

000 001 002 003 004 005 006 007 008 009 010 011 012 ADPO: ENHANCING THE ADVERSARIAL ROBUSTNESS 002 OF LARGE VISION-LANGUAGE MODELS WITH PREFER- 003 ENCE OPTIMIZATION 004 005

006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 Large Vision-Language Models (LVLMs), such as GPT-4o and LLaVA, have re-
014 cently witnessed remarkable advancements and are increasingly being deployed
015 in real-world applications. However, inheriting the sensitivity of visual neural
016 networks, LVLMs remain vulnerable to adversarial attacks, which can result in er-
017 roneous or malicious outputs. While existing efforts utilize adversarial fine-tuning
018 to enhance robustness, they often suffer from significant performance degradation
019 on clean inputs. In this paper, we propose AdPO, a novel adversarial defense strat-
020 egy for LVLMs based on preference optimization. For the first time, we reframe
021 adversarial training as a preference optimization problem, aiming to enhance the
022 model’s preference for generating normal outputs on clean inputs while reject-
023 ing the potential misleading outputs for adversarial examples. Notably, AdPO
024 achieves this by solely modifying the image encoder, e.g., CLIP ViT, resulting
025 in superior clean and adversarial performance in a variety of downstream tasks.
026 Due to the computational cost of training large language models, we show that
027 training on smaller LVLMs and transferring to larger ones achieves state-of-the-art
028 performance with efficiency comparable to previous methods. Our comprehensive
029 experiments confirm the effectiveness of the proposed AdPO which highlights the
030 potential of preference-based learning in adversarially robust multimodal systems.
031
032

1 INTRODUCTION

033 The emergence of Large Vision-Language models (LVLMs) has substantially propelled the develop-
034 ment of general artificial intelligence, attracting considerable attention from the AI community (Yin
035 et al., 2023; Cui et al., 2024; Liu et al., 2024c). These models generally consist of two key compo-
036 nents: visual modules and Large Language Models (LLMs) (Zhao et al., 2023a). The visual modules,
037 frequently utilizing pre-trained image encoders like CLIP’s ViT (Radford et al., 2021), are responsible
038 for extracting salient visual features from images and projecting them onto the input space of the
039 language model. This alignment facilitates the next-token prediction in an autoregressive manner
040 within the framework of the language model. Cutting-edge LVLMs, such as Qwen2.5-VL (Bai et al.,
041 2025) and LLaVA (Liu et al., 2023), have demonstrated outstanding capabilities in understanding
042 and reasoning with both visual and textual information. These models have delivered exceptional
043 performance across a broad range of tasks, such as image captioning (Nguyen et al., 2023), visual
044 question answering (Liu et al., 2024b), and text recognition (Liu et al., 2024a; Cao et al., 2023).
045

046 Given their transformative potential in multimodal learning and understanding, LVLMs are increas-
047 ingly being deployed across a diverse range of real-world applications. However, this widespread
048 deployment raises significant security concerns, as malicious adversaries can exploit vulnerabilities
049 in LVLMs to induce undesirable outputs and hallucinations (Schlarmann & Hein, 2023; Shayegani
050 et al., 2024; Wang et al., 2024e). Consequently, it is imperative to rigorously test and improve the
051 robustness of these models prior to deployment. Recent research has identified a critical vulnerability
052 in LVLMs to adversarial attacks targeting both textual and visual inputs (Zhao et al., 2023b). Notably,
053 the continuous nature of the visual modality renders it more susceptible to manipulation via
numerical optimization techniques (Wang et al., 2024c; Carlini et al., 2023; Qi et al., 2024b; Luo
et al., 2024a). Researchers disrupt the understanding of LVLMs by injecting imperceptible noise into
images, thereby enabling both targeted and untargeted adversarial attacks.

To improve the adversarial robustness of LVLMs, two main training paradigms have been explored: multimodal contrastive learning and generative pre-training. Multimodal contrastive learning methods (e.g., FARE (Schlaremann et al., 2024) and TeCoA (Mao et al., 2023)) align the features of adversarial images with those of text to obtain a robust image encoder, which can then be transferred to LVLMs. This approach is computationally efficient but often fails to achieve fine-grained alignment. In contrast, generative pre-training leverages the full LVLM, enabling finer-grained alignment, but generally suffers from poor generalization, which in turn degrades clean performance (Chu et al., 2025).

Inspired by the significant success of preference optimization in the LLM community (Wang et al., 2024g; Ouyang et al., 2022), we identify that applying preference optimization to adversarial training is highly promising, given the alignment between their objectives. More specifically, adversarial training aims to enhance model robustness against adversarial attacks while preserving performance on clean data. Preference optimization, such as DPO (Rafailov et al., 2023), aligns LLMs with human values by increasing the probability of preferred outputs while decreasing the likelihood of non-preferred ones. Building on this insight, we propose **AdPO**, a novel Adversarial **defense** strategy based on **Preference Optimization**, which enables LVLMs to generate correct outputs from clean image inputs while rejecting misleading outputs from adversarial images.

However, applying DPO to adversarial training presents non-trivial challenges. In comparison to standard offline DPO, we introduce key improvements: (1) We extend DPO from an offline to an online setting to eliminate the reliance on image annotations. In this framework, the policy model generates interpretations for both clean and adversarial images, which are then used as sources of positive and negative samples. (2) We propose **Preferred Image Optimization** (PIO), which simultaneously increases the probability of producing correct outputs under clean inputs while reducing erroneous outputs under adversarial images. This leads to a significant improvement in clean performance, as illustrated in Figure 1. (3) We propose **Adversarial Image Optimization** (AIO), which leverages dynamic fine-tuning to explicitly optimize the probability of producing correct responses under adversarial inputs, thereby mitigating the potential multimodal unconditional preference issue (Wang et al., 2024a).

Another potential concern is computational efficiency. Directly training a commonly used LVLM model, such as LLaVA-7B Liu et al. (2024b), may be prohibitively expensive in resource-constrained scenarios. In this paper, we **explore fine-tuning the image encoder of a smaller LVLM and subsequently transferring it to a larger LVLM model**. This strategy not only achieves high computational efficiency and mitigates the risk of potential overfitting during evaluation, but also enables a fair comparison with prior CLIP-based approaches.

By constraining our adversarial training to modifying only the CLIP ViT parameters on the ImageNet dataset (Deng et al., 2009), extensive evaluations demonstrate that our proposed AdPO produces a more robust image encoder while maintaining almost intact clean performance. These findings not only validate the effectiveness of our approach but also extend the applicability of preference optimization techniques beyond their traditional use in language models.

In summary, our contributions are as follows:

- We introduce **AdPO** (Adversarial defense based on Preference Optimization), which, to the best of our knowledge, is the first attempt to explore the application of preference optimization for adversarial training.
- We propose a dual strategy combining **Preferred Image Optimization (PIO)** and **Adversarial Image Optimization (AIO)** to preserve the model’s clean performance while enhancing its adversarial robustness. This serves as a general adversarial training framework that is not restricted to any specific algorithm or model.

Figure 1: AdPO achieves a significant improvement in clean performance compared with previous methods.

- 108 • We validate the feasibility of conducting adversarial **training on smaller LVLMs and**
109 **subsequently transferring it to larger models**, which reduces computational costs and
110 mitigates potential overfitting during evaluation.
- 111 • We conduct extensive experiments on multiple vision-language tasks and datasets using
112 various models and the results show that our method consistently achieves state-of-the-art
113 performance.

115 2 RELATED WORK

118 In this section, we primarily review the related studies on large vision-language models, adversarial
119 attacks, adversarial defenses, and preference optimization methods.

120 **Large Vision-Language Models.** Recently, large multimodal models have emerged, including
121 LLaVA 1.5 (Liu et al., 2024b), OpenFlamingo (OF) (Awadalla et al., 2023), BLIP-2 (Li et al., 2023b),
122 MiniGPT-4 (Zhu et al., 2024), Otter (Li et al., 2023a), mPLUG-Owl (Ye et al., 2023), Qwen-VL (Bai
123 et al., 2023), MiniCPM-V (Yao et al., 2024), DeepSeek-VL (Lu et al., 2024), InternVL (Chen et al.,
124 2024), and Idefics2 (Laurençon et al., 2024). These models typically use pre-trained image encoders
125 (e.g., CLIP or SigCLIP) to extract image features, which are then aligned with text embedding
126 spaces (Radford et al., 2021; Zhai et al., 2023). The visual and textual embeddings are then fed into
127 LLMs for autoregressive generation. This approach allows the model to simultaneously understand
128 and generate content related to both images and text. To mitigate computational load, a practical
129 strategy is to freeze the image encoder and train only the projection layer, which not only simplifies
130 the training process but also enhances efficiency (Liu et al., 2023; Awadalla et al., 2023). Therefore,
131 image encoders can significantly impact the performance of LVLMs, receiving significant attention
132 from the multimodal community (Cao et al., 2023; Zhou et al., 2024). We mainly focus on evaluating
133 the performance of LLaVA-1.5 and OpenFlamingo, as both adopt CLIP ViT-L/14 (Radford et al.,
134 2021) as their image encoder, while additionally assessing our method on Qwen-2.5-VL (Bai et al.,
135 2025), a non-CLIP-based model, for further validation.

136 **Adversarial attacks.** The vulnerability of visual neural network models to adversarial attacks is
137 well-established and has been extensively investigated (Szegedy et al., 2014; Goodfellow et al., 2015;
138 Madry et al., 2018; Brown et al., 2017; Zhang et al., 2023; 2024; Zhou et al., 2023). By introducing
139 carefully crafted noise into images, adversaries can cause the victim model to generate incorrect
140 outputs with high confidence. Capitalizing on this vulnerability, recent studies have shown that
141 LVLMs are also vulnerable to attacks targeting visual inputs (Schlarmann & Hein, 2023; Shayegani
142 et al., 2024; Luo et al., 2024a; Gao et al., 2024; Dong et al., 2023b). Zhao *et al.* (Zhao et al., 2023b)
143 showed that transferable black-box attacks could be generated using text-to-image models and other
144 work (Carlini et al., 2023) demonstrated how adding adversarial noise to images can circumvent safety
145 constraints of LLMs. Qi *et al.* (Qi et al., 2024a) explored how adversarial attacks embedding deceptive
146 information into images can mislead LVLMs and deceive users. The widespread deployment of
147 LVLMs has raised urgent security concerns due to the threat of adversarial attacks.

148 **Adversarial defenses.** Adversarial defenses in machine learning safeguard models from malicious
149 inputs to ensure their integrity and reliability, especially in security-sensitive contexts (Madry et al.,
150 2018; Fares et al., 2024; Papernot et al., 2016; Zhou & Patel, 2022; Luo et al., 2024b; Ledda et al.,
151 2024; Debbi, 2024; Xue et al., 2024; Zhao et al., 2024; Liang et al., 2024; Li et al., 2024; Li & Li,
152 2024; Hotegni & Peitz, 2024; Jiang et al., 2024). For example, Detectors (Huang et al., 2024; Mumcu
153 & Yilmaz, 2024; Mavali et al., 2024; Roth et al., 2019; Xu et al., 2018; Meng & Chen, 2017; Metzen
154 et al., 2017) identify and filter out adversarial examples, but these external modules can introduce
155 additional inference time and may also obstruct normal inputs. Purification methods (Samangouei
156 et al., 2018; Nie et al., 2022; Ho & Vasconcelos, 2022; Das et al., 2018) use techniques such as
157 diffusion models to eliminate adversarial perturbations in input data, and this can also modify
158 the input, thus affecting performance. Adversarial training (Kurakin et al., 2017b; Tramèr et al.,
159 2018; Dong et al., 2023a; Liu & Chen, 2024; Jia et al., 2024b; Lv et al., 2024; Palma et al., 2024;
160 Dong et al., 2024; RIbeiro et al., 2024; Jia et al., 2022) is a foundational method for enhancing a
161 model’s inherent robustness by integrating adversarial examples into the training dataset. In the
162 multimodal field (Wang et al., 2024b), recent research has predominantly concentrated on enhancing
163 the adversarial robustness of CLIP-based models in zero-shot classification tasks. For example,
164 TeCoA (Mao et al., 2023) applies text-guided adversarial training, while AdvXL (Wang et al., 2024f)

162 leverages large-scale training data. TGA-ZSR (Yu et al., 2024a) introduces a text-guided attention
 163 mechanism to further strengthen robustness under zero-shot settings. FARE (Schlarmann et al., 2024)
 164 enhances the robustness of LVLMs by minimizing the representation distance between clean and
 165 adversarial images in CLIP, and transferring the CLIP image encoder to models such as LLaVA.
 166 Despite these advances, a persistent challenge remains: the clean performance of LVLMs still suffers
 167 a significant drop.

