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ABSTRACT

As a long-term threat to the privacy of training data, membership inference attacks
(MIAs) emerge ubiquitously in machine learning models. Existing works evidence
strong connection between the distinguishability of the training and testing loss
distributions and the model’s vulnerability to MIAs. Motivated by existing results,
we propose a novel training framework based on a relaxed loss (RelaxLoss) with
a more achievable learning target, which leads to narrowed generalization gap
and reduced privacy leakage. RelaxLoss is applicable to any classification model
with added benefits of easy implementation and negligible overhead. Through
extensive evaluations on five datasets with diverse modalities (images, medical
data, transaction records), our approach consistently outperforms state-of-the-
art defense mechanisms in terms of resilience against MIAs as well as model
utility. Our defense is the first that can withstand a wide range of attacks while
preserving (or even improving) the target model’s utility. Source code is available
at https://github.com/DingfanChen/RelaxLoss.

1 INTRODUCTION

While deep learning (DL) models have achieved tremendous success in the past few years, their
deployments in many sensitive domains (e.g., medical, financial) bring privacy concerns since data
misuse in these domains induces severe privacy risks to individuals. In particular, modern deep neural
networks (NN) are prone to memorize training data due to their high capacity, making them vulnerable
to privacy attacks that extract detailed information about the individuals from models (Shokri et al.,
2017; Song et al., 2017; Yeom et al., 2018) .

In membership inference attack (MIA), an adversary attempts to identify whether a specific data
sample was used to train a target victim model. This threat is pervasive in various data domains
(e.g., images, medical data, transaction records) and inevitably poses serious privacy threats to
individuals (Shokri et al., 2017; Nasr et al., 2018; Salem et al., 2019), even given only black-box
access (query inputs in, posterior predictions out) (Shokri et al., 2017; Salem et al., 2019; Song &
Mittal, 2020) or partially observed output predictions (e.g., top-k predicted labels) (Choo et al., 2020).

Significant advances have been achieved to defend against MIAs. Conventionally, regularization
methods designed for mitigating overfitting such as dropout (Srivastava et al., 2014) and weight-
decay (Geman et al., 1992) are regarded as defense mechanisms (Salem et al., 2019; Jia et al.,
2019; Shokri et al., 2017). However, as conveyed by Kaya et al. (2020); Kaya & Dumitras (2021),
vanilla regularization techniques (which are not designed for MIA), despite slight improvement
towards reducing the generalization gap, are generally unable to eliminate MIA. In contrast, recent
works design defenses tailored to MIA. A common strategy among such defenses is adversarial
training (Goodfellow et al., 2014b;a), where a surrogate attack model (represented as a NN) is used
to approximate the real attack and subsequently the target model is modified to maximize prediction
errors of the surrogate attacker via adversarial training. This strategy contributes to remarkable success
in defending NN-based attacks (Nasr et al., 2018; Jia et al., 2019). However, these methods are greatly
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restricted by strong assumptions on attack models, thereby failing to generalize to novel attacks
unanticipated by the defender (e.g., a simple metric-based attack) (Song & Mittal, 2020). In order
to defend attacks beyond the surrogate one, differentially private (DP) training techniques (Abadi
et al., 2016; Papernot et al., 2016; 2018) that provide strict guarantees against MIA are exploited.
Nevertheless, as evidenced by Rahman et al. (2018); Jia et al. (2019); Hayes et al. (2019); Jayaraman
& Evans (2019); Chen et al. (2020); Kaya & Dumitras (2021), incorporating DP constraints inevitably
compromises model utility and increases computation cost.

In this paper, we present an effective defense against MIAs while avoiding negative impacts on
the defender’s model utility. Our approach is built on two main insights: (i) the optimal attack
only depends on the sample loss under mild assumptions of the model parameters (Sablayrolles
et al., 2019); (ii) a large difference between the training loss and the testing loss provably causes
high membership privacy risks (Yeom et al., 2018). By intentionally ‘relaxing’ the target training
loss to a level which is more achievable for the test loss, our approach narrows the loss gap and
reduces the distinguishability between the training and testing loss distributions, effectively preventing
various types of attacks in practice. Moreover, our approach allows for a utility-preserving (or even
improving) defense, greatly improving upon previous results. As a practical benefit, our approach is
easy to implement and can be integrated into any classification models with minimal overhead.

Contributions. (i) We propose RelaxLoss, a simple yet effective defense mechanism to strengthen a
target model’s resilience against MIAs without degrading its utility. To the best of our knowledge, our
approach for the first time addresses a wide range of attacks while preserving (or even improving) the
model utility. (ii) We derive our method from a Bayesian optimal attacker and provide both empirical
and analytical evidence supporting the main principles of our approach. (iii) Extensive evaluations
on five datasets with diverse modalities demonstrate that our method outperforms state-of-the-art
approaches by a large margin in membership inference protection and privacy-utility trade-off.

2 RELATED WORK

Membership Inference Attack. Inferring membership information from deep NNs has been
investigated in various application scenarios, ranging from the white-box setting where the whole
target model is released (Nasr et al., 2019; Rezaei & Liu, 2020) to the black-box setting where the
complete/partial output predictions are accessible to the adversary (Shokri et al., 2017; Salem et al.,
2019; Yeom et al., 2018; Sablayrolles et al., 2019; Song & Mittal, 2020; Choo et al., 2020; Hui et al.,
2021; Truex et al., 2019). An adversary first determines the most informative features (depending
on the application scenarios) that faithfully reflect the sample membership (e.g., logits/posterior
predictions (Shokri et al., 2017; Salem et al., 2019; Jia et al., 2019), loss values (Yeom et al.,
2018; Sablayrolles et al., 2019), and gradient norms (Nasr et al., 2019; Rezaei & Liu, 2020)), and
subsequently extracts common patterns in these features among the training samples for identifying
membership. In this work, we work towards an effective defense by suppressing the common patterns
that an optimal attack relies on.

Defense. Existing defense mechanisms against MIA are mainly divided into three main categories:
(i) regularization techniques to alleviate model overfitting, (ii) adversarial training to confuse surro-
gate attackers, and (iii) a differentially private mechanism offering rigorous privacy guarantees. Our
proposed approach can be regarded as a regularization technique owing to its effect in reducing gen-
eralization gap. Unlike previous regularization techniques, our method is explicitly tailored towards
defending MIAs by reducing the information that an attacker can exploit, leading to significantly
better defense effectiveness. Algorithmically, our approach shares similarity with techniques that
suppress the target model’s confidence score predictions (e.g., label-smoothing (Guo et al., 2017;
Müller et al., 2019) and confidence-penalty (Pereyra et al., 2017)), but ours is fundamentally different
in the sense that we modulate the loss distribution with gradient ascent.

Previous state-of-the-art defense mechanisms against MIA, such as Memguard (Jia et al., 2019)
and Adversarial Regularization (Nasr et al., 2018), are built on top of the idea of adversarial train-
ing (Goodfellow et al., 2014b;a). Such approaches usually rely on strong assumptions about attack
models, making their effectiveness highly dependent on the similarity between the surrogate and the
real attacker (Song & Mittal, 2020). In contrast, our method does not rely on any assumptions about
the attack model, and has shown consistent effectiveness across different attacker types.

2



Published as a conference paper at ICLR 2022

Differential privacy (Dwork, 2008; Dwork et al., 2014; Abadi et al., 2016; Papernot et al., 2016)
provides strict worst-case guarantees against arbitrarily powerful attackers that exceed practical limits,
but inevitably sacrifices model utility (Rahman et al., 2018; Jia et al., 2019; Hayes et al., 2019;
Chen et al., 2020; Kaya & Dumitras, 2021; Jayaraman & Evans, 2019) and meanwhile increases
computation burden (Goodfellow, 2015; Dangel et al., 2019). In contrast, we focus on practically
realizable attacks for utility-preserving and computationally efficient defense.

3 PRELIMINARIES

Notations. We denote by zi = (xi,yi) one data sample, where xi and yi are the feature and the
one-hot label vector, respectively. f(· ;θ) represents a classification model parametrized by θ, and
p = f(x;θ) ∈ [0, 1]C denotes the predicted posterior scores (after the final softmax layer) where C
denotes the number of classes. 1 denotes the indicator function, i.e., 1[p] equals 1 if the predicate p
is true, else 0. We use subscripts for sample index and superscripts for class index.

Attacker’s Assumptions. We consider the standard setting of MIA: the attacker has access to a
query set S = {(zi,mi)}Ni=1 containing both member (training) and non-member (testing) samples
drawn from the same data distribution Pdata, where mi is the membership attribute (mi = 1 if zi is a
member). The task is to infer the value of the membership attribute mi associated with each query
sample zi. We design defense for a general attack with full access to the target model. The attack
A(zi, f(·;θ)) is a binary classifier which predicts mi for a given query sample zi and a target model
parametrized by θ. The Bayes optimal attack Aopt(zi, f(·;θ)) will output 1 if the query sample is
more likely to be contained in the training set, based on the real underlying membership probability
P (mi = 1|zi,θ), which is usually formulated as a non-negative log ratio:

Aopt(zi, f(·;θ)) = 1

[
log

P (mi = 1|zi,θ)
P (mi = 0|zi,θ)

≥ 0

]
(1)

Defender’s Assumptions. We closely mimic an assumption-free scenario in designing our defense
method. In particular, we consider a knowledge-limited defender which: (i) does not have access to
additional public (unlabelled) training data (in contrast to Papernot et al. (2016; 2018)); and (ii) lacks
prior knowledge of the attack strategy (in contrast to Jia et al. (2019); Nasr et al. (2018)). For added
rigor, we also study attacker’s countermeasures to our defense in Section 6.4.

