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Abstract001

State-of-the-art automatic speech recognition002
(ASR) models like Whisper, perform poorly003
on atypical speech, such as that produced004
by individuals with dysarthria. Past works005
for atypical speech have mostly investigated006
fully personalized (or idiosyncratic) models,007
but modeling strategies that can both gener-008
alize and and handle idiosyncracy could be009
more effective for capturing atypical speech.010
To investigate this, we compare four strate-011
gies: (a) normative models trained on typical012
speech (no personalization), (b) idiosyncratic013
models completely personalized to individu-014
als, (c) dysarthric-normative models trained015
on other dysarthric speakers,and (d) dysarthric-016
idiosyncratic models which combine strategies017
by first modeling normative patterns before018
adapting to individual speech. We find the019
dysarthric-idiosyncratic model performs bet-020
ter than idiosyncratic approach while requiring021
less than half as much personalized data (36.43022
WER with 128 train size vs 36.99 with 256).023
Further, we found that tuning the speech en-024
coder alone (as opposed to the LM decoder)025
yielded the best results reducing word error026
rate from 71% to 32% on average. Our findings027
highlight the value of leveraging both norma-028
tive (cross-speaker) and idiosyncratic (speaker-029
specific) patterns to improve ASR for underrep-030
resented speech populations.031

1 Introduction032

ASR models are predominantly trained on norma-033

tive populations, failing to generalize on individu-034

als with atypical speech, such as dysarthria. Past035

works addressing this predominantly take an id-036

iosyncratic modeling approach by training (or fine-037

tuning) separate models, one specific to each indi-038

vidual (Shor et al., 2019; Green et al., 2021). On039

top of requiring vast amounts of data from the in-040

dividual, such idiosyncratic models might fail to041

capture the speaker’s changing speech character-042

istics over time, eventually causing the model to043

Figure 1: Four types of models. Normative model
is Whisper-small and we do one-shot predictions on
it. Idiosyncratic models create a model for each user.
Dysarthric Normative model, creates one model for a
user while excluding it and using evry other user for
cross validation. Dysarthric Idiosyncratic model uses a
users normative model and personalizes it.

generalize poorly (Tomanek et al., 2023). Alterna- 044

tively, learning from the cross-section of dysarthric 045

individuals could allow the model to adapt to indi- 046

vidual’s changing patterns within practical sample 047

sizes. 048

In this work, we compare models with differ- 049

ing degrees of idiosyncratic (personalized) versus 050

normative (the same for all) models. Specifically, 051

we compare the performance of four strategies: (a) 052

normative models trained on typical speech (b) id- 053

iosyncratic models, i.e., normative models tuned to 054
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individuals, (c) dysarthric normative models, i.e.,055

normative models tuned to dysarthric population,056

(d) dysarthric idiosyncratic models, i.e., dysarthric057

normative models tuned to individuals. The differ-058

ence in performances between (c) and (a) informs059

the contributions of learned speech characteristics060

of dysarthria, whereas the difference between (d)061

and (c), and (d) and (b) shows the contribution of062

speaker-specific characteristics.063

Dysarthria is a motor speech disorder caused by064

damage to the nervous system, making it difficult065

for individuals to control and coordinate the mus-066

cles involved in speech. People with dysarthria of-067

ten have trouble clearly pronouncing words, result-068

ing in production of unclear speech from slurred,069

stuttered or arrhythmic patterns. This difference in070

the acoustic signal between dysarthric individuals071

and the normative population, causes normative072

models to fail. However, dysarthria does not affect073

a person’s ability to think or understand language;074

rather, it affects their ability to physically produce075

speech like normative population due to muscle076

weakness or lack of coordination. With the typical077

size of dysarthria speech datasets ranging in 10s078

of people1, it is more viable to leverage transfer079

learning of normative models rather than adopt-080

ing an extremely challenging approach of train-081

ing a model from scratch. With supporting evi-082

dence (Goldstein et al., 2025; Tuckute et al., 2024;083

Aw et al., 2024) for shared activation regions be-084

tween human brain and deeper layers of speech &085

language models, normative models can be adapted086

to capture the differences in surface form speech087

patterns to map back to the same activation regions088

of language, thus avoiding the need to train a model089

from scratch.090

The scaling trends have directed the models into091

100s of millions of parameters with growing num-092

ber of layers, hidden dimensions, and the norma-093

tive data it was trained with (Kaplan et al., 2020;094

Hoffmann et al., 2022), whilst maintaining the095

poor performances on underrepresented population.096

Adapting these large scale models using transfer097

learning, especially with characteristic drift in the098

speech signals compared to normative population099

1The UASpeech corpus (Kim et al., 2008) comprises 19
speakers with dysarthria, while the TORGO dataset (Rudzicz
et al., 2012) used in this work comprises 15 speakers – 8 with
dysarthria, and 7 for control. Others corpora, including those
for non-English speakers, offer similar