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Abstract

We study a new problem setting of information001
extraction (IE), referred to as text-to-table. In002
text-to-table, given a text, one creates a table003
or several tables expressing the main content004
of the text, while the model is learned from005
text-table pair data. The problem setting dif-006
fers from those of the existing methods for IE.007
First, the extraction can be carried out from008
long texts to large tables with complex struc-009
tures. Second, the extraction is entirely data-010
driven, and there is no need to explicitly de-011
fine the schemas. As far as we know, there has012
been no previous work that studies the prob-013
lem. In this work, we formalize text-to-table014
as a sequence-to-sequence (seq2seq) problem.015
We first employ a seq2seq model fine-tuned016
from a pre-trained language model to perform017
the task. We also develop a new method018
within the seq2seq approach, exploiting two019
additional techniques in table generation: table020
constraint and table relation embeddings. We021
consider text-to-table as an inverse problem of022
the well-studied table-to-text, and make use of023
four existing table-to-text datasets in our exper-024
iments on text-to-table. Experimental results025
show that the vanilla seq2seq model can out-026
perform the baseline methods of using relation027
extraction and named entity extraction. The028
results also show that our method can further029
boost the performances of the vanilla seq2seq030
model. We further discuss the main challenges031
of the proposed task. The code and data will032
be made publicly available.033

1 Introduction034

Information extraction (IE) is a task that aims to035

extract information of interest from text data and036

represent the extracted information in a structured037

form. Traditional IE tasks include named entity038

recognition which recognizes entities and their039

types (Huang et al., 2015; Ma and Hovy, 2016;040

Lample et al., 2016; Devlin et al., 2019), relation ex-041

traction which identifies the relationships between042

Figure 1: An example of text-to-table from the Ro-
towire dataset. The text is a report of a basketball game,
and the tables are the scores of the teams and players.

entities (Zheng et al., 2017; Zeng et al., 2018; Luan 043

et al., 2019; Zhong and Chen, 2020), etc. Since the 044

results of IE are structured, they can be easily used 045

by computer systems in different applications such 046

as text mining. 047

In this work, we study IE in a new setting, re- 048

ferred to as text-to-table. First, the system receives 049

a training dataset containing text-table pairs. Each 050

text-table pair contains a text and a table (or tables) 051

representing information extracted from the text. 052

The system learns a model for information extrac- 053

tion. Next, the system employs the learned model 054

to conduct information extraction from a new text 055

and outputs the result in a table (or tables). Figure 056

1 gives an example of text-to-table, where the in- 057

put (above) is a report of a basketball game, and 058

the output (below) is two tables summarizing the 059

scores of the teams and players from the input. 060

Text-to-table is unique compared to the tradi- 061

tional IE approaches. First, it is mainly designed 062

to extract structured data in a complex form from a 063
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long text. As in the example in Figure 1, extraction064