4 RELAXLOSS

The ultimate goal of the defender is two-fold: (i) privacy: reducing distinguishability of member and
non-member samples; (ii) utility: avoiding the sacrifice of the target model’s performance. We hereby
introduce each component of our method targeting at privacy (Section 4.1) and utility (Section 4.2).

4.1 PRIVACY: REDUCE DISTINGUISHABILITY VIA RELAXED TARGET LOSS

We begin by exploiting the dependence of attack success rate on the sample loss (Yeom et al.,
2018; Sablayrolles et al., 2019). In particular, a large gap in the expected loss values on the
member and non-member data, i.e., E[ℓ]non − E[ℓ]mem, is proved to be sufficient for conducting
attacks (Yeom et al., 2018). Along this line, Sablayrolles et al. (2019) further show that the Bayes
optimal attack only depends on the sample loss under a mild posterior assumption of the model
parameter: P(θ|z1, ..,zn) ∝ e−

1
T

∑N
i=1 mi·ℓ(θ,zi)1. Formally,

Aopt(zi, f(·;θ)) = 1[−ℓ(θ, zi) > τ(zi)] (2)

where τ denotes a threshold function 2. Intuitively, Equation 2 shows that zi is likely to be used for
training if the target model exhibits small loss value on it. These results motivate our approach to
mitigate MIAs by reducing distinguishablitiy between the member and non-member loss distributions.

1 This corresponds to a Bayesian perspective, i.e., θ is regarded as a random variable that minimizes the
empirical risk

∑N
i=1 mi · ℓ(θ,zi). T is the temperature that captures the stochasticity.

2 We summarize both the strategy MALT and MAST from Sablayrolles et al. (2019) in Equation 2, where τ
is a constant function for MALT.
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Algorithm 1: RelaxLoss

Input: Dataset {(xi,yi)}Ni=1, training epochs
E, learning rates τ , batch size B,
number of output classes C, target loss
value α

Output: Model f(·;θ) with parameters θ
Initialize model parameter θ ;
for epoch in {1, ..., E} do

for batch_index in {1, ...,K} do
Get sample batch {(xi,yi)}Bi=1
Perform forward pass: pi = f(xi;θ)
Compute cross entropy loss L(θ) on

the batch
if L(θ) ≥ α then

// gradient descent
θ ← θ − τ · ∇L(θ)

else
if epoch %2 = 0 then

// gradient ascent
θ ← θ + τ · ∇L(θ)

else
// posterior

flattening
Construct softlabel ti with

tci =

{
pci if yci = 1

(1− pci )/(C − 1) otherwise

Compute cross entropy loss
with the softlabel: a)
ℓ(θ, zi) =

−∑C
c=1 sg[t

c
i ] log p

c
i

L(θ) = 1
B

∑B
i=1 ℓ(θ, zi)

Update model parameters:
θ ← θ − τ∇L(θ)

end
end

end
end
return model f(· ;θ)

a sg stands for the stopgradient operator that is de-
fined as identity at forward pass and has zero partial
derivatives, i.e., ti is a non-updated constant.

Relaxing Loss Target with Gradient Ascent.
Directly operating on member and non-member
loss distributions, however, is impractical, since
the exact distributions are intractable and a large
amount of additional hold-out samples are re-
quired for estimating the distribution of non-
member data. In order to bypass these issues
and reduce the distinguishability between the
member and non-member loss distributions, we
propose to simplify the problem by considering
the mean of the loss distributions, and subse-
quently set a more achievable mean value for
the target loss, where the loss target is relaxed
to a level that is easier to be achieved for the
non-member data.

Algorithmically, instead of pursuing zero train-
ing loss of the target model, we relax the target
mean loss value α to be larger than zero and ap-
ply a gradient ascent step as long as the average
loss of the current batch is smaller than α.

4.2 UTILITY:
APPLY POSTERIOR FLATTENING
AND NORMAL GRADIENT OPERATIONS

With the relaxed target loss, the predicted pos-
terior score of the ground-truth class pgt is no
longer maximized towards 1. If the probabil-
ity mass of all non-ground-truth classes 1− pgt

concentrates on only few of them (e.g., hard
samples that are close to the decision boundary
between two classes), it is very likely that one
non-ground-truth class has a score larger than
pgt (i.e., maxc,c ̸=gt p

c > pgt), thus leading to
incorrect predictions. To address this issue, we
propose to encourage a large margin between
the prediction score of the ground-truth-class
and the others by flattening the target posterior
scores for non-ground-truth classes. Specifically,
we dynamically construct softlabels during each
epoch by: (i) retaining the score of the ground-
truth class, i.e., the current predicted value pgt,
and (ii) re-allocating the remaining probability
mass evenly to all non-ground-truth classes.

In summary, we run a repetitive training strategy to balance privacy and utility, which consists of two
steps: (i) if the model is not well-trained, i.e., the current loss is larger than the target mean value
α, we run a normal gradient descent step; (ii) otherwise, we apply gradient ascent or the posterior
flattening step (See Algorithm 1).

5 ANALYTICAL INSIGHTS

In this section, we analyze the key properties that explain the effectiveness of RelaxLoss. We provide
both analytical and empirical evidence showing that RelaxLoss can (i) reduce the generalization gap,
and (ii) increase the variance of the training loss distribution, both contributing to mitigating MIAs.

RelaxLoss reduce the generalization gap. We apply RelaxLoss to CIFAR-10 dataset and plot the
resulting loss histograms in Figure 1. With a more achievable learning target, RelaxLoss blurs the
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Figure 1: Loss histograms on CIFAR-10 with ResNet20 architecture when applying (a) vanilla
training, (b) our method with α = 0.5, and (c) our method with α = 1.0. The empirical mean and
variance of the loss distributions are shown in the figure. The AUC of a loss thresholding attack
equals to 0.84 in (a), 0.67 in (b), and 0.57 in (c). We observe that our method fits the target mean
(Section 4.1), increases the variance of the training loss distribution and reduces the distinguishability
between member and non-member distributions (Section 5).
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(b) Gradient ascent

Figure 2: Comparison between vanilla gradient descent and the gradient ascent step in RelaxLoss
(demonstrated in 2D). The loss contour lines are plotted in the figure, the bottom part of which
corresponds to a low loss region. The target loss level α is visualized in the figure. Training with
vanilla gradient descent step results in near zero loss for member samples, and large loss values for
non-member samples. In contrast, a large loss value ℓ tends to trigger large update |∆ℓ| during the
gradient ascent step. As a result, RelaxLoss spreads out the training loss distribution and blurs the
gap between the distributions (Section 5).

gap between the member and non-member loss distributions (Figure 1), which naturally leads to a
narrowed generalization gap (Appendix Figure 7) and reduced privacy leakage (Yeom et al., 2018).

RelaxLoss increases the variance of the training loss distribution. We observe that RelaxLoss
spreads out the training loss distribution (i.e., increase the variance) due to its gradient ascent step
(Appendix A.1): large loss samples tend to have a more significant increase in its loss value during the
gradient ascent step (See Figure 2 for demonstration). In contrast, except DP-SGD, existing defense
methods do not have this property (Appendix C.10). Intuition suggests that the increase of training
loss variance suppresses the common pattern among training losses and reduces the information
that can be exploited by an attacker, thus contributing to the protection against attacks. To verify
the association between the variance increasing effect and the defense effectiveness, we conduct
experiments on CIFAR-10 dataset and measure the Pearson’s correlation coefficients between the
training loss variance and the attack AUC (Appendix Figure 6). With an overall score of -0.85 (-0.77
and -0.94 for black-box and white-box attacks, respectively), we conclude a fairly strong negative
relationship. When considering a typical Gaussian assumption of the loss distributions (Yeom et al.,
2018; Li et al., 2020), we further show this variance increasing property helps to lower an upper
bound of the attack AUC, and provide formal analysis in Appendix A.2.
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6 EXPERIMENTS

In this section, we rigorously evaluate the effectiveness of our defense across a wide range of datasets
with diverse modalities, various strong attack models, and eight defense baselines representing the
previous state of the art.

6.1 EXPERIMENTAL SETUP

Settings. We set up seven target models, trained on five datasets (CIFAR-10, CIFAR-100, CH-
MNIST, Texas100, Purchase100) with diverse modalities (natural and medical images, medical
records, and shopping histories). For image datasets, we adopt a 20-layer ResNet (He et al., 2016)
and an 11-layer VGG (Simonyan & Zisserman, 2015); and for non-image datasets, we adopt MLPs
with the same architecture and same training protocol as in previous works (Nasr et al., 2018; Jia
et al., 2019). We evenly split each dataset into five folds and use each fold as the training/testing set
for the target/shadow model3, and use the last fold for training the surrogate attack model (for Jia
et al. (2019); Shokri et al. (2017)). We fix the random seed and training setting for a fair comparison
among different defense methods. See Appendix B for implementation details.

