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ABSTRACT

Large Vision-Language Models (LVLMs), such as GPT-4o and LLaVA, have re-
cently witnessed remarkable advancements and are increasingly being deployed
in real-world applications. However, inheriting the sensitivity of visual neural
networks, LVLMs remain vulnerable to adversarial attacks, which can result in er-
roneous or malicious outputs. While existing efforts utilize adversarial fine-tuning
to enhance robustness, they often suffer from significant performance degradation
on clean inputs. In this paper, we propose AdPO, a novel adversarial defense strat-
egy for LVLMs based on preference optimization. For the first time, we reframe
adversarial training as a preference optimization problem, aiming to enhance the
model’s preference for generating normal outputs on clean inputs while reject-
ing the potential misleading outputs for adversarial examples. Notably, AdPO
achieves this by solely modifying the image encoder, e.g., CLIP ViT, resulting
in superior clean and adversarial performance in a variety of downstream tasks.
Due to the computational cost of training large language models, we show that
training on smaller LVLMs and transferring to larger ones achieves state-of-the-art
performance with efficiency comparable to previous methods. Our comprehensive
experiments confirm the effectiveness of the proposed AdPO which highlights the
potential of preference-based learning in adversarially robust multimodal systems.

1 INTRODUCTION

The emergence of Large Vision-Language models (LVLMs) has substantially propelled the develop-
ment of general artificial intelligence, attracting considerable attention from the AI community (Yin
et al., 2023; Cui et al., 2024; Liu et al., 2024c). These models generally consist of two key compo-
nents: visual modules and Large Language Models (LLMs) (Zhao et al., 2023a). The visual modules,
frequently utilizing pre-trained image encoders like CLIP’s ViT (Radford et al., 2021), are responsible
for extracting salient visual features from images and projecting them onto the input space of the
language model. This alignment facilitates the next-token prediction in an autoregressive manner
within the framework of the language model. Cutting-edge LVLMs, such as Qwen2.5-VL (Bai et al.,
2025) and LLaVA (Liu et al., 2023), have demonstrated outstanding capabilities in understanding
and reasoning with both visual and textual information. These models have delivered exceptional
performance across a broad range of tasks, such as image captioning (Nguyen et al., 2023), visual
question answering (Liu et al., 2024b), and text recognition (Liu et al., 2024a; Cao et al., 2023).

Given their transformative potential in multimodal learning and understanding, LVLMs are increas-
ingly being deployed across a diverse range of real-world applications. However, this widespread
deployment raises significant security concerns, as malicious adversaries can exploit vulnerabilities
in LVLMs to induce undesirable outputs and hallucinations (Schlarmann & Hein, 2023; Shayegani
et al., 2024; Wang et al., 2024e). Consequently, it is imperative to rigorously test and improve the
robustness of these models prior to deployment. Recent research has identified a critical vulnerability
in LVLMs to adversarial attacks targeting both textual and visual inputs (Zhao et al., 2023b). No-
tably, the continuous nature of the visual modality renders it more susceptible to manipulation via
numerical optimization techniques (Wang et al., 2024c; Carlini et al., 2023; Qi et al., 2024b; Luo
et al., 2024a). Researchers disrupt the understanding of LVLMs by injecting imperceptible noise into
images, thereby enabling both targeted and untargeted adversarial attacks.
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Figure 1: AdPO achieves a significant
improvement in clean performance com-
pared with previous methods.

To improve the adversarial robustness of LVLMs, two
main training paradigms have been explored: multimodal
contrastive learning and generative pre-training. Multi-
modal contrastive learning methods (e.g., FARE (Schlar-
mann et al., 2024) and TeCoA (Mao et al., 2023)) align
the features of adversarial images with those of text to
obtain a robust image encoder, which can then be trans-
ferred to LVLMs. This approach is computationally effi-
cient but often fails to achieve fine-grained alignment. In
contrast, generative pre-training leverages the full LVLM,
enabling finer-grained alignment, but generally suffers
from poor generalization, which in turn degrades clean
performance (Chu et al., 2025).

Inspired by the significant success of preference optimiza-
tion in the LLM community (Wang et al., 2024g; Ouyang
et al., 2022), we identify that applying preference opti-
mization to adversarial training is highly promising, given
the alignment between their objectives. More specifically, adversarial training aims to enhance
model robustness against adversarial attacks while preserving performance on clean data. Preference
optimization, such as DPO (Rafailov et al., 2023), aligns LLMs with human values by increasing
the probability of preferred outputs while decreasing the likelihood of non-preferred ones. Build-
ing on this insight, we propose AdPO, a novel Adversarial defense strategy based on Preference
Optimization, which enables LVLMs to generate correct outputs from clean image inputs while
rejecting misleading outputs from adversarial images.

However, applying DPO to adversarial training presents non-trivial challenges. In comparison to
standard offline DPO, we introduce key improvements: (1) We extend DPO from an offline to an
online setting to eliminate the reliance on image annotations. In this framework, the policy model
generates interpretations for both clean and adversarial images, which are then used as sources
of positive and negative samples. (2) We propose Preferred Image Optimization (PIO), which
simultaneously increases the probability of producing correct outputs under clean inputs while
reducing erroneous outputs under adversarial images. This leads to a significant improvement in
clean performance, as illustrated in Figure 1. (3) We propose Adversarial Image Optimization
(AIO), which leverages dynamic fine-tuning to explicitly optimize the probability of producing
correct responses under adversarial inputs, thereby mitigating the potential multimodal unconditional
preference issue (Wang et al., 2024a).

Another potential concern is computational efficiency. Directly training a commonly used LVLM
model, such as LLaVA-7B Liu et al. (2024b), may be prohibitively expensive in resource-constrained
scenarios. In this paper, we explore fine-tuning the image encoder of a smaller LVLM and
subsequently transferring it to a larger LVLM model. This strategy not only achieves high
computational efficiency and mitigates the risk of potential overfitting during evaluation, but also
enables a fair comparison with prior CLIP-based approaches.