of information is performed from the entire docu-065

ment. The extracted information contains multiple066

types of scores of teams and players in a basket-067

ball game structured in table format. Second, the068

schemas for extraction are implicitly included in069

the training data, and there is no need to explic-070

itly define the schemas. This reduces the need for071

manual efforts for schema design and annotations.072

Our work is inspired by research on the so-called073

table-to-text (or data-to-text) problem, which is the074

task of generating a description for a given table.075

Table-to-text is useful in applications where the076

content of a table needs to be described in natural077

language. Thus, text-to-table can be regarded as an078

inverse problem of table-to-text. However, there079

are also differences. Most notably, their applica-080

tions are different. Text-to-table can be applied to081

document summarization, text mining, etc.082

In this work, we formalize text-to-table as a083

sequence-to-sequence (seq2seq) task. More specif-084

ically, we translate the text into a sequence repre-085

sentation of a table (or tables), where the schema086

of the table is implicitly contained in the represen-087

tation. We also build the seq2seq model on top of088

a pre-trained language model, which is the state-089

of-the-art approach for seq2seq tasks (Lewis et al.,090

2019; Raffel et al., 2020). Although the approach091

is a natural application of existing technologies, as092

far as we know, there has been no previous study093

to investigate to what extent the approach works.094

We also develop a new method for text-to-table095

within the seq2seq approach with two additional096

techniques, table constraint and table relation em-097

beddings. Table constraint controls the creation098

of rows in a table and table relation embeddings099

affect the alignments between cells and their row100

headers and column headers. Both are to make the101

generated table well-formulated.102

The approach to IE based on seq2seq has al-103

ready been proposed. Methods for conducting in-104

dividual tasks of relation extraction (Zeng et al.,105

2018; Nayak and Ng, 2020), named entity recogni-106

tion (Chen and Moschitti, 2018; Yan et al., 2021),107

and event extraction (Lu et al., 2021) have been108

developed. Methods for jointly performing mul-109

tiple tasks of named entity recognition, relation110

extraction, and event extraction have also been de-111

vised (Paolini et al., 2021). Most of the methods112

exploit suitable pre-trained models such as BERT.113

However, all the existing methods rely on pre-114

defined schemas for extraction. Moreover, their 115

models are designed to extract information from 116

short texts, rather than long texts, and extract infor- 117

mation with simple structures (such as an entity and 118

its type), rather than information with complicated 119

structures (such as a table). 120

We conduct extensive experiments on four 121

datasets. Results show that the vanilla seq2seq 122

model fine-tuned from BART (Lewis et al., 2019) 123

can outperform the state-of-the-art IE models fine- 124

tuned from BERT (Devlin et al., 2019; Zhong and 125

Chen, 2020). Furthermore, results show that our 126

proposed approach to text-to-table with the two 127

techniques can further improve the extraction accu- 128

racies. We also summarize the challenging issues 129

with the seq2seq approach to text-to-table for future 130

research. 131

Our contributions are summarized as follows: 132

1. We propose the new task of text-to-table for 133

IE. We derive four new datasets for the task 134

from existing datasets. 135

2. We formalize the task as a seq2seq problem 136

and propose a new method within the seq2seq 137

approach using the techniques of table con- 138

straint and table relation embeddings. 139

3. We conduct extensive experiments to verify 140

the effectiveness of the proposed approach. 141

2 Related Work 142

Information Extraction (IE) is a task of extract- 143

ing information (structured data) from a text (un- 144

structured data). For example, named entity recog- 145

nition (NER) recognizes entities appearing in a text. 146

Relation extraction (RE) identifies the relationships 147

between entities. Event extraction (EE) discovers 148

events occurring in a text. 149

Traditionally, researchers formalize the task as 150

a language understanding problem. The state-of- 151

the-art methods for NER perform the task on the 152

basis of the pre-trained language model BERT (De- 153

vlin et al., 2019). The pipeline approach to RE 154

divides the problem into NER and relation classi- 155

fication, and conducts the two sub-tasks in a se- 156

quential manner (Zhong and Chen, 2020), while 157

the end-to-end approach jointly carries out the two 158

sub-tasks (Zheng et al., 2017; Zeng et al., 2018; 159

Luan et al., 2019). The state-of-the-art methods for 160

EE also employ BERT and usually jointly train the 161

models with other tasks such as NER and RE (Wad- 162

den et al., 2019; Zhang et al., 2019; Lin et al., 2020). 163

All the methods assume the use of pre-defined 164
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schemas (e.g., entity types for NER, entity and165