Attack methods. To broadly handle attack methods in our defense evaluation, we consider attacks in
a variety of application scenarios (black-box and white-box) and strategies. We consider the following
state-of-the-art attacks from two categories:(i) White-box attacks: Both Nasr et al. (2019); Rezaei &
Liu (2020) are based on gradient norm thresholding. We denote these attacks by the type of gradient
followed by its norm. Grad-x and Grad-w stand for the gradient w.r.t. the input and the model
parameters, respectively; (ii) Black-box attacks: Salem et al. (2019) (denoted as NN, standing for the
proposed neural network attack model). We adopt the implementation provided by Jia et al. (2019)
and use the complete logits prediction as input to the attacker. Sablayrolles et al. (2019) (denoted as
Loss for their loss thresholding method). We use a general threshold independent of the query sample,
as the adaptive thresholding version is more expensive computational-wise with no or only marginal
improvements. Song & Mittal (2020) (denoted as Entropy and M-Entropy for their proposed attack
by thresholding the prediction entropy and a modified version, respectively.). We exclude attacks that
only use partial output predictions (e.g., top-1 predicted label) from our evaluation as they are strictly
weaker than the attacks we include above (Choo et al., 2020).

Evaluation metrics. We evaluate along two fronts: utility (measured by test accuracy of the victim
model) and privacy. For privacy, in line with previous works (Song & Mittal, 2020; Jia et al., 2019;
Sablayrolles et al., 2019; Shokri et al., 2017; Nasr et al., 2018; Salem et al., 2019), we consider the
following two metrics: (i) attack accuracy: We evaluate the attack accuracy on a balanced query set,
where a random guessing baseline corresponds to 50% accuracy. For threshold-based attack methods,
following Song & Mittal (2020), we select the threshold value to be the one with the best attack
accuracy on the shadow model and shadow dataset; (ii) attack AUC: The area under the receiver
operating characteristic curve (AUC), corresponding to an integral over all possible threshold values,
represents the degree of separability. A perfect defense mechanism corresponds to AUC=0.5.

6.2 COMPARISON TO BASELINES

Defense Baselines. We consider two state-of-the-art defense methods: Memguard (Jia et al., 2019)
and Adversarial regularization (Adv-Reg) (Nasr et al., 2018). Additionally, we compare to five regu-
larization methods: Early-stopping, Dropout (Srivastava et al., 2014), Label-smoothing (Guo et al.,
2017; Müller et al., 2019), Confidence-penalty (Pereyra et al., 2017) and (Self-)Distillation (Hinton
et al., 2015; Zhang et al., 2019). Moreover, we compare to differential private mechanism, i.e., Differ-
entially private stochastic gradient descent (DP-SGD) (Abadi et al., 2016)4. We exclude defenses
that additionally require public (unlabelled) data (Papernot et al., 2016; 2018) for training the target
model from our evaluation.

3 Shadow models are used for training the attack models in the NN-based attack and selecting the optimal
threshold for all metric-based attacks.

4 In line with previous work (Choo et al., 2020), we adopt small noise scale (<0.5) for maintaining target
model’s utility at a decent level, which leads to meaninglessly large ϵ values.
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(b) CIFAR-100

Figure 3: Comparisons of all defense mechanisms on CIFAR-10 and CIFAT-100 dataset with
ResNet20 architecture. Each subplot corresponds to one attack method. The x-axis corresponds
to the attack AUC (the lower the better) while the y-axis is the target model’s test accuracy (the
higher the better). For visualization purposes, we plot the ideal defense on the top-left corner, whose
x-coordinate equals 0.5 and y-coordinate is set to be the highest test accuracy among all models.

Privacy-utility trade-off. We vary the hyperparameters that best describe the privacy-utility trade-off
of each method across their effective ranges (See Appendix B for details) and plot the corresponding
privacy-utility curves. We set the attack AUC value (privacy) as x-axis and the target model’s
performance (utility) as the y-axis. A better defense exhibits a privacy-utility curve approaching the
top-left corner, i.e., high utility and low privacy risk. As shown in Figure 3(a) and 3(b) (and Appendix
Figure 9-13), we observe that our method improves the privacy-utility trade-off over baselines for
almost all cases: (i) Previous state-of-the-art defenses (Memguard and Adv-Reg) are effective for the
NN attack, but can hardly generalize to the other types of attack, which is also verified in Song &
Mittal (2020). Moreover, as a test-time defense, Memguard is not applicable to white-box attacks.
In contrast, our method is consistently effective irrespective of the attack model and applicable to
all types of attacks. (ii) In comparison with other regularization methods, our method showcases
significantly better defense effectiveness. Specifically, when compared with Early-stopping, the
generally most effective regularization-based defense baseline, our approach decreases the attack
AUC (i.e., relative percentage change) by up to 26% on CIFAR-10 and 46% on CIFAR-100 for
a same level of utility. (iii) DP-SGD is generally the most effective defense baseline, despite the
meaningless large ϵ values, which is consistent with Choo et al. (2020). In comparison with DP-SGD,
our method improves the target model’s test accuracy by around 16% on CIFAR-10 and 12% on
CIFAR-100 (relative percentage increase) across different privacy levels. (iv) (See detailed results
in Appendix C.9) Our approach is the only one that exhibit consistent defense effectiveness across
various data modalities and model architectures, while the best baseline methods can only show
effectiveness for at most one data modality (e.g., DP-SGD for images, and Label-smoothing for
transaction records).

6.3 RELAXLOSS VS. ATTACKS

As can be seen from the privacy-utility curves in Figure 3 and Appendix C.9, our approach is the
only one that can consistently defend various MIAs without sacrificing the model utility. We then
evaluate to what extend the attacks can be defended without loss in the model utility. To this end, we
select α corresponds to the model with the lowest privacy risk (lowest attack AUC averaged over all
attacks), under the constraint that the defended model achieve a top-1 test accuracy not worse than
the undefended model.

Utility. Table 1 summarizes the test accuracy of target models defended with our method. Compared
with vanilla training, our method achieves a consistent improvement (up to 7.46%) in terms of utility
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(a)
Dataset Ntrain

CIFAR-10 12000
CIFAR-100 12000
CH-MNIST 1000
Texas100 13466
Purchase100 39465

(b)
CIFAR10
(ResNet20)

CIFAR10
(VGG11)

CIFAR100
(ResNet20)

CIFAR100
(VGG11) CH-MNIST Texas100 Purchase100

top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5
wo defense 70.5 96.6 73.8 97.0 33.2 63.0 41.4 67.5 77.1 99.6 52.3 82.6 89.1 99.8

with defense 73.8 98.2 74.4 97.8 35.1 67.7 41.4 69.9 78.4 99.7 55.3 86.8 89.1 99.6
∆ 4.68 1.66 0.81 0.82 5.72 7.46 0.00 3.56 1.69 0.10 5.74 5.08 0.00 -0.20

Table 1: (a) Size of the target model’s training set. (b) Target model’s test accuracy (in %) with and
without (wo) applying our defense. The relative difference (∆) is in % and the increase is highlighted
in green and decrease in red . See Appendix C.3 for more details.
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(a) Black-box attacks
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(b) White-box attacks

Figure 4: Attack AUC on target models trained with and without (wo) applying our defense method.
Each subplot is titled with the corresponding attack method’s name. (R) and (V) denotes ResNet and
VGG network, respectively. The corresponding target model’s utility is shown in Table 1.

across different datasets and model architectures, albeit a 0.2% accuracy drop for a saturated top-5
accuracy (99.6% compared to 99.8%).

Privacy. Figure 4 shows the membership privacy risk (AUC) of the target models in Table 1.
We observe that our method is consistently effective for all types of attacks, datasets, and model
architectures. In particular, our method consistently reduces the attack AUC: (i) to <0.6 for all
non-image datasets; (ii) from 0.7 to 0.55 for CH-MNIST; (iii) from >0.8 to 0.55 for CIFAR-10 (R)
and from >0.9 to <0.6 for CIFAR-100 (R). We also include the attack accuracy values in Appendix
Table 5, which shows our method reduces most attacks to a random-guessing level. We thus conclude
that our method improves both target models’ utility as well as their resilience against MIAs.

6.4 ADAPTIVE ATTACK

We further analyze the robustness of our method against attack’s countermeasures. Namely, we
consider the situations where attackers have full knowledge about our defense mechanism and the
selected hyperparameters, and have tailored the attacks to our defense method. We simulate the
adaptive attacks by: (i) training shadow models with the same configuration used for training our
defended target models in Table 1, (ii) simulating the adaptive attacks using the calibrated shadow
models. We report the highest attack accuracy (i.e., worst-case privacy risk) among different adaptive
attacks in Table 2 (See Appendix C.4 for details). We observe that despite being less effective in
defending against adaptive attacks than non-adaptive attacks, our method still greatly decreases the
highest adaptive attacker’s accuracy by 13.6%-37.6% compared to vanilla training.
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CIFAR10
(ResNet20)

CIFAR10
(VGG11)

CIFAR100
(ResNet20)

CIFAR100
(VGG11) CH-MNIST Texas100 Purchase100

w/o defense 87.3 80.7 92.6 97.5 67.1 79.0 65.7
w/ defense (non-adaptive) 50.0 50.0 50.0 50.0 50.7 50.0 50.1
∆ (non-adaptive) -42.7 -38.0 -46.0 -48.7 -24.4 -36.7 -23.9
w/ defense (adaptive) 56.0 68.2 57.8 84.2 56.6 53.8 56.0
∆ (adaptive) -35.9 -15.5 -37.6 -13.6 -15.6 -31.9 -14.8

Table 2: The highest attack accuracy (in %) among different adaptive attacks (and the corresponding
non-adaptive attack accuracy is shown for reference) evaluated on the target model with (w/) or
without (w/o) defense. ∆ corresponds to the relative difference (in %) in attack accuracy when
applying our defense compared to vanilla training. The used target models are the same as in Table 1.