168 **Preference optimization.** Preference optimization has emerged as a novel training paradigm for
 169 aligning LLMs with human values and has garnered significant attention in recent research (Ouali
 170 et al., 2024; Yu et al., 2023; 2024b; Wang et al., 2024a;d). Reinforcement Learning from Human
 171 Feedback (RLHF) utilizes human preferences as a reward model and applies reinforcement learning
 172 to guide model training (Bai et al., 2022; Ouyang et al., 2022) Direct Preference Optimization (DPO)
 173 streamlines the training process by increasing the log probability of preferred samples while reducing
 174 that of non-preferred samples, enabling broader applications (Rafailov et al., 2023). Subsequent
 175 advancements, such as StepDPO (Lai et al., 2024), SimPO (Meng et al., 2025), and IPO (Azar et al.,
 176 2024), have further improved DPO’s performance. Considering its stability and efficiency in training,
 177 we also adopt DPO for adversarial training of LVLMs in this work.

178 3 METHOD

181 This section provides a detailed introduction to our AdPO, with its overall framework illustrated in
 182 Figure 2. First, Section 3.1 outlines the basics of the DPO algorithm, and Section 3.2 discusses adver-
 183 sarial example generation, which forms the preference sample pairs required for DPO. Sections 3.3
 184 and 3.4 introduce preferred image optimization and adversarial image optimization, respectively.

185 3.1 PRELIMINARIES

187 DPO has emerged as a prominent method in the
 188 domain of offline preference optimization. This
 189 method provides a novel framework for optimiz-
 190 ing language models in accordance with human
 191 preferences. In a typical setup, given an input
 192 x and an output text y , a language model (i.e.,
 193 policy model) π_θ generates a conditional distri-
 194 bution $\pi_\theta(y|x)$. Unlike RLHF, which employs
 195 an explicit reward model, DPO reformulates the
 196 reward function using a closed-form expression
 197 with respect to the optimal policy. The main
 198 objective of DPO is to maximize the expected
 199 reward of the outputs generated by this policy,
 200 with the reward function defined as $r(x, y)$:

$$201 \quad r(x, y) = \beta \log \frac{\pi_\theta(y|x)}{\pi_{\text{ref}}(y|x)} + \beta \log Z(x) \quad (1)$$

203 where β is a constant, π_{ref} is the reference policy
 204 model (identical to the original π_θ), and $Z(x)$ is the partition function.

205 Given a preference dataset $\mathcal{D} = \{x, y_w, y_l\}$, where y_w and y_l represent the winning and losing
 206 responses respectively, DPO employs a Bradley-Terry model (Bradley & Terry, 1952) to express the
 207 probability for each preference pair:

$$208 \quad p(y_w \succ y_l) = \sigma(r(x, y_w) - r(x, y_l)) \quad (2)$$

209 where $\sigma(\cdot)$ is typically defined as a sigmoid function. The key innovation of DPO is its formulation of
 210 the likelihood of preference data using the policy model, as opposed to relying on an explicit reward
 211 model. This leads to the formulation of the DPO objective:

$$213 \quad \mathcal{L}_{\text{DPO}}(\pi_\theta; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_\theta(y_w|x)}{\pi_{\text{ref}}(y_w|x)} - \beta \log \frac{\pi_\theta(y_l|x)}{\pi_{\text{ref}}(y_l|x)} \right) \right] \quad (3)$$

215 This formulation captures the core principles of DPO, providing a robust framework for optimizing
 216 language models in alignment with human preferences.

218 Figure 2: The architecture of our proposed AdPO.
 219 AdPO mainly consists of two parts: **(left)** pre-
 220 ferred image optimization and **(right)** adversarial
 221 image optimization. Preferred image optimiza-
 222 tion incorporates both clean and adversarial im-
 223 ages into adversarial training while maintain-
 224 ing the model’s performance on clean inputs, and
 225 adversarial image optimization can significantly en-
 226 hance the model’s adversarial robustness.

227

216 3.2 ADVERSARIAL EXAMPLE GENERATION
217

218 In the context of LVLMs, the input to the model comprises $x = \{x_m, x_{text}\}$, where x_m denotes the
219 image input and x_{text} represents the text input. This section outlines the principles behind generating
220 adversarial images.

221 Adversarial images are generated by introducing small, nearly imperceptible perturbations to original
222 images, with the goal of deceiving machine learning models and inducing incorrect predictions.
223 Although adversarial images appear nearly identical to the original images to humans, they can
224 drastically alter the model’s output, exposing its vulnerability to malicious inputs (Kurakin et al.,
225 2017a). Adversarial attacks can be broadly categorized into targeted and untargeted attacks: targeted
226 attacks compel the model to produce specific outputs (Luo et al., 2024a), whereas untargeted attacks
227 merely lead the model to generate incorrect outputs (Wang et al., 2024e; Gao et al., 2024). In this
228 study, we employ untargeted attack methods to generate adversarial images for three reasons: (1)
229 They eliminate dependence on specifically labeled datasets and do not rely on the text encoder,
230 enabling our method to generalize to unseen datasets (Schlarmann et al., 2024; Yu et al., 2024a). (2)
231 Untargeted attacks typically achieve a high success rate, allowing the stable generation of negative
232 adversarial samples during training (Cui et al., 2023). (3) Their broader attack capability enhances
233 the model’s resilience against various types of adversarial attack methods (Wang et al., 2024e).
234

235 Given an image encoder ϕ (e.g., CLIP ViT) and a clean image x_m , adversarial examples are generated
236 by optimizing to maximize the discrepancy between the encoded features of the adversarial image
237 and the clean image:

$$238 x_{adv} = \arg \max_{\|x_{adv} - x_m\|_\infty \leq \epsilon} \|\phi(x_{adv}) - \phi_{org}(x_m)\|_2^2 \quad (4)$$

239 where x_{adv} is the adversarial image obtained through iterative optimization like PGD (Madry et al.,
240 2018), ϕ_{org} is the original image encoder and ϵ is the image perturbation magnitude. This approach
241 has been widely adopted in prior work, such as FARE and TGA-ZSR, and we also employ it to ensure
242 a fair comparison. Note that in subsequent adversarial training, the parameters of ϕ will be updated.
243

244 3.3 PREFERRED IMAGE OPTIMIZATION
245

246 This section primarily delineates the methodology for constructing pairs of preferred and non-
247 preferred samples from unlabeled image data, a fundamental step in the DPO training pipeline.
248

249 **Model Selection.** Compared to previous methods (Mao et al., 2023; Yu et al., 2024a; Wang et al.,
250 2024b) that rely solely on CLIP’s image and text encoders, AdPO utilizes the entire LVLM model.
251 Using a commonly adopted model such as LLaVA-7B would result in high computational costs. To
252 address this, we construct TinyLLaVA¹, which leverages OpenELM-450M-Instruct (Mehta et al.,
253 2024) as its language model. This lightweight LVLM not only achieves training efficiency comparable
254 to previous approaches but also mitigates potential overfitting during evaluation.

255 Given a clean image x_m and its adversarial image x_{adv} , we employ an online approach to directly
256 prompt the model (e.g., “*What is the content of the image?*”) to generate interpretations, thereby
257 obtaining the preferred response y_w and the non-preferred response y_l . Complete prompts are
258 provided in Appendix B. Accordingly, in the setting of multimodal adversarial training, our preferred
259 image optimization can be formulated as:

$$260 \mathcal{L}_{\text{PIO}}(\pi_\theta; \pi_{\text{ref}}) = -\mathbb{E}_{(x_m, x_{text}) \sim \mathcal{D}} \log \sigma \left(\beta \log \frac{\pi_\theta(y_w | x_m, x_{text})}{\pi_{\text{ref}}(y_w | x_m, x_{text})} - \beta \log \frac{\pi_\theta(y_l | x_{adv}, x_{text})}{\pi_{\text{ref}}(y_l | x_{adv}, x_{text})} \right) \quad (5)$$

261 This straightforward approach presents several advantages. First, it removes the need for data annotation,
262 thus facilitating its application to previously unseen image data. Second, this method resembles
263 semi-supervised learning, especially as LVLMs now possess advanced capabilities, enabling them
264 to incorporate labeled images into their training data. Moreover, allowing the model to generate its
265 own text as labels effectively mitigates distribution shift issues, thus concentrating attention on the
266 adversarial images themselves (Li et al., 2023c).
267

268 ¹https://github.com/TinyLLaVA/TinyLLaVA_Factory

Notably, this optimization does not presuppose that negative samples are always incorrect. The core idea of DPO is its relative objective: encouraging the model to prefer certain responses over others based on comparative judgments (Rafailov et al., 2023). In the extreme case where positive and negative samples are indistinguishable, no relative preference exists, and thus no model update is applied. Given the rapid development of preference optimization algorithms, we will evaluate the performance of DPO variants in experiments to assess the adaptability of AdPO.

3.4 ADVERSARIAL IMAGE OPTIMIZATION

While Preferred Image Optimization can maintain the performance of LVLMs on clean inputs, it remains insufficient to reach the optimal adversarial robustness. We identify two fundamental limitations. First, recent work has shown that multimodal DPO can be dominated by language-only preferences, causing the model to disregard visual conditions, a failure mode termed “unconditional preferences” that leads to hallucinations and suboptimal performance (Wang et al., 2024a). Second, as formulated in Eq. 5, the optimization objective focuses on maintaining clean outputs under clean inputs and rejecting harmful responses under adversarial inputs, yet fails to explicitly encourage the generation of correct outputs when adversarial perturbations are present. These limitations hinder the attainment of truly robust performance.

To address this gap, we introduce **Adversarial Image Optimization (AIO)**, which explicitly encourages the model to produce correct outputs under adversarial inputs. The most straightforward approach is to apply Supervised Fine-Tuning (SFT) to optimize the objective:

$$\mathcal{L}_{\text{SFT}}(\pi_\theta) = -\mathbb{E}_{(x_m, x_{text}) \sim \mathcal{D}} [\log \pi_\theta(y_w | x_{adv}, x_{text})] \quad (6)$$

However, a growing body of recent work shows that SFT tends to overfit the objective, thereby significantly reducing the model’s generalization ability (Chu et al., 2025; Wu et al., 2025). To mitigate this issue, we employ dynamic fine-tuning, whose core idea is to adjust the token-level loss based on the model’s confidence (Wu et al., 2025):

$$\begin{aligned} \mathcal{L}_{\text{AIO}}(\pi_\theta) &= -\mathbb{E}_{(x_m, x_{text}) \sim \mathcal{D}} [\text{sg}(\pi_\theta(y_w | x_{adv}, x_{text})) \log \pi_\theta(y_w | x_{adv}, x_{text})] \\ &= -\mathbb{E}_{(x_m, x_{text}) \sim \mathcal{D}} \left[\sum_{t=1}^{|y_l|} \text{sg}(\pi_\theta(y_w^t | y_w^{<t}, x_{adv}, x_{text})) \log \pi_\theta(y_w^t | y_w^{<t}, x_{adv}, x_{text}) \right] \end{aligned} \quad (7)$$

where $\text{sg}(\cdot)$ denotes the stop-gradient operator and y_w^t denotes the t -th token of y_w . By increasing the weight on high-confidence predictions, AIO explicitly enhances adversarial robustness while minimally affecting generalization.