relation types for RE, and event templates for EE).166

Besides, most methods are designed for extraction167

from short texts. Therefore, existing methods for168

IE cannot be directly applied to text-to-table.169

Another series of related work is open informa-170

tion extraction (OpenIE), which aims to extract in-171

formation from texts without relying on explicitly172

defined schemas (Banko et al., 2007; Wu and Weld,173

2010; Mausam et al., 2012; Stanovsky et al., 2018;174

Zhan and Zhao, 2020). However, OpenIE aims to175

extract information with simple structures (i.e., re-176

lation tuples) from short texts, and the methods in177

OpenIE cannot be directly applied to text-to-table.178

IE is also conducted at document level, re-179

ferred to as doc-level IE. For example, some NER180

methods directly perform NER on a long docu-181

ment (Strubell et al., 2017; Luo et al., 2018), and182

others encode each sentence in a document, use183

attention to fuse document-level information, and184

perform NER on each sentence (Hu et al., 2020;185

Xu et al., 2018). There are also RE methods that186

predict the relationships between entities in a docu-187

ment (Yao et al., 2019; Nan et al., 2020a). However,188

existing doc-level IE approaches usually do not189

consider extraction of complex relations between190

many items.191

Sequence-to-sequence (seq2seq) is the general192

problem of transforming one text into another193

text (Sutskever et al., 2014; Bahdanau et al., 2014),194

which includes machine translation, text summa-195

rization, etc. The use of the pre-trained language196

models of BART (Lewis et al., 2019) and T5 (Raf-197

fel et al., 2020) can significantly boost the perfor-198

mances of seq2seq, such as machine translation199

(Lewis et al., 2019; Raffel et al., 2020; Liu et al.,200

2020) and text summarization (Lewis et al., 2019;201

Raffel et al., 2020; Huang et al., 2020).202

Recently, some researchers also formalize the IE203

problems as seq2seq, that is, transforming the input204

text into an internal representation. One advantage205

is that one can employ a single model to extract206

multiple types of information. Results show that207

this approach works better than or equally well as208

the traditional approach of language understanding,209

in RE (Zeng et al., 2018; Nayak and Ng, 2020),210

NER (Chen and Moschitti, 2018; Yan et al., 2021)211

and EE (Lu et al., 2021). Methods for jointly per-212

forming multiple tasks including NER, RE and EE213

have also been devised (Paolini et al., 2021).214

Data-to-text aims to generate natural language215

descriptions from the input structured data such 216

as sport commentaries (Wiseman et al., 2017). 217

The structured data is usually represented as ta- 218

bles (Wiseman et al., 2017; Thomson et al., 2020; 219

Chen et al., 2020), sets of table cells (Parikh 220

et al., 2020; Bao et al., 2018), semantic represen- 221

tations (Novikova et al., 2017), or sets of relation 222

triples (Gardent et al., 2017; Nan et al., 2020b). The 223

task requires the model to select the salient informa- 224

tion from the data, organize it in a logical order, and 225

generate an accurate and fluent natural language 226

description (Wiseman et al., 2017). Data-to-text 227

models usually adopt the encoder-decoder archi- 228

tecture. The encoders are specifically designed to 229

model the input data, such as multi-layer percep- 230

tron (Puduppully et al., 2019a,b), recurrent neural 231

network (Juraska et al., 2018; Liu et al., 2018; Shen 232

et al., 2020), graph neural network (Marcheggiani 233

and Perez-Beltrachini, 2018; Koncel-Kedziorski 234

et al., 2019), or Transformer (Gong et al., 2019). 235

3 Problem Formulation 236

As shown in Figure 1, Text-to-table takes a text 237

as input and produces a table or several tables to 238

summarize the content of the text. 239

Formally, the input is a text denoted as x = 240

x1, x2, · · · , x|x|. The output is one table or multi- 241

ple tables. For simplicity suppose that there is only 242

one table denoted as T . Further suppose that T has 243

nr rows and nc columns. Thus, T contain nr × nc 244

cells, where the cell of row i and column j is a 245

sequence of words ti,j = ti,j,1, ti,j,2, ..., ti,j,|ti,j |. 246

There are three types of table: one that has both 247

column headers and row headers, one that has only 248

column headers, and one that only has row headers. 249

For example, the player table in Figure 1 has both 250

column headers (“Assists”, “Points”, etc) and row 251

headers (“Al Horford”, “Isaish Thomas”, etc). We 252

let t1,j , j = 2, 3, · · · , nc to denote the column 253

headers, let ti,1, i = 2, 3, · · · , nr to denote the 254

row headers, and let t1,j , i = 2, 3, · · · , nr, j = 255

2, 3, · · · , nc to denote the non-header cells of the 256

table. For example, in the player table in Figure 1, 257

t1,2 = Assists, t2,1 = Al Horford, and t2,2 = 5. 258

The information extracted via text-to-table can 259

be leveraged in many different applications such 260

as document summarization and text mining. For 261

example, in Figure 1, one can quickly obtain the 262

key information of the text by simply looking at 263

the tables summarized from the text. 264

There are differences between text-to-table and 265
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Figure 2: The sequence representation of the player ta-
ble in Figure 1. The blue items are separation tokens
〈s〉 and the yellow items are new-line tokens 〈n〉.

traditional IE settings. As can be seen from the266

example in Figure 1, extraction of information is267

performed from the entire document. The extracted268

information (structured data) is in a complex form,269

specifically multiple types of scores of teams and270

players in a basketball game. Furthermore, the271

data-driven approach is taken, and the schemas of272

the tables do not need to be explicitly defined.273

4 Our Method274

We develop a method for text-to-table using the275

seq2seq approach and the two techniques of table276

constraint and table relation embeddings.277

4.1 Vanilla Seq2Seq278

We formalize text-to-table as a sequence-to-279

sequence (seq2seq) problem (Sutskever et al., 2014;280

Bahdanau et al., 2014). Specifically, given an in-281

put text, we generate a sequence representing the282

output table (or tables). We introduce two special283

tokens, a separation token denoted as “〈s〉” and284

a new-line token denoted as “〈n〉”. For a table t,285

we represent each row ti with a sequence of cells286

delimited by separation tokens:287

ti = 〈s〉, ti,1, 〈s〉, · · · , 〈s〉, ti,nc , 〈s〉. (1)288

We represent the entire table with a sequence of289

rows delimited by new-line tokens:290

t = 〈s〉, t1,1, 〈s〉, · · · , 〈s〉, t1,nc , 〈s〉, 〈n〉, (2)291

〈s〉, t2,1, 〈s〉, · · · , 〈s〉, t2,nc , 〈s〉, 〈n〉,292

· · · · · ·293

〈s〉, tnr,1, 〈s〉, · · · , 〈s〉, tnr,nc , 〈s〉294

Figure 2 shows the sequence of the player table295

in Figure 1. When there are multiple tables, we296

create a sequence of tables using the captions of297

the tables as delimiters.298

Let x = x1, · · · , x|x| and y = y1, · · · , y|y| de-299

note the input and output sequences respectively.300

In inference, the model generates the output se-301

quence based on the input sequence. The model302

Figure 3: Construction of relation vectors. Red and yel-
low arrows represent alignments with column headers
and row headers respectively. The relation vectors re-
garding tokens “11” and one 〈s〉 are illustrated.

conducts generation in an auto-regressive way, 303

which generates one token at each step based on 304

the tokens it has generated so far. In training, 305

we learn the model based on the text-table pairs 306

{(x1,y1), (x2,y2), · · · , (xn,yn)}. The objective 307

of learning is to minimize the cross-entropy loss. 308

We refer to the method described above as 309

“vanilla seq2seq”. There is no guarantee, however, 310

that the output sequence of vanilla seq2seq rep- 311

resents a well-formulated table. We add a post- 312

processing step to ensure that the output sequence 313

is a table. The post-processing method takes the 314

first row generated as well-defined, deletes extra 315

cells at the end of the other rows and inserts empty 316

cells at the end of the other rows. 317

4.2 Techniques 318

We develop two techniques to improve table gen- 319

eration, called table constraint and table relation 320

embeddings. We use “our method” to denote the 321

seq2seq approach with these two techniques.1 322

Table Constraint 323

Our method exploits a constraint in the decoding 324

process to ensure that the output sequence repre- 325

sents a well-formulated table. Specifically, our 326

method calculates the number of cells in the first 327

row it generates, and then forces the following rows 328

to contain the same number of cells. 329

Table Relation Embeddings 330

Our method also incorporates table relation em- 331

beddings including row relation embeddings and 332

column relation embeddings into the self-attention 333

of the Transformer decoder. Given a token in a non- 334

header cell, the row relation embeddings τKr and 335

τVr indicate which row header the token is aligned 336

to, and the column relation embeddings τKc and τVc 337

indicate which column header the token is aligned 338

to. 339

1Our methods is able to generate the output containing
multiple tables. This is discussed in Appendix C.
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Let us consider the self-attention function in one340

block of Transformer decoder: at each position,341

self-attention only attends to the previous positions.342

For simplicity, let us only consider one head in343

the self-attention. At the t-th position, the input344

of self-attention is the sequence of representations345

z = (z1, · · · , zt) and the output is the sequence of346

representations h = (h1, · · · , ht), where zi ∈ Rd347

and hi ∈ Rd are the representations at the i-th348

position (i = 1, · · · , t).349

In a conventional Transformer decoder, self-350

attention is defined as follows,351

hi =

 i∑
j=1

αij(zjW
V )