6.5 ABLATION STUDY

We study the impact of each component of our approach and plot the results in Figure 5. We observe
that while applying posterior flattening alone (without gradient ascent) has limited effects, using it
together with gradient ascent indeed improves the model’s test accuracy across a wide range of attack
AUC, which validates the necessity of all components of our method.
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Figure 5: Ablation study on CIFAR-100 with ResNet architecture. We validate the necessity of our
gradient ascent (Section 4.1) and posterior flattening step (Section 4.2)

7 DISCUSSION

Properties of RelaxLoss. RelaxLoss enjoys several properties which explain its superiority over
existing defense methods. In particular, we provide empirical and analytical evidence showing that in
contrast to most existing methods (Appendix C.10), RelaxLoss reduces the generalization gap and
spreads out the training loss distributions (Section 5), thereby effectively defeating MIAs. Moreover,
we observe that RelaxLoss soften the decision boundaries (Appendix C.11), which contributes to
improving model generalization (Zhang et al., 2017; Pereyra et al., 2017).

Practicality. We consider the practicality of our method from the following aspects: (i) Hyperpa-
rameter tuning: Our method involves a single hyperparameter α that controls the trade-off between
privacy and utility. A fine-grained grid search on a validation set (i.e., first estimating the privacy-
utility trade-off with varying value of α, and subsequently selecting the α corresponding to the desired
privacy/utility level) allows precise control over the expected privacy/utility level of the target model.
(ii) Computation cost: Our method incurs negligible additional computation cost when compared
with backpropagation in vanilla training (Appendix C.7). In contrast, baseline methods generally
suffer from a larger computation burden. For instance, Memguard slows down the inference due to
its test-time optimization step, while the training speed of DP-SGD and Adv-Reg is greatly hindered
by per-sample gradient computation (Goodfellow, 2015; Dangel et al., 2019) and adversarial update
step, respectively.

8 CONCLUSION

In this paper, we present RelaxLoss, a novel training scheme that is highly effective in protecting
against privacy attacks while improving the utility of target models. Our primary insight is that
membership privacy risks can be reduced by narrowing the gap between the loss distributions. We
validate the effectiveness of our method on a wide range of datasets and models, and evidence its
superiority when compared with eight defense baselines which represent previous state of the art. As
RelaxLoss exhibits superior protection and performance and is easy to be implemented in various
machine learning models, we expect it to be highly practical and widely used.
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This appendix provides additional support to the main ideas presented in the submission: §A provides
additional theoretical analysis giving rise to insights on the foundations of our method. Moreover,
as we have conducted a rigorous and broad experimental analysis that goes beyond the key insights
presented in the main paper, we provide additional details on the experimental setup in §B and a
range of additional evaluation results and discussion in §C.

A THEORETICAL ANALYSIS

A.1 HOW DOES GRADIENT ASCENT STEP INCREASE LOSS VARIANCE?

In this section, we show how the gradient ascent step in RelaxLoss increase the loss variance. We write
ℓ for the loss instead of ℓ(θ, zi) for brevity if the dependence is not relevant for our argumentation.

Theorem A.1. If Cov(ℓ,∆ℓ) > 0, then the variance of loss distribution Var(ℓ) is increased after a
gradient ascent step.

Proof. The variance of loss distribution before and after applying gradient ascent step amounts to
Var(ℓ) and Var(ℓ+∆ℓ), respectively. Following from the fact that

Var(ℓ+∆ℓ) = Var(ℓ) + Var(∆ℓ) + 2Cov(ℓ,∆ℓ)

and the non-negativity of Var(∆ℓ) as well as Cov(ℓ,∆ℓ), we conclude Var(ℓ+∆ℓ) > Var(ℓ), i.e.,
the loss variance will increase.
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We focus on the loss increase after the gradient ascent step (i.e., assuming that ∆ℓ ≥ 0, which holds
for most cases, despite the stochasticity) and interpret ∆ℓ as the rate of loss change. The condition
Cov(ℓ,∆ℓ) > 0 can be understood as: the larger the loss value is, the faster it changes, and vice
versa. This is a reasonable assumption for most training algorithms for achieving convergence. We
reason the exact condition and the related assumptions below.
Condition A.1. The gradient magnitude (squared ℓ2 norm) is positively correlated to the loss value,
i.e., Cov(∥∇ℓ∥22, ℓ) > 0. Intuitively, it means the gradient norm tends to decrease as the loss
decreases.

We use the cross-entropy loss as an example:

ℓCE(θ, zi) = −
C∑

c=1

yci log p
c
i (3)

The gradient is given by:
∇ℓCE(θ, zi) = Jθi(pi − yi) (4)

where Jθi represents the jacobian of the logits (before the final softmax layer) w.r.t. the model
parameter θ. Once the loss on sample zi becomes smaller, we have ∥pi − yi∥2 → 0, i.e., the
prediction get closer to the ground-truth label. By the submultiplicativity of matrix norm and the
continuity of the squared function, we then have ∥∇ℓCE(θ, zi)∥22 → 0, i.e., the gradient norm
decreases as the loss value gets smaller. Hence, ℓCE(θ, zi) has the desired property required by
Condition A.1.
Condition A.2. The change in loss after the gradient ascent step ∆ℓ is linear in the squared gradient
norm ∥∇ℓ∥22, i.e., ∆ℓ = c1∥∇ℓ∥22 + c2 with c1, c2 the constants quantifying the linear relationship.
Corollary A.1. Given the assumption that the gradient of each sample within a batch (1) has the
same norm and (2) has non-negative inner product (i.e., well-aligned) with each other and the
gradient alignments remain the same over different batches, the gradient ascent step: θ(t+1) =
θ(t) + τ∇L(θ(t)) satisfy the linearity (in Condition A.2) with c1 > 0, where the superscript t
corresponds to the t-th iteration, and∇L denotes the batch gradient with batchsize = B.

Proof. This follows from the nature of the first-order gradient-based optimization method. Applying
a first-order Taylor-expansion of the sample loss at θ(t), we obtain:

ℓ(θ(t+1), zi) = ℓ(θ(t), zi) + τ⟨∇ℓ(θ(t)),∇L(θ(t)⟩+ O(τ)

∆ℓ = ℓ(θ(t+1), zi)− ℓ(θ(t), zi) (5)

=
τ

B
∥∇ℓ(θ(t), zi)∥22 +

τ

B

∑
j ̸=i

⟨∇ℓ(θ(t), zi),∇ℓ(θ(t), zj)⟩+ O(τ)

=
τ

B
∥∇ℓ(θ(t), zi)∥22 +

τ

B

∑
j ̸=i

∥∇ℓ(θ(t), zi)∥2 · ∥∇ℓ(θ(t), zj)∥2 · cos(αij) + O(τ)

=
τ

B
∥∇ℓ(θ(t), zi)∥22

(
1 +

∑
j ̸=i

cos(αij)
)
+ O(τ) (6)

where cos(αij) is the cosine of the angle between gradients of sample i and j, and O(τ) summarizes
the higher-order terms and is regarded as a constant (i.e., c2). Given the assumption that each
sample within a batch exhibits well-aligned gradients with the same norm, i.e., ∥∇ℓ(θ(t), zi)∥2 =
∥∇ℓ(θ(t), zj)∥2 and cos(αij) ≥ 0 for all j ̸= i, we have Equation 6 and τ

B

(
1 +

∑
j ̸=i cos(αij)

)
>

0. Additionally, given that the gradient alignments remain the same over different batches, i.e.,(
1 +

∑
j ̸=i cos(αij)

)
is constant for all i, j, we have c1 = τ

B

(
1 +

∑
j ̸=i cos(αij)

)
> 0.

Lemma A.1. Given the Condition A.1 and A.2, we have the desired property Cov(ℓ,∆ℓ) by linearity.

Proof.
Cov(ℓ,∆ℓ) = Cov(ℓ, c1∥∇ℓ∥22 + c2) (7)

= c1Cov(ℓ, ∥∇ℓ∥22) > 0 (8)
where Equation 7 and 8 are yielded by using Condition A.2 and A.1, respectively.

14



Published as a conference paper at ICLR 2022

A.2 HOW DOES RELAXLOSS AFFECT MIA?

In this section, we show how RelaxLoss affects the optimal MIA Aopt (measured by its AUC value).
We exploit the following results for relating the attack AUC to a statistical distance between the loss
distributions.