Based on the analysis above, the final objective of AdPO is a combination of preferred image optimization and adversarial image optimization:

$$\mathcal{L}_{\text{AdPO}} = \mathcal{L}_{\text{PIO}} + \lambda \mathcal{L}_{\text{AIO}}, \quad (8)$$

where λ is the scaling factor that balances the two loss terms. By leveraging joint optimization, AdPO attains enhanced adversarial robustness while maintaining its performance on clean samples.

4 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate the performance of AdPO on various LVLM tasks. For a more comprehensive evaluation, please refer to the Appendix.

Models. To facilitate a thorough comparison with prior work, we focus on CLIP-based models in the main text. For training, we adopt TinyLLaVA (Jia et al., 2024a), which pairs CLIP’s ViT-L/14 image encoder with the OpenELM-450M-Instruct language model. This lightweight setup maintains computational efficiency comparable to prior methods while mitigating potential overfitting during evaluation. For evaluation, we primarily use LLaVA-1.5-7B (Liu et al., 2024b), a model widely adopted in the multimodal community. To show that our approach generalizes beyond CLIP-based models, we also evaluate **Qwen2.5-VL-7B** (Bai et al., 2025) (improved self-attention encoder), **InternVL3.5-8B** (Wang et al., 2025) (InternViT encoder), and **BLIP-2-12B** (Li et al., 2023b) (EVA-CLIP ViT encoder (Sun et al., 2023)). Results for these models are provided in Appendix E.

324
 325 Table 1: Comparison of our proposed AdPO with prior methods under untargeted attacks. We
 326 evaluate the clean performance and adversarial robustness of various methods across multiple tasks.
 327 The results indicate that AdPO significantly exceeds our baseline methods, attaining outstanding
 328 robustness along with exceptional clean performance. The best results are shown in **bold**.

Method	COCO			Flickr30k			TextVQA			VQAv2		
	clean		ℓ_∞									
	$\frac{2}{255}$	$\frac{4}{255}$										
CLIP	115.5	4.0	3.1	77.5	1.6	1.0	37.1	0.5	0.0	74.5	2.9	0.0
TeCoA	98.4	44.2	30.3	57.1	23.2	15.3	24.1	12.1	8.8	66.9	33.8	21.8
PMG-AFT	107.8	56.1	30.5	68.9	28.1	18.2	29.3	14.9	8.5	70.2	34.5	23.9
TGA-ZSR	108.5	55.6	31.1	68.3	28.6	17.7	28.9	14.5	8.7	70.9	35.1	23.1
FARE	109.9	53.6	31.0	71.1	29.5	17.5	31.9	14.7	9.1	71.7	34.9	23.0
Sim-CLIP	111.2	54.5	31.8	72.0	30.1	18.2	32.5	15.3	9.6	72.4	35.5	23.8
AGH-MAT	110.5	57.2	29.9	72.1	29.4	19.5	31.8	16.1	9.2	71.5	36.2	24.5
AdvSimplex	111.5	55.8	32.6	72.5	31.2	18.9	32.1	15.9	10.0	71.0	38.4	26.1
AdPO	115.3	68.9	47.6	75.9	38.6	27.9	35.5	24.2	17.6	73.6	52.3	37.6

340
 341 **Adversarial training settings.** For fair comparison, we train on ImageNet (Deng et al., 2009)
 342 using an online learning approach that relies solely on images without category labels. Adversarial
 343 perturbations are generated via 10-step PGD under the ℓ_∞ norm by optimizing Equation 4. To
 344 balance robustness and clean accuracy, we apply perturbation radii $\epsilon = \frac{2}{255}$. λ is set to 1 by default.
 345 We use the AdamW optimizer with a weight decay of 1e-4 and a learning rate of 1e-5. We conduct
 346 training for two epochs with a batch size of 128. The preference parameter β is set to 0.1.
 347

348 **Baseline methods.** Given the limited prior work on enhancing adversarial robustness of LVLMs,
 349 and to fully demonstrate the advantages of our proposed method, we conduct extensive comparisons
 350 in the main text against CLIP-based adversarial training approaches, including TeCoA (Mao et al.,
 351 2023), FARE (Schlarmann et al., 2024), Sim-CLIP (Hossain & Imteaj, 2024), PMG-AFT (Wang
 352 et al., 2024b), TGA-ZSR (Yu et al., 2024a), AGH-MAT (Chen et al., 2025), and AdvSimplex (Dong
 353 et al., 2025). To ensure fair comparison, we use adversarial images with the same noise radius for
 354 training. Note that AdPO does not benefit from broader optimization, allowing for a fair comparison
 355 with previous methods, as neither has been exposed to the final language model.
 356

357 4.1 EVALUATION OF UNTARGETED ATTACKS ON LVLMs

358 **Attack setup.** We utilize the approach outlined in Schlarmann & Hein (2023) to perform untargeted
 359 attacks aimed at degrading the model’s performance. Given that attacks on LVLMs often demand
 360 more iterations, we employ a 100-step APGD attack (Croce & Hein, 2020), which utilizes ground-
 361 truth captions as labels. After each attack, we discard samples with scores below a specified threshold
 362 to ensure that computationally expensive attacks are only performed when necessary, following
 363 Schlarmann et al. (2024). Further details are provided in Appendix A.
 364

365 **Datasets and metrics.** We utilize a variety of datasets for image captioning tasks, including
 366 COCO (Lin et al., 2014) and Flickr30k (Plummer et al., 2015), as well as for visual question answering
 367 tasks, such as VQAv2 (Goyal et al., 2017) and TextVQA (Singh et al., 2019). Considering that
 368 adversarial attacks are time-consuming and costly, we randomly selected 500 images for evaluation.
 369 We employ the CIDEr score (Vedantam et al., 2015) for image captioning and VQA accuracy (Antol
 370 et al., 2015) for visual question answering tasks to present our results.
 371

372 As presented in Table 1, our proposed AdPO method sets a new state-of-the-art in adversarial
 373 robustness across all evaluated tasks. It consistently and substantially outperforms all baseline
 374 methods, marking a significant advance in adversarial defense. Crucially, AdPO achieves this
 375 enhanced robustness while preserving performance on benign inputs. The method incurs only a
 376 negligible performance drop on clean data compared to the original CLIP baseline, effectively
 377 avoiding the typical trade-off between robustness and clean accuracy. Furthermore, AdPO shows
 378 excellent generalization from weaker to stronger attacks. Despite being trained only on perturbations
 379 with an budget of $\frac{2}{255}$, it maintains superior robustness against larger, unseen perturbations of
 380 $\epsilon = \frac{4}{255}$. To further underscore its resilience, we include evaluations against even larger perturbations
 381 ($\frac{8}{255}$ and $\frac{16}{255}$) in Appendix F. We also find that evaluating directly on TinyLLaVA yields even
 382

378 Table 2: Quantitative evaluation of targeted attacks at $\epsilon = 4/255$ radii. We assess the Attack Success
 379 Rate (ASR) for each setup.

Target	CLIP	TeCoA	PMG	TGA	FARE	AGH	Adv.	AdPO
A group of people ...	20/20	1/20	1/20	2/20	1/20	0/20	0/20	0/20
a bunch of people ...	20/20	1/20	0/20	1/20	1/20	1/20	1/20	0/20
The pizza on the table...	20/20	2/20	2/20	0/20	0/20	0/20	0/20	0/20
An earthquake is about...	20/20	2/20	1/20	1/20	1/20	1/20	0/20	0/20
This patient needs ...	20/20	0/20	1/20	1/20	0/20	1/20	2/20	0/20
Mean ASR:	100%	4%	5%	5%	3%	3%	3%	0%

376 Figure 3: Qualitative assessment of targeted attacks on LLaVA. **(Left)** When encountering clean
 377 images, **TeCoA** may exhibit noticeable errors, which is undesirable in adversarial defense, while
 378 FARE and AdPO demonstrate better clean performance. **(Right)** When faced with adversarial images,
 379 the original LLaVA is easily compromised, FARE shows some adversarial robustness but loses more
 380 details or makes subtle errors, whereas AdPO performs better.

401
 402 more significant improvements (Appendix G), which can be attributed to the direct alignment between
 403 visual and language representations.

4.2 EVALUATION OF TARGETED ATTACKS ON LVLMs

408 In contrast to the untargeted attacks discussed in Section 4.1, targeted attacks on LVLMs pose a
 409 significantly greater threat. Targeted attacks aim to compel the model to produce specific outputs,
 410 with the added noise in the image remaining imperceptible to the user. Through image manipula-
 411 tion, attackers can circumvent the model’s security mechanisms, leading it to generate malicious
 412 content (Carlini et al., 2023; Niu et al., 2024; Qi et al., 2024b). Additionally, attackers can embed
 413 phishing links into images through adversarial attacks to deceive users (Bagdasaryan et al., 2023).

414 **Attack setup.** We perform targeted attack experiments on LLaVA-1.5-7B, using the attack success
 415 rate (ASR) as the primary evaluation metric. A sample is deemed successfully attacked if the model’s
 416 output contains the target string. Targeted attacks on LVLMs generally require more iterations,
 417 prompting us to execute APGD attacks for 10,000 iterations. Given that larger image perturbations
 418 pose more significant threats, we employ ℓ_∞ threat models with a radius of $\epsilon = 4/255$. We evaluate
 419 five target strings incorporating errors such as incorrect medical diagnoses and fake news, sampling
 420 20 images for each string.

421 The quantitative evaluation results are presented in Table 2. The attack success rate for the clean
 422 version of the CLIP model reaches 100%, underscoring the vulnerability of current vision-language
 423 models to visual input and the substantial security risks posed. Although baseline methods exhibit a
 424 certain degree of robustness, they still expose considerable vulnerabilities. In contrast, AdPO achieves
 425 the strongest robustness, effectively safeguarding the model against malicious attacks. Additional
 426 details are provided in Appendix C.

4.3 FURTHER EVALUATION

430 Although we conduct extensive quantitative evaluations above, they are still insufficient for a com-
 431 prehensive assessment of LVLMs. In this section, we first present a qualitative evaluation, followed by
 an analysis of other vision-language tasks and the training efficiency.

Figure 4: Ablation experiments on AdPO. (a) The performance of DPO variants. (b) The evaluation of attack types. (c) The impact of the parameter λ .

Qualitative evaluation. As depicted in Figure 3, the LLaVA model, using the original CLIP as the encoder, provides the most accurate and detailed understanding of clean images. However, when faced with adversarial images, they are completely vulnerable to successful attacks. TeCoA fails to exhibit robust performance against both clean and adversarial images, whereas FARE experiences a loss of detail or minor errors in image understanding, ultimately falling short of optimal performance. In the absence of adversarial defenses, LLaVA is susceptible to manipulation, resulting in biased outputs that can mislead users and have detrimental effects.