WO, (3)352

αij =
eeij∑i
j=1 e

eij
, eij =

(ziW
Q)(zjW

K)T
√
dk

, (4)353

i = 1, · · · , t, j = 1, · · · , i354

where WQ,WK ,W V ∈ Rd×dk are the query, key,355

and value weight matrices respectively, and WO ∈356

Rdk×d is the output weight matrix.357

In our method, self-attention is defined as:358

hi =

 i∑
j=1

αij(zjW
V + rVij )

WO, (5)359

αij =
eeij∑i
j=1 e

eij
, eij =

(ziW
Q)(zjW

K + rKij )
T

√
dk

,

(6)

360

i = 1, · · · , t, j = 1, · · · , i361

where rKij and rVij are relation vectors representing362

the relationship between the i-th position and the363

j-th position.364

The relation vectors rKij and rVij are defined as365

follows. For the token at the i-th position, if the366

token at the j-th position is a part of its row header,367

then rKij and rVij are set to the row relation embed-368

dings τKr and τVr . Similarly, for the token at the369

i-th position, if the token at the j-th position is370

a part of its column header, then rKij and rVij are371

set to the column relation embeddings τKc and τVc .372

Otherwise, rKij and rVij are set to 0. In inference,373

to identify the row header or the column header374

of a token, we parse the sequence generated so far375

to create a partial table using the new-line tokens376

and separation tokens in the sequence. Figure 3377

illustrates how relation vectors are constructed.378

5 Experiments 379

5.1 Datasets 380

We make use of four existing datasets which are tra- 381

ditionally utilized for data-to-text: Rotowire (Wise- 382

man et al., 2017), E2E (Novikova et al., 2017), 383

WikiTableText (Bao et al., 2018), and WikiBio (Le- 384

bret et al., 2016). In each dataset, we filter out the 385

content in the tables that does not appear in the 386

texts. We plan to make the processed datasets pub- 387

licly available for future research. Table 2 gives the 388

statistics of the Rotowire dataset and Table 1 gives 389

the statistics of the other three datasets. 390

Rotowire is from the sports domain. Each in- 391

stance is composed of a text and two tables, where 392

the text is a report of a basketball game and the two 393

tables represent the scores of teams and players 394

respectively (cf., Figure 1). Each table has column 395

headers describing the types of scores, and row 396

headers describing the names of teams or players. 397

The texts are long and may contain irrelevant infor- 398

mation such as the performance of players in other 399

games. Therefore, this is a challenging dataset. 400

E2E is from the restaurant domain. Each in- 401

stance is a pair of short text and automatically con- 402

structed table, where the text is a description of 403

a restaurant, and the table has two columns with 404

column headers summarizing the characteristics of 405

the restaurant. The tables are automatically con- 406

structed, where the texts in the tables are from a 407

limited set and thus are lack of diversity. 408

WikiTableText is an open-domain dataset. 409

Each instance includes a text and a table, where 410

the text is a description and the table has a row 411

and two columns with column headers, collected 412

from a Wikipedia infobox. The texts are short and 413

contain information similar to that in the tables. 414

WikiBio is extracted from the Wikipedia bi- 415

ography pages. Each instance consists of a text 416

and a table, where the text is the introduction of 417

Wikipedia page2 and the table is from the infobox 418

of Wikipedia page and has two columns with col- 419

umn headers. The input texts are usually long and 420

contain more information than the tables. 421

5.2 Procedure 422

Methods: We conduct experiments with vanilla 423

seq2seq and our method, as well as baselines. 424

We know of no existing method that can be di- 425

rectly employed in text-to-table. For each dataset, 426

2The original dataset only uses the first sentence of the
introduction. We use the entire introduction.
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Dataset Train Valid Test # of tokens # of rows # of columns
E2E 42.1k 4.7k 4.7k 24.90 4.58 2.00
WikiTableText 10.0k 1.3k 2.0k 19.59 4.26 2.00
WikiBio 582.7k 72.8k 72.8k 122.30 4.20 2.00

Table 1: Statistics of E2E, WikiTableText, and WikiBio datasets, including number of instances in training, valida-
tion, and test sets, number of BPE tokens per instance and number of rows per instance.

