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Abstract
A desirable property of autonomous agents is the
ability to both solve long-horizon problems and
generalize to unseen tasks. Recent advances in
data-driven skill learning have shown that extract-
ing behavioral priors from offline data can enable
agents to solve challenging long-horizon tasks
with reinforcement learning. However, generaliza-
tion to tasks unseen during behavioral prior train-
ing remains an outstanding challenge. To this end,
we present Few-shot Imitation with Skill Tran-
sition Models (FIST), an algorithm that extracts
skills from offline data and utilizes them to gen-
eralize to unseen tasks given a few downstream
demonstrations. FIST learns an inverse skill dy-
namics model, a distance function, and utilizes a
semi-parametric approach for imitation. We show
that FIST is capable of generalizing to new tasks
and substantially outperforms prior baselines in
navigation experiments requiring traversing un-
seen parts of a large maze and 7-DoF robotic arm
experiments requiring manipulating previously
unseen objects in a kitchen.

1. Introduction
We are interested in developing control algorithms that en-
able robots to solve complex and practical tasks such as op-
erating kitchens or assisting humans with everyday chores
at home. There are two general characteristics of real-world
tasks – long-horizon planning and generalizability. Practical
tasks are often long-horizon in the sense that they require
a robot to complete a sequence of subtasks. For example,
to cook a meal a robot might need to prepare ingredients,
place them in a pot, and operate the stove before the full
meal is ready. Additionally, in the real world many tasks
we wish our robot to solve may differ from tasks the robot
has completed in the past but require a similar skillset. For
example, if a robot learned to open the top cabinet drawer it
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should be able to quickly adapt that skill to open the bottom
cabinet drawer. These considerations motivate our research
question: how can we learn skills that enable robots to
generalize to new long-horizon downstream tasks?

Recently, learning data-driven behavioral priors has become
a promising approach to solving long-horizon tasks. Given
a large unlabeled offline dataset of robotic demonstrations
solving a diverse set of tasks this family of approaches
(Singh et al., 2021; Pertsch et al., 2020; Ajay et al., 2021)
extract behavioral priors by fitting maximum likelihood
expectation latent variable models to the offline dataset. The
behavioral priors are then used to guide a Reinforcement
Learning (RL) algorithm to solve downstream tasks. By
selecting skills from the behavioral prior, the RL algorithm
is able to explore in a structured manner and can solve long-
horizon navigation and manipulation tasks. However, the
generalization capabilities of RL with behavioral priors are
limited since a different RL algorithm needs to be trained
for each downstream task and training each RL algorithm
often requires millions of environment interactions.

On the other hand, few-shot imitation learning has been a
promising paradigm for generalization. In the few-shot imi-
tation learning setting, an imitation learning policy is trained
on an offline dataset of demonstrations and is then adapted
in few-shot to a downstream task (Duan et al., 2017). Few-
shot imitation learning has the added advantage over RL in
that it is often easier for a human to provide a handful of
demonstrations than it is to engineer a new reward function
for a downstream task. However, unlike RL with behavioral
priors, few-shot imitation learning is most often limited to
short-horizon problems. The reason is that imitation learn-
ing policies quickly drift away from the demonstrations due
to error accumulation (Ross et al., 2011b), and especially so
in the few-shot setting when only a handful of demonstra-
tions are provided.

While it is tempting to simply combine data-driven behav-
ioral priors with few-shot imitation learning, it is not obvi-
ous how to do so since the two approaches are somewhat
orthogonal. Behavioral priors are trained on highly multi-
modal datasets such that a given state can correspond to
multiple skills. Given a sufficiently large dataset of demon-
strations for the downstream task the imitation learning
algorithm will learn to select the correct mode. However, in
the few-shot setting how do we ensure that during training
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Figure 1. In this work we are interested in enabling autonomous robots to solve complex long-horizon tasks that were unseen during
training. To do so, we assume access to a large multi-task dataset of demonstrations, extract skills from the offline dataset, and adapt those
skills to new tasks that were unseen during training.

on downstream data we choose the right skill? Addition-
ally, due to the small sample size and long task horizon it
is highly likely that a naive imitation learning policy will
drift from the few-shot demonstrations. How do we pre-
vent the imitation learning policy from drifting away from
downstream demonstrations?