Recent work has shown that LVLMs are prone to hallucinations and are more susceptible to jailbreak attacks compared to purely language models (Qi et al., 2024a; Li et al., 2023d). Additional experimental evaluations presented in Appendix D demonstrate that our method exhibits better performance in both hallucination reduction and jailbreak prevention. We quantitatively evaluate the average runtime per batch across different methods in Appendix I, demonstrating that AdPO achieves comparable efficiency to previous approaches when trained on a lightweight LVLM.

4.4 ABLATION STUDY

The impact of DPO variants. In Figure 4 (a), we evaluate four commonly used DPO variants to analyze the effectiveness of AdPO. The results show that IPO (Azar et al., 2024), KTO (Ethayarajh et al., 2024), and StepDPO (Lai et al., 2024) perform well, while SimPO (Meng et al., 2025) performs relatively poorly, possibly due to the removal of the reference model. This experiment also demonstrates that AdPO serves as a **general preference framework** for enhancing model robustness, rather than being restricted to a specific algorithm.

Analysis of attack types. In addition to APGD, we further evaluate the impact of other attack methods, including C&W (Carlini & Wagner, 2017), sC&W (Zhang et al., 2020), BIM (Kurakin et al., 2016), CroPA (Luo et al., 2024a), and Verbose (Gao et al., 2024). As shown in Figure 4 (b), our method remains robust even against attacks specifically designed for LVLMs.

The impact of λ . We perform untargeted attacks to evaluate the effectiveness of AdPO trained with different λ on the Flickr30K dataset, with experimental results shown in Figure 4 (c). We find that the clean performance is largely insensitive to AIO, whereas increasing λ significantly improves adversarial robustness, with the best empirical results achieved around $\lambda = 1$.

We also provide additional ablation studies, including direct adversarial training, SFT-based AIO, and full fine-tuning, in Appendix H.

5 CONCLUSION

We propose AdPO, the first adversarial defense strategy based on preference optimization. It jointly optimizes the model’s outputs on both clean and adversarial images, thereby better preserving clean performance under adversarial training. Unlike previous adversarial fine-tuning methods, which typically only impose single-target constraints to improve adversarial robustness, leading to a loss of clean performance. Moreover, AdPO does not require labeled image data or the CLIP text encoder, offering greater flexibility. Both quantitative and qualitative analyses demonstrate that our method achieves state-of-the-art results, with particularly significant improvements on generative vision-language understanding tasks.

486 ETHICS STATEMENT
487

488 This research did not involve any human subjects, nor did it collect or process personally identifiable
489 information. The core focus of this paper is on adversarial defense for Large Vision-Language
490 Models. While the broader field of adversarial examples includes the creation of attacks, our primary
491 contribution is the development of a robust defense mechanism (AdPO) designed to enhance model
492 security and reliability. By making models more resilient to malicious manipulation, our work aims
493 to mitigate the potential for these systems to generate erroneous, misleading, or harmful content.
494 We believe this research contributes positively to the development of safer and more trustworthy AI,
495 which is crucial for their responsible deployment in real-world applications.

496
497 REPRODUCIBILITY STATEMENT
498

500 All experiments were conducted using publicly available models and datasets (LLaVA, COCO,
501 Flickr30k, etc.) and standard evaluation protocols. We provide detailed hyperparameters for our main
502 experiments in Section 4 and Appendix A, B.

503 REFERENCES
504

505 Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence
506 Zitnick, and Devi Parikh. VQA: visual question answering. In *2015 IEEE International Conference
507 on Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015*, pp. 2425–2433. IEEE
508 Computer Society, 2015. doi: 10.1109/ICCV.2015.279. URL <https://doi.org/10.1109/ICCV.2015.279>.

510 Anas Awadalla, Irena Gao, Josh Gardner, Jack Hessel, Yusuf Hanafy, Wanrong Zhu, Kalyani Marathe,
511 Yonatan Bitton, Samir Yitzhak Gadre, Shiori Sagawa, Jenia Jitsev, Simon Kornblith, Pang Wei
512 Koh, Gabriel Ilharco, Mitchell Wortsman, and Ludwig Schmidt. Openflamingo: An open-source
513 framework for training large autoregressive vision-language models. *CoRR*, abs/2308.01390, 2023.
514 doi: 10.48550/ARXIV.2308.01390. URL <https://doi.org/10.48550/arXiv.2308.01390>.

516 Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Rémi Munos, Mark Rowland, Michal
517 Valko, and Daniele Calandriello. A general theoretical paradigm to understand learning from
518 human preferences. In Sanjoy Dasgupta, Stephan Mandt, and Yingzhen Li (eds.), *International
519 Conference on Artificial Intelligence and Statistics, 2-4 May 2024, Palau de Congressos, Valencia,
520 Spain*, volume 238 of *Proceedings of Machine Learning Research*, pp. 4447–4455. PMLR, 2024.
521 URL <https://proceedings.mlr.press/v238/gheshlaghi-azar24a.html>.

523 Eugene Bagdasaryan, Tsung-Yin Hsieh, Ben Nassi, and Vitaly Shmatikov. (ab) using images and
524 sounds for indirect instruction injection in multi-modal llms. *arXiv preprint arXiv:2307.10490*,
525 2023.

526 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
527 and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization,
528 text reading, and beyond, 2023. URL <https://arxiv.org/abs/2308.12966>.

530 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
531 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
532 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
533 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025. URL
534 <https://arxiv.org/abs/2502.13923>.

535 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
536 Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson
537 Kernion, Tom Conerly, Sheer El Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez,
538 Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson,
539 Dario Amodei, Tom B. Brown, Jack Clark, Sam McCandlish, Chris Olah, Benjamin Mann,
and Jared Kaplan. Training a helpful and harmless assistant with reinforcement learning from

540 human feedback. *CoRR*, abs/2204.05862, 2022. doi: 10.48550/ARXIV.2204.05862. URL
 541 <https://doi.org/10.48550/arXiv.2204.05862>.
 542

543 Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
 544 of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.

545 Tom B. Brown, Dandelion Mané, Aurko Roy, Martín Abadi, and Justin Gilmer. Adversarial patch.
 546 *CoRR*, abs/1712.09665, 2017. URL <http://arxiv.org/abs/1712.09665>.

548 Haoyu Cao, Changcun Bao, Chaohu Liu, Huang Chen, Kun Yin, Hao Liu, Yinsong Liu, Deqiang
 549 Jiang, and Xing Sun. Attention where it matters: Rethinking visual document understanding with
 550 selective region concentration. In *IEEE/CVF International Conference on Computer Vision, ICCV*
 551 *2023, Paris, France, October 1-6, 2023*, pp. 19460–19470. IEEE, 2023. doi: 10.1109/ICCV51070.
 552 2023.01788. URL <https://doi.org/10.1109/ICCV51070.2023.01788>.

553 Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In *2017
 554 ieee symposium on security and privacy (sp)*, pp. 39–57. Ieee, 2017.

556 Nicholas Carlini, Milad Nasr, Christopher A. Choquette-Choo, Matthew Jagielski, Irena
 557 Gao, Pang Wei Koh, Daphne Ippolito, Florian Tramèr, and Ludwig Schmidt. Are
 558 aligned neural networks adversarially aligned? In Alice Oh, Tristan Naumann, Amir
 559 Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), *Advances in Neu-
 560 ral Information Processing Systems 36: Annual Conference on Neural Information Pro-
 561 cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
 562 2023*. URL http://papers.nips.cc/paper_files/paper/2023/hash/c1f0b856a35986348ab3414177266f75-Abstract-Conference.html.

563 Long Chen, Yuling Chen, Yun Luo, Hui Dou, and Xinyang Zhong. Attention-guided hierarchical
 564 defense for multimodal attacks in vision-language models. In *Proceedings of the Computer Vision
 565 and Pattern Recognition Conference*, pp. 1607–1617, 2025.

566 Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong,
 567 Kongzhi Hu, Jiapeng Luo, Zheng Ma, Ji Ma, Jiaqi Wang, Xiaoyi Dong, Hang Yan, Hewei Guo,
 568 Conghui He, Botian Shi, Zhenjiang Jin, Chao Xu, Bin Wang, Xingjian Wei, Wei Li, Wenjian
 569 Zhang, Bo Zhang, Pinlong Cai, Licheng Wen, Xiangchao Yan, Min Dou, Lewei Lu, Xizhou
 570 Zhu, Tong Lu, Dahua Lin, Yu Qiao, Jifeng Dai, and Wenhui Wang. How far are we to gpt-
 571 4v? closing the gap to commercial multimodal models with open-source suites, 2024. URL
 572 <https://arxiv.org/abs/2404.16821>.

573 Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
 574 Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
 575 model post-training. *arXiv preprint arXiv:2501.17161*, 2025.

576 Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensem-
 577 ble of diverse parameter-free attacks. In *Proceedings of the 37th International Conference on
 578 Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event*, volume 119 of *Proceedings of
 579 Machine Learning Research*, pp. 2206–2216. PMLR, 2020. URL <http://proceedings.mlr.press/v119/croce20b.html>.

580 Can Cui, Yunsheng Ma, Xu Cao, Wenqian Ye, Yang Zhou, Kaizhao Liang, Jintai Chen, Juanwu
 581 Lu, Zichong Yang, Kuei-Da Liao, Tianren Gao, Erlong Li, Kun Tang, Zhipeng Cao, Tong Zhou,
 582 Ao Liu, Xinrui Yan, Shuqi Mei, Jianguo Cao, Ziran Wang, and Chao Zheng. A survey on
 583 multimodal large language models for autonomous driving. In *IEEE/CVF Winter Conference
 584 on Applications of Computer Vision Workshops, WACVW 2024 - Workshops, Waikoloa, HI, USA,
 585 January 1-6, 2024*, pp. 958–979. IEEE, 2024. doi: 10.1109/WACVW60836.2024.00106. URL
 586 <https://doi.org/10.1109/WACVW60836.2024.00106>.

587 Xuanming Cui, Alejandro Aparcedo, Young Kyun Jang, and Ser-Nam Lim. On the robustness of
 588 large multimodal models against image adversarial attacks. *CoRR*, abs/2312.03777, 2023. doi: 10.
 589 48550/ARXIV.2312.03777. URL <https://doi.org/10.48550/arXiv.2312.03777>.

590

594 Nilaksh Das, Madhuri Shanbhogue, Shang-Tse Chen, Fred Hohman, Siwei Li, Li Chen, Michael E.
 595 Kounavis, and Duen Horng Chau. SHIELD: fast, practical defense and vaccination for deep
 596 learning using JPEG compression. In Yike Guo and Faisal Farooq (eds.), *Proceedings of the 24th*
 597 *ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2018,*
 598 *London, UK, August 19-23, 2018*, pp. 196–204. ACM, 2018. doi: 10.1145/3219819.3219910.
 599 URL <https://doi.org/10.1145/3219819.3219910>.

600 Hichem Debbi. Causadv: A causal-based framework for detecting adversarial examples, 2024. URL
 601 <https://arxiv.org/abs/2411.00839>.

602 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
 603 hierarchical image database. In *2009 IEEE Computer Society Conference on Computer Vision and*
 604 *Pattern Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida, USA*, pp. 248–255. IEEE
 605 Computer Society, 2009. doi: 10.1109/CVPR.2009.5206848. URL <https://doi.org/10.1109/CVPR.2009.5206848>.

606 Junhao Dong, Seyed-Mohsen Moosavi-Dezfooli, Jianhuang Lai, and Xiaohua Xie. The enemy of my
 607 enemy is my friend: Exploring inverse adversaries for improving adversarial training. In *IEEE/CVF*
 608 *Conference on Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada,*
 609 *June 17-24, 2023*, pp. 24678–24687. IEEE, 2023a. doi: 10.1109/CVPR52729.2023.02364. URL
 610 <https://doi.org/10.1109/CVPR52729.2023.02364>.