Train Valid Test # of tokens
3.4k 727 728 351.05
# of rows # of columns # of cells

Team 2.71 4.84 6.56 (85.40%)
Player 7.26 8.75 22.63 (43.93%)

Table 2: Statistics of Rotowire dataset. The first ta-
ble shows sizes of training, validation, and test sets,
number of BPE tokens per instance. The second table
shows number of rows, number of columns, and num-
ber and ratio of non-empty cells.

we first define the schemas based on the training427

data, then use an existing method of relation ex-428

traction (RE) or named entity extraction (NER) to429

extract information, and finally create tables based430

on the schemas and extracted information. We take431

it as the baseline for the dataset. No baseline can be432

applied to all four datasets. For RE, we use PURE,433

a state-of-the-art method (Zhong and Chen, 2020).434

For NER, we use BERT (Devlin et al., 2019).435

Training: For vanilla seq2seq and our method,436

we adopt Transformer (Vaswani et al., 2017) as437

the model and fine-tune the models from BART-438

base. We also experiment with BART-large. For439

RE and NER, we fine-tune the models from BERT-440

base-uncased. All models are trained with Adam441

optimizer until convergence. Hyper-parameters are442

shown in Appendix A. For the small datasets of443

Rotowire and WikiTableText, we run experiments444

five times with different random seeds and take445

average of results to reduce variance.446

Evaluation: We evaluate the performance of a447

method based on the number of correct non-header448

cells in the tables. To judge whether a cell is cor-449

rectly generated in the table, we use not only its450

content but also its row header and column header451

to ensure that the cell is on the right row and right452

column. Exact match is used to compare the con-453

tent of the generated cell and the ground truth. We454

adopt precision, recall, and F1 score as evaluation455

measures. We calculate the measures on each gen-456

erated table and then take the average on all tables.457

This evaluation assumes that the ordering of rows458

and columns is not important. We find that this459

assumption is applicable to the four datasets and 460

many real-world scenarios. We also evaluate the 461

percentage of output sequences that cannot rep- 462

resent well-formulated tables, referred to as error 463

rate. 464

5.3 Results on Rotowire 465

Table 3 shows the results on the Rotowire dataset. 466

One can see that in terms of F1 score, our method 467

performs the best followed by vanilla seq2seq, and 468

both outperform the baselines of doc-level RE and 469

sent-level RE. The RE baselines perform quite 470

well, but they heavily rely on rules and cannot 471

beat the seq2seq approach. Among them the doc- 472

level RE performs better than sent-level RE, be- 473

cause some information in Rotowire can only be 474

extracted when cross-sentence context is provided. 475

We implement two baselines of RE, namely doc- 476

level RE and sent-level RE. We take team names, 477

player names, and numbers of scores as entities 478

and take types of scores as relations. Sent-level 479

RE predicts the relations between entities within 480

each sentence. Doc-level RE predicts the relations 481

between entities within a window (the window size 482

is 12 entities) and uses the approximation model 483

proposed by Zhong and Chen (2020) to speed up 484

inference. 485

5.4 Results on E2E, WikiTableText and 486

WikiBio 487

Table 4 shows the results of our method, vanilla 488

seq2seq, and the baseline of NER on E2E, Wik- 489

iTableText, and WikiBio. Again, the seq2seq ap- 490

proach outperforms the baseline. The NER base- 491

line has slightly higher precision, but the seq2seq 492

approach has significantly higher recall and F1. 493

Our method and vanilla seq2seq are comparable, 494

because the table structures in the three datasets 495

are very simple (there are only two columns in 496

the tables), and the use of the two techniques does 497

not further improve the performances. The NER 498

baseline has high precision but low recall, mainly 499

because NER can only make the right decision 500

when it is clear. 501
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Pre. Rec. F1 Err. Pre. Rec. F1 Err.
Sent-level RE 81.05 75.29 77.17 0.00 86.10 76.00 79.59 0.00
Doc-level RE 78.57 74.74 75.66 0.00 86.19 77.88 80.76 0.00
Vanilla seq2seq 84.05 83.59 82.97 0.49 84.56 81.32 81.96 7.40
lOur method 84.40 84.01 83.36 0.00 84.77 82.20 82.53 0.00

PlayerTeam

Table 3: Results of our method, vanilla seq2seq, and the baselines of doc-level RE and sent-level RE, on Rotowire.

Pre. Rec. F1 Err. Pre. Rec. F1 Err. Pre. Rec. F1 Err.
NER 99.39 84.99 90.80 0.00 60.63 47.02 52.23 0.00 73.64 49.87 56.51 0.00
Vanilla seq2seq 97.95 97.87 97.87 0.00 59.84 59.30 59.26 0.41 70.78 70.44 68.98 0.00
Our method 97.97 97.89 97.88 0.00 59.74 59.17 59.14 0.00 70.93 70.38 69.02 0.00

WikiBioWikiTableTextE2E

Table 4: Results of our method, vanilla seq2seq, and the baseline of NER, on E2E, WikiTableText and WikiBio.

Pre TC TRE Rotowire/Team Rotowire/Player E2E WikiTableText WikiBio
7 7 7 28.05 7.75 94.45 46.37 67.51
7 3 3 30.61 10.67 95.53 47.13 67.43
3 7 7 82.97 81.96 97.87 59.26 68.98
3 3 7 83.09‡ 82.24‡ 97.88 59.29† 68.98
3 7 3 83.30† 82.50‡ 97.87 59.12 69.02
3 3 3 83.36† 82.53‡ 97.88 59.14 69.02

Table 5: Results of ablation study on our method by excluding pre-trained language model (Pre), table constraint
(TC) and table relation embeddings (TRE). We conduct a significance test to check whether the performance is
significantly better than vanilla seq2seq with pretrained language models (i.e., with Pre but without TC or TRE). †

and ‡ represent p < 0.05 and p < 0.01 respectively.