We first regard the MIA as a binary hypothesis testing problem with the null H0 and alternate
hypothesis H1 defined as follows:

H0 : zi is a member sample, i.e., zi ∈ Dtrain

H1 : zi is a non-member sample, i.e., zi /∈ Dtrain

The attacker need to make a decision on whether the query sample came from Dtrain based on a
rejection region Sreject. As discussed in Section 4.1, under a posterior assumption on the model
parameter, Sreject for the optimal attack Aopt (Sablayrolles et al., 2019) fully depends on the sample
loss, i.e., Aopt rejects the null hypothesis if ℓ(θ, zi) ∈ Sreject. The type I error (i.e., the H0 is true
but rejected) is defined as P(ℓ(θ,Dtrain) ∈ Sreject), and the type II error (i.e., the H0 is false but
retained) is defined as P(ℓ(θ,Dtrain) ∈ Sreject).
Theorem A.2. (Kairouz et al., 2015; Lin et al., 2018; 2021) Let TP and FP denote the true positive
rate (1− type II error) and false positive rate (type I error) of Aopt respectively, their relation to
the total variation distance between the loss distributions DTV(P,Q) is quantified as follows (See
Kairouz et al. (2015) Appendix A for the derivation):

TP ≤ FP +min{DTV(P,Q), 1− FP} (9)

where P and Q denote the distribution of the training loss ℓ(θ,Dtrain) and the testing loss ℓ(θ,Dtrain),
respectively.

The ROC curve is obtained by plotting the largest achievable true positive (TP) rate on the vertical
axis against the false positive (FP) rate on the horizontal axis, while the AUC value corresponds to a
summation over all pairs of TP and FP.
Corollary A.2. The AUC value can be upper bounded as follows (Lin et al. (2021) Corollary 1):

AUC ≤ −1

2
DTV(P,Q)2 +DTV(P,Q) + 1/2 (10)

For ease of analysis, we then upper bound the total variation distance via the Hellinger distance,
which is symmetric and has a closed-form expression for common distributions such as Gaussian.
Theorem A.3. (Steerneman, 1983)The total variance distance can be upper bounded by the Hellinger
distance:

DTV(P,Q) ≤
√
2DH(P,Q) (11)

where the Hellinger distance satisfies 0 ≤ DH(P,Q) ≤ 1

For Gaussian distributions, the Hellinger distance has a closed form:

D2
H(P,Q) = 1−

√
2σ1σ2

σ2
1 + σ2

2

exp

(
−1

4

(µ1 − µ2)
2

σ2
1 + σ2

2

)
(12)

where µ1, µ2 denote the mean and σ1, σ2 denote the variance of P and Q.

Let c = σ2/σ1 denote the ratio of the training and testing loss variance, we see that DH(P,Q) is
fully characterized by: (i) the value of the training loss variance σ2

1 , (ii) the squared distance between
the mean (µ1 − µ2)

2, and (iii) the variance ratio c:

D2
H(P,Q) = 1−

√
2c

1 + c2︸ ︷︷ ︸
(∗)

exp

(
−1

4

(µ1 − µ2)
2

(1 + c2)σ2
1

)
︸ ︷︷ ︸

(∗∗)

(13)

Our approach decreases the (µ1 − µ2)
2 and increases σ2

1 (Section 5) as well, both of which lead to
a decrease of the Hellinger distance, and thus decreases the upper bound of the attacker AUC as
desired.
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It remains to consider how our approach will change c and how the change in c will affect the
Hellinger distance. First, we observe that c ≥ 1, i.e., the testing distribution has larger variance
than the training distribution (See Appendix C.10). Moreover, c gets closer to 1 when applying our
approach (See Figure 1 in the main paper). As a result, (∗) will increase (Corollary A.3) and (∗∗)
will decrease (Corollary A.4).

Corollary A.3. If c′ ≥ c ≥ 1, then
√

2c
1+c2 ≥

√
2c′

1+c′2

Proof. Let f(c) =
√

2c
1+c2 . We have f ′(c) = 1−c2√

2c(c2+1)3/2
. It is obvious that f has critical point at

c = 1, i.e., f ′(1) = 0 and f ′(c) ≤ 0.

Corollary A.4. For fixed value of µ1, µ2 and σ1, if c′ ≥ c ≥ 1, then

exp

(
−1

4

(µ1 − µ2)
2

(1 + c2)σ2
1

)
≤ exp

(
−1

4

(µ1 − µ2)
2

(1 + c′2)σ2
1

)
Proof. It is obvious as c occurs in the denominator inside the exponential term.

Additionally, we notice that the change in the (∗) dominates in most cases: the (∗∗) term commonly
has value within [0.9, 1.0], while the (∗) term changes from 10−3 to 1 when our approach is applied.
Therefore, under a Gaussian assumption of the loss distributions, our method can decrease the
Hellinger distance between the distributions, thereby reducing an upper bound of the attack AUC.

B EXPERIMENT SETUP

B.1 DATASETS

CIFAR-10 (Krizhevsky et al., 2009) is a dataset of 60k color images with shape 32× 32× 3. Each
image corresponds to a label of 10 classes which categorizes the object inside the image. Following
the standard preprocessing procedure 6, we normalize the image pixel value to have zero mean and
unit standard deviation.

CIFAR-100 (Krizhevsky et al., 2009) consists of 60k color images of size 32 × 32 × 3 in 100
classes. Same as for the CIFAR-10 dataset, we perform mean-subtraction and standardization.

CH-MNIST (Kather et al., 2016) contains 5000 greyscale images of 8 different types of tissues
from patients with colorectal cancer. We obtain the preprocessed dataset from Kaggle 7 and use
images of size 28×28 for our experiments. All images are normalized to [−1, 1].
Texas100 contains medical records of 67,330 patients published by the Texas Department of State
Health Services 8. Each patient’s record contains 6,169 binary features (such as diagnosis, generic
information, and procedures the patient underwent) and is labeled by its most suitable procedure
(among the 100 most frequent ones). We use the preprocessed data provided by Shokri et al. (2017);
Song & Mittal (2020)9.

Purchase100 is a dataset of customers’ shopping records released by the Kaggle Acquire Valued
Shoppers Challenge 10. We use the preprocessed version provided by Shokri et al. (2017); Song &
Mittal (2020)9, which contains 197,324 data samples. Each sample, representing one user’s purchase
history, consists of 600 binary features. Each feature denotes the presence of one product in the
corresponding user’s purchase history. The data is clustered into 100 classes of different purchase
styles. The classification task is to predict the purchase style given the 600 binary features.

We summarize all datasets in details in Table 3.

6 https://pytorch.org/hub/pytorch_vision_resnet/
7 https://www.kaggle.com/kmader/colorectal-histology-mnist
8 https://www.dshs.texas.gov/THCIC/Hospitals/Download.shtm
9 https://github.com/inspire-group/membership-inference-evaluation
10 https://www.kaggle.com/c/acquire-valued-shoppers-challenge
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Dataset Data type Feature type Feature
Ntotal

Ntrain/Ntest Ntrain/Ntest

dimension (target model) (shadow model)
CIFAR-10 color image numerical 3072 60000 12000 12000
CIFAR-100 color image numerical 3072 60000 12000 12000
CH-MNIST grayscale image numerical 784 5000 1000 1000
Texas100 medical record categorical 6169 67330 13466 13466
Purchase100 purchase record categorical 600 197324 39465 39464

Table 3: Summary of datasets. Ntotal denotes the total dataset size. Ntrain and Ntest are the size of
the training and testing set, respectively.

B.2 MODEL ARCHITECTURES

For CIFAR-10 and CIFAR-100 datasets, we use a 20-layer ResNet and an 11-layer VGG architec-
ture 11. For CH-MNIST, we adopt a 20-layer ResNet. And for the non-image datasets, we adopt the
same architecture as used in Nasr et al. (2018)12: a 4-layer fully-connected neural network with layer
size [1024, 512, 256, 100] for Purchase100, and a 5-layer fully-connected neural network with layer
size [2048, 1024, 512, 256, 100] for Texas100.

B.3 IMPLEMENTATION DETAILS

We apply SGD optimizer with momentum=0.9 and weight-decay=1e-4 by default. We set the initial
learning rate τ = 0.1 and drop the learning rate by a factor of 10 at each decay epoch 11. We
list below the decay epochs in square brackets and the total number of training epochs are marked
in parentheses: CIFAR-10 and CIFAR-100 [150,225] (300); CH-MNIST [40,60] (80); Texas100
and Purchase100 [50,100] (120). Additionally, we adopt the following techniques for improved
performance across heterogeneous data modalities: we restrict the scope of posterior flattening to
incorrect predictions for natural image datasets (CIFAR-10 and CIFAR-100); and we further suppress
the target posterior scores of ground-truth class pgt to small values (≤0.3) during the posterior
flattening step on non-image data (Texas100 and Purchase100). By default, no data augmentation is
applied.

B.4 REQUIRED RESOURCES

All our models and methods are implemented in PyTorch. Our experiments are conducted with
Nvidia Tesla V100 and Quadro RTX8000 GPUs. Our method introduces minimal changes and
negligible additional cost compared with vanilla training and thus can be flexibly integrated into any
deep learning framework without imposing specific constraints on the required hardware resources.

