
particle density is a crucial physical quantity that dominates the dynam-
ics of incompressible fluids. We evaluate the particle number density
following the definition in the SPH model, and the result is shown in the
Figure 4. For ground truth data, the density distribution has two sharp
peaks, which corresponds to particles near surface area and particles in
the central part respectively. For upsampled point clouds, all the distri-
bution has a smoothed bell shape, while our method produce a sharper
density distribution with a mode η = 7.4 more close to the ground truth
(η1 = 6.3, η2 = 8.4). This demonstrates the adaptive masking module
in the generator effectively learns to suppress unnecessary upsampling
and approximates the target density distribution, while other methods
have the density distribution shifted to the right.

Model size In Table 5 of Appendix, we report the number of trainable
parameters for concurrent learning-based upsampling models. Despite
the dual discriminator setting, our model is still much smaller than PU-
Net and Tranquil Clouds which in turn makes it more efficient during
inference.

5 CONCLUSION

In this work, we propose TPU-GAN, a GAN framework for upsampling
dynamic point cloud sequences. Our proposed method is able to learn
useful spatiotemporal representation for both generative task and discrim-
inative task from raw point cloud sequences. Through experiments on
different data sources, we demonstrate the effectiveness of our method
on the generative modelling of point cloud sequences.

9

Published as a conference paper at ICLR 2022

ACKNOWLEDGEMENT

This work is supported by the start-up fund provided by CMU Mechanical Engineering.

REFERENCES

Jan Bender and Dan Koschier. Divergence-free smoothed particle hydrodynamics. In Proceedings of
the 2015 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, 2015. doi:
http://dx.doi.org/10.1145/2786784.2786796.

Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics
dataset, 2018.

Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-temporal convnets: Minkowski
convolutional neural networks, 2019.

Mengyu Chu, You Xie, Jonas Mayer, Laura Leal-Taixé, and Nils Thuerey. Learning temporal
coherence via self-supervision for gan-based video generation. ACM Transactions on Graphics, 39
(4), Jul 2020. ISSN 1557-7368. doi: 10.1145/3386569.3392457. URL http://dx.doi.org/
10.1145/3386569.3392457.

Aidan Clark, Jeff Donahue, and Karen Simonyan. Adversarial video generation on complex datasets,
2019.

Jeff Donahue, Lisa Anne Hendricks, Marcus Rohrbach, Subhashini Venugopalan, Sergio Guadarrama,
Kate Saenko, and Trevor Darrell. Long-term recurrent convolutional networks for visual recognition
and description, 2016.

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image super-resolution using deep
convolutional networks, 2015.

Hehe Fan, Yi Yang, and Mohan Kankanhalli. Point 4d transformer networks for spatio-temporal
modeling in point cloud videos. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 14204–14213, June 2021a.

Hehe Fan, Xin Yu, Yuhang Ding, Yi Yang, and Mohan Kankanhalli. PSTNet: Point spatio-temporal
convolution on point cloud sequences. In International Conference on Learning Representations,
2021b. URL https://openreview.net/forum?id=O3bqkf_Puys.

Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. Convolutional two-stream network
fusion for video action recognition, 2016.

R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics: theory and application to
non-spherical stars. Monthly Notices of the Royal Astronomical Society, 181(3):375–389, 12
1977. ISSN 0035-8711. doi: 10.1093/mnras/181.3.375. URL https://doi.org/10.1093/
mnras/181.3.375.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014.

Muhammad Haris, Greg Shakhnarovich, and Norimichi Ukita. Recurrent back-projection network
for video super-resolution, 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham, Alejandro Acosta,
Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, and Wenzhe Shi. Photo-realistic
single image super-resolution using a generative adversarial network, 2017.

Ruihui Li, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng. Pu-gan: a point cloud
upsampling adversarial network. In IEEE International Conference on Computer Vision (ICCV),
2019.

10

http://dx.doi.org/10.1145/3386569.3392457
http://dx.doi.org/10.1145/3386569.3392457
https://openreview.net/forum?id=O3bqkf_Puys
https://doi.org/10.1093/mnras/181.3.375
https://doi.org/10.1093/mnras/181.3.375

Published as a conference paper at ICLR 2022

Wanqing Li, Zhengyou Zhang, and Zicheng Liu. Action recognition based on a bag of 3d points. In
2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops,
pp. 9–14, 2010. doi: 10.1109/CVPRW.2010.5543273.

Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Pointcnn: Convolution
on X -transformed points, 2018.

Minghua Liu, Lu Sheng, Sheng Yang, Jing Shao, and Shi-Min Hu. Morphing and sampling network
for dense point cloud completion, 2019a.

Xingyu Liu, Charles R. Qi, and Leonidas J. Guibas. Flownet3d: Learning scene flow in 3d point
clouds, 2019b.

Xingyu Liu, Mengyuan Yan, and Jeannette Bohg. Meteornet: Deep learning on dynamic 3d point
cloud sequences, 2020.

Fan Lu, Guang Chen, Sanqing Qu, Zhijun Li, Yinlong Liu, and Alois Knoll. Pointinet: Point cloud
frame interpolation network. Proceedings of the AAAI Conference on Artificial Intelligence, 35(3):
2251–2259, May 2021. URL https://ojs.aaai.org/index.php/AAAI/article/
view/16324.

Wenjie Luo, Bin Yang, and Raquel Urtasun. Fast and furious: Real time end-to-end 3d detection,
tracking and motion forecasting with a single convolutional net, 2020.

Xudong Mao, Qing Li, Haoran Xie, Raymond Y. K. Lau, Zhen Wang, and Stephen Paul Smolley.
Least squares generative adversarial networks, 2017.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks, 2018.

Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vijayanarasimhan, Oriol Vinyals, Rajat Monga,
and George Toderici. Beyond short snippets: Deep networks for video classification, 2015.

Lukas Prantl, Nuttapong Chentanez, Stefan Jeschke, and Nils Thuerey. Tranquil clouds: Neural
networks for learning temporally coherent features in point clouds. In International Confer-
ence on Learning Representations, 2020. URL https://openreview.net/forum?id=
BJeKh3VYDH.

Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation, 2017a.

Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Pointnet++: Deep hierarchical feature learning
on point sets in a metric space, 2017b.

Guocheng Qian, Abdulellah Abualshour, Guohao Li, Ali Thabet, and Bernard Ghanem. Pu-gcn:
Point cloud upsampling using graph convolutional networks, 2021.

Yue Qian, Junhui Hou, Sam Kwong, and Ying He. Pugeo-net: A geometry-centric network for 3d
point cloud upsampling, 2020.

Davis Rempe, Tolga Birdal, Yongheng Zhao, Zan Gojcic, Srinath Sridhar, and Leonidas J. Guibas.
Caspr: Learning canonical spatiotemporal point cloud representations, 2020.

Masaki Saito, Shunta Saito, Masanori Koyama, and Sosuke Kobayashi. Train sparsely, generate
densely: Memory-efficient unsupervised training of high-resolution temporal gan. International
Journal of Computer Vision, 128(10-11):2586–2606, May 2020. ISSN 1573-1405. doi: 10.1007/
s11263-020-01333-y. URL http://dx.doi.org/10.1007/s11263-020-01333-y.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans, 2016.

Yiru Shen, Chen Feng, Yaoqing Yang, and Dong Tian. Mining point cloud local structures by kernel
correlation and graph pooling, 2018.

11

https://ojs.aaai.org/index.php/AAAI/article/view/16324
https://ojs.aaai.org/index.php/AAAI/article/view/16324
https://openreview.net/forum?id=BJeKh3VYDH
https://openreview.net/forum?id=BJeKh3VYDH
http://dx.doi.org/10.1007/s11263-020-01333-y

Published as a conference paper at ICLR 2022

Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. Learning spa-
tiotemporal features with 3d convolutional networks, 2015.

Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. Mocogan: Decomposing motion
and content for video generation, 2017.

Benjamin Ummenhofer, Lukas Prantl, Nils Thuerey, and Vladlen Koltun. Lagrangian fluid simulation
with continuous convolutions. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=B1lDoJSYDH.

Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach, Raphael Marinier, Marcin Michalski, and
Sylvain Gelly. Towards accurate generative models of video: A new metric & challenges. arXiv
preprint arXiv:1812.01717, 2018.