We implement the baseline of NER in the follow-502

ing way. We view the non-head cells in the tables503

as entities and their row headers as entity types. In504

training, we match the non-head cells into the texts505

and take them as “entities” in the texts. Only a pro-506

portion of the non-header cells can be matched into507

the texts (85% for E2E, 74% for WikiTableText,508

and 69% for WikiBio).509

5.5 Additional Study510

We carry out ablation study on our method. Specif-511

ically, we exclude pre-trained language model,512

table constraint (TC) and table relation embed-513

dings (TRE) from our method. Note that our514

method without TC and TRE is equivalent to515

vanilla seq2seq. Table 5 gives the results on the516

four datasets.517

It can be seen that the use of both TC and TRE518

can significantly improve the performance on Ro-519

towire, which indicates that our method is par-520

ticularly effective when the tables are large with521

many rows and columns. There are not signifi-522

cant improvements on E2E, WikiTableText, and523

WikiTableText, apparently because formulation of524

tables is easy for the three datasets. Therefore, we 525

conclude that the two techniques of TC and TRE 526

are helpful when the task is difficult. 527

The use of pre-trained language model can boost 528

the performance on all datasets, especially on Ro- 529

towire and WikiTableText. This indicates that pre- 530

trained language model is particularly helpful when 531

the task is difficult and the size of training data is 532

small. 533

We observe that vanilla seq2seq makes more 534

formatting errors than our method, especially on 535

player tables in Rotowire that have a large number 536

of columns. It indicates that for vanilla seq2seq, it 537

is difficult to keep track of the columns in each row 538

and make alignments with the column headers. In 539

contrast, the two techniques of our method can help 540

effectively cope with the problem. Figure 4 shows 541

a bad case of vanilla seq2seq, where the model 542

correctly infers the column of “assists” but fails 543

to infer the columns of “personal fouls”, “points”, 544

and “total rebounds” for the row of “Rajon Rondo”. 545

In contrast, our method can successfully handle 546

the case, because TC can eliminate the incorrectly 547

formatted output, and TRE can make correct align- 548
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Method Rotowire/Team Rotowire/Player E2E WikiTableText WikiBio
Vanilla seq2seq (BART base) 82.97 81.96 97.87 59.26 68.98
Our method (BART base) 83.36 82.53 97.88 59.14 69.02
Vanilla seq2seq (BART large) 86.31 86.59 97.94 62.71 69.66
Our method (BART large) 86.31 86.83 97.90 62.41 69.71

Table 6: Results of our method and vanilla seq2seq with base and large BART models on all four datasets.

Figure 4: A bad case generated by vanilla seq2seq. The assists, points and total rebounds of Rajon Rondo should
be 18, 7 and 8 respectively. The model generates one less column between “Assists” and “Personal fouls”.

ments with the column headers.549

We also investigate the effect of the scale of pre-550

trained language model BART. We use both BART-551

base and BART-large and conduct fine-tuning on552

top of them for vanilla seq2seq and our method.553

Table 6 gives the results on the four datasets. The554

results show that the use of BART-large can further555

boost the performances on all four datasets, indicat-556

ing that it is better to use larger pre-trained models557

when computation cost is not an issue.558

5.6 Discussions559

We analyze the experimental results on the four560

datasets and identify five challenging issues.561

(1) Text Diversity: Extraction of the same con-562

tent from different expressions is one challenge.563

For example, the use of synonyms is very com-564

mon in Rotowire. The team of “Knicks” is often565

referred to as “New York”, its home city. Identifica-566

tion of the same entities from different expressions567

is needed in the task.568

(2) Text Redundancy: There are cases such as569

those in WikiBio, in which the texts contain much570

redundant information. This poses a challenge to571

the text-to-table model to have a strong ability in572

summarization. It seems that the seq2seq approach573

works well to some extent but further improvement574

is undoubtedly necessary.575

(3) Large Table: The tables in Rotowire have576

large numbers of columns, and the extraction from577

them is challenging even for our method of using578

TC and TRE.579

(4) Background Knowledge: WikiTableText and580

WikiBio are from open domain. Thus, perform-581

ing text-to-table on such kind of datasets require582

the use of much background knowledge. A pos-583

sible way to address this challenge is to use more584

powerful pre-trained language models or external 585

knowledge bases. 586

(5) Reasoning: Sometimes the information is 587

not explicitly presented in the text, and reasoning 588

is required to conduct correct extraction. For exam- 589

ple, an article in Rotowire reports a game between 590

the two teams “Nets” and “Wizards”. From the 591

sentence: “The Nets seized control of this game 592

from the very start, opening up a 31 - 14 lead after 593

the first quarter”, humans can infer that the point of 594

“Wizards” is 14, which is still difficult for machines. 595

6 Conclusion 596

We propose employing text-to-table as a new way 597

of information extraction (IE), which extracts in- 598

formation of interest from the input text and sum- 599

marizes the extracted information in tables. The 600

advantage of the approach is that one can easily 601

conduct information extraction from either short 602

texts or long texts to create simple tables or com- 603

plex tables without explicitly defining the schemas. 604

Text-to-table can be viewed as an inverse prob- 605

lem of table-to-text. We formalize text-to-table as 606

a sequence-to-sequence problem on top of a pre- 607

trained model. We further propose an improved 608

method using a seq2seq model and table constraint 609

and table relation embeddings techniques. We con- 610

duct experiments on four datasets derived from 611

existing table-to-text datasets. The results demon- 612

strate that our proposed approach outperforms ex- 613

isting methods using conventional IE techniques. 614

We further analyze the challenges of text-to-table 615

for future study. The issues include diversity of 616

text, redundancy of text, large-table, background 617

knowledge, and reasoning. 618
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A Hyper-parameters 910