B.5 DEFENSE METHODS

Early-stopping. The basic idea behind Early-stopping is to truncate training before a model
starts to overfit. In our experiments, we save target models’ checkpoints at varying numbers of
training epochs and subsequently evaluate the attack AUC and test accuracy of each model check-
point. We set checkpoints at the following epochs: [25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275]
for CIFAR-10 and CIFAR-100 datasets; [5, 10, 15, 20, 25, 30, 40, 50] for CH-MNIST dataset;
[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110] for Texas100 and Purchase100 datasets.

Dropout. Dropout prevents co-adaptation of feature detectors by randomly masking out a set of
neurons in the networks, thereby alleviating model overfitting. In our experiments, we apply dropout
to the last fully-connected layer of each target model and evaluate across a wide range of dropout
rates (over [0.1, 0.3, 0.5, 0.7, 0.9]).

Label-smoothing. Label-smoothing prevents overconfident predictions by incorporating a regular-
ization term into the training objective that penalizes the distance (measured by the KL-divergence)
between the model predictions and the uniform distribution. The objective is formularized as follows

L = α ·DKL(U ∥ pθ(y|x)) + (1− α) · LCE(θ, z) (14)

11 https://github.com/bearpaw/pytorch-classification
12 https://github.com/SPIN-UMass/ML-Privacy-Regulization
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where DKL is the KL-divergence; U denotes the uniform distribution; pθ(y|x) denotes the output
prediction. α is a hyper-parameter with range [0, 1] that balances the cross-entropy loss LCE and the
regularization term. We vary the α across its full range for plotting the privacy-utility curves.

Confidence-penalty. Confidence-penalty regularizes models by penalizing low entropy output
distributions. This is achieved via an entropy regularization term in the objective:

L = −α ·H(pθ(y|x)) + LCE(θ, z) (15)

where H(pθ(y|x)) = −
C∑

c=1

pθ(y
c|x) log(pθ(yc|x)) (16)

H represents the entropy of the output prediction, and α is a hyper-parameter that controls the
importance of the entropy regularization term. Consistent with the original paper (Pereyra et al.,
2017), we vary the α over [0.1, 0.3, 0.5, 1.0, 2.0, 4.0, 8.0].

Distillation. Knowledge distillation stands for a general process of transferring knowledge from a
set of teacher model(s) to a student model. To focus our investigation on the effect of the distillation
operation itself, we use self-distillation (Zhang et al., 2019) in our experiments, i.e., we train the
student model to match a single teacher model with the same architecture. The objective for training
the student model (i.e., the target model) is:

L = αT 2 ·DKL(p̃θs(y|x) ∥ p̃θt(y|x)) + (1− α) · LCE(θ, z) (17)

where p̃θ(y|x)c =
exp(f(θ,x)c/T )∑
c′ exp(f(θ,x)

c′/T )
(18)

The KL-divergence term DKL targets at minimizing discrepancy between the softened student
p̃θs

(y|x) and teacher prediction p̃θt
(y|x). T denotes the temperature scaling factor that controls

the degree of softening. α is a hyper-parameter that balances the KL-divergence and the normal
cross-entropy LCE term. To determine the hyper-parameter that best describes the privacy-utility
trade-off, we conduct preliminary experiments and investigate the effect of α and T independently.
By fixing one and changing the other, we observe similar results in terms of the privacy-utility
trade-off. Following practical standards, we then fix the α=0.5 and vary the temperature T over
[1, 2, 5, 10, 20, 50, 100] for plotting the privacy-utility curves.

DP-SGD. DP-SGD enforces privacy guarantees by modifying the optimization process. It consists of
two steps: (i) clipping the gradients to have a L2-norm upper-bounded by C at each training step; (ii)
injecting random noise to the gradients before performing update steps. We adopt the implementation
provided by the Opacus library 13. We tune the clipping bound C when fixing the noise scale to 0.1,
as suggested by the official documents. To plot the privacy-utility curves, we vary the noise scale
with a fixed pre-selected clipping bound.

Memguard. Memguard modifies the output predictions of pre-trained target models during test-time,
i.e., output predictions are perturbed by adversarial noise to fool a surrogate attack model. Following
the official implementation14, we adopt the same architecture for the surrogate and the real NN attack
model, and use the complete logits prediction as input to the attack models. Each surrogate attack
model is trained on the target model’s predictions when inputting the target model’s training data
(used as member samples) and a separate hold-out set data (used as non-member samples). The
privacy-utility trade-off is fully determined by the magnitude of the adversarial noise (measured by
L1-norm). We plot the privacy-utility curves by increasing the noise magnitude from 0 until the NN
attack has been defended (i.e., attack AUC ≈ 0.5).

Adv-Reg. Adv-Reg incorporates an adversarial objective when training the target model: the target
model is trained to minimize a weighted sum of the cross-entropy loss and the adversarial loss (ob-
tained from a surrogate attack). Same as in Memguard, each surrogate attack model is trained on the
target model’s training data and a separate hold-out set data. We follow the official implementation12

and vary the weight α (=1.0 by default) of the adversarial loss across [0.8, 1.0, 1.2, 1.4, 1.6, 1.8] for
plotting the privacy-utility curves.

13 https://github.com/pytorch/opacus
14 https://github.com/jjy1994/MemGuard
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C ADDITIONAL RESULTS AND DISCUSSION

C.1 LIMITATIONS AND FUTURE WORKS

Although RelaxLoss is empirically proven effective for improving target models’ utility, it is generally
hard to explain such improvement, as understanding the generalization ability is still an open problem.
As an attempt, we conduct experiments on toy datasets and attribute the improvement to a flat decision
boundary (See Appendix C.11). A thorough investigation into how each individual components of
our approach affects generalization are left for our future works. In addition, the assumptions of
model parameters (Sablayrolles et al., 2019) which are made for the optimal attack demand further
validation.

C.2 CORRELATION BETWEEN LOSS VARIANCE AND ATTACK AUC

We plot the attack AUC values versus the training loss variance in Figure 6. Each point in the figure
corresponds to one target model trained with different defense mechanisms. We indeed observe a
negative correlation between the loss variance and the AUC value of both the black-box and white-box
attacks, which supports Section 5 in the main paper.
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Figure 6: Correlation between the training set loss variance and the MIA performance on CIFAR-10
(ResNet20). The Pearson’s correlation coefficients equal to: (a) -0.77 for black-box attacks; (b) -0.94
for white-box attacks; and -0.85 if considering black-box and white-box attacks together.

C.3 RELAXLOSS VS. ATTACKS

Supplementary to Table 1 in the main paper, Table 4 summarizes the top-1 training and test accuracy
as well as the generalization gap (i.e., difference between the top-1 training and test accuracy) of
target models with or without being defended via our method. We observe that our approach, as
desired, reduces the generalization gap and is still able to achieve high performance.

CIFAR-10
(ResNet20)

CIFAR-10
(VGG11)

CIFAR-100
(ResNet20)

CIFAR-100
(VGG11) CH-MNIST Texas100 Purchase100

train test gap train test gap train test gap train test gap train test gap train test gap train test gap
wo defense 100 70.5 29.5 100 73.8 26.2 100 33.2 66.8 100 41.4 58.6 99.0 77.1 21.9 99.9 52.3 47.6 100 89.1 10.9

with defense 87.0 73.8 13.2 99.5 74.4 25.1 52.7 35.1 17.6 99.7 41.4 58.3 90.1 78.4 11.7 67.1 55.3 11.8 99.8 89.1 10.7
∆ -13.0 3.3 -16.3 -0.5 0.6 -1.1 -47.3 1.9 -49.2 -0.3 0.0 -0.3 -8.9 1.3 -10.2 -32.8 3.0 -35.8 -0.2 0.0 -0.2

selected α 1 0.4 3 0.5 0.2 2.5 0.8

Table 4: The top-1 training and test accuracy as well as the generalization gap (in %) of the target
models with or without (wo) applying our defense. ∆ corresponds to the absolute difference after
applying our defend method (in %). We also include the selected value of α. This is supplementary
to Table 1 in the main paper.