Guangming Wang, Hanwen Liu, Muyao Chen, Yehui Yang, Zhe Liu, and Hesheng Wang. Anchor-
based spatio-temporal attention 3-d convolutional networks for dynamic 3-d point cloud sequences.
IEEE Transactions on Instrumentation and Measurement, 70:1–11, 2021a. ISSN 1557-9662. doi:
10.1109/tim.2021.3106101. URL http://dx.doi.org/10.1109/TIM.2021.3106101.

Kaisiyuan Wang, Lu Sheng, Shuhang Gu, and Dong Xu. Sequential point cloud upsampling by
exploiting multi-scale temporal dependency. IEEE Transactions on Circuits and Systems for Video
Technology, pp. 1–1, 2021b. doi: 10.1109/TCSVT.2021.3104304.

Xintao Wang, Kelvin C. K. Chan, Ke Yu, Chao Dong, and Chen Change Loy. Edvr: Video restoration
with enhanced deformable convolutional networks, 2019a.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M. Solomon.
Dynamic graph cnn for learning on point clouds, 2019b.

Huikai Wu, Junge Zhang, and Kaiqi Huang. Point cloud super resolution with adversarial residual
graph networks, 2019.

Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep convolutional networks on 3d point
clouds, 2020.

You Xie, Erik Franz, Mengyu Chu, and Nils Thuerey. tempogan: A temporally coherent, volumetric
gan for super-resolution fluid flow. ACM Transactions on Graphics (TOG), 37(4):95, 2018.

Wang Yifan, Shihao Wu, Hui Huang, Daniel Cohen-Or, and Olga Sorkine-Hornung. Patch-based
progressive 3d point set upsampling. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng. Ec-net: an edge-aware
point set consolidation network, 2018a.

Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng. Pu-net: Point cloud
upsampling network, 2018b.

Yongheng Zhao, Tolga Birdal, Haowen Deng, and Federico Tombari. 3d point capsule networks,
2019.

12

https://openreview.net/forum?id=B1lDoJSYDH
http://dx.doi.org/10.1109/TIM.2021.3106101

Published as a conference paper at ICLR 2022

A APPENDIX

A.1 MODEL DETAILS

We implement our model in PyTorch 1.7.1. All the training and experiments are run on a platform
equiped with a single GTX-1080Ti. We train all our model for 100k gradient updates using Adam
optimizer (Kingma & Ba, 2017), which took approximately 30 hours on the Fluid dataset and 15
hours on the MSR-Action 3D dataset. The detail of our model architecture are listed below:

• For all the GCN, set abstraction and flow embedding layer, we use max pooling as aggregation
function.

• The feature extractor in the Generator comprises one layer of GCN and two layers of Inception
DenseGCN. At the GCN layer, we construct neighborhood by searching each points’ 20 nearest
neighbors based on the point position and use a MLP with hidden units: [3, 32, 128] to encode the
point features. For Inception DenseGCN we follow the design and hyperparamter choice in the
original PU-GCN paper (Qian et al., 2021).

• The masking and upsampling module in the Generator has two layer of GCN and a [128, 64, c]
MLP, where c = 3r for upsampling module, c = 1 for masking module and r is the upsampling
ratio. The first layer of GCN operates on the 12 nearest neighbors and the second layer operates
on the 4 nearest neighbors. Each GCN layer contains a [128, 32] bottleneck linear layer and a
[32, 64, 128] MLP to update point features.

• We follow the design of PointNet++ to build the Spatial Dsicriminator. Concretely, we
use three set abstraction layers:5 (0.25N, 32, [3, 64, 64, 128]), (0.125N, 32, [128, 128, 128]),
(0.0625N, 32, [128, 128, 256]), (all, [256, 256, 512]) and a [512, 256, 64, 1] MLP (withN the num-
ber of input points).

• The Temporal Discriminator also adopts a hierarchical structure that contains two set abstraction
layers: (0.25N, 64, [3, 64, 64, 128]), (0.125N, 32, [128, 128, 256]), followed by two flow embed-
ding layers:(0.125N, 32, [256, 256, 256]), (0.125N, 32, [256, 256, 256]), and finally a set abstrac-
tion layer: (all, [256, 256, 512]) and a MLP: [512, 256, 64, 1].