We list the hyper-parameters of the pre-trained 911

models in Table 7. The training hyper-parameters 912

for BART-base model in vanilla seq2seq and our 913

method are listed in Table 8. 914

B Table Constraint Algorithm 915

The pseudo-codes for table constraint are in Algo- 916

rithm 1. 917

C Our Method with Multiple Tables 918

Our method is able to generate the output con- 919

taining multiple tables. For example, in Rotowire 920

dataset, the output data contains two tables repre- 921

senting the scores of teams and players respectively. 922

In this section, we illustrate how our method works 923

for Rotowire dataset as a special case. 924

To represent the tables with a sequence, we use 925

captions as delimiters. For Rotowire, as shown in 926

Figure 1, the first table is the team table, and its 927

caption is “Team:”. The second table is the player 928

table, and its caption is “Player:”. Let tteam and 929

tplayer denote the table and player tables respec- 930

tively. Therefore, the sequence representation is 931

“Team: 〈n〉 tteam 〈n〉 Player: 〈n〉 tplayer”. 932

For table constraint (TC), we only use TC when 933

the seq2seq model is generating a table. When gen- 934

erating a caption, we do not pose any constraints 935

to the decoding process. Since the captions do not 936

start with the separation token 〈s〉, if the current 937

line starts with the separation token 〈s〉, then the 938

model is generating a table. Otherwise, it is gener- 939

ating a caption. 940

For table relation embeddings (TRE), we calcu- 941

late the relation vectors separately for each table. 942

However, the parameters including the row rela- 943

tion embeddings (i.e., τKr and τVr ) and the column 944
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Pre-trained model Methods layers hidden dim. heads parameters
BART-base Vanilla seq2seq and ours 12 768 16 139M
BART-large Vanilla seq2seq and ours 24 1024 16 406M
BERT-base-uncased NER and RE 12 768 12 110M

Table 7: The hyper-parameters of the pre-trained models in our experiments. We list the number of layers, hidden
dimensions (hidden dim.), heads, and parameters. BART-base and BART-large are used for vanilla seq2seq and
our method, while BERT-base-uncased is used for the baselines of RE and NER.

warmup total upd. lr bsz
Rotowire 400 8000 3e-05 4096
E2E 400 8000 1e-05 4096
WikiTableText 2000 8000 1e-04 4096
WikiBio 4000 40000 1e-04 4096

Table 8: The training hyper-parameters for BART-base
model on all four datasets. We list the warmup updates
(warmup), total updates (total upd.), learning rate (lr),
and batch size (bsz, in terms of how many tokens per
batch).

relation embeddings (i.e., τKc and τVc ) are shared945

among the tables.946

D Evaluation Details947

To evaluate a text-to-table system, we adopt preci-948

sion, recall, and F1 score as evaluation measures.949

We calculate the measures on each generated table950

and then take the average on all tables.951

Specifically, we represent each non-header cell952

as a tuple containing the row header, column953

header, and cell content. Then, we take the col-954

lection of cell tuples in the ground truth table as955

reference, and calculate the precision, recall, and956

f1 score of the predicted cell tuples. We use exact957

match to check whether a predicted non-header cell958

is correct. A predicted non-header cell will be con-959

sidered as a true positive only when it is exactly the960

same as the ground truth, that is, when they have961

the same row header, cell header, and content. In962

other words, we use not only its content but also963

its row header and column header to ensure that964

the cell is on the right row and right column. A965

limitation of exact match is that it will fail to con-966

sider the cases where the prediction is a synonym967

of the reference. However, we observe that the968

row/column names and cell contents in datasets are969

quite consistent, so such mistakes are uncommon.970

Therefore, we use exact match for simplicity.971

As shown in Figure 1, the tables in the dataset972

contain some empty cells, that is, cells with word973

sequences of zero length. These cells do not con-974

tain actual information and are only used as place-975

Algorithm 1: Decoding using table con-
straint. 〈eos〉, 〈s〉, and 〈n〉 denote the end
of sentence, separation token, and new-line
token respectively. Seq2seq denotes the
seq2seq model. Decode denotes the de-
coding algorithm such as beam search and
greedy search.
Input: x = [x1, x2, · · · , x|x|]
Output: y = [y1, y2, · · · , y|y|]

1 y← []
2

3 repeat
/* generates the first row: only allows generation

of 〈n〉 or 〈eos〉 after 〈s〉 */

4 p(·)← seq2seq(x, y)
5 if y|y| 6= 〈s〉 then
6 p (〈n〉)← 0, p (〈eos〉)← 0
7 y.append(decode (p))
8 until y|y| = 〈n〉 or y|y| = 〈eos〉
9 if y|y| = 〈eos〉 then

10 return y
11 nc ← number of cells of the first row
12

13 repeat
/* generates the next rows: each row contains

exactly nc cells */

14 repeat
/* generates a row */

15 p(·)← seq2seq(x, y)
16 if current row has nc columns then
17 p(t)← 0, ∀t 6= 〈eos〉 and t 6=

〈n〉
18 else
19 p (〈n〉)← 0, p (〈eos〉)← 0
20 y.append(decode (p))
21 until y|y| = 〈n〉 or y|y| = 〈eos〉
22 if y|y| = 〈eos〉 then
23 return y

holders. Therefore, for both the golden reference 976

and the prediction, we ignore the empty cells and 977
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Figure 5: An example of NER data on WikiBio dataset. Each row header is an entity type, and each non-header
cell is an entity.