By constraining our adversarial training to modifying only the CLIP ViT parameters on the ImageNet
dataset (Deng et al., 2009), extensive evaluations demonstrate that our proposed AdPO produces
a more robust image encoder while maintaining almost intact clean performance. These findings
not only validate the effectiveness of our approach but also extend the applicability of preference
optimization techniques beyond their traditional use in language models.

In summary, our contributions are as follows:

• We introduce AdPO (Adversarial defense based on Preference Optimization), which, to
the best of our knowledge, is the first attempt to explore the application of preference
optimization for adversarial training.

• We propose a dual strategy combining Preferred Image Optimization (PIO) and Ad-
versarial Image Optimization (AIO) to preserve the model’s clean performance while
enhancing its adversarial robustness. This serves as a general adversarial training framework
that is not restricted to any specific algorithm or model.
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• We validate the feasibility of conducting adversarial training on smaller LVLMs and
subsequently transferring it to larger models, which reduces computational costs and
mitigates potential overfitting during evaluation.

• We conduct extensive experiments on multiple vision-language tasks and datasets using
various models and the results show that our method consistently achieves state-of-the-art
performance.

2 RELATED WORK

In this section, we primarily review the related studies on large vision-language models, adversarial
attacks, adversarial defenses, and preference optimization methods.

Large Vision-Language Models. Recently, large multimodal models have emerged, including
LLaVA 1.5 (Liu et al., 2024b), OpenFlamingo (OF) (Awadalla et al., 2023), BLIP-2 (Li et al., 2023b),
MiniGPT-4 (Zhu et al., 2024), Otter (Li et al., 2023a), mPLUG-Owl (Ye et al., 2023), Qwen-VL (Bai
et al., 2023), MiniCPM-V (Yao et al., 2024), DeepSeek-VL (Lu et al., 2024), InternVL (Chen et al.,
2024), and Idefics2 (Laurençon et al., 2024). These models typically use pre-trained image encoders
(e.g., CLIP or SigCLIP) to extract image features, which are then aligned with text embedding
spaces (Radford et al., 2021; Zhai et al., 2023). The visual and textual embeddings are then fed into
LLMs for autoregressive generation. This approach allows the model to simultaneously understand
and generate content related to both images and text. To mitigate computational load, a practical
strategy is to freeze the image encoder and train only the projection layer, which not only simplifies
the training process but also enhances efficiency (Liu et al., 2023; Awadalla et al., 2023). Therefore,
image encoders can significantly impact the performance of LVLMs, receiving significant attention
from the multimodal community (Cao et al., 2023; Zhou et al., 2024). We mainly focus on evaluating
the performance of LLaVA-1.5 and OpenFlamingo, as both adopt CLIP ViT-L/14 (Radford et al.,
2021) as their image encoder, while additionally assessing our method on Qwen-2.5-VL (Bai et al.,
2025), a non-CLIP-based model, for further validation.

Adversarial attacks. The vulnerability of visual neural network models to adversarial attacks is
well-established and has been extensively investigated (Szegedy et al., 2014; Goodfellow et al., 2015;
Madry et al., 2018; Brown et al., 2017; Zhang et al., 2023; 2024; Zhou et al., 2023). By introducing
carefully crafted noise into images, adversaries can cause the victim model to generate incorrect
outputs with high confidence. Capitalizing on this vulnerability, recent studies have shown that
LVLMs are also vulnerable to attacks targeting visual inputs (Schlarmann & Hein, 2023; Shayegani
et al., 2024; Luo et al., 2024a; Gao et al., 2024; Dong et al., 2023b). Zhao et al. (Zhao et al., 2023b)
showed that transferable black-box attacks could be generated using text-to-image models and other
work (Carlini et al., 2023) demonstrated how adding adversarial noise to images can circumvent safety
constraints of LLMs. Qi et al. (Qi et al., 2024a) explored how adversarial attacks embedding deceptive
information into images can mislead LVLMs and deceive users. The widespread deployment of
LVLMs has raised urgent security concerns due to the threat of adversarial attacks.

Adversarial defenses. Adversarial defenses in machine learning safeguard models from malicious
inputs to ensure their integrity and reliability, especially in security-sensitive contexts (Madry et al.,
2018; Fares et al., 2024; Papernot et al., 2016; Zhou & Patel, 2022; Luo et al., 2024b; Ledda et al.,
2024; Debbi, 2024; Xue et al., 2024; Zhao et al., 2024; Liang et al., 2024; Li et al., 2024; Li & Li,
2024; Hotegni & Peitz, 2024; Jiang et al., 2024). For example, Detectors (Huang et al., 2024; Mumcu
& Yilmaz, 2024; Mavali et al., 2024; Roth et al., 2019; Xu et al., 2018; Meng & Chen, 2017; Metzen
et al., 2017) identify and filter out adversarial examples, but these external modules can introduce
additional inference time and may also obstruct normal inputs. Purification methods (Samangouei
et al., 2018; Nie et al., 2022; Ho & Vasconcelos, 2022; Das et al., 2018) use techniques such as
diffusion models to eliminate adversarial perturbations in input data, and this can also modify
the input, thus affecting performance. Adversarial training (Kurakin et al., 2017b; Tramèr et al.,
2018; Dong et al., 2023a; Liu & Chen, 2024; Jia et al., 2024b; Lv et al., 2024; Palma et al., 2024;
Dong et al., 2024; RIbeiro et al., 2024; Jia et al., 2022) is a foundational method for enhancing a
model’s inherent robustness by integrating adversarial examples into the training dataset. In the
multimodal field (Wang et al., 2024b), recent research has predominantly concentrated on enhancing
the adversarial robustness of CLIP-based models in zero-shot classification tasks. For example,
TeCoA (Mao et al., 2023) applies text-guided adversarial training, while AdvXL (Wang et al., 2024f)
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leverages large-scale training data. TGA-ZSR (Yu et al., 2024a) introduces a text-guided attention
mechanism to further strengthen robustness under zero-shot settings. FARE (Schlarmann et al., 2024)
enhances the robustness of LVLMs by minimizing the representation distance between clean and
adversarial images in CLIP, and transferring the CLIP image encoder to models such as LLaVA.
Despite these advances, a persistent challenge remains: the clean performance of LVLMs still suffers
a significant drop.