Input

Flow Embedding layer

T-1 x shared layers

Flow Embedding layer

Flow Embedding layer

Flow Embedding layer

Flow Embedding layer

Flow Embedding layer

(T-2) x layers

Output

Flow module

Figure 5: Schematic of flow module. The flow module takes T frames of point cloud features
{F (0)

1 , F
(0)
2 , . . . , F

(0)
T } as input. Inside each layer, two consecutive frames of point clouds’ features

(F
(l)
t , F

(l)
t+1) are mixed via a shared flow embedding layer, then the output features F (l+1)

t are stored
on the former point cloud Xt. For T input frames, the flow module will have a depth of T − 1 (T − 1
different flow embedding layers).

5(M,K, [h1, . . . , hl]) means that we use Furthest Point Sampling (FPS) to sample M local regions, each
with K sampled points, and then use a [h1, . . . , hl] MLP to update point features.

13

Published as a conference paper at ICLR 2022

GCN Inception
DenseGCN

Vector concatenation

Input Output

Inception
DenseGCN

Feature extractor

Masking / Upsampling module

Input

GCN GCN MLP

Output

Figure 6: Top: Schematic of feature extractor in the generator. The feature extractor comprises three
layers of Inception DenseGCN and concatenates features from different scales to derive the final
output. Bottom: Schematic of masking/upsampling module in the generator. Following the design
of NodeShuffle module in PU-GCN, inside masking/upsampling module, latent features are first
aggregated from local neighborhood via GCN and then decoded into output by a MLP.

Comparison on the number of parameters of different models is shown below.

Model PU-Net PU-GAN PU-GCN Tranquil Clouds TPU-GAN

Param. (M) 3.26 2.74 0.30 4.87 1.74

Table 5: Comparison on model size of TPU-GAN vs other state-of-the-art models

A.2 DATASET

Fluid We simulate 24 fluid sequences with random initialization of fluid block position and scene
configuration, each sequence contains 200 snapshots with a time interval of 0.005s and particle radius
of 0.0125. Each snapshot contains roughly 100k ∼ 200k particles. We use 20 sequences as training
data, and test on the rest 4 sequences. We adopt the patch training strategy, where we sample patches
containing 8192 particles from the fluid field and uniformly downsample them with farthest point
sampling to create input-target pairs for training.

MSR-Action 3D We follow the description from Liu et al. (2020) 6 to process the raw data into
point clouds. We uniformly downsample the processed data with farthest point sampling to create
low-resolution input and input the whole frame to the network. When evaluating metrics on MSR-
Action 3D, we normalize the point clouds to lie inside the unit ball [−1, 1] to balance the influence
of point clouds of different classes. On MSR-Action 3D, we observe that masking module has less
influence on the final output and only very few points are masked.

A.3 METRIC

Earth mover distance We use Liu et al. (2019a)’s EMD implementation7 to evaluate the loss. This
implementation is based on auction algorithm and thus is consistent with the EMD code used in the
original Tranquil Clouds paper. In fact, our evaluation of Tranquil Clouds on the fluid dataset also
roughly matches the results reported in their original paper (3.09× 10−2 in our paper, 3.46× 10−2

in original paper, the difference is likely caused by our fine-tuning on the pretrained weights and
different implementation of EMD). To match the EMD metric reported in Prantl et al. (2020), a
convergence threshold of 0.03 is adopted on the Fluid dataset. For MSR-Action 3D, we use a
threshold of 0.002.

Maximum Mean Discrepancy We use the GeomLoss library8 to evaluate the MMD, with a
Gaussian kernel and bandwidth σ = 0.01. The point clouds’ coordinates are normalized to [0, 1]
before evaluation.

6https://github.com/xingyul/meteornet/tree/master/action_cls
7https://github.com/Colin97/MSN-Point-Cloud-Completion
8https://github.com/jeanfeydy/geomloss

14

https://github.com/xingyul/meteornet/tree/master/action_cls
https://github.com/Colin97/MSN-Point-Cloud-Completion
https://github.com/jeanfeydy/geomloss

Published as a conference paper at ICLR 2022

Perceptual loss for point cloud sequence We evaluate the perceptual loss for action dataset based
on features from the third convolution layer of PSTNet. As shown in the original paper (Fan et al.,
2021b), the convolution layer output higher activation on the salient motion. This motivates us to
compare the activation of reconstructed point clouds against the ground truth, which provides a
measurement for the similarity of two sequences in terms of motion. In practice we found that using
activation from different middle layers (layer 2, 3, 4) produce similar results. To make the extracted
feature permutation invariant to the input points, we conduct a global top-k pooling (with k = 128)
before calculating the loss.