611 Junhao Dong, Xinghua Qu, Z. Jane Wang, and Yew-Soon Ong. Enhancing adversarial robustness via
 612 uncertainty-aware distributional adversarial training, 2024. URL <https://arxiv.org/abs/2411.02871>.

613 Junhao Dong, Piotr Koniusz, Yifei Zhang, Hao Zhu, Weiming Liu, Xinghua Qu, and Yew-Soon Ong.
 614 Improving zero-shot adversarial robustness in vision-language models by closed-form alignment
 615 of adversarial path simplices. In *Forty-second International Conference on Machine Learning,*
 616 2025. URL <https://openreview.net/forum?id=WR0ahlhOoy>.

617 Yinpeng Dong, Huanran Chen, Jiawei Chen, Zhengwei Fang, Xiao Yang, Yichi Zhang, Yu Tian, Hang
 618 Su, and Jun Zhu. How robust is google’s bard to adversarial image attacks? *CoRR*, abs/2309.11751,
 619 2023b. doi: 10.48550/ARXIV.2309.11751. URL <https://doi.org/10.48550/arXiv.2309.11751>.

620 Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
 621 alignment as prospect theoretic optimization. *arXiv preprint arXiv:2402.01306*, 2024.

622 Samar Fares, Klea Ziu, Toluwani Aremu, Nikita Durasov, Martin Takáć, Pascal Fua, Karthik
 623 Nandakumar, and Ivan Laptev. Mirrorcheck: Efficient adversarial defense for vision-language
 624 models. *CoRR*, abs/2406.09250, 2024. doi: 10.48550/ARXIV.2406.09250. URL <https://doi.org/10.48550/arXiv.2406.09250>.

625 Kuofeng Gao, Yang Bai, Jindong Gu, Shu-Tao Xia, Philip Torr, Zhifeng Li, and Wei Liu. Inducing
 626 high energy-latency of large vision-language models with verbose images. In *The Twelfth Inter-*
 627 *national Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024.*
 628 OpenReview.net, 2024. URL <https://openreview.net/forum?id=BteuUysuXX>.

629 Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
 630 examples. In Yoshua Bengio and Yann LeCun (eds.), *3rd International Conference on Learning*
 631 *Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,*
 632 2015. URL <http://arxiv.org/abs/1412.6572>.

633 Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the V in
 634 VQA matter: Elevating the role of image understanding in visual question answering. In *2017*
 635 *IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA,*
 636 *July 21-26, 2017*, pp. 6325–6334. IEEE Computer Society, 2017. doi: 10.1109/CVPR.2017.670.
 637 URL <https://doi.org/10.1109/CVPR.2017.670>.

638 Chih-Hui Ho and Nuno Vasconcelos. DISCO: adversarial defense with local implicit functions.
 639 In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),

648 *Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information*
 649 *Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December*
 650 *9, 2022, 2022.* URL http://papers.nips.cc/paper_files/paper/2022/hash/96930636e3fb63935e2af153d1cc40a3-Abstract-Conference.html.

652 Md Zarif Hossain and Ahmed Imteaj. Sim-clip: Unsupervised siamese adversarial fine-tuning for
 653 robust and semantically-rich vision-language models. *arXiv preprint arXiv:2407.14971*, 2024.

655 Sedjro Salomon Hotegni and Sebastian Peitz. Morel: Enhancing adversarial robustness through multi-
 656 objective representation learning, 2024. URL <https://arxiv.org/abs/2410.01697>.

657 Youcheng Huang, Fengbin Zhu, Jingkun Tang, Pan Zhou, Wenqiang Lei, Jiancheng Lv, and Tat-Seng
 658 Chua. Effective and efficient adversarial detection for vision-language models via a single vector,
 659 2024. URL <https://arxiv.org/abs/2410.22888>.

660 Junlong Jia, Ying Hu, Xi Weng, Yiming Shi, Miao Li, Xingjian Zhang, Baichuan Zhou, Ziyu Liu,
 661 Jie Luo, Lei Huang, and Ji Wu. Tinyllava factory: A modularized codebase for small-scale large
 662 multimodal models. *arXiv preprint arXiv:2405.11788*, 2024a.

664 Xiaojun Jia, Yong Zhang, Baoyuan Wu, Ke Ma, Jue Wang, and Xiaochun Cao. LAS-AT: adversarial
 665 training with learnable attack strategy. In *IEEE/CVF Conference on Computer Vision and Pattern*
 666 *Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022*, pp. 13388–13398. IEEE, 2022.
 667 doi: 10.1109/CVPR52688.2022.01304. URL <https://doi.org/10.1109/CVPR52688.2022.01304>.

669 Xiaojun Jia, Yong Zhang, Xingxing Wei, Baoyuan Wu, Ke Ma, Jue Wang, and Xiaochun Cao.
 670 Improving fast adversarial training with prior-guided knowledge. *IEEE Trans. Pattern Anal.*
 671 *Mach. Intell.*, 46(9):6367–6383, 2024b. doi: 10.1109/TPAMI.2024.3381180. URL <https://doi.org/10.1109/TPAMI.2024.3381180>.

674 Chengze Jiang, Junkai Wang, Minjing Dong, Jie Gui, Xinli Shi, Yuan Cao, Yuan Yan Tang, and
 675 James Tin-Yau Kwok. Improving fast adversarial training via self-knowledge guidance, 2024.
 676 URL <https://arxiv.org/abs/2409.17589>.

677 Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. *arXiv*
 678 *preprint arXiv:1611.01236*, 2016.

680 Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial examples in the physical world. In
 681 *5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-*
 682 *26, 2017, Workshop Track Proceedings*. OpenReview.net, 2017a. URL <https://openreview.net/forum?id=HJGU3Rodl>.

684 Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial machine learning at scale. In *5th*
 685 *International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,*
 686 *2017, Conference Track Proceedings*. OpenReview.net, 2017b. URL <https://openreview.net/forum?id=BJm4T4Kgx>.

688 Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xiangru Peng, and Jiaya Jia. Step-dpo: Step-
 689 wise preference optimization for long-chain reasoning of llms. *CoRR*, abs/2406.18629, 2024.
 690 doi: 10.48550/ARXIV.2406.18629. URL <https://doi.org/10.48550/arXiv.2406.18629>.

693 Hugo Laurençon, Léo Tronchon, Matthieu Cord, and Victor Sanh. What matters when building
 694 vision-language models? *CoRR*, abs/2405.02246, 2024. doi: 10.48550/ARXIV.2405.02246. URL
 695 <https://doi.org/10.48550/arXiv.2405.02246>.

696 Emanuele Ledda, Giovanni Scodeller, Daniele Angioni, Giorgio Piras, Antonio Emanuele Cinà,
 697 Giorgio Fumera, Battista Biggio, and Fabio Roli. On the robustness of adversarial training against
 698 uncertainty attacks, 2024. URL <https://arxiv.org/abs/2410.21952>.

700 Binghui Li and Yuanzhi Li. Adversarial training can provably improve robustness: Theoretical
 701 analysis of feature learning process under structured data, 2024. URL <https://arxiv.org/abs/2410.08503>.

702 Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang, Jingkang Yang, and Ziwei Liu. Otter: A
 703 multi-modal model with in-context instruction tuning. *CoRR*, abs/2305.03726, 2023a. doi: 10.
 704 48550/ARXIV.2305.03726. URL <https://doi.org/10.48550/arXiv.2305.03726>.

705 Fengpeng Li, Kemou Li, Haiwei Wu, Jinyu Tian, and Jiantao Zhou. Dat: Improving adversarial
 706 robustness via generative amplitude mix-up in frequency domain, 2024. URL <https://arxiv.org/abs/2410.12307>.

707 Junnan Li, Dongxu Li, Silvio Savarese, and Steven C. H. Hoi. BLIP-2: bootstrapping language-
 708 image pre-training with frozen image encoders and large language models. In Andreas Krause,
 709 Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.),
 710 *International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA*,
 711 volume 202 of *Proceedings of Machine Learning Research*, pp. 19730–19742. PMLR, 2023b.
 712 URL <https://proceedings.mlr.press/v202/li23q.html>.

713 Lei Li, Zihui Xie, Mukai Li, Shunian Chen, Peiyi Wang, Liang Chen, Yazheng Yang, Benyou
 714 Wang, and Lingpeng Kong. Silkie: Preference distillation for large visual language models. *CoRR*,
 715 abs/2312.10665, 2023c. doi: 10.48550/ARXIV.2312.10665. URL <https://doi.org/10.48550/arXiv.2312.10665>.

716 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object
 717 hallucination in large vision-language models. In Houda Bouamor, Juan Pino, and Kalika Bali
 718 (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
 719 EMNLP 2023, Singapore, December 6-10, 2023*, pp. 292–305. Association for Computational
 720 Linguistics, 2023d. doi: 10.18653/V1/2023.EMNLP-MAIN.20. URL <https://doi.org/10.18653/v1/2023.emnlp-main.20>.

721 Yuhan Liang, Yijun Li, Yumeng Niu, Qianhe Shen, and Hangyu Liu. A hybrid defense strategy for
 722 boosting adversarial robustness in vision-language models, 2024. URL <https://arxiv.org/abs/2410.14911>.

723 Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 724 Dollár, and C. Lawrence Zitnick. Microsoft COCO: common objects in context. In David J.
 725 Fleet, Tomás Pajdla, Bernt Schiele, and Tinne Tuytelaars (eds.), *Computer Vision - ECCV 2014
 726 - 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V*,
 727 volume 8693 of *Lecture Notes in Computer Science*, pp. 740–755. Springer, 2014. doi: 10.1007/978-3-319-10602-1_48.
 728 URL https://doi.org/10.1007/978-3-319-10602-1_48.

729 Chaohu Liu, Kun Yin, Haoyu Cao, Xinghua Jiang, Xin Li, Yinsong Liu, Deqiang Jiang, Xing Sun,
 730 and Linli Xu. HRVDA: high-resolution visual document assistant. In *IEEE/CVF Conference on
 731 Computer Vision and Pattern Recognition, CVPR 2024, Seattle, WA, USA, June 16-22, 2024*, pp.
 732 15534–15545. IEEE, 2024a. doi: 10.1109/CVPR52733.2024.01471. URL <https://doi.org/10.1109/CVPR52733.2024.01471>.

733 Haotian Liu, Chunyuan Li, Qingshang Wu, and Yong Jae Lee. Visual instruction tuning. In Alice
 734 Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
 735 (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference on Neural
 736 Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
 737 16, 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/6dcf277ea32ce3288914faf369fe6de0-Abstract-Conference.html.

738 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 739 tuning. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024,
 740 Seattle, WA, USA, June 16-22, 2024*, pp. 26286–26296. IEEE, 2024b. doi: 10.1109/CVPR52733.
 741 2024.02484. URL <https://doi.org/10.1109/CVPR52733.2024.02484>.

742 Xin Liu, Yichen Zhu, Yunshi Lan, Chao Yang, and Yu Qiao. Safety of multimodal large language
 743 models on images and texts, 2024c. URL <https://arxiv.org/abs/2402.00357>.

744 Zhen-Ting Liu and Shang-Tse Chen. Trap-mid: Trapdoor-based defense against model inversion
 745 attacks, 2024. URL <https://arxiv.org/abs/2411.08460>.

756 Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren,
 757 Zhuoshu Li, Hao Yang, Yaofeng Sun, Chengqi Deng, Hanwei Xu, Zhenda Xie, and Chong Ruan.
 758 Deepseek-vl: Towards real-world vision-language understanding. *CoRR*, abs/2403.05525, 2024.
 759 doi: 10.48550/ARXIV.2403.05525. URL <https://doi.org/10.48550/arXiv.2403.05525>.