Preference optimization. Preference optimization has emerged as a novel training paradigm for
aligning LLMs with human values and has garnered significant attention in recent research (Ouali
et al., 2024; Yu et al., 2023; 2024b; Wang et al., 2024a;d). Reinforcement Learning from Human
Feedback (RLHF) utilizes human preferences as a reward model and applies reinforcement learning
to guide model training (Bai et al., 2022; Ouyang et al., 2022) Direct Preference Optimization (DPO)
streamlines the training process by increasing the log probability of preferred samples while reducing
that of non-preferred samples, enabling broader applications (Rafailov et al., 2023). Subsequent
advancements, such as StepDPO (Lai et al., 2024), SimPO (Meng et al., 2025), and IPO (Azar et al.,
2024), have further improved DPO’s performance. Considering its stability and efficiency in training,
we also adopt DPO for adversarial training of LVLMs in this work.

3 METHOD

This section provides a detailed introduction to our AdPO, with its overall framework illustrated in
Figure 2. First, Section 3.1 outlines the basics of the DPO algorithm, and Section 3.2 discusses adver-
sarial example generation, which forms the preference sample pairs required for DPO. Sections 3.3
and 3.4 introduce preferred image optimization and adversarial image optimization, respectively.

3.1 PRELIMINARIES

Clean Adversarial

Figure 2: The architecture of our proposed AdPO.
AdPO mainly consists of two parts: (left) pre-
ferred image optimization and (right) adversarial
image optimization. Preferred image optimiza-
tion incorporates both clean and adversarial im-
ages into adversarial training while maintaining
the model’s performance on clean inputs, and ad-
versarial image optimization can significantly en-
hance the model’s adversarial robustness.

DPO has emerged as a prominent method in the
domain of offline preference optimization. This
method provides a novel framework for optimiz-
ing language models in accordance with human
preferences. In a typical setup, given an input
x and an output text y, a language model (i.e.,
policy model) πθ generates a conditional distri-
bution πθ(y|x). Unlike RLHF, which employs
an explicit reward model, DPO reformulates the
reward function using a closed-form expression
with respect to the optimal policy. The main
objective of DPO is to maximize the expected
reward of the outputs generated by this policy,
with the reward function defined as r(x, y):

r(x, y) = β log
πθ(y|x)
πref(y|x)

+ β logZ(x) (1)

where β is a constant, πref is the reference policy
model (identical to the original πθ), and Z(x) is the partition function.

Given a preference dataset D = {x, yw, yl}, where yw and yl represent the winning and losing
responses respectively, DPO employs a Bradley-Terry model (Bradley & Terry, 1952) to express the
probability for each preference pair:

p(yw ≻ yl) = σ(r(x, yw)− r(x, yl)) (2)
where σ(·) is typically defined as a sigmoid function. The key innovation of DPO is its formulation of
the likelihood of preference data using the policy model, as opposed to relying on an explicit reward
model. This leads to the formulation of the DPO objective:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
(3)

This formulation captures the core principles of DPO, providing a robust framework for optimizing
language models in alignment with human preferences.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 ADVERSARIAL EXAMPLE GENERATION

In the context of LVLMs, the input to the model comprises x = {xm, xtext}, where xm denotes the
image input and xtext represents the text input. This section outlines the principles behind generating
adversarial images.

Adversarial images are generated by introducing small, nearly imperceptible perturbations to original
images, with the goal of deceiving machine learning models and inducing incorrect predictions.
Although adversarial images appear nearly identical to the original images to humans, they can
drastically alter the model’s output, exposing its vulnerability to malicious inputs (Kurakin et al.,
2017a). Adversarial attacks can be broadly categorized into targeted and untargeted attacks: targeted
attacks compel the model to produce specific outputs (Luo et al., 2024a), whereas untargeted attacks
merely lead the model to generate incorrect outputs (Wang et al., 2024e; Gao et al., 2024). In this
study, we employ untargeted attack methods to generate adversarial images for three reasons: (1)
They eliminate dependence on specifically labeled datasets and do not rely on the text encoder,
enabling our method to generalize to unseen datasets (Schlarmann et al., 2024; Yu et al., 2024a). (2)
Untargeted attacks typically achieve a high success rate, allowing the stable generation of negative
adversarial samples during training (Cui et al., 2023). (3) Their broader attack capability enhances
the model’s resilience against various types of adversarial attack methods (Wang et al., 2024e).

Given an image encoder ϕ (e.g., CLIP ViT) and a clean image xm, adversarial examples are generated
by optimizing to maximize the discrepancy between the encoded features of the adversarial image
and the clean image:

xadv = argmax
∥xadv−xm∥∞≤ε

∥ϕ(xadv)− ϕorg(xm)∥22 (4)

where xadv is the adversarial image obtained through iterative optimization like PGD (Madry et al.,
2018), ϕorg is the original image encoder and ϵ is the image perturbation magnitude. This approach
has been widely adopted in prior work, such as FARE and TGA-ZSR, and we also employ it to ensure
a fair comparison. Note that in subsequent adversarial training, the parameters of ϕ will be updated.

3.3 PREFERRED IMAGE OPTIMIZATION

This section primarily delineates the methodology for constructing pairs of preferred and non-
preferred samples from unlabeled image data, a fundamental step in the DPO training pipeline.