The focus of our work is the setup illustrated in Figure 1; we
introduce Few-Shot Imitation Learning with Skill Transi-
tion Models (FIST), a new algorithm for few-shot imitation
learning with skills that enables generalization to unseen
but semantically similar long-horizon tasks to those seen
during training. Our approach addresses the issues with skill
selection and drifting in the few-shot setting with two main
components. First, we introduce an inverse skill dynamics
model that conditions the behavioral prior not only on the
current state but also on a future state, which helps FIST
learn uni-modal future conditioned skill distribution that can
then be utilized in few-shot. The inverse skill model is then
used as a policy to select skills that will take the agent to the
desired future state. Second, we train a distance function
to find the state for conditioning the inverse skill model
during evaluation. By finding states along the downstream
demonstrations that are closest to the current state, FIST
prevents the imitation learning policy from drifting. We
show that our method results in policies that are able to gen-
eralize to new long-horizon downstream tasks in navigation
environments and multi-step robotic manipulation tasks in a
kitchen environment. To summarize, we list our three main
contributions:

1. We introduce FIST - an imitation learning algorithm
that learns an inverse skill dynamics model and a dis-
tance function that is used for semi-parametric few-
shot imitation.

2. We show that FIST can solve long-horizon tasks in
both navigation and robotic manipulation settings that
were unseen during training and outperforms previous
behavioral prior and imitation learning baselines.

3. We provide insight into how different parts of the FIST
algorithm contribute to final performance by ablating
different components of our method such as future
conditioning and fine-tuning on downstream data.

2. Related Work
Our approach combines ingredients from imitation learn-
ing and skill extraction to produce policies that can solve
long-horizon tasks and generalize to tasks that are out of
distribution but semantically similar to those encountered in
the training set. We cover the most closely related work in
imitation learning, skill extraction, and few-shot generaliza-
tion.

Imitation Learning: Imitation learning is a supervised
learning problem where an agent extracts a policy from
a dataset of demonstrations. The two most common ap-
proaches to imitation are Behavior Cloning (Pomerleau,
1988; Ross et al., 2011a) and Inverse Reinforcement Learn-
ing (IRL) (Ng & Russell, 2000). BC approaches learn poli-
cies πθ(a|s) that most closely match the state-conditioned
action distribution of the demonstration data. IRL ap-
proaches learn a reward function from the demonstration
data assuming that the demonstrations are near-optimal
for a desired task and utilize Reinforcement Learning to
produce policies that maximize the reward. For simplic-
ity and to avoid learning a reward function, in this work
we aim to learn generalizable skills and using the BC ap-
proach. However, two drawbacks of BC are that the imita-
tion policies require a large number of demonstrations and
are prone to drifting away from the demonstration distribu-
tion during evaluation due to error accumulation (Ross et al.,
2011b). For this reason, BC policies work best when the
time-horizon of the task is short.

Skill Extraction with Behavioral Priors: Methods that
leverage behavioral priors utilize offline datasets of demon-
strations to bias a policy towards the most likely skills in
the datasets. While related closely to imitation learning,
behavioral priors have been mostly applied to improve Re-
inforcement Learning. Behavioral priors learned through
maximum likelihood latent variable models have been used
for structured exploration in RL (Singh et al., 2021), to solve
complex long-horizon tasks from sparse rewards (Pertsch
et al., 2020), and regularize offline RL policies (Wu et al.,
2019; Peng et al., 2019; Nair et al., 2020). While impressive,
RL with data-driven behavioral priors does not generalize to
new tasks efficiently, often requiring millions environment
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interactions to converge at an optimal policy for a new task.

Few-Shot Learning: Few-shot learning (Wang et al., 2020)
has been studied in the context of image recognition
(Vinyals et al., 2016; Koch et al., 2015), reinforcement learn-
ing (Duan et al., 2016), and imitation learning (Duan et al.,
2017). In the context of reinforcement and imitation learn-
ing, few-shot learning is often cast as a meta-learning prob-
lem (Finn et al., 2017; Duan et al., 2016; 2017). However,
there are other means of attaining few-shot generalization
that do not require meta-learning. Recently, advances in
unsupervised representation learning in natural language
processing (Radford et al., 2019; Brown et al., 2020) and
vision (He et al., 2020; Chen et al., 2020) have shown how
a network pre-trained with a self-supervised objective can
be finetuned or adjusted with a linear probe to generalize
in few-shot or even zero-shot (Radford et al., 2021) to a
downstream task. Our approach to few-shot imitation learn-
ing is loosely inspired by the generalization capabilities
of networks pre-trained with unsupervised objectives. Our
approach first fits a behavioral prior to an offline dataset
of demonstrations to extract skills and then fits an imita-
tion learning policy over the previously acquired skills to
generalize in few-shot to new tasks. FIST is therefore a
hierarchical few-shot imitation learning algorithm.

3. Approach
3.1. Problem Formulation

Few-shot Imitation Learning: We denote a demonstration
as a sequence of states and actions:

τ = {s1, a1, s2, a2, . . . , sT , aT }.