760

761 Haochen Luo, Jindong Gu, Fengyuan Liu, and Philip Torr. An image is worth 1000 lies: Transferabil-
 762 ity of adversarial images across prompts on vision-language models. In *The Twelfth International*
 763 *Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenRe-
 764 view.net, 2024a. URL <https://openreview.net/forum?id=nc5GgFAvtk>.

765

766 Rui Luo, Jie Bao, Zhixin Zhou, and Chuangyin Dang. Game-theoretic defenses for robust conformal
 767 prediction against adversarial attacks in medical imaging, 2024b. URL <https://arxiv.org/abs/2411.04376>.

768

769 Kangtao Lv, Huangsen Cao, Kainan Tu, Yihuai Xu, Zhimeng Zhang, Xin Ding, and Yongwei Wang.
 770 Hyper adversarial tuning for boosting adversarial robustness of pretrained large vision models,
 771 2024. URL <https://arxiv.org/abs/2410.05951>.

772

773 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 774 Towards deep learning models resistant to adversarial attacks. In *6th International Conference on*
 775 *Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference*
 776 *Track Proceedings*. OpenReview.net, 2018. URL <https://openreview.net/forum?id=rJzIBfZAb>.

777

778 Chengzhi Mao, Scott Geng, Junfeng Yang, Xin Wang, and Carl Vondrick. Understanding zero-
 779 shot adversarial robustness for large-scale models. In *The Eleventh International Conference on*
 780 *Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023.
 781 URL <https://openreview.net/forum?id=P4bXCawRi5J>.

782

783 Sina Mavali, Jonas Ricker, David Pape, Yash Sharma, Asja Fischer, and Lea Schönherr. Fake it
 784 until you break it: On the adversarial robustness of ai-generated image detectors, 2024. URL
<https://arxiv.org/abs/2410.01574>.

785

786 Sachin Mehta, Mohammad Hossein Sekhavat, Qingqing Cao, Maxwell Horton, Yanzi Jin, Chenfan
 787 Sun, Seyed Iman Mirzadeh, Mahyar Najibi, Dmitry Belenko, Peter Zatloukal, et al. Openelm: An
 788 efficient language model family with open training and inference framework. In *Workshop on*
789 Efficient Systems for Foundation Models II@ ICML2024, 2024.

790

791 Dongyu Meng and Hao Chen. Magnet: A two-pronged defense against adversarial examples. In
 792 Bhavani Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (eds.), *Proceedings of the*
793 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX,
USA, October 30 - November 03, 2017, pp. 135–147. ACM, 2017. doi: 10.1145/3133956.3134057.
 794 URL <https://doi.org/10.1145/3133956.3134057>.

795

796 Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a reference-
 797 free reward. *Advances in Neural Information Processing Systems*, 37:124198–124235, 2025.

798

799 Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischoff. On detecting adversarial
 800 perturbations. In *5th International Conference on Learning Representations, ICLR 2017, Toulon,*
801 France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL <https://openreview.net/forum?id=SJzCSf9xg>.

802

803 Furkan Mumcu and Yasin Yilmaz. Detecting adversarial examples, 2024. URL <https://arxiv.org/abs/2410.17442>.

804

805 Thao Nguyen, Samir Yitzhak Gadre, Gabriel Ilharco, Sewoong Oh, and Ludwig Schmidt.
 806 Improving multimodal datasets with image captioning. In Alice Oh, Tristan Naumann,
 807 Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), *Advances in*
 808 *Neural Information Processing Systems 36: Annual Conference on Neural Infor-
 809 mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -*
16, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/45e604a3e33d10fba508e755faa72345-Abstract-Datasets_and_Benchmarks.html.

810 Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao, Arash Vahdat, and Animashree Anandkumar.
 811 Diffusion models for adversarial purification. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
 812 Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), *International Conference on Machine
 813 Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA*, volume 162 of *Proceedings of
 814 Machine Learning Research*, pp. 16805–16827. PMLR, 2022. URL <https://proceedings.mlr.press/v162/nie22a.html>.

815

816 Zhenxing Niu, Haodong Ren, Xinbo Gao, Gang Hua, and Rong Jin. Jailbreaking attack against
 817 multimodal large language model. *CoRR*, abs/2402.02309, 2024. doi: 10.48550/ARXIV.2402.
 818 02309. URL <https://doi.org/10.48550/arXiv.2402.02309>.

819

820 Yassine Ouali, Adrian Bulat, Brais Martinez, and Georgios Tzimiropoulos. Clip-dpo: Vision-
 821 language models as a source of preference for fixing hallucinations in l4lms, 2024. URL <https://arxiv.org/abs/2408.10433>.

822

823 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
 824 Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
 825 Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan
 826 Leike, and Ryan Lowe. Training language models to follow instructions with human feedback.
 827 In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),
 828 *Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information
 829 Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
 830 9, 2022*. URL http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html.

831

832 Alessandro De Palma, Serge Durand, Zakaria Chihani, Franois Terrier, and Caterina Urban. On
 833 using certified training towards empirical robustness, 2024. URL <https://arxiv.org/abs/2410.01617>.

834

835

836 Nicolas Papernot, Patrick D. McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distillation as a
 837 defense to adversarial perturbations against deep neural networks. In *IEEE Symposium on Security
 838 and Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016*, pp. 582–597. IEEE Computer Society,
 839 2016. doi: 10.1109/SP.2016.41. URL <https://doi.org/10.1109/SP.2016.41>.

840

841 Bryan A. Plummer, Liwei Wang, Chris M. Cervantes, Juan C. Caicedo, Julia Hockenmaier, and
 842 Svetlana Lazebnik. Flickr30k entities: Collecting region-to-phrase correspondences for richer
 843 image-to-sentence models. In *2015 IEEE International Conference on Computer Vision, ICCV
 844 2015, Santiago, Chile, December 7-13, 2015*, pp. 2641–2649. IEEE Computer Society, 2015. doi:
 845 10.1109/ICCV.2015.303. URL <https://doi.org/10.1109/ICCV.2015.303>.

846

847 Xiangyu Qi, Kaixuan Huang, Ashwinee Panda, Peter Henderson, Mengdi Wang, and Prateek Mittal.
 848 Visual adversarial examples jailbreak aligned large language models. In Michael J. Wooldridge,
 849 Jennifer G. Dy, and Sriraam Natarajan (eds.), *Thirty-Eighth AAAI Conference on Artificial Intelligence,
 850 AAAI 2024, Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence,
 851 IAAI 2024, Fourteenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2024,
 852 February 20-27, 2024, Vancouver, Canada*, pp. 21527–21536. AAAI Press, 2024a. doi: 10.1609/
 853 AAAI.V38I19.30150. URL <https://doi.org/10.1609/aaai.v38i19.30150>.

854

855 Xiangyu Qi, Kaixuan Huang, Ashwinee Panda, Peter Henderson, Mengdi Wang, and Prateek Mittal.
 856 Visual adversarial examples jailbreak aligned large language models. In Michael J. Wooldridge,
 857 Jennifer G. Dy, and Sriraam Natarajan (eds.), *Thirty-Eighth AAAI Conference on Artificial Intelligence,
 858 AAAI 2024, Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence,
 859 IAAI 2024, Fourteenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2024,
 860 February 20-27, 2024, Vancouver, Canada*, pp. 21527–21536. AAAI Press, 2024b. doi: 10.1609/
 861 AAAI.V38I19.30150. URL <https://doi.org/10.1609/aaai.v38i19.30150>.

862

863 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 864 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
 865 Learning transferable visual models from natural language supervision. In Marina Meila and
 866 Tong Zhang (eds.), *Proceedings of the 38th International Conference on Machine Learning, ICML
 867 2021, 18-24 July 2021, Virtual Event*, volume 139 of *Proceedings of Machine Learning*

864 *Research*, pp. 8748–8763. PMLR, 2021. URL <http://proceedings.mlr.press/v139/radford21a.html>.

865

866

867 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and Chelsea
868 Finn. Direct preference optimization: Your language model is secretly a reward model. In
869 Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
870 (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference on Neural
871 Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
872 16, 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html.

873

874 Antônio H. Ribeiro, Thomas B. Schön, Dave Zahariah, and Francis Bach. Efficient optimization
875 algorithms for linear adversarial training, 2024. URL <https://arxiv.org/abs/2410.12677>.

876

877 Kevin Roth, Yannic Kilcher, and Thomas Hofmann. The odds are odd: A statistical test for detecting
878 adversarial examples. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings
879 of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
880 Beach, California, USA*, volume 97 of *Proceedings of Machine Learning Research*, pp. 5498–5507.
881 PMLR, 2019. URL <http://proceedings.mlr.press/v97/roth19a.html>.

882

883 Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-gan: Protecting classifiers
884 against adversarial attacks using generative models. In *6th International Conference on Learning
885 Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
886 Track Proceedings*. OpenReview.net, 2018. URL <https://openreview.net/forum?id=BkJ3ibb0->.

887

888 Christian Schlaremann and Matthias Hein. On the adversarial robustness of multi-modal foundation
889 models. In *IEEE/CVF International Conference on Computer Vision, ICCV 2023 - Workshops,
890 Paris, France, October 2-6, 2023*, pp. 3679–3687. IEEE, 2023. doi: 10.1109/ICCVW60793.2023.
891 00395. URL <https://doi.org/10.1109/ICCVW60793.2023.00395>.

892

893 Christian Schlaremann, Naman Deep Singh, Francesco Croce, and Matthias Hein. Robust CLIP:
894 unsupervised adversarial fine-tuning of vision embeddings for robust large vision-language mod-
895 els. In *Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria,
896 July 21-27, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=WLPhywflsi>.

897

898 Erfan Shayegani, Yue Dong, and Nael B. Abu-Ghazaleh. Jailbreak in pieces: Compositional
899 adversarial attacks on multi-modal language models. In *The Twelfth International Conference on
900 Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024.
901 URL <https://openreview.net/forum?id=plmBsXHxgR>.

902

903 Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi
904 Parikh, and Marcus Rohrbach. Towards VQA models that can read. In *IEEE Conference
905 on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-
906 20, 2019*, pp. 8317–8326. Computer Vision Foundation / IEEE, 2019. doi: 10.1109/CVPR.
907 2019.00851. URL http://openaccess.thecvf.com/content_CVPR_2019/html/Singh_Towards_VQA_Models_That_Can_Read_CVPR_2019_paper.html.

908

909 Quan Sun, Yuxin Fang, Ledell Wu, Xinlong Wang, and Yue Cao. Eva-clip: Improved training
910 techniques for clip at scale. *arXiv preprint arXiv:2303.15389*, 2023.

911

912 Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfellow,
913 and Rob Fergus. Intriguing properties of neural networks. In Yoshua Bengio and Yann LeCun
914 (eds.), *2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada,
915 April 14-16, 2014, Conference Track Proceedings*, 2014. URL <http://arxiv.org/abs/1312.6199>.

916

917 Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian J. Goodfellow, Dan Boneh, and Patrick D.
918 McDaniel. Ensemble adversarial training: Attacks and defenses. In *6th International Conference
919 on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018*,

918 *Conference Track Proceedings*. OpenReview.net, 2018. URL <https://openreview.net/forum?id=rkZvSe-RZ>.

919

920

921 Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi Parikh. Cider: Consensus-based image
922 description evaluation. In *IEEE Conference on Computer Vision and Pattern Recognition, CVPR
923 2015, Boston, MA, USA, June 7-12, 2015*, pp. 4566–4575. IEEE Computer Society, 2015. doi: 10.
924 1109/CVPR.2015.7299087. URL <https://doi.org/10.1109/CVPR.2015.7299087>.