Model Selection. Compared to previous methods (Mao et al., 2023; Yu et al., 2024a; Wang et al.,
2024b) that rely solely on CLIP’s image and text encoders, AdPO utilizes the entire LVLM model.
Using a commonly adopted model such as LLaVA-7B would result in high computational costs. To
address this, we construct TinyLLaVA1, which leverages OpenELM-450M-Instruct (Mehta et al.,
2024) as its language model. This lightweight LVLM not only achieves training efficiency comparable
to previous approaches but also mitigates potential overfitting during evaluation.

Given a clean image xm and its adversarial image xadv, we employ an online approach to directly
prompt the model (e.g., “What is the content of the image?”) to generate interpretations, thereby
obtaining the preferred response yw and the non-preferred response yl. Complete prompts are
provided in Appendix B. Accordingly, in the setting of multimodal adversarial training, our preferred
image optimization can be formulated as:

LPIO(πθ;πref) = −E(xm,xtext)∼D

log σ

(
β log

πθ(yw | xm, xtext)

πref(yw | xm, xtext)
− β log

πθ(yl | xadv, xtext)

πref(yl | xadv, xtext)

)
(5)

This straightforward approach presents several advantages. First, it removes the need for data annota-
tion, thus facilitating its application to previously unseen image data. Second, this method resembles
semi-supervised learning, especially as LVLMs now possess advanced capabilities, enabling them
to incorporate labeled images into their training data. Moreover, allowing the model to generate its
own text as labels effectively mitigates distribution shift issues, thus concentrating attention on the
adversarial images themselves (Li et al., 2023c).

1https://github.com/TinyLLaVA/TinyLLaVA Factory
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Notably, this optimization does not presuppose that negative samples are always incorrect. The core
idea of DPO is its relative objective: encouraging the model to prefer certain responses over others
based on comparative judgments (Rafailov et al., 2023). In the extreme case where positive and
negative samples are indistinguishable, no relative preference exists, and thus no model update is
applied. Given the rapid development of preference optimization algorithms, we will evaluate the
performance of DPO variants in experiments to assess the adaptability of AdPO.

3.4 ADVERSARIAL IMAGE OPTIMIZATION

While Preferred Image Optimization can maintain the performance of LVLMs on clean inputs,
it remains insufficient to reach the optimal adversarial robustness. We identify two fundamental
limitations. First, recent work has shown that multimodal DPO can be dominated by language-only
preferences, causing the model to disregard visual conditions, a failure mode termed “unconditional
preferences” that leads to hallucinations and suboptimal performance (Wang et al., 2024a). Second,
as formulated in Eq. 5, the optimization objective focuses on maintaining clean outputs under clean
inputs and rejecting harmful responses under adversarial inputs, yet fails to explicitly encourage the
generation of correct outputs when adversarial perturbations are present. These limitations hinder the
attainment of truly robust performance.

To address this gap, we introduce Adversarial Image Optimization (AIO), which explicitly en-
courages the model to produce correct outputs under adversarial inputs. The most straightforward
approach is to apply Supervised Fine-Tuning (SFT) to optimize the objective:

LSFT(πθ) = −E(xm,xtext)∼D [log πθ (yw | xadv, xtext)] (6)

However, a growing body of recent work shows that SFT tends to overfit the objective, thereby
significantly reducing the model’s generalization ability (Chu et al., 2025; Wu et al., 2025). To
mitigate this issue, we employ dynamic fine-tuning, whose core idea is to adjust the token-level loss
based on the model’s confidence (Wu et al., 2025):

LAIO(πθ) = −E(xm,xtext)∼D [sg (πθ(yw | xadv, xtext)) log πθ(yw | xadv, xtext)]

= −E(xm,xtext)∼D

 |yl|∑
t=1

sg
(
πθ(y

t
w | y<t

w , xadv, xtext)
)
log πθ(y

t
l | y<t

l , xadv, xtext)

 (7)

where sg(·) denotes the stop-gradient operator and ytw denotes the t-th token of yw. By increasing
the weight on high-confidence predictions, AIO explicitly enhances adversarial robustness while
minimally affecting generalization.

Based on the analysis above, the final objective of AdPO is a combination of preferred image
optimization and adversarial image optimization:

LAdPO = LPIO + λLAIO, (8)

where λ is the scaling factor that balances the two loss terms. By leveraging joint optimization,
AdPO attains enhanced adversarial robustness while maintaining its performance on clean samples.

4 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate the performance of AdPO on various
LVLM tasks. For a more comprehensive evaluation, please refer to the Appendix.

Models. To facilitate a thorough comparison with prior work, we focus on CLIP-based models
in the main text. For training, we adopt TinyLLaVA (Jia et al., 2024a), which pairs CLIP’s ViT-
L/14 image encoder with the OpenELM-450M-Instruct language model. This lightweight setup
maintains computational efficiency comparable to prior methods while mitigating potential overfitting
during evaluation. For evaluation, we primarily use LLaVA-1.5-7B(Liu et al., 2024b), a model
widely adopted in the multimodal community. To show that our approach generalizes beyond
CLIP-based models, we also evaluate Qwen2.5-VL-7B(Bai et al., 2025) (improved self-attention
encoder), InternVL3.5-8B(Wang et al., 2025) (InternViT encoder), and BLIP-2-12B(Li et al., 2023b)
(EVA-CLIP ViT encoder (Sun et al., 2023)). Results for these models are provided in Appendix E.
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Table 1: Comparison of our proposed AdPO with prior methods under untargeted attacks. We
evaluate the clean performance and adversarial robustness of various methods across multiple tasks.
The results indicate that AdPO significantly exceeds our baseline methods, attaining outstanding
robustness along with exceptional clean performance. The best results are shown in bold.