In Table 5, we show the attack accuracy values on target models trained with and without (wo)
applying our defense method, which is supplementary to Table 1 and Figure 4 in the main paper.
Same as in previous work (Song & Mittal, 2020)9, the attack’s decision threshold is selected to be the
one that yields the best attack accuracy on undefended shadow models. We observe that our approach
effectively reduces the attack accuracy to a random-guessing level (around 50%) for most cases. In
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Entropy M-Entropy Loss NN Grad-x ℓ1 Grad-x ℓ2 Grad-w ℓ1 Grad-w ℓ2

CIFAR-10
(ResNet20)

wo defense 86.5 87.3 86.9 82.5 87.5 87.5 87.8 87.8
with defense 50.0 50.0 50.0 49.9 50.0 50.0 49.9 50.0

∆ -42.2 -42.7 -42.5 -39.5 -42.9 -42.9 -43.2 -43.1

CIFAR-10
(VGG11)

wo defense 80.1 80.7 80.6 76.1 81.5 81.3 82.7 82.9
with defense 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0

∆ -37.6 -38.0 -38.0 -34.3 -38.7 -38.5 -39.5 -39.7

CIFAR-100
(ResNet20)

wo defense 91.8 92.1 92.6 87.0 93.7 93.7 94.6 94.7
with defense 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0

∆ -45.5 -45.7 -46.0 -42.5 -46.6 -46.6 -47.1 -47.2

CIFAR-100
(VGG11)

wo defense 97.1 97.5 97.4 98.1 98.5 98.4 98.9 98.9
with defense 50.0 50.0 50.0 50.6 50.1 50.1 50.6 50.4

∆ -48.5 -48.7 -48.7 -48.4 -49.1 -49.1 -48.8 -49.0

CH-MNIST
wo defense 55.5 56.7 56.7 63.6 67.6 67.7 67.1 66.4

with defense 49.9 52.3 50.9 50.3 52.2 51.7 50.7 49.9
∆ -10.1 -7.8 -10.2 -20.9 -22.8 -23.6 -24.4 -24.8

Texas100
wo defense 70.3 79.0 79.0 63.8 78.5 78.5 78.4 78.3

with defense 50.0 50.0 50.0 50.0 52.0 53.0 51.1 50.0
∆ -28.9 -36.7 -36.7 -21.6 -33.8 -32.5 -34.8 -36.1

Purchase100
wo defense 63.9 64.8 64.7 62.6 65.8 65.7 65.8 65.7

with defense 50.0 50.0 50.0 49.6 52.3 52.2 50.1 50.1
∆ -21.8 -22.8 -22.7 -20.8 -20.5 -20.5 -23.9 -23.9

Table 5: The attacker accuracy (in %) evaluated on the target models with and without (wo) applying
our defense. ∆ corresponds to the relative difference after applying our defend method (in %). All
the thresholds are selected with undefended shadow models trained with shadow dataset.

particular, we find that the selected decision thresholds is highly biased in certain cases s.t. all the
queried samples are predicted to be positive (or negative), which leads to exactly 50% accuracy.

C.4 ADAPTIVE ATTACK

In Table 6, we show the accuracy of adaptive (a.) attacks on target models trained with (w/) applying
our defense method, which is supplementary to Section 6.4 in the main paper. For thresholding-based
attacks, the attack’s decision threshold is selected to be the one that yields the best attack accuracy
on the shadow models (which is trained with exactly the same configuration as our defended target
models in Table 1). And for the NN-based attack, we use the complete logits prediction from the
pre-trained shadow models as features to train the adaptive attack models (modeled as a NN). We
observe that our approach consistently reduces the attack accuracy for all cases, though the reduction
is less significant compared to non-adaptive attacks shown in Table 5.

Entropy M-Entropy Loss NN Grad-x ℓ1 Grad-x ℓ2 Grad-w ℓ1 Grad-w ℓ2
CIFAR10

(ResNet20)
w/ defense (a.) 52.5 56.0 56.0 54.2 53.5 53.3 54.0 53.8

∆ -39.3 -35.9 -35.6 -34.3 -38.9 -39.1 -38.5 -38.7
CIFAR10
(VGG11)

w/ defense (a.) 64.4 68.2 67.8 66.6 66.2 66.4 67.4 68.0
∆ -19.6 -15.5 -15.9 -12.5 -18.8 -18.3 -18.5 -18.0

CIFAR100
(ResNet20)

w/ defense (a.) 52.2 57.8 57.8 53.6 50.1 50.1 50.0 50.1
∆ -43.1 -37.2 -37.6 -38.4 -46.5 -46.5 -47.1 -47.1

CIFAR100
(VGG11)

w/ defense (a.) 78.9 84.2 84.0 83.4 78.2 78.2 81.6 82.2
∆ -18.7 -13.6 -13.8 -15.0 -20.6 -20.5 -17.5 -16.9

CH-MNIST w/ defense (a.) 50.7 53.9 53.4 50.9 55.8 55.7 56.6 56.4
∆ -8.6 -4.9 -5.8 -20.0 -17.5 -17.7 -15.6 -15.1

Texas100 w/ defense (a.) 51.6 53.8 53.8 52.1 51.9 51.9 51.8 53.4
∆ -26.6 -31.9 -31.9 -18.3 -33.9 -33.9 -33.9 -31.8

Purchase100 w/ defense (a.) 54.0 54.8 54.8 54.5 55.4 55.4 55.6 56.0
∆ -15.5 -15.4 -15.3 -12.9 -15.8 -15.7 -15.5 -14.8

Table 6: The accuracy (in %) of adaptive (a.) attacks evaluated on the target models with (w/)
applying our defense. ∆ corresponds to the relative difference (in %) attack accuracy when applying
our defend method compared to vanilla training. The selected target models are the same as in
Table 1.

C.5 GENERALIZATION GAP

We show the training and testing accuracy (and the generalization gap) when applying RelaxLoss
with varying value of α in Figure 7. We observe that increasing the value of α will reduce the
generalization gap. Moreover, RelaxLoss with a reasonable value of α can even improves the test
accuracy of vanilla training.
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Figure 7: Training and testing accuracy (y-axis) with varying value of α (x-axis) on CIFAR-10
(ResNet20) and CIFAR-100 (ResNet20) datasets. We plot the training and testing accuracy of vanilla
training (wo defense) in dashed lines for reference.

C.6 COMPATIBILITY WITH DATA AUGMENTATION

Additionally, we investigate the effectiveness of our approach when data augmentation is applied.
Following practical standard, we apply random cropping and random flipping when training the
target models on CIFAR-100 dataset. As illustrated in Figure 8, RelaxLoss is compatible with
standard data augmentation techniques: our approach enjoys the performance boost introduced by
data augmentation while retaining its effectiveness in defending MIAs.

0.5 0.6 0.7 0.8 0.9 1.0
Attack AUC

20

25

30

35

40

45

50

Grad-w `2

0.5 0.6 0.7 0.8 0.9 1.0
Attack AUC

20

25

30

35

40

45

50

Grad-x `2

0.5 0.6 0.7 0.8 0.9 1.0
Attack AUC

20

25

30

35

40

45

50

M-Entropy

0.5 0.6 0.7 0.8 0.9 1.0
Attack AUC

20

25

30

35

40

45

50

Entropy

0.5 0.6 0.7 0.8 0.9 1.0
Attack AUC

20

25

30

35

40

45

50

Loss

0.5 0.6 0.7 0.8 0.9 1.0
Attack AUC

20

25

30

35

40

45

50

T
es

t
A

cc
ur

ac
y

NN

Ours (aug) Ours no defense (aug) no defense ideal defense

Figure 8: Effect of data augmentation (denoted as “aug") on CIFAR-100 (ResNet20). When jointly
applied with data augmentation, our approach shows consistent effectiveness in improving the MIA
resistance and model utility.

C.7 COMPUTATIONAL COMPLEXITY

The additional computation cost of RelaxLoss scales as O(BC) (B: batch size; C: number of
classes), which includes: (i) softlabel construction of cost O(BC); and (ii) computation of the
cross-entropy loss on the softlabel O(BC). Note that we reuse the prediction pi generated by the
previous forward-pass and thus no additional forward (nor backward) pass is required. Compared to
the forward and backward pass, which is of magnitude at least O(BNL) (N : number of neurons per
layer; L: number of layers), the additional costs of RelaxLoss are negligible as NL (roughly the total
amount of neurons of the whole network) is much larger than C (the number of neurons of the last
layer).

C.8 EFFECT ON DIFFERENT CLASSES OF INDIVIDUALS

To analyze the effect of RelaxLoss on different individuals, we conduct additional experiments on
Texas and Purchase datasets which consist of 100 classes with non-uniform class distribution (i.e.,
the proportion of each class ranges from 0.35% to 4.5% for Texas, and 0.05%-2.6% for Purchase)
and evaluate the attack performance on each class separately.

In Table 7, we show the 10 highest Attack AUC (in increasing order) among all the classes, which
can be regarded as the estimated worst-case privacy risk of different classes of individuals. As can be
seen from the tables, applying our defense method effectively reduces the Top-10 Attack AUC (i.e.,
worst-case privacy risk), and the effectiveness is consistent on each dataset across different attack
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methods, with which we conclude that our method, despite the nonuniformity, does defend MIAs for
different individuals.