925 Fei Wang, Wenzuan Zhou, James Y. Huang, Nan Xu, Sheng Zhang, Hoifung Poon, and Muhan
926 Chen. mdpo: Conditional preference optimization for multimodal large language models. *CoRR*,
927 abs/2406.11839, 2024a. doi: 10.48550/ARXIV.2406.11839. URL <https://doi.org/10.48550/arXiv.2406.11839>.

928

929 Sibo Wang, Jie Zhang, Zheng Yuan, and Shiguang Shan. Pre-trained model guided fine-tuning for
930 zero-shot adversarial robustness. In *Proceedings of the IEEE/CVF conference on computer vision
931 and pattern recognition*, pp. 24502–24511, 2024b.

932

933 Siyuan Wang, Zhuohan Long, Zhihao Fan, and Zhongyu Wei. From llms to mllms: Exploring the
934 landscape of multimodal jailbreaking. *CoRR*, abs/2406.14859, 2024c. doi: 10.48550/ARXIV.2406.
935 14859. URL <https://doi.org/10.48550/arXiv.2406.14859>.

936 Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang Liu,
937 Linglin Jing, Shenglong Ye, Jie Shao, et al. Internvl3. 5: Advancing open-source multimodal
938 models in versatility, reasoning, and efficiency. *arXiv preprint arXiv:2508.18265*, 2025.

939

940 Xiayao Wang, Juhai Chen, Zhaoyang Wang, Yuhang Zhou, Yiyang Zhou, Huaxiu Yao, Tianyi Zhou,
941 Tom Goldstein, Parminder Bhatia, Furong Huang, and Cao Xiao. Enhancing visual-language
942 modality alignment in large vision language models via self-improvement. *CoRR*, abs/2405.15973,
943 2024d. doi: 10.48550/ARXIV.2405.15973. URL [https://doi.org/10.48550/arXiv.
944 2405.15973](https://doi.org/10.48550/arXiv.2405.15973).

945 Yubo Wang, Chaohu Liu, yanqiuqu, Haoyu Cao, Deqiang Jiang, and Linli Xu. Break the visual percep-
946 tion: Adversarial attacks targeting encoded visual tokens of large vision-language models. In *ACM
947 Multimedia 2024*, 2024e. URL <https://openreview.net/forum?id=tocfToCGF1>.

948 Zeyu Wang, Xianhang Li, Hongru Zhu, and Cihang Xie. Revisiting adversarial training at scale.
949 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
950 24675–24685, 2024f.

951

952 Zhichao Wang, Bin Bi, Shiva Kumar Pentyala, Kiran Ramnath, Sougata Chaudhuri, Shubham
953 Mehrotra, Zixu Zhu, Xiang-Bo Mao, Sitaram Asur, and Na Cheng. A comprehensive survey
954 of LLM alignment techniques: Rlfh, rlaif, ppo, DPO and more. *CoRR*, abs/2407.16216, 2024g.
955 doi: 10.48550/ARXIV.2407.16216. URL [https://doi.org/10.48550/arXiv.2407.
956 16216](https://doi.org/10.48550/arXiv.2407.16216).

957 Yongliang Wu, Yizhou Zhou, Zhou Ziheng, Yingzhe Peng, Xinyu Ye, Xinting Hu, Wenbo Zhu,
958 Lu Qi, Ming-Hsuan Yang, and Xu Yang. On the generalization of sft: A reinforcement learning
959 perspective with reward rectification. *arXiv preprint arXiv:2508.05629*, 2025.

960 Weilin Xu, David Evans, and Yanjun Qi. Feature squeezing: Detecting adversarial examples
961 in deep neural networks. In *25th Annual Network and Distributed System Security Sym-
962 posium, NDSS 2018, San Diego, California, USA, February 18-21, 2018*. The Internet Society,
963 2018. URL https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_03A-4_Xu_paper.pdf.

964

965 Zhiyu Xue, Haohan Wang, Yao Qin, and Ramtin Pedarsani. Conflict-aware adversarial training, 2024.
966 URL <https://arxiv.org/abs/2410.16579>.

967

968 Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
969 Weilin Zhao, Zhihui He, Qianyu Chen, Huarong Zhou, Zhensheng Zou, Haoye Zhang, Shengding
970 Hu, Zhi Zheng, Jie Zhou, Jie Cai, Xu Han, Guoyang Zeng, Dahai Li, Zhiyuan Liu, and Maosong
971 Sun. Minicpm-v: A gpt-4v level mllm on your phone, 2024. URL <https://arxiv.org/abs/2408.01800>.

972 Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming Yan, Yiyang Zhou, Junyang Wang, Anwen
 973 Hu, Pengcheng Shi, Yaya Shi, Chenliang Li, Yuanhong Xu, Hehong Chen, Junfeng Tian, Qian
 974 Qi, Ji Zhang, and Fei Huang. *mplug-owl: Modularization empowers large language models*
 975 with multimodality. *CoRR*, abs/2304.14178, 2023. doi: 10.48550/ARXIV.2304.14178. URL
 976 <https://doi.org/10.48550/arXiv.2304.14178>.

977 Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on
 978 multimodal large language models. *CoRR*, abs/2306.13549, 2023. doi: 10.48550/ARXIV.2306.
 979 13549. URL <https://doi.org/10.48550/arXiv.2306.13549>.

981 Lu Yu, Haiyang Zhang, and Changsheng Xu. Text-guided attention is all you need for zero-shot
 982 robustness in vision-language models. *Advances in Neural Information Processing Systems*, 37:
 983 96424–96448, 2024a.

985 Tianyu Yu, Yuan Yao, Haoye Zhang, Taiwen He, Yifeng Han, Ganqu Cui, Jinyi Hu, Zhiyuan Liu,
 986 Hai-Tao Zheng, Maosong Sun, and Tat-Seng Chua. RLHF-V: towards trustworthy mllms via
 987 behavior alignment from fine-grained correctional human feedback. *CoRR*, abs/2312.00849, 2023.
 988 doi: 10.48550/ARXIV.2312.00849. URL [https://doi.org/10.48550/arXiv.2312.
 989 00849](https://doi.org/10.48550/arXiv.2312.00849).

990 Tianyu Yu, Haoye Zhang, Yuan Yao, Yunkai Dang, Da Chen, Xiaoman Lu, Ganqu Cui, Taiwen He,
 991 Zhiyuan Liu, Tat-Seng Chua, and Maosong Sun. RLAIF-V: aligning mllms through open-source
 992 AI feedback for super GPT-4V trustworthiness. *CoRR*, abs/2405.17220, 2024b. doi: 10.48550/
 993 ARXIV.2405.17220. URL <https://doi.org/10.48550/arXiv.2405.17220>.

994 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 995 image pre-training. In *IEEE/CVF International Conference on Computer Vision, ICCV 2023, Paris,
 996 France, October 1-6, 2023*, pp. 11941–11952. IEEE, 2023. doi: 10.1109/ICCV51070.2023.01100.
 997 URL <https://doi.org/10.1109/ICCV51070.2023.01100>.

999 Chiyu Zhang, Xiaogang Xu, Jiafei Wu, Zhe Liu, and Lu Zhou. Adversarial attacks of vision tasks in
 1000 the past 10 years: A survey, 2024. URL <https://arxiv.org/abs/2410.23687>.

1001 Hanwei Zhang, Yannis Avrithis, Teddy Furion, and Laurent Amsaleg. Smooth adversarial examples.
 1002 *EURASIP Journal on Information Security*, 2020:1–12, 2020.

1004 Jianping Zhang, Yizhan Huang, Weibin Wu, and Michael R. Lyu. Transferable adversarial attacks on
 1005 vision transformers with token gradient regularization. In *IEEE/CVF Conference on Computer
 1006 Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023*, pp.
 1007 16415–16424. IEEE, 2023. doi: 10.1109/CVPR52729.2023.01575. URL [https://doi.org/
 1008 10.1109/CVPR52729.2023.01575](https://doi.org/10.1109/CVPR52729.2023.01575).

1009 Mengnan Zhao, Lihe Zhang, Jingwen Ye, Huchuan Lu, Baocai Yin, and Xinchao Wang. Adversarial
 1010 training: A survey, 2024. URL <https://arxiv.org/abs/2410.15042>.

1012 Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
 1013 Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
 1014 Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and
 1015 Ji-Rong Wen. A survey of large language models. *CoRR*, abs/2303.18223, 2023a. doi: 10.48550/
 1016 ARXIV.2303.18223. URL <https://doi.org/10.48550/arXiv.2303.18223>.

1017 Yunqing Zhao, Tianyu Pang, Chao Du, Xiao Yang, Chongxuan Li, Ngai-Man Cheung, and Min
 1018 Lin. On evaluating adversarial robustness of large vision-language models. In Alice Oh, Tris-
 1019 stian Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), *Ad-
 1020 vances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
 1021 mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
 1022 2023*, 2023b. URL [http://papers.nips.cc/paper_files/paper/2023/hash/
 1023 a97b58c4f7551053b0512f92244b0810-Abstract-Conference.html](http://papers.nips.cc/paper_files/paper/2023/hash/a97b58c4f7551053b0512f92244b0810-Abstract-Conference.html).

1024 Baichuan Zhou, Ying Hu, Xi Weng, Junlong Jia, Jie Luo, Xien Liu, Ji Wu, and Lei Huang. Tinyllava:
 1025 A framework of small-scale large multimodal models, 2024.

1026 Mo Zhou and Vishal M. Patel. Enhancing adversarial robustness for deep metric learning. In
1027 *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans,*
1028 *LA, USA, June 18-24, 2022*, pp. 15304–15313. IEEE, 2022. doi: 10.1109/CVPR52688.2022.01489.
1029 URL <https://doi.org/10.1109/CVPR52688.2022.01489>.

1030 Ziqi Zhou, Shengshan Hu, Minghui Li, Hangtao Zhang, Yechao Zhang, and Hai Jin. Advclip:
1031 Downstream-agnostic adversarial examples in multimodal contrastive learning. In Abdulmotaleb
1032 El-Saddik, Tao Mei, Rita Cucchiara, Marco Bertini, Diana Patricia Tobon Vallejo, Pradeep K.
1033 Atrey, and M. Shamim Hossain (eds.), *Proceedings of the 31st ACM International Conference*
1034 *on Multimedia, MM 2023, Ottawa, ON, Canada, 29 October 2023- 3 November 2023*, pp. 6311–
1035 6320. ACM, 2023. doi: 10.1145/3581783.3612454. URL <https://doi.org/10.1145/3581783.3612454>.

1036 Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing
1037 vision-language understanding with advanced large language models. In *The Twelfth Interna-*
1038 *tional Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024.*
1039 OpenReview.net, 2024. URL <https://openreview.net/forum?id=1tZbq88f27>.