Method
COCO Flickr30k TextVQA VQAv2

clean ℓ∞ clean ℓ∞ clean ℓ∞ clean ℓ∞
2/255 4/255 2/255 4/255 2/255 4/255 2/255 4/255

CLIP 115.5 4.0 3.1 77.5 1.6 1.0 37.1 0.5 0.0 74.5 2.9 0.0
TeCoA 98.4 44.2 30.3 57.1 23.2 15.3 24.1 12.1 8.8 66.9 33.8 21.8
PMG-AFT 107.8 56.1 30.5 68.9 28.1 18.2 29.3 14.9 8.5 70.2 34.5 23.9
TGA-ZSR 108.5 55.6 31.1 68.3 28.6 17.7 28.9 14.5 8.7 70.9 35.1 23.1
FARE 109.9 53.6 31.0 71.1 29.5 17.5 31.9 14.7 9.1 71.7 34.9 23.0
Sim-CLIP 111.2 54.5 31.8 72.0 30.1 18.2 32.5 15.3 9.6 72.4 35.5 23.8
AGH-MAT 110.5 57.2 29.9 72.1 29.4 19.5 31.8 16.1 9.2 71.5 36.2 24.5
AdvSimplex 111.5 55.8 32.6 72.5 31.2 18.9 32.1 15.9 10.0 71.0 38.4 26.1
AdPO 115.3 68.9 47.6 75.9 38.6 27.9 35.5 24.2 17.6 73.6 52.3 37.6

Adversarial training settings. For fair comparison, we train on ImageNet (Deng et al., 2009)
using an online learning approach that relies solely on images without category labels. Adversarial
perturbations are generated via 10-step PGD under the ℓ∞ norm by optimizing Equation 4. To
balance robustness and clean accuracy, we apply perturbation radii ϵ = 2/255. λ is set to 1 by default.
We use the AdamW optimizer with a weight decay of 1e-4 and a learning rate of 1e-5. We conduct
training for two epochs with a batch size of 128. The preference parameter β is set to 0.1.

Baseline methods. Given the limited prior work on enhancing adversarial robustness of LVLMs,
and to fully demonstrate the advantages of our proposed method, we conduct extensive comparisons
in the main text against CLIP-based adversarial training approaches, including TeCoA (Mao et al.,
2023), FARE (Schlarmann et al., 2024), Sim-CLIP (Hossain & Imteaj, 2024), PMG-AFT (Wang
et al., 2024b), TGA-ZSR (Yu et al., 2024a), AGH-MAT (Chen et al., 2025), and AdvSimplex (Dong
et al., 2025). To ensure fair comparison, we use adversarial images with the same noise radius for
training. Note that AdPO does not benefit from broader optimization, allowing for a fair comparison
with previous methods, as neither has been exposed to the final language model.

4.1 EVALUATION OF UNTARGETED ATTACKS ON LVLMS

Attack setup. We utilize the approach outlined in Schlarmann & Hein (2023) to perform untargeted
attacks aimed at degrading the model’s performance. Given that attacks on LVLMs often demand
more iterations, we employ a 100-step APGD attack (Croce & Hein, 2020), which utilizes ground-
truth captions as labels. After each attack, we discard samples with scores below a specified threshold
to ensure that computationally expensive attacks are only performed when necessary, following
Schlarmann et al. (2024). Further details are provided in Appendix A.

Datasets and metrics. We utilize a variety of datasets for image captioning tasks, including
COCO (Lin et al., 2014) and Flickr30k (Plummer et al., 2015), as well as for visual question answering
tasks, such as VQAv2 (Goyal et al., 2017) and TextVQA (Singh et al., 2019). Considering that
adversarial attacks are time-consuming and costly, we randomly selected 500 images for evaluation.
We employ the CIDEr score (Vedantam et al., 2015) for image captioning and VQA accuracy (Antol
et al., 2015) for visual question answering tasks to present our results.

As presented in Table 1, our proposed AdPO method sets a new state-of-the-art in adversarial
robustness across all evaluated tasks. It consistently and substantially outperforms all baseline
methods, marking a significant advance in adversarial defense. Crucially, AdPO achieves this
enhanced robustness while preserving performance on benign inputs. The method incurs only a
negligible performance drop on clean data compared to the original CLIP baseline, effectively
avoiding the typical trade-off between robustness and clean accuracy. Furthermore, AdPO shows
excellent generalization from weaker to stronger attacks. Despite being trained only on perturbations
with an budget of 2//255, it maintains superior robustness against larger, unseen perturbations of
ϵ = 4/255. To further underscore its resilience, we include evaluations against even larger perturbations
(8/255 and 16/255) in Appendix F. We also find that evaluating directly on TinyLLaVA yields even
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Table 2: Quantitative evaluation of targeted attacks at ϵ = 4/255 radii. We assess the Attack Success
Rate (ASR) for each setup.

Target CLIP TeCoA PMG TGA FARE AGH Adv. AdPO

A group of people ... 20 / 20 1 / 20 1 / 20 2 / 20 1 / 20 0 / 20 0 / 20 0 / 20
a bunch of people ... 20 / 20 1 / 20 0 / 20 1 / 20 1 / 20 1 / 20 1 / 20 0 / 20
The pizza on the table... 20 / 20 2 / 20 2 / 20 0 / 20 0 / 20 0 / 20 0 / 20 0 / 20
An earthquake is about... 20 / 20 2 / 20 1 / 20 1 / 20 1 / 20 1 / 20 0 / 20 0 / 20
This patient needs ... 20 / 20 0 / 20 1 / 20 1 / 20 0 / 20 1 / 20 2 / 20 0 / 20

Mean ASR: 100% 4% 5% 5% 3% 3% 3% 0%

CLIP: A tray with a sandwich
and french fries.

TeCoA: a motorcycle parked in
front of a wooden fence.

FARE: A table of food.

AdPO: A tray with a sandwich
and french fries.

CLIP: A man riding a skateboard
down a ramp.

TeCoA: A group of people in a
room with a giant statue.

FARE: A plate of food.

AdPO: A plate of food with a
sandwich, fries, and a salad.