(a) Texas
Atttack methods with/wo defense Top-10 Attack AUC

Loss wo defense 0.985, 0.987, 0.988, 0.989, 0.994, 0.994, 0.995, 0.996, 0.998, 0.999
with defense 0.717 , 0.719, 0.721, 0.722, 0.724, 0.739, 0.741, 0.743, 0.752, 0.761

Entropy wo defense 0.846, 0.847, 0.851, 0.851, 0.854, 0.864, 0.865, 0.868, 0.879, 0.880
with defense 0.617, 0.619, 0.625, 0.625, 0.636, 0.636, 0.648, 0.679, 0.733, 0.747

M-Entropy wo defense 0.985, 0.987, 0.989, 0.990, 0.992, 0.993, 0.994, 0.996, 0.997, 0.999
with defense 0.717, 0.718, 0.722, 0.722, 0.724, 0.741, 0.742, 0.742, 0.754, 0.761

Grad-x l2 wo defense 0.837, 0.837, 0.844, 0.848, 0.850, 0.852, 0.859, 0.865, 0.903, 0.943
with defense 0.644, 0.650, 0.653, 0.655, 0.657, 0.666, 0.679, 0.691, 0.723, 0.744

Grad-w l2 wo defense 0.850, 0.852, 0.853, 0.856, 0.862, 0.862, 0.863, 0.866, 0.867, 0.874
with defense 0.627, 0.631, 0.632, 0.632, 0.633, 0.634, 0.643, 0.644, 0.661, 0.663

(b) Purchase
Atttack methods with/wo defense Top-10 Attack AUC

Loss wo defense 0.699, 0.709, 0.715, 0.719, 0.727, 0.731, 0.735, 0.738, 0.763, 0.875
with defense 0.663, 0.666, 0.671, 0.672, 0.684, 0.692, 0.694, 0.701, 0.705, 0.722

Entropy wo defense 0.692, 0.697, 0.714, 0.714, 0.718, 0.724, 0.725, 0.725, 0.747, 0.868
with defense 0.651, 0.651, 0.654, 0.657, 0.658, 0.673, 0.678, 0.681, 0.695, 0.711

M-Entropy wo defense 0.699, 0.711, 0.716, 0.720, 0.727, 0.731, 0.734, 0.739, 0.765, 0.875
with defense 0.663, 0.666, 0.671, 0.672, 0.684, 0.693, 0.694, 0.701, 0.705, 0.721

Grad-x l2 wo defense 0.708, 0.725, 0.730, 0.733, 0.736, 0.738, 0.742, 0.747, 0.777, 0.897
with defense 0.653, 0.662, 0.662, 0.667, 0.667, 0.669, 0.672, 0.684, 0.696, 0.697

Grad-w l2 wo defense 0.662, 0.664, 0.665, 0.666, 0.666, 0.668, 0.670, 0.671, 0.681, 0.710
with defense 0.629, 0.629, 0.632, 0.634, 0.634, 0.638, 0.639, 0.654, 0.655, 0.663

Table 7: Top-10 Attack AUC among 100 label classes on (a) Texas and (b) Purchase with and without
(wo) applying our defense. The AUC values are shown in increasing order.

C.9 PRIVACY-UTILITY CURVES

In this section, we include detailed results with regard to various datasets and different target models’
architectures: we show results on CIFAR-10 dataset with VGG11 architecture in Figure 9; CIFAR-100
dataset with VGG11 architecture in Figure 10; CH-MNIST with ResNet20 architecture in Figure 11;
Texas100 with MLP architecutre in Figure 12; Purchase100 with MLP architecutre in Figure 13.

We observe that while baseline approaches are effective for at most one data modality, our approach is
the only one that is consistently effective in defending MIAs, across all different datasets and model
architectures.

Natural Images. See Figure 3(a)-3(b) in main paper, and Figure 9-10: for natural image datasets
(CIFAR-10 and CIFAR-100), DP-SGD is the best baseline method in terms of defending MIAs and
preserving model utility, but is inferior to RelaxLoss as our method consistently achieve better test
accuracy (model utility) across the full range of achievable privacy level.

Among all regularization-based defense methods, Early-stopping is the only one that exhibits notice-
able effects in reducing attack AUCs. In comparison, our approach can achieve the same level of
defense effectiveness with a much better model utility. Moreover, our approach can further decrease
the attack AUC to a random-guessing level, which is not achievable by Early-stopping.

Memguard and Adv-Reg, previous state-of-the-art defense mechanisms specifically designed for
MIAs, are highly effective in defending NN-based attack but generally lose their effectiveness for
other types of attacks. In comparison, our approach shows much better defense effectiveness for all
types of attacks while achieving better model utility at the same time.

Gray-scale Medical Images See Figure 11: for gray-scale medical image (CH-MNIST), our
approach is comparable with the best baseline methods (i.e., Confidence-penalty), as both approaches
are able to reduce the MIAs to a random-guessing level while preserving the model utility.
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Figure 9: Comparisons of all defense mechanisms on CIFAR-10 dataset (VGG11). We set the
clipping bound C = 0.5 and vary the noise scale over 0.01-0.45 for DP-SGD. We vary the noise
magnitude across 0-20 for Memguard.
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Figure 10: Comparisons of all defense mechanisms on CIFAR-100 dataset (VGG11). We set
the clipping bound C=1.0 and vary the noise scale over 0.01-0.3 for DP-SGD. We vary the noise
magnitude across 0-400 for Memguard.

In comparision, DP-SGD is significantly worse than our approach for this data modality, as it
inevitably degrades the model utility.

Memguard and Adv-Reg are still highly effective in defending NN-based attack. Moreover, Mem-
guard is able to defend black-box MIAs to a random-guessing level without degrading the model
utility, but is not applicable to white-box attacks. In contrast, our approach is applicable to all attacks,
and achieves comparable (or better) effectiveness for black-box attacks.
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Figure 11: Comparisons of all defense mechanisms on CH-MNIST dataset. We set the clipping
bound C=5.0 and vary the noise scale over 0.001-0.5 for DP-SGD. We vary the noise magnitude
across 0-50 for Memguard.

Binary Medical and Transaction Records. See Figure 12-13: for binary medical and transaction
records (Texas100 and Purchase100), Label-smoothing performs generally the best among all baseline
methods. Compared to our approach, Label-smoothing can achieve superior model utility when
the Attack AUC is of range around 0.65-0.8 on Texas100 and 0.55-0.65 on Purchase100. However,
our approach is able to reduce the attack AUC to around the random-guessing level, which is not
always possible for Label-smoothing (white-box attacks on Purchase100, black-box attacks on both
datasets).

DP-SGD exhibits unexpected results for these two datasets: small noise scale results in both lower
Attack AUC and higher model utility, which is contradictory to the common belief that small-scale
noise only provides weak privacy guarantee and thus the Attack AUC will remain high. We conjecture
that there exists a non-negligible gap between the worst-case privacy guarantee that provided by the
theoretical privacy analysis and the real-world attack performance in practice. Especially for the
small-scale noise case, the privacy cost ϵ is meaninglessly large and cannot faithfully reflect the risk
when facing practical MIAs. We tried varying the noise scale in the experiments: by decreasing
the noise scale, we find DP-SGD cannot reduce the Attack AUC to random-guessing level, while
by increasing the noise scale, the utility soon drops significantly. In comparison, our approach
consistently yields better privacy-utility trade-off.
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Figure 12: Comparisons of all defense mechanisms on Texas100 dataset. We set the clipping bound
C=1.0 and vary the noise scale over 0.001-0.5 for DP-SGD. We vary the noise magnitude across
0-500 for Memguard.
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Figure 13: Comparisons of all defense mechanisms on Purchase100 dataset. We set the clipping
bound C=1.0 and vary the noise scale over 10−4-0.4 for DP-SGD. We vary the noise magnitude
across 0-300 for Memguard.
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C.10 LOSS HISTOGRAMS

To better understand the effect of each defense method, we additionally plot the loss histograms
when applying different defense methods on target models with a ResNet20 architecture trained on
CIFAR-10 dataset in Figure 14-20. In the parentheses of each subtitle, we show the hyper-parameter
values corresponding to each subfigure from left to right.

We observe that: (i) Regularization techniques in general have limited effects in reducing the gap
between the training and testing loss distributions. (ii) Unlike our approach (See Figure 1 in the main
paper), baseline methods are generally not able to increase the training loss variance nor closing the
gaps between the member and non-member distributions, which explains the superior performance
of our approach in defending various types of MIAs. (iii) By setting a relatively large noise scale,
DP-SGD is able to increase the training loss variance and reducing the gap between the training and
testing loss values (See last column of Figure 17). However, the large scale of noise dampen the
learning signal in this case, leading to a non-negligible utility drop.
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Figure 14: Loss histograms when applying Label-smoothing (α = 0.2,0.4,0.6,0.8).
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Figure 15: Loss histograms when applying Dropout (dropout rate = 0.1,0.5,0.7,0.9)
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Figure 16: Loss histograms when applying Confidence-penalty (α = 0.1,0.5,1.0,2.0)
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Figure 17: Loss histograms when applying DP-SGD (noise scale = 0.01,0.05,0.1,0.5)
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Figure 18: Loss histograms when applying Adv-Reg (α = 0.8,1.0,1.2,1.4)
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Figure 19: Loss histograms when applying Distillation (T = 1,10,50,100)
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Figure 20: Loss histograms when applying Distillation Early-stopping (ep = 25,50,75,100).
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C.11 ANALYSIS OF MODEL GENERALIZATION

As supplementary to Section 7 of our main paper, we show results of toy experiments that investigate
the impact of our approach on model generalization. We visualize the prediction scores and the
decision boundaries in Figure 21. In contrast to vanilla training that assigns high confidence scores on
hard examples near the decision boundary, our approach can soften the decision boundaries, leading
to a large area with low (and well-calibrated) predicted confidence scores. In line with Zhang et al.
(2017); Pereyra et al. (2017), we conjecture that the flatness of decision boundaries improves model
generalization, while an in-depth analysis is left as future work.

Input data Vanilla training Ours

Input data Vanilla training Ours

Input data Vanilla training Ours

Input data Vanilla training Ours

Figure 21: Visualization of target models’ prediction scores and decision boundaries. The training
samples are shown in solid colors and testing points are semi-transparent.
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