1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080
 1081
 1082
 1083 **Appendix**
 1084

1085 **THE USE OF LARGE LANGUAGE MODELS**
 1086
 1087
 1088
 1089

1090
 1091 In preparing this paper, we primarily used ChatGPT for language polishing. The model was employed
 1092 to refine grammar, improve readability, and adjust the overall clarity and conciseness of the manuscript.
 1093 Importantly, all conceptual contributions, experimental designs, analyses, and conclusions are our
 1094 own. ChatGPT was used strictly as a writing assistant, and we carefully verified and edited all
 1095 generated suggestions to ensure accuracy and consistency with our intended meaning.
 1096

1097 **A UNTARGETED ATTACK DETAILS**
 1098
 1099

1100 We provide a comprehensive description of the attack pipeline utilized for the untargeted adversarial
 1101 evaluation of LVLMs in Section 4.1.
 1102

1103 For the captioning tasks COCO and Flickr30k, each image is accompanied by 5 available ground-truth
 1104 captions, with each caption utilized to calculate the CIDEr score. We perform APGD attacks with 100
 1105 iterations on each ground truth. After each attack, we calculate the CIDEr score and cease attacking
 1106 samples that score below 10 for COCO or 2 for Flickr30k. This strategy is primarily employed
 1107 because generating adversarial attacks on VLMs is extremely time-consuming and costly, allowing
 1108 us to allocate our limited resources to more impactful attacks. For the VQA task, we apply a similar
 1109 approach, but the score threshold is set to 0, and we utilize the 5 most common ground truths out of
 1110 the 10 available.
 1111

1112 **B PROMPTS**
 1113
 1114

1115 We list the prompt templates we used for image description tasks:
 1116

- 1117 • What is the content of the image?
 1118
- 1119 • What does the image show?
 1120
- 1121 • Describe the image in detail.
 1122
- 1123 • What is the image illustrating?
 1124
- 1125 • What is displayed in the image?
 1126
- 1127 • Can you explain what is happening in the image?
 1128
- 1129 • Provide a detailed description of the image.
 1130
- 1131 • Summarize the main objects and elements in the picture.
 1132
- 1133 • What objects or people are visible in the image?
 1134
- 1135 • Describe the scene shown in the image.
 1136
- 1137 • What kind of activity is depicted in the image?
 1138
- 1139 • Give a comprehensive explanation of the image content.
 1140
- 1141 • Identify and describe the key features of the image.
 1142
- 1143 • What is the overall setting or environment shown in the picture?
 1144
- 1145 • Provide a step-by-step breakdown of what you see in the image.
 1146
- 1147 • Describe the relationships between the objects in the picture.
 1148
- 1149 • What message or information does the image convey?
 1150
- 1151 • Provide a caption that accurately summarizes the image.
 1152

1134

C TARGETED ATTACK DETAILS

1135
1136 We use the following target sequences to perform targeted attacks:
11371138 • A group of people are playing basketball.
1139 • a bunch of people are flying in the air.
1140 • The pizza on the table is very bad.
1141 • An earthquake is about to happen.
1142 • This patient needs the best medical care.
11431144 If these targeted and even subtly provocative phrases are successfully embedded into adversarial
1145 images, they can subtly deceive users, thereby influencing their subsequent decisions. In addition
1146 to the quantitative evaluation presented in Section 4.2, we also observed that when the target text
1147 is closely related to the image content, the success rate of adversarial attacks is significantly high,
1148 indicating that images can easily mislead LVLMs. This presents a more dangerous scenario because
1149 when the target text is only weakly related to the image, users can more easily spot these erroneous
1150 outputs, thereby reducing their trust in the model. Conversely, when the model’s output appears
1151 somewhat plausible in relation to the image content, users are more likely to trust the model’s output.
11521153

D EXPERIMENTATION ON MORE TASKS

1154
1155 Table 3: Hallucination evaluation on the POPE dataset. The reporting results are based on the
1156 F1-score metric.
1157

Method	Clean	TeCoA	TGA	FARE	PMG	TGA	AGH	AdvSimplex	AdPO
F1-score	84.5	75.9	78.2	80.8	81.2	83.2	82.9	82.3	83.7

1158
1159
1160
1161 It is widely recognized that evaluating large vision-language models is challenging. In addition to
1162 assessing several key multimodal tasks in Section 4.1, this section further examines the performance
1163 of our method on additional vision-language tasks.
11641165 **Hallucinations.** One of the greatest challenges faced by LVLMs is hallucination, where these models
1166 may perceive objects in an image that do not actually exist. This issue has garnered widespread
1167 attention within the research community. We selected the commonly used POPE dataset (Li et al.,
1168 2023d) to evaluate multiple CLIP versions of the LLaVA model. In this dataset, the model is required
1169 to answer “Yes” or “No” to indicate whether a specific object is actually present in the image. Table 3
1170 shows that our version of CLIP achieved the highest accuracy, but our AdPO method most effectively
1171 addresses clean performance. In contrast, both TeCoA and FARE demonstrated a more pronounced
1172 decline in performance.
1173Table 4: The evaluation of jailbreak attack defense, with the attack success rate reported.
1174

Method	ϵ	ASR
CLIP	0	14 / 40
TeCoA	0	14 / 40
TGA	0	15 / 40
FARE	0	13 / 40
AdPO	0	8 / 40
CLIP	16/266	25 / 40
TeCoA	16/266	16 / 40
TGA	16/266	16 / 40
FARE	16/266	16 / 40
AdPO	16/266	8 / 40

1186
1187 **Jailbreaking attacks.** Recent studies have shown that LVLMs are more vulnerable to jailbreak
1188 attacks than pure LLMs, especially when adversarial perturbations are added to images (Qi et al.,
1189

2024a; Carlini et al., 2023). Therefore, it is essential to further analyze our method’s robustness against jailbreak attacks. Under normal circumstances, model owners align models with human values to prevent them from generating suggestive or harmful content. For example, if a user enters a malicious prompt like “How to make a bomb,” the model should refuse to respond. However, with the introduction of adversarial images, attackers can more easily bypass these security guard, inducing the model to output intended content and thereby posing greater risks. Following the setup from (Qi et al., 2024a), we evaluate LLaVA 1.5 with different CLIP versions under various noise levels. The results are shown in Table 4. Even without adversarial images, LLaVA can be affected by jailbreak attacks to generate harmful content. Once noise is introduced, however, the success rate of jailbreak attacks on the clean CLIP version increases significantly, while adversarially trained versions maintain their original level of security. This indicates that adversarial training can also enhance the robustness of LVLMs against jailbreak attacks, with our method achieving the best performance. It is important to note that jailbreak attacks are currently a very active area of research, and our evaluations may somewhat overestimate their performance.

Table 5: Adversarial Evaluation on the Qwen-2.5-VL model.

Method	Type	COCO	Flickr30k	TextVQA	VQAv2
Original	-	124.3	82.3	79.3	84.3
FARE	Clean	118.5	74.3	65.1	73.8
	Adversarial	61.8	35.2	20.8	34.7
AdPO	Clean	124.8	82.2	79.2	84.1
	Adversarial	78.3	50.6	37.2	48.5

Table 6: Adversarial Evaluation on the InternVL3.5 model.

Method	Type	COCO	Flickr30k	TextVQA	VQAv2
Original	-	124.5	83.6	78.2	82.4
FARE	Clean	117.4	73.2	62.4	70.3
	Adversarial	60.5	32.1	22.4	34.5
AdPO	Clean	124.4	83.4	79.0	82.5
	Adversarial	79.3	48.8	36.4	47.2

Table 7: Adversarial Evaluation on the BLIP-2 model.

Method	Type	COCO	Flickr30k	TextVQA	VQAv2
Original	-	98.2	70.7	40.3	48.2
FARE	Clean	88.5	62.2	29.5	32.2
	Adversarial	41.2	23.7	10.3	15.3
AdvSimplex	Clean	82.9	59.8	19.9	27.5
	Adversarial	40.7	21.8	12.8	14.6
AGH-MAT	Clean	85.1	62.5	21.3	29.1
	Adversarial	42.3	25.5	14.1	18.0
TGA-ZSR	Clean	84.2	61.3	20.8	28.0
	Adversarial	41.4	22.9	13.4	15.2
AdPO	Clean	98.5	70.3	39.3	48.2
	Adversarial	65.4	48.2	22.8	24.4

E EXPERIMENT ON NON-CLIP MODELS

In order to assess the generalizability of AdPO beyond CLIP-based models, we conduct empirical evaluations on Qwen-2.5-VL, InternVL3.5, and BLIP-2.

Qwen2.5-VL employs an image encoder with an improved self-attention mechanism, while InternVL3.5 uses InternViT as its image encoder. We apply AdPO for comparison, and neither model requires a text encoder. As shown in Tables 5 and Table 6, our method achieves a substantial lead,

particularly in adversarial robustness, consistently outperforming FARE by more than 10 points. We also evaluate BLIP-2, which uses the EVA-CLIP model as its encoder, to enable a more comprehensive comparison with prior methods. As shown in the results in Table 7, AdPO still achieves a substantial lead, further demonstrating that it is a model-agnostic approach.

F ANALYSIS OF ATTACK STRENGTHS

In this section, we explore the impact of higher attack strengths with the results presented in Table 8 and Table 9.

Table 8: The performance of attacks with $8/255$.

Method	COCO	Flickr30k	TextVQA	VQAv2
FARE	25.2	13.2	5.2	10.1
TGA	26.7	14.2	6.9	15.2
AdPO	42.5	24.5	13.3	22.5

Table 9: The performance of attacks with $16/255$.

Method	COCO	Flickr30k	TextVQA	VQAv2
FARE	8.2	3.2	2.2	3.1
TGA	10.7	8.2	3.6	5.2
AdPO	20.2	13.2	8.2	14.9

We find that models trained with low attack intensity exhibit some level of adversarial robustness when faced with high-disturbance adversarial samples. However, they show a noticeable performance drop compared to models trained with the same level of perturbation. Compared to previous state-of-the-art methods, our method still achieves a significant lead.

G EXPERIMENTAL RESULTS ON TINY-LLAVA

Table 10: Experimental Results on Tiny-LLaVA.

Method	Type	COCO	Flickr30k	TextVQA	VQAv2
Original	-	90.3	65.3	40.4	69.5
FARE	Clean	83.2	55.3	30.7	58.2
	Adversarial	39.2	20.5	8.9	17.2
TGA	Clean	80.1	53.9	25.8	55.7
	Adversarial	40.2	23.1	10.2	18.2
AdPO	Clean	91.2	66.3	42.8	65.2
	Adversarial	50.3	42.7	27.4	28.4

Table 10 presents our experimental results on TinyLLaVA. The results demonstrate that our method achieves a substantial improvement over previous approaches. This improvement can be attributed to the direct joint training of the image encoder and the target decoder, which enables more effective vision-language alignment.

H ADDITIONAL ABLATION STUDIES

In this section, we primarily investigate the impact of direct adversarial training and full fine-tuning on model performance as shown Table 11.

We observe that direct adversarial training significantly degrades clean performance without providing notable improvements in adversarial robustness. On the other hand, full fine-tuning slightly

1296

Table 11: Additional ablation studies.

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

compromises transferability, leading to minor drops in both clean and adversarial performance. We find that when applying SFT-based AIO (Eq. 6), both clean and adversarial performance degrade significantly. This decline arises from the strong negative impact of SFT on model generalization, a phenomenon consistent with recent findings in the literature (Chu et al., 2025).

I EFFICIENCY ANALYSIS

In this section, we discuss the training efficiency of different methods. Table 12 shows that, under the same hardware configuration, our method achieves comparable training speed to previous approaches. This is primarily attributed to our use of a smaller LVLM during training. It is worth noting that training time may vary slightly under different hardware drivers, temperature conditions, and other system factors.

In the early experiments, this paper consumed substantial computational resources. However, the final approach significantly reduced the training cost by relying on training smaller models, ultimately requiring only 8 A100 GPUs.

Table 12: Comparison of training speed among different methods.

Method	GPU	Batch Size	Average Training Time
TeCoA			1.78s / Batch
TGA-ZSR	NVIDIA Tesla A100	128	1.73s / Batch
AdPO			1.89s / Batch

J ANALYSIS OF FAILURE SAMPLES

Figure 5: Showcase of failure samples.

In this section, we provide a qualitative analysis of failure cases, as illustrated in Figure 5. Our observations indicate that AdPO is particularly vulnerable when the adversarial target is semantically close to the true content of the image. These cases often involve fine-grained distinctions that are semantically ambiguous, making them difficult for the model to reliably discriminate. The adversarial attack exploits this ambiguity, thereby increasing the likelihood of misleading the model. This analysis clarifies the inherent limitations of AdPO when operating under subtle semantic shifts.