Figure 6: An example of RE data from Rotowire
dataset. “Al Horford” and “15” are entities, and
“Points” is the relation type.

only take the non-empty cells to calculate the met-978

rics.979

E Information Extraction Baselines980

E.1 Relation Extraction981

To use relation extraction (RE) as our baseline982

for Rotowire dataset, we take team names, player983

names, and numbers of scores as entities and take984

types of scores as relations. An example relation985

is shown in Figure 6, which can be represented986

as a relation tuple (Al Horford, Points, 15). “Al987

Horford” is the subject entity, “15” is the object en-988

tity, and “Points” is one of the pre-defined relation989

types. There are 38 relations in total.990

To create synthetic training data, we match the991

player names, team names and score numbres to992

the texts. We adapt the rules provided by Wiseman993

et al. (2017) which is able to conduct fuzzy match.994

E.2 Named Entity Recognition995

We use named entity recognition (NER) as our base-996

line for E2E, WikiTableText, and WikiBio datasets.997

Specifically, since each table is a two-column table998

with a header column, we consider the row header999

as entity type and the non-header cells as entity1000

mentions. An example is shown in Figure 5. For1001

the row with a header “name” and a non-header1002

cell “majda vrhnovnik”, we take “majda vrhnovnik”1003

as an entity with the type “name”. Here, “name”1004

is one of the pre-defined entity types. We collect1005

Figure 7: Illustration of the use of synonyms for the
example in Figure 1. The red color denotes the team of
“Knicks”, which is often referred to as “New York”, its
home city. The blue color denotes the team of “Celtics”,
which is often referred to as “Boston”, its home city.

all headers in the training set to collect the entity 1006

types. We have 7 entity types for E2E, 2262 entity 1007

types for WikiTableText, and 2272 entity types for 1008

WikiBio. 1009

To create synthetic training data, we match the 1010

contents of non-header cells to the texts. However, 1011

the data is usually paraphrased or even abstracted 1012

from the text, so not all non-header cells can be 1013

matched to the text. We match 85% non-header 1014

cells for E2E, 74% for WikiTable, and 69% for 1015

WikiBio. 1016

F Detailed Cases for Challenges 1017

In this section, we provide cases for the challenges 1018

discussed in Section 5.6. 1019

(1) Text Diversity: Extraction of the same con- 1020

tent from different expressions is one challenge. 1021

For example, the use of synonyms is very common 1022

in Rotowire. Figure 7 illustrates the use of syn- 1023

onyms for the example in Figure 1. The team of 1024
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Figure 8: An example from WikiBio dataset to illustrate the challenges of text redundancy and background knowl-
edge. Only the highlighted information is captured in the output table. Other information such as the experience of
Philippe Adnot is redundant. Moreover, the system should have background knowledge about the French political
system to extract information about the constituency of Philippe Adnot.

Figure 9: The team table has 3 rows and 4 columns, and the player table has 8 rows and 8 columns.

“Knicks” is often referred to as “New York”, its1025

home city. Similarly, “Celtics” is often referred to1026

as “Boston”, its home city. Identification of the1027

same entities from different expressions is needed1028

in the task.1029

(2) Text Redundancy: There are cases such as1030

those in WikiBio, in which the texts contain much1031

redundant information. An example is shown in1032

Figure 8, where only the highlighted information1033

is captured in the output table. Other information1034

such as the experience of Philippe Adnot is redun-1035

dant. This poses a challenge to the text-to-table1036

model to have a strong ability in summarization.1037

It seems that the seq2seq approach works well to1038

some extent but further improvement is undoubt- 1039

edly necessary. 1040

(3) Large Table: The tables in Rotowire have 1041

large numbers of columns, so extraction from them 1042

is challenging even for our method of using TC 1043

and TRE. As presented in Table 2, team tables have 1044

2.71 rows and 4.84 columns on average, and player 1045

tables have 7.26 rows and 8.75 columns on average. 1046

An example is shown in Figure 9, where the team 1047

table has 3 rows and 4 columns, and the player 1048

table has 8 rows and 8 columns. 1049

(4) Background Knowledge: WikiTableText and 1050

WikiBio are from open domain. Thus, perform- 1051

ing text-to-table on such kind of datasets require 1052
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the use of much background knowledge. Also in1053

Figure 8, the extraction system should have back-1054

ground knowledge about the French political sys-1055

tem in order to extract information about the con-1056

stituency of Philippe Adnot. A possible way to1057

address this challenge is to use more powerful pre-1058

trained language models or external knowledge1059

bases.1060

(5) Reasoning: Sometimes the information is1061

not explicitly presented in the text, and reasoning1062

is required to conduct correct extraction. For exam-1063

ple, as shown in Figure 10, an article in Rotowire1064

reports a game between the two teams “Nets” and1065

“Wizards”. From the sentence: “The Nets seized1066

control of this game from the very start, opening1067

up a 31 - 14 lead after the first quarter”, humans1068

can infer that the point of “Wizards” is 14, which1069

is still difficult for machines.1070

Figure 10: An example from Rotowire which requires
reasoning to perform information extraction. The arti-
cle in Rotowire reports a game between the two teams
“Nets” and “Wizards”. From the sentence: “The Nets
seized control of this game from the very start, opening
up a 31 - 14 lead after the first quarter”, humans can
infer that the point of “Wizards” is 14, which is still
difficult for machines.
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