A.4 BASELINE

Tranquil Clouds We use the publicly available source code9 released by the authors to carry out
experiment. On the fluid dataset, we find it unnecessary to retrain the model since the fluid data in
both papers are essentially generated from similar volume-conserving SPH simulator, so we just
fine-tune the pretrained weights provided by the authors on our own fluid dataset for 5 epochs. For
action dataset, we explore two strategies to train the model. The first is to train the model from scratch
without temporal loss, since there is no point correspondence information in the dataset. However
this makes Tranquil Clouds perform much worse in terms of temporal coherence. The second is
directly using the pretrained weights which preserves temporally coherent latent space. In general we
found the latter provides much better temporal coherence thus we stick with pretrained weights to
conduct experiment.

PU-GCN We implement PU-GCN in PyTorch and compare our implemented version with the
official TensorFlow version released by the authors10. We found they have similar performance. As
our training and evaluation pipeline was mostly implemented in PyTorch, so for convenience we use
PyTorch version of PU-GCN throughout the experiment.

A.5 KERNEL MODEL IN SPH

A common method to solve the Navier-Stokes equation and discretize fluids under the Lagrangian
framework is Smooth Particle Hydrodynamics (SPH) (Gingold & Monaghan, 1977). In SPH, physical
quantities at an arbitrary point in the space are approximated by the quantities of nearby particles.

Conretely, an arbitrary scalar (or vector) field A (r) at location r can be represented by a convolution:

A (r) =

∫
A (r′)W (|r− r′| , h) dV (r′) (14)

≈
∑

j∈N (i)

A(rj)
mj

ρj
W (|ri − rj | , h) , (15)

and ρi =
∑

i∈N (i)

mjW (|ri − rj | , h) , (16)

where W is weighting function or smooth kernel as defined in SPH, h is the cutoff, which defines
the range of particles to be considered, V (r′) denotes the volume at r, N (i) denotes the neighbor
particles of particle i that are within the cutoff, ρ denotes the particle number density and m denotes
the mass of each fluid particle.

Using this model, we can approximate the advection Ψ(r) at arbitrary location r by:

Ψ(r) =
∑

j∈N (i)

Ψ(rj)
mj

ρj
W (|ri − rj | , h) , (17)

with,
Ψ(rj) = r

(t+1)
j − r

(t)
j , (18)

where r
(t)
j denotes the position of particle j at time step t. Throughout the experiment we use cubic

spline kernel function as the smooth kernel W (·).
9https://gitlab.com/Prantl/NeuralParticles

10https://github.com/guochengqian/PU-GCN

15

https://gitlab.com/Prantl/NeuralParticles
https://github.com/guochengqian/PU-GCN

Published as a conference paper at ICLR 2022

A.6 VISUALIZATION AND STUDY ON THE MASKING MODULE

In this section we present visualization on the learnable masking module from different perspectives.
Figure 7 shows the effect of masking module on the very same network. Figure 8 visualizes the
prediction of masking module on randomly selected fluid patches. Figure 9 shows the superiority of
using proposed masking loss (equation 4) to train the masking module. Without the supervision of
masking loss, the mask module will suppress the upsampling too much, which results in clustered
points and halo structures.

Reference Masking on Masking off

Figure 7: Visualization of the effect of masking module on fluid dataset (zoom in for better view).
To "turn off" the masking module, we set all the values in the mask array predicted by the masking
module to one.

16

Published as a conference paper at ICLR 2022

Input

Mask
Segmentation

Reference

Figure 8: Visualization of the masking module’s prediction (zoom in for better view). Given a sparse
input, masking module will predict a value for each point to indicate if it needs to be upsampled.
Here we normalize all the mask value to [0, 1], and then color each point with their corresponding
mask, red indicates mask value for this point is close to zero (no need to upsample), blue indicates
mask value is close to one (need to be upsampled).