Clean Image Adversarial Image

Figure 3: Qualitative assessment of targeted attacks on LLaVA. (Left) When encountering clean
images, CoTeA may exhibit noticeable errors, which is undesirable in adversarial defense, while
FARE and AdPO demonstrate better clean performance. (Right) When faced with adversarial images,
the original LLaVA is easily compromised, FARE shows some adversarial robustness but loses more
details or makes subtle errors, whereas AdPO performs better.

more significant improvements (Appendix G), which can be attributed to the direct alignment between
visual and language representations.

4.2 EVALUATION OF TARGETED ATTACKS ON LVLMS

In contrast to the untargeted attacks discussed in Section 4.1, targeted attacks on LVLMs pose a
significantly greater threat. Targeted attacks aim to compel the model to produce specific outputs,
with the added noise in the image remaining imperceptible to the user. Through image manipula-
tion, attackers can circumvent the model’s security mechanisms, leading it to generate malicious
content (Carlini et al., 2023; Niu et al., 2024; Qi et al., 2024b). Additionally, attackers can embed
phishing links into images through adversarial attacks to deceive users (Bagdasaryan et al., 2023).

Attack setup. We perform targeted attack experiments on LLaVA-1.5-7B, using the attack success
rate (ASR) as the primary evaluation metric. A sample is deemed successfully attacked if the model’s
output contains the target string. Targeted attacks on LVLMs generally require more iterations,
prompting us to execute APGD attacks for 10,000 iterations. Given that larger image perturbations
pose more significant threats, we employ ℓ∞ threat models with a radius of ϵ = 4/255. We evaluate
five target strings incorporating errors such as incorrect medical diagnoses and fake news, sampling
20 images for each string.

The quantitative evaluation results are presented in Table 2. The attack success rate for the clean
version of the CLIP model reaches 100%, underscoring the vulnerability of current vision-language
models to visual input and the substantial security risks posed. Although baseline methods exhibit a
certain degree of robustness, they still expose considerable vulnerabilities. In contrast, AdPO achieves
the strongest robustness, effectively safeguarding the model against malicious attacks. Additional
details are provided in Appendix C.

4.3 FURTHER EVALUATION

Although we conduct extensive quantitative evaluations above, they are still insufficient for a compre-
hensive assessment of LVLMs. In this section, we first present a qualitative evaluation, followed by
an analysis of other vision-language tasks and the training efficiency.
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Figure 4: Ablation experiments on AdPO. (a) The performance of DPO variants. (b) The evaluation
of attack types. (c) The impact of the parameter λ.

Qualitative evaluation. As depicted in Figure 3, the LLaVA model, using the original CLIP as the
encoder, provides the most accurate and detailed understanding of clean images. However, when
faced with adversarial images, they are completely vulnerable to successful attacks. TeCoA fails to
exhibit robust performance against both clean and adversarial images, whereas FARE experiences a
loss of detail or minor errors in image understanding, ultimately falling short of optimal performance.
In the absence of adversarial defenses, LLaVA is susceptible to manipulation, resulting in biased
outputs that can mislead users and have detrimental effects.

Recent work has shown that LVLMs are prone to hallucinations and are more susceptible to jailbreak
attacks compared to purely language models (Qi et al., 2024a; Li et al., 2023d). Additional experimen-
tal evaluations presented in Appendix D demonstrate that our method exhibits better performance in
both hallucination reduction and jailbreak prevention. We quantitatively evaluate the average runtime
per batch across different methods in Appendix I, demonstrating that AdPO achieves comparable
efficiency to previous approaches when trained on a lightweight LVLM.

4.4 ABLATION STUDY

The impact of DPO variants. In Figure 4 (a), we evaluate four commonly used DPO variants to
analyze the effectiveness of AdPO. The results show that IPO (Azar et al., 2024), KTO (Ethayarajh
et al., 2024), and StepDPO (Lai et al., 2024) perform well, while SimPO (Meng et al., 2025)
performs relatively poorly, possibly due to the removal of the reference model. This experiment also
demonstrates that AdPO serves as a general preference framework for enhancing model robustness,
rather than being restricted to a specific algorithm.

Analysis of attack types. In addition to APGD, we further evaluate the impact of other attack
methods, including C&W (Carlini & Wagner, 2017), sC&W (Zhang et al., 2020), BIM (Kurakin
et al., 2016), CroPA Luo et al. (2024a), and Verbose (Gao et al., 2024). As shown in Figure 4 (b), our
method remains robust even against attacks specifically designed for LVLMs.

The impact of λ. We perform untargeted attacks to evaluate the effectiveness of AdPO trained with
diffenrent λ on the Flicker30K dataset, with experimental results shown in Figure 4 (c). We find
that the clean performance is largely insensitive to AIO, whereas increasing λ significantly improves
adversarial robustness, with the best empirical results achieved around λ = 1.

We also provide additional ablation studies, including direct adversarial training, SFT-based AIO,
and full fine-tuning, in Appendix H.

5 CONCLUSION

We propose AdPO, the first adversarial defense strategy based on preference optimization. It jointly
optimizes the model’s outputs on both clean and adversarial images, thereby better preserving clean
performance under adversarial training. Unlike previous adversarial fine-tuning methods, which
typically only impose single-target constraints to improve adversarial robustness, leading to a loss
of clean performance. Moreover, AdPO does not require labeled image data or the CLIP text
encoder, offering greater flexibility. Both quantitative and qualitative analyses demonstrate that our
method achieves state-of-the-art results, with particularly significant improvements on generative
vision-language understanding tasks.
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ETHICS STATEMENT

This research did not involve any human subjects, nor did it collect or process personally identifiable
information. The core focus of this paper is on adversarial defense for Large Vision-Language
Models. While the broader field of adversarial examples includes the creation of attacks, our primary
contribution is the development of a robust defense mechanism (AdPO) designed to enhance model
security and reliability. By making models more resilient to malicious manipulation, our work aims
to mitigate the potential for these systems to generate erroneous, misleading, or harmful content.
We believe this research contributes positively to the development of safer and more trustworthy AI,
which is crucial for their responsible deployment in real-world applications.