In a few-shot setting we assume access to a small dataset of
M such expert demonstrationsDdemo = {τi}i=Mi=1 that fulfill
a specific long horizon task in the environment. For instance
a sequence of sub-tasks in a kitchen environment such as
moving the kettle, turning on the burner and opening a
cabinet door. The goal is to imitate this behavior to automate
the task using only a few example trajectories available.

Skill Extraction: In this work we assume access to an
unlabeled offline dataset of prior agent interactions with
the environment in the form of N un-directed trajectories
{τi = {(st, at)}t=Tit=1 }i=Ni=1 . We further assume that these
trajectories include semantically meaningful skills that are
composable to execute long horizon tasks in the environ-
ment. This data can be collected from past tasks that have
been attempted, or be provided by human-experts through
teleoperation (Zhang et al., 2018).

Skill extraction refers to an unsupervised learning approach
that utilizes this undirected dataset to learn a skill policy
in form of πθ(a|s, z) where a is action, s is the current
state, and z is the skill. Our hypothesis is that by combining

these skill primitives we can solve semantically similar long-
horizon tasks that have not directly been seen during the
training. In this work we propose a new architecture for skill
extraction based on continuous latent variable models that
enables a semi-parametric evaluation procedure for few-shot
imitation learning.

3.2. Hierarchical Few-Shot Imitation with Skill
Transition Models

Our method, shown in Fig. 2, has three components: (i) Skill
extraction, (ii) Skill adaptation via fine-tuning on few-shot
data, and (iii) Evaluating the skills using a semi-parametric
approach to enable few-shot imitation.

(i) Skill Extraction from Offline Data: We define a contin-
uous skill zi ∈ Z as an embedding for a sequence of state-
action pairs {st, at, . . . , st+H−1, at+H−1} with a fixed
length H. This temporal abstraction of skills has proven to be
useful in prior work (Pertsch et al., 2020; Ajay et al., 2021),
by allowing a hierarchical decomposition of skills to achieve
long horizon downstream tasks. To learn the latent space Z
we propose training a continuous latent variable model with
the encoder as qφ(z|st, at, . . . , st+H−1, at+H−1) and the
decoder as πθ(a|s, z). The encoder outputs a distribution
over the latent variable z that best explains the variation in
the state-action pairs in the sub-trajectory.

The encoder is an LSTM that takes in the sub-trajectory of
length H and outputs the parameters of a Gaussian distribu-
tion as the variational approximation over the true posterior
p(z|st, at, . . . , st+H−1, at+H−1). The decoder is a policy
that maximizes the log-likelihood of actions of the sub-
trajectory conditioned on the current state and the skill. We
implement the decoder as a feed-forward network which
takes in the current state st and the latent vector z and
regresses the action vector directly. This architecture resem-
bles prior works on skill extraction (Pertsch et al., 2020).

To learn parameters φ and θ, we randomly sample batches
of H-step continuous sub-trajectories from the training data
D and maximize the evidence lower bound (ELBO):

log p(at|st) ≥ Eτ∼D,z∼qφ(z|τ)[πθ(at|st, z)︸ ︷︷ ︸
Lrec

+ β (log p(z)− log qφ(z|τ)︸ ︷︷ ︸
Lreg

]

where the posterior qφ(z|τ) is regularized by its Kullback-
Leibler (KL) divergence from a unit Gaussian prior p(z) =
N (0, I) and β is a parameter that tunes the regularization
term.

To enable quick few shot adaptation over skills we learn an
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Figure 2. Our algorithm – Few-Shot Imitation Learning with Skill Transition Models (FIST) – is composed of three parts: (a) Skill
Extraction: we fit a skill encoder, decoder, inverse skill dynamics model, and a distance function to the offline dataset; (b) Skill Adaptation:
For downstream task, we are given a few demonstrations and adapt the skills learned in (a), by fine-tuning the encoder, decoder, and the
inverse model. (c) Few-Shot Imitation: finally, to imitate the downstream demonstrations, we utilize the distance function to perform a
look ahead along the demonstration to condition the inverse model and decode an action.

inverse skill dynamics model qψ(z|st, st+H−1) that infers
which skills should be used given the current state and a
future state that is H steps away. To train the inverse skill
dynamics model we minimize the KL divergence between
the approximated skill posterior qφ(z|τ) and the output of
the state conditioned skill prior. This will result in mini-
mizing the following loss with respect to the parameters
ψ:

Lprior(ψ) = Eτ∼D [DKL(qφ(z|τ), qψ(z|st, st+H−1))] . (1)

We use a reverse KL divergence to ensure that our inverse
dynamics model has a broader distribution than the approx-
imate posterior to ensure mode coverage (Bishop, 2006).
In our implementation we use a feed-forward network that
takes in the concatenation of the current and future state
and outputs the parameters of a Gaussian distribution over
z. Conditioning on the future enables us to make a more
informative decision on what skills to execute which is a
key enabler to few-shot imitation. We jointly optimize the
skill extractions and inverse model with the following loss:

L(φ, θ, ψ) = Lrec(φ, θ) + βLreg(φ) + Lprior(ψ) (2)

(ii) Skill Adaption via Fine-tuning on Downstream Data
: To improve the consistency between the unseen down-
stream demonstrations and the prior over skills, we use the
demonstrations to fine-tune the parameters of the architec-
ture by taking gradient steps over the loss in Equation 2. In
the experiments we ablate the performance of FIST with
and without fine-tuning to highlight the differences.