Reference Using masking loss No masking loss

Figure 9: Visualization of the upsampling results based on different masking module training
methods (zoom in for better view). When not using masking loss, we remove the non-differentiable
quantization process (equation 3) and directly train the masking module based on gradient from other
losses (adversarial loss, Chamfer distance). Without masking loss’ supervision, the upsampled results
contain clustered points and halo structures.

17

Published as a conference paper at ICLR 2022

A.7 VISUALIZATION OF ABLATION

Figure 10: Visualization of snapshots from different sequences in MSR-Action 3D dataset, color
indicates the depth of point. Top row: results from TPU-GAN with temporal discriminator taking
5 input frames; Bottom row: results from TPU-GAN with temporal discriminator taking 3 input
frames. The results at the top row exhibit halo structures.

A.8 VISUALIZATION OF POINT CLOUDS GENERATED DURING TRAINING PROCESS

Input

Reference

Prediction

10 iterations 20k iterations 100k iterations

Figure 11: Visualization of fluid point cloud generated from model during the training process. The
input and reference point clouds are randomly selected and cropped from the testing dataset. Point
color indicates depth.

18

Published as a conference paper at ICLR 2022

Input

Reference

Prediction

10 iterations 20k iterations 100k iterations

Figure 12: Visualization of MSR-Action3D point cloud generated from model during the training
process. The input and reference point clouds are randomly selected from the testing dataset. For
better visualization, the input points are shown in grey scale. Point color indicates depth.

A.9 SCENE-FLOW ESTIMATION

We apply our proposed method to a self-driving dataset (Kitti-scene flow) to demonstrate the effec-
tiveness of our model in real-world self-driving application. We use the Kitti point cloud scene flow
dataset proposed by Liu et al. (2019b). To mimic real world scenario where data are very sparse, we
downsample the original point clouds (around 30000 - 40000 points per frame) to obtain sparse point
clouds (2048 points per frame). We apply different upsampling networks to upsample the sparse
point clouds (visualization is shown in Figure 13). Then we use upsampled point clouds as input data
for a scene flow prediction network (pre-trained FlowNet3D (Liu et al., 2019b)).

To quantitatively measure model’s performance under different conditions, we adopt two metrics to
evaluate the accuracy of predicted scene flow - end point error (EPE 3D), which evaluates the L2
distance between ground truth and prediction, and 3D outliers, which evaluates how many predictions
are extremely deviated from ground truth (>0.3m or >5%). Since data is very limited here (only 150
pairs of two consecutive frames are available), we follow previous works’ evaluation protocol (Li
et al., 2019; Qian et al., 2021; Liu et al., 2019b), all the upsampling networks are pretrained (on the
fluid dataset) instead of training from scratch on Kitti scene data.

As shown in the Table 6, the performance of scene flow prediction network drops significantly when
input points are sparse, while upsampling networks can help mitigate the performance degrada-
tion. Particularly, TPU-GAN outperforms other networks on both metrics. This demonstrates the
superiority of our proposed method and its potential to self-driving application.

19

Published as a conference paper at ICLR 2022

Reference
~ 30000 points

Input
2048 points

TPU-GAN
16384 points

PU-GCN
16384 points

Tranquil Clouds
16384 points

Figure 13: Visualization on Kitti-scene flow dataset. (Zoom in for better view)

Input source EPE 3D↓ 3D outliers↓
Full (16384 points) 0.1974 17.1%
Part (2048 points) 0.2577 27.5%

TPU-GAN 0.2243 19.8%
PU-GCN 0.2362 23.0 %

Tranquil Clouds 0.2392 22.5%

Table 6: Scene flow estimation performance of pre-trained FlowNet3D on different input sources.
Full means using all available points as input, following the setting in Liu et al. (2019b). Part means
using the downsampled sparse data.

20

	Introduction
	Related works
	Methods
	Hierarchical spatial feature learning
	Temporal feature learning
	Enforcing temporal coherence via temporal discriminator
	Adaptive upsampling
	Training

	Experiment
	Implementation details
	Dense and non-uniform point clouds from physical simulation
	Real-world scanned point clouds
	Ablation study

	Conclusion
	Appendix
	Model details
	Dataset
	Metric
	Baseline
	Kernel model in SPH
	Visualization and study on the masking module
	Visualization of ablation
	Visualization of point clouds generated during training process
	Scene-flow estimation