REPRODUCIBILITY STATEMENT

All experiments were conducted using publicly available models and datasets (LLaVA, COCO,
Flickr30k, etc.) and standard evaluation protocols. We provide detailed hyperparameters for our main
experiments in Section 4 and Appendix A, B.
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Appendix

THE USE OF LARGE LANGUAGE MODELS

In preparing this paper, we primarily used ChatGPT for language polishing. The model was employed
to refine grammar, improve readability, and adjust the overall clarity and conciseness of the manuscript.
Importantly, all conceptual contributions, experimental designs, analyses, and conclusions are our
own. ChatGPT was used strictly as a writing assistant, and we carefully verified and edited all
generated suggestions to ensure accuracy and consistency with our intended meaning.

A UNTARGETED ATTACK DETAILS

We provide a comprehensive description of the attack pipeline utilized for the untargeted adversarial
evaluation of LVLMs in Section 4.1.

For the captioning tasks COCO and Flickr30k, each image is accompanied by 5 available ground-truth
captions, with each caption utilized to calculate the CIDEr score. We perform APGD attacks with 100
iterations on each ground truth. After each attack, we calculate the CIDEr score and cease attacking
samples that score below 10 for COCO or 2 for Flickr30k. This strategy is primarily employed
because generating adversarial attacks on VLMs is extremely time-consuming and costly, allowing
us to allocate our limited resources to more impactful attacks. For the VQA task, we apply a similar
approach, but the score threshold is set to 0, and we utilize the 5 most common ground truths out of
the 10 available.

B PROMPTS

We list the prompt templates we used for image description tasks:

• What is the content of the image?

• What does the image show?

• Describe the image in detail.

• What is the image illustrating?

• What is displayed in the image?

• Can you explain what is happening in the image?

• Provide a detailed description of the image.

• Summarize the main objects and elements in the picture.

• What objects or people are visible in the image?

• Describe the scene shown in the image.

• What kind of activity is depicted in the image?

• Give a comprehensive explanation of the image content.

• Identify and describe the key features of the image.

• What is the overall setting or environment shown in the picture?

• Provide a step-by-step breakdown of what you see in the image.

• Describe the relationships between the objects in the picture.

• What message or information does the image convey?

• Provide a caption that accurately summarizes the image.
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C TARGETED ATTACK DETAILS

We use the following target sequences to perform targeted attacks:

• A group of people are playing basketball.

• a bunch of people are flying in the air.

• The pizza on the table is very bad.

• An earthquake is about to happen.

• This patient needs the best medical care.

If these targeted and even subtly provocative phrases are successfully embedded into adversarial
images, they can subtly deceive users, thereby influencing their subsequent decisions. In addition
to the quantitative evaluation presented in Section 4.2, we also observed that when the target text
is closely related to the image content, the success rate of adversarial attacks is significantly high,
indicating that images can easily mislead LVLMs. This presents a more dangerous scenario because
when the target text is only weakly related to the image, users can more easily spot these erroneous
outputs, thereby reducing their trust in the model. Conversely, when the model’s output appears
somewhat plausible in relation to the image content, users are more likely to trust the model’s output.

D EXPERIMENTATION ON MORE TASKS

Table 3: Hallucination evaluation on the POPE dataset. The reporting results are based on the
F1-score metric.

Method Clean TeCoA TGA FARE PMG TGA AGH AdvSimplex AdPO

F1-score 84.5 75.9 78.2 80.8 81.2 83.2 82.9 82.3 83.7

It is widely recognized that evaluating large vision-language models is challenging. In addition to
assessing several key multimodal tasks in Section 4.1, this section further examines the performance
of our method on additional vision-language tasks.

Hallucinations. One of the greatest challenges faced by LVLMs is hallucination, where these models
may perceive objects in an image that do not actually exist. This issue has garnered widespread
attention within the research community. We selected the commonly used POPE dataset (Li et al.,
2023d) to evaluate multiple CLIP versions of the LLaVA model. In this dataset, the model is required
to answer “Yes” or “No” to indicate whether a specific object is actually present in the image. Table 3
shows that our version of CLIP achieved the highest accuracy, but our AdPO method most effectively
addresses clean performance. In contrast, both TeCoA and FARE demonstrated a more pronounced
decline in performance.

Table 4: The evaluation of jailbreak attack defense, with the attack success rate reported.

Method ϵ ASR

CLIP 0 14 / 40
TeCoA 0 14 / 40
TGA 0 15 / 40
FARE 0 13 / 40
AdPO 0 8 / 40
CLIP 16/266 25 / 40

TeCoA 16/266 16 / 40
TGA 16/266 16 / 40
FARE 16/266 16 / 40
AdPO 16/266 8 / 40

Jailbreaking attacks. Recent studies have shown that LVLMs are more vulnerable to jailbreak
attacks than pure LLMs, especially when adversarial perturbations are added to images (Qi et al.,
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2024a; Carlini et al., 2023). Therefore, it is essential to further analyze our method’s robustness
against jailbreak attacks. Under normal circumstances, model owners align models with human
values to prevent them from generating suggestive or harmful content. For example, if a user enters
a malicious prompt like “How to make a bomb,” the model should refuse to respond. However,
with the introduction of adversarial images, attackers can more easily bypass these security guard,
inducing the model to output intended content and thereby posing greater risks. Following the setup
from (Qi et al., 2024a), we evaluate LLaVA 1.5 with different CLIP versions under various noise
levels. The results are shown in Table 4. Even without adversarial images, LLaVA can be affected by
jailbreak attacks to generate harmful content. Once noise is introduced, however, the success rate
of jailbreak attacks on the clean CLIP version increases significantly, while adversarially trained
versions maintain their original level of security. This indicates that adversarial training can also
enhance the robustness of LVLMs against jailbreak attacks, with our method achieving the best
performance. It is important to note that jailbreak attacks are currently a very active area of research,
and our evaluations may somewhat overestimate their performance.