(iii) Semi-parametric Evaluation for Few-shot Imitation
Learning: To run the agent, we need to first sample a skill

Algorithm 1 FIST: Evaluation Algorithm
1: Inputs: Learned inverse skill dynamics model qψ(z|st, st+H−1), learned

skill policy πθ(a|s, z), learned distance function d(s, s′), downstream
demonstrationDdemo

2: Initialize the environment to s0
3: for each t = [1 . . . T ] do
4: Pick s∗

′
t = LookAhead(mins∈Ddemo d(st, s))

5: Sample skill z ∼ qψ(z|st, s∗
′
t )

6: Sample action a ∼ πθ(a|st, z)
7: st ← env.step(a)

z ∼ qψ(z|st, s∗t ) based on the current state and the future
state that it seeks to reach. Then, we can use the low-level
decoder π(at|z, st) to convert that sampled skill z and the
current state st to the corresponding action at. During evalu-
ation we use the demonstrationsDdemo to decide which state
to use as the future state to condition on. For this purpose
we use a learned distance function d(s, s′) to measure the
distance between the current state st and every other state in
the demonstrated trajectories. Then, from the few-shot data
we find the closest state s∗t to the current state according to
the distance metric:

s∗t = min
sij∈Ddemo

d(st, sij) (3)

where sij is the jth state in the ith trajectory in Ddemo. We
then condition the inverse dynamics model on the current
state st and the state s∗

′

t , H-steps ahead of s∗t within the
trajectory that s∗t belongs to. If by adding H steps we
reach the end of the trajectory, we use the end state within
the trajectory as the target future state. The reason for
this look-ahead adjustment is to ensure that the sampled
skill always makes progress towards the future states of the
demonstration. After the execution of action at according
to the low-level decoder, the process is repeated until the
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Figure 3. Top: In each environment, we block some part of the environment and collect undirected trajectories for extracting skills. In the
kitchen environment, red markers indicate the objects that are excluded. Bottom: For downstream demonstrations, we use 10 expert
trajectories that involve unseen parts of the maze or manipulation of unseen objects.

fulfillment of the task. The procedure is summarized in
Algorithm 1.

Inspired by prior work on contrastive learning for con-
trol (Srinivas et al., 2020; Stooke et al., 2021) and semi-
parametric control with distance functions (Savinov et al.,
2018; Liu et al., 2020; Emmons et al., 2020) we learn a
distance metric by optimizing a contrastive loss such that
states that are H steps in the future are close to the current
state while all other states are far. To train this contrastive
encoder, we sample a batch of sub-trajectories of length H ,
{τi}i=Bi=1 , and then for each trajectory τi we use the last state
sH ∈ τi as the positive sample for the first state s1 ∈ τi and
the B − 1 last states from other trajectories within the batch
sH ∈ τj ,∀j 6= i as the negative samples for s1 ∈ τi. Using
a contrastive loss we will encourage the positive samples to
attract and the negative samples to repel one another. Then
a euclidean distance on the encoded states can be used to
measure the distance between two arbitrary states.

4. Experiments
In the experiments we are interested in answering the fol-
lowing questions: (i) Can our method successfully imitate
unseen long-horizon downstream demonstrations? (ii) Is
the temporal abstraction obtained from skills necessary for
imitating long-horizon trajectories? (iii) Is pretraining and
fine-tuning the skill embedding model necessary for achiev-
ing high success rate? (iv) Can our method also be used
for robust one-shot imitation learning for in-distribution
long-horizon tasks?

4.1. Environments

We evaluate the performance of FIST on two simulated
navigation environments and a robotic manipulation task
from the D4RL benchmark as shown in Figure 3. To en-
sure generalizability to out-of-distribution tasks we remove
some category of trajectories from the offline data. At test-
time, we see if the agent can generalize to those unseen
trajectories.