Table 5: Adversarial Evaluation on the Qwen-2.5-VL model.

Method Type COCO Flickr30k TextVQA VQAv2

Original - 124.3 82.3 79.3 84.3

FARE Clean 118.5 74.3 65.1 73.8
Adversarial 61.8 35.2 20.8 34.7

AdPO Clean 124.8 82.2 79.2 84.1
Adversarial 78.3 50.6 37.2 48.5

Table 6: Adversarial Evaluation on the InternVL3.5 model.

Method Type COCO Flickr30k TextVQA VQAv2

Original - 124.5 83.6 78.2 82.4

FARE Clean 117.4 73.2 62.4 70.3
Adversarial 60.5 32.1 22.4 34.5

AdPO Clean 124.4 83.4 79.0 82.5
Adversarial 79.3 48.8 36.4 47.2

Table 7: Adversarial Evaluation on the BLIP-2 model.

Method Type COCO Flickr30k TextVQA VQAv2

Original - 98.2 70.7 40.3 48.2

FARE Clean 88.5 62.2 29.5 32.2
Adversarial 41.2 23.7 10.3 15.3

AdvSimplex Clean 82.9 59.8 19.9 27.5
Adversarial 40.7 21.8 12.8 14.6

AGH-MAT Clean 85.1 62.5 21.3 29.1
Adversarial 42.3 25.5 14.1 18.0

TGA-ZSR Clean 84.2 61.3 20.8 28.0
Adversarial 41.4 22.9 13.4 15.2

AdPO Clean 98.5 70.3 39.3 48.2
Adversarial 65.4 48.2 22.8 24.4

E EXPERIMENT ON NON-CLIP MODELS

In order to assess the generalizability of AdPO beyond CLIP-based models, we conduct empirical
evaluations on Qwen-2.5-VL, InternVL3.5, and BLIP-2.

Qwen2.5-VL employs an image encoder with an improved self-attention mechanism, while In-
ternVL3.5 uses InternViT as its image encoder. We apply AdPO for comparison, and neither model
requires a text encoder. As shown in Tables 5 and Table 6, our method achieves a substantial lead,
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particularly in adversarial robustness, consistently outperforming FARE by more than 10 points. We
also evaluate BLIP-2, which uses the EVA-CLIP model as its encoder, to enable a more compre-
hensive comparison with prior methods. As shown in the results in Table 7, AdPO still achieves a
substantial lead, further demonstrating that it is a model-agnostic approach.

F ANALYSIS OF ATTACK STRENGTHS

In this section, we explore the impact of higher attack strengths with the results presented in Table 8
and Table 9.

Table 8: The performance of attacks with 8/255.

Method COCO Flickr30k TextVQA VQAv2

FARE 25.2 13.2 5.2 10.1
TGA 26.7 14.2 6.9 15.2
AdPO 42.5 24.5 13.3 22.5

Table 9: The performance of attacks with 16/255.

Method COCO Flickr30k TextVQA VQAv2

FARE 8.2 3.2 2.2 3.1
TGA 10.7 8.2 3.6 5.2
AdPO 20.2 13.2 8.2 14.9

We find that models trained with low attack intensity exhibit some level of adversarial robustness when
faced with high-disturbance adversarial samples. However, they show a noticeable performance drop
compared to models trained with the same level of perturbation. Compared to previous state-of-the-art
methods, our method still achieves a significant lead.

G EXPERIMENTAL RESULTS ON TINY-LLAVA

Table 10: Experimental Results on Tiny-LLaVA.

Method Type COCO Flickr30k TextVQA VQAv2

Original - 90.3 65.3 40.4 69.5

FARE Clean 83.2 55.3 30.7 58.2
Adversarial 39.2 20.5 8.9 17.2

TGA Clean 80.1 53.9 25.8 55.7
Adversarial 40.2 23.1 10.2 18.2

AdPO Clean 91.2 66.3 42.8 65.2
Adversarial 50.3 42.7 27.4 28.4

Table 10 presents our experimental results on TinyLLaVA. The results demonstrate that our method
achieves a substantial improvement over previous approaches. This improvement can be attributed to
the direct joint training of the image encoder and the target decoder, which enables more effective
vision-language alignment.

H ADDITIONAL ABLATION STUDIES

In this section, we primarily investigate the impact of direct adversarial training and full fine-tuning
on model performance as shown Table 11.

We observe that direct adversarial training significantly degrades clean performance without pro-
viding notable improvements in adversarial robustness. On the other hand, full fine-tuning slightly
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Table 11: Additional ablation studies.

Method Clean Adversarial

Direct Adversarial Training 66.3 42.2
Full Fine-tuning 72.3 50.4
SFT-based AIO 70.0 41.1
AdPO 73.6 52.3

compromises transferability, leading to minor drops in both clean and adversarial performance. We
find that when applying SFT-based AIO (Eq. 6), both clean and adversarial performance degrade
significantly. This decline arises from the strong negative impact of SFT on model generalization, a
phenomenon consistent with recent findings in the literature (Chu et al., 2025).

I EFFICIENCY ANALYSIS

In this section, we discuss the training efficiency of different methods. Table 12 shows that, under the
same hardware configuration, our method achieves comparable training speed to previous approaches.
This is primarily attributed to our use of a smaller LVLM during training. It is worth noting that
training time may vary slightly under different hardware drivers, temperature conditions, and other
system factors.

In the early experiments, this paper consumed substantial computational resources. However, the
final approach significantly reduced the training cost by relying on training smaller models, ultimately
requiring only 8 A100 GPUs.

Table 12: Comparison of training speed among different methods.

Method GPU Batch Size Average Training Time

TeCoA
NVIDIA Tesla A100 128

1.78s / Batch
TGA-ZSR 1.73s / Batch

AdPO 1.89s / Batch
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