PointMaze: In this environment, the task is to navigate a
point mass through a maze, from a start to a goal location.
The outline of the maze is shown in Figure 3. We train the
skills on three different datasets, each blocking one side
of the maze. To test the method’s ability to generalize to
unseen long-horizon tasks, we use 10 expert demonstra-
tions that start from random places in maze, but end at
a goal within the blocked region. This ensures that our
demonstrated trajectories are out of distribution compared
to training data. We evaluate the performance by measur-
ing the episode length and the success rate in reaching the
demonstrated goals.

AntMaze: The task is to control a quadruped ant to run to
different parts of the maze. The layout of the maze is similar
to PointMaze, and the same sides are blocked off. The
demonstrations are taken directly from the D4RL (Fu et al.,
2020) dataset, by removing the trajectories passing through
the blocked regions. The expert downstream demonstrations
are randomly sampled for each of the removed trajectories.
Similar to PointMaze we measure the episode length and
success rate as our evaluation metric.

Kitchen: The task is to use a 7-DoF robotic arm to manip-
ulate different parts of a kitchen environment in a specific
order (e.g. open a microwave door or move the kettle).
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Figure 4. Normalized Reward on all of our environments, and their excluded regions / objects. For the Maze environments, the episode
length is subtracted from the maximum episode length, which is then normalized by the maximum episode length. For the Kitchen
environments, the reward is the number of sub-tasks completed, and normalized by the maximum reward of 4.0

During skill extraction we pre-process the offline data to
exclude interactions with certain objects in the environment
(e.g. we exclude interactions with the kettle). However, for
the demonstrations we pick four sub-tasks one of which in-
cludes the objects that were excluded from the skill dataset
(e.g. if the kettle was excluded, we pick the task to be to
open the microwave, move the kettle, turn the top burner,
and slide the cabinet door). In evaluation, for completion of
each sub-task in the order consistent with the downstream
demonstrations, the agent is awarded with a reward of 1.0
for a total max reward of 4.0 per episode.

4.2. Results

We use the following approaches for comparison: BC+FT:
Trains a behavioral cloning agent (i.e. πθ(a|s)) on the of-
fline dataset D and fine-tunes to the downstream dataset
Ddemo. SPiRL: This is an extension of the existing skill
extraction methods to imitation learning over skill space
(Ajay et al., 2021; Pertsch et al., 2020). SPiRL (Pertsch
et al., 2020) is very similar to our skill extraction method,
but instead of conditioning the skill prior on the future state
it only uses the current state. We extract skills from D using
SPiRL, fine-tune the module on the downstream demonstra-
tions Ddemo, and then execute the skill prior for evaluation.
FIST (ours): This runs our semi-parametric approach after
learning the future conditioned skill prior. After extracting
skills from D we fine-tune the parameters on the down-
stream demonstrations Ddemo and perform the proposed
semi-parametric approach for evaluation.

Our results are summarized in Table 1 and 2, and are also
normalized in Figure 4 for easier comparison. Each row in
the tables indicates an experiment where a specific down-
stream task was excluded from the offline data D. We
provide a summary of our key findings:

(i) In the PointMaze environment, FIST consistently suc-

ceeds in navigating the point mass into all three goal loca-
tions. The skills learned by SPiRL fail to generalize when
the point mass falls outside training distribution, causing
it to get stuck in corners. While BC+FT also solves the
task frequently in the Left and Bottom goal location, the
motion of the point mass is sub-optimal, resulting in longer
completion times.

(ii) In the AntMaze environment, FIST achieves the best
performance compared to the baselines. SPiRL and BC+FT
make no progress in navigating the agent towards the goal
while FIST is able to frequently reach the goals in the
demonstrated trajectories. We believe that the low success
rate numbers in this experiment is due to the low quality of
trajectories that exist in the offline skill dataset D. In the
dataset, we see many episodes with ant falling over, and
FIST’s failure cases also demonstrate the same behavior,
hence resulting in a low success rate. We hypothesize that
with a better skill dataset FIST will be able reach to a higher
success rate number. both baselines are unable to imitate
the given demonstrations except for FIST.

(iii) In the kitchen environment, we see that FIST signifi-
cantly outperforms SPiRL and BC+FT. FIST can success-
fully complete 3 out of 4 long-horizon object manipulation
tasks in this environment. In one of these long-horizon tasks
all algorithms perform similarly poor. We believe that such
behavior is due to the fact that fine-tuning the agent on the
given task may cause it to forget some part of previous skills
(e.g. Sliding the cabinet door). As future work, we plan to
explore how different fine-tuning mechanisms (e.g. gradual
layer unfreezing) could help avoid forgetting of prior skills.

4.3. Ablation Studies

In this section we study different components of the FIST
algorithm to provide insight on the contribution of each part.
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FIST (Ours) SPiRL BC+FT

Blocked Region Environment Episode Length Success Rate Episode Length Success Rate Episode Length Success Rate

Left PointMaze 363.87 ± 18.73 0.99 ± 0.03 1966.7 ± 32.54 0.02 ± 0.04 1089.76 ± 173.74 0.74 ± 0.11
Right PointMaze 571.21 ± 38.82 0.91 ± 0.07 2000 ± 0 0.0 ± 0.0 1918.99 ± 43.65 0.07 ± 0.06
Bottom PointMaze 359.82 ± 3.62 1.0 ± 0.0 2000 ± 0 0.0 ± 0.0 1127.47 ± 148.24 0.87 ± 0.10

Left AntMaze 764.36 ± 8.93 0.32 ± 0.04 1000 ± 0 0.0 ± 0.0 1000 ± 0 0.0 ± 0.0
Right AntMaze 903.98 ± 12.01 0.22 ± 0.12 1000 ± 0 0.0 ± 0.0 1000 ± 0 0.0 ± 0.0
Bottom AntMaze 923.22 ± 6.36 0.21 ± 0.07 957.85 ± 8.62 0.12 ± 0.07 1000 ± 0 0.0 ± 0.0

Table 1. Comparison of our approach to other baselines on the Maze environments. For each experiment we report the average episode
length from 10 fixed starting positions with the standard error across 10 evaluation runs (lower is better). We also report success rate and
its standard deviation. The maximum episode length for PointMaze and AntMaze are 2000 and 1000, respectively.

Task (Unseen) Environment FIST (Ours) SPiRL BC+FT

Microwave, Kettle, Top Burner, Light Switch KitchenRobot 3.6± 0.16 2.1 ± 0.48 0.0 ± 0.0
Microwave, Bottom Burner, Light Switch, Slide Cabinet KitchenRobot 2.3± 0.5 2.3± 0.5 2.2± 0.28
Microwave, Kettle, Slide Cabinet, Hinge Cabinet KitchenRobot 3.5± 0.3 0.0 ± 0.0 1.3 ± 0.47
Microwave, Kettle, Slide Cabinet, Hinge Cabinet KitchenRobot 4.0± 0.0 3.3 ± 0.38 1.0 ± 0.32

Table 2. Comparison of average episode reward for our approach against other baselines on the KitchenRobot environment. The average
episode reward (with a max. of 4) along with its standard error is measured across 10 evaluation runs (higher is better). Each bolded
keyword indicates the task that was excluded during skill data collection.

Imitation Learning over skills vs. atomic actions: The
FIST algorithm is comprised of two coupled pieces that
are both critical for robust performance: - the inverse dy-
namics model over skills and the non-parametric evaluation
algorithm. In this experiment we measure the influence of
inverse skill dynamics model qψ(z|st, st+H−1).

An alternative baseline to learning skill dynamics model
is to learn an inverse dynamics model on atomic actions
qψ(at|st, st+H−1) and perform goal-conditioned behav-
ioral cloning (Goal-BC). This model outputs the first ac-
tion at required for transitioning from st to st+H−1 over
H steps. We can combine this model with FIST’s non-
parametric module to determine the st+H−1 to condition
on during evaluation of the policy. As shown in Table 3,
temporal abstraction obtained in learning an inverse skill
dynamics model is a critical factor in the performance of
FIST.

Task (Unseen) FIST (ours) Goal-BC

Microwave, Kettle, Top Burner, Light Switch 3.6± 0.16 0.0 ± 0.0
Microwave, Bottom Burner, Light Switch, Slide Cabinet 2.3± 0.5 1.2 ± 0.3
Microwave, Kettle, Slide Cabinet, Hinge Cabinet 3.5± 0.3 1.8 ± 0.44
Microwave, Kettle, Slide Cabinet, Hinge Cabinet 4.0± 0.0 0.9 ± 0.1

Table 3. We ablate the use of our inverse skill dynamics model by
replacing it with an inverse dynamics model on atomic actions.
The baseline ablations only succeed on one out of the four tasks.
BC learns an inverse dynamics model that takes in state as input
and outputs a distribution over atomic actions. Goal-BC uses both
state and the goal (sub-task) as input.

The effect of skill pre-training and fine-tuning on FIST:
In order to adjust the skill-set to out-of-distribution tasks
(e.g. moving the kettle while kettle is excluded from the

skill dataset) FIST requires fine-tuning on the downstream
demonstrations. We hypothesize that without fine-tuning,
the agent should be able to perfectly imitate the demon-
strated sub-trajectories that it has seen during training, but
should start drifting away when encountered with an out-of-
distribution skill. We also hypothesise that pre-training on
a large dataset, even if it does not include the downstream
demonstration sub-trajectories, is crucial for the good per-
formance seen on FIST. Intuitively, pre-training provides a
behavioral prior that is easier to adapt to unseen tasks than
a random initialization.

To examine the impact of fine-tuning, we compare
FIST with FIST-no-FT which directly evaluates the semi-
parameteric approach with the model parameters trained on
the skill dataset without fine-tuning on the downstream tra-
jectories. To understand the effect of pre-training, we com-
pare FIST with FIST-no-pretrain which is not pre-trained on
the skill dataset. Instead, we directly train the latent variable
and inverse skill dynamics model on the downstream data
and perform the semi-parametric evaluation of the FIST
algorithm.

From the results in Table 4, we observe that fine-tuning
is a critical component for out-of-distribution task. The
scores on FIST-no-FT suggests that the agent is capable
of fulfilling the sub-tasks seen during skill training without
fine-tuning but cannot progress onto unseen tasks. Based
on the scores on FIST-no-pretrain, we also find that the pre-
training on a rich dataset, even when the downstream task is
directly excluded, provides sufficient prior knowledge about
the dynamics of the environment and can immensely help
with generalization to unseen tasks via fine-tuning.
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Task (Unseen) FIST (ours) FIST-no-FT FIST-no-pretrain

Microwave, Kettle, Top Burner, Light Switch 3.6± 0.16 2.0 ± 0.0 0.5 ± 0.16
Microwave, Bottom Burner, Light Switch, Slide Cabinet 2.3± 0.5 0.0 ± 0.0 0.7 ± 0.15
Microwave, Kettle, Slide Cabinet, Hinge Cabinet 3.5± 0.3 1.0 ± 0.0 0.0 ± 0.0
Microwave, Kettle, Slide Cabinet, Hinge Cabinet 4.0± 0.0 2.0 ± 0.0 0.8 ± 0.13

Table 4. We ablate the use of pre-training on offline data, as well as
fine-tuning on downstream demonstrations. FIST-no-FT removes
the fine-tuning on downstream demonstration step in FIST, while
FIST-no-pretrain trains the skills purely from the given downstream
data. Without seeing the subtask, FIST-no-FT is unable to solve
the downstream subtask. Trained on only downstream data, FIST-
no-pretrain is unable to properly manipulate the robot.

One-shot Imitation Learning: The FIST algorithm can be
directly evaluated on one-shot in-distribution downstream
tasks without any fine-tuning. In this experiment, we want
to see if the agent can pick up the right mode within its skill-
set with only one demonstration for fulfilling a long-horizon
task in the kitchen environment. The difference between this
experiment and our main result is that the down-stream task
is within the distribution of its pre-trained skill-set. This
is still a challenging task since the agent needs to correctly
identify the desired mode of skills.

Our hypothesis is that in SPiRL, the skill prior is only con-
ditioned on the current state and therefore is, by definition,
a multi-modal distribution and would require more data to
adapt to a specific long-horizon trajectory. For instance, in
the kitchen environment, after opening the microwave door,
the interaction with any other objects in the environment is
a possible choice of skills that can be invoked. However, in
FIST, by conditioning the skill prior on the future states, we
fit a uni-modal distribution over skills. In principle, there
should be no need for fine-tuning for invoking those skills
within the distribution of the pre-trained skill set.

We compare our approach to SPiRL (Section 4.2) as a base-
line. In addition, we can provide supervision on which
skills to invoke to fulfill the long-horizon task by fine-tuning
SPiRL (hence SPiRL-FT) for a few epochs on the down-
stream demonstration. As summarized in Table 5, FIST,
without any fine-tuning, can fulfill all the long-horizon tasks
listed with almost no drift from the expert demonstration.
We also see that it is tricky to fine-tune SPiRL in a one-shot
setting, as fine-tuning only on one demonstration may cause
over-fitting and degradation of performance.

Order of tasks (seen in the skill dataset) FIST (ours) SPiRL-FT SPiRL-no-FT

Kettle, Bottom Burner, Slide Cabinet, Hinge Cabinet 4.0± 0.0 0.8 ± 0.19 2.4 ± 0.35
Kettle, Top Burner, Light Switch, Slide Cabinet 3.8± 0.19 0.5 ± 0.16 1.1 ± 0.22
Microwave, Kettle, Slide Cabinet, Hinge Cabinet 4.0± 0.0 1.1 ± 0.22 1.0 ± 0.37
Top Burner, Bottom Burner, Slide Cabinet, Hinge Cabinet 4.0± 0.0 0.1 ± 0.1 0.6 ± 0.25

Table 5. With all subtasks seen in the skill dataset, FIST is able
to imitate a long-horizon task in the kitchen environment. We
compare to a baseline method, SPiRL, which fails to follow the
single demo.

5. Broader Impacts and Limitations

Environment Episode Length Success Rate

PointMaze 621.02 ± 69.87 1.0 ± 0.0

Table 6. We evaluate FIST on the PointMaze environment with
goal at the bottom when the inverse skill model is trained on an
extremely noisy dataset. In this case, FIST achieves sub-optimal
performance, with almost double the episode length.

Limitations As with all imitation learning methods, the
performance of FIST is related to the quality of the pro-
vided demonstrations. Concretely, when the skill training
demonstrations are poor, we expect the extracted skills to be
also sub-optimal, thus, hurting downstream imitation perfor-
mance. To better understand this limitation, we analyze an
extremely noisy versions of the PointMaze dataset and use it
for skill extraction. As shown in Table 6, despite achieving
a high success rate, the episode length is substantially worse
than FIST trained on expert data. Learning structured skills
from noisy offline data is an exciting direction for future
research.

Broader Impacts The ability to extract skills from of-
fline data and adapt them to solve new challenging tasks in
few-shot could be impactful in domains where large offline
datasets are available but control is challenging and cannot
be manually scripted. Examples of such domains include
autonomous vehicle navigation, warehouse robotics, digital
assistants and perhaps in the future, home robots. However,
there are also negative potential consequences. First, since
in real-world settings offline data will be collected from
users at scale there will likely be privacy concerns, espe-
cially for video data collected from users’ cars or homes.
Additionally, since FIST extracts skills, without labels data,
quality for large datasets becomes increasingly opaque and
if there are harmful skills or behavior present in the dataset
FIST may extract those and use them during deployment
which could have unintended consequences. A promising
direction for future work is to include a human in the loop
for skill verification.

6. Conclusion
We present FIST, a semi-parametric algorithm for few-shot
imitation learning for long-horizon tasks that are unseen
during training. We use previously collected trajectories of
the agent interacting with the environment to learn a set of
skills along with an inverse dynamics model that is then
combined with a non-parametric approach to keep the agent
from drifting away from the downstream demonstrations.
Our approach is able to solve long-horizon challenging tasks
in both one and few-shot settings where other methods fail.
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A. Implementation Details
A.1. Distance function

As mentioned in Section 3, we wish to learn an encoding such that our distance metric d is the euclidean distance between
the encoded states.

d(s, s′) = ||h(s)− h(s′)||2 (4)

To learn the encoder h, we optimize a contrastive loss on encodings of the current and future states along the same trajectory.
We use the InfoNCE Loss (van den Oord et al., 2018),

Lq = log
exp(qTWk)

exp
(∑K

i=0 exp(q
TWki)

) (5)

with query q = h(sit) as the encoded starting state, and the keys k = h(sit+H) as the encoded future states along the K
trajectories in the dataset D.

A.2. Training

The training for both skill extraction and fine-tuning were done on a single NVIDIA 2080Ti GPU. Skill extraction takes
approximately 3-4 hours, and fine-tuning requires less than 10 minutes. Our codebase builds upon the SPiRL released code
and is located at https://github.com/kouroshhakha/fist. Hyperparameters used for training and fine-tuning
are listed in Table 7 and 8, respectively.

A.3. Datasets

The PointMaze and Kitchen environment datasets (both skill extraction datasets and few-shot learning datasets) are generated
from an expert policy. For the AntMaze environment, the dataset was created from the D4RL dataset (Fu et al., 2020),
licensed under the Creative Commons Attribution 4.0 License (CC BY). Datasets for each blocked section was created by
filtering out any trajectories that passed through the blocked regions shown in Figure 3. Code for the dataset generation is
included in the released repository.

https://github.com/kouroshhakha/fist
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Table 7. Training Hyperparameters

Hyperparameter Value

Contrastive Distance Metric
Encoder output dim 32
Encoder Hidden Layers 128
Encoder # Hidden Layers 2
Optimizer Adam(β1 = 0.9, β2 = 0.999, LR=1e-3)

Skill extraction

Epochs 200
Batch size 128
Optimizer Adam(β1 = 0.9, β2 = 0.999, LR=1e-3)
H (sub-trajectory length) 10
β 5e-4 (Kitchen), 1e-2 (Maze)
Skill Encoder
dim-Z in VAE 128
hidden dim 128
# LSTM Layers 1

Skill Decoder
hidden dim 128
# hidden layers 5

Inverse Skill Dynamic Model
hidden dim 128
# hidden layers 5

Fine-tuning

Epochs 50
Batch size 128
Optimizer Adam(β1 = 0.9, β2 = 0.999, LR=1e-3)

Table 8. Fine-tuning hyperparameters

Hyperparameter Value

Epochs 50
Epoch cycle train 10
VAE finetuning (Maze: False, Kitchen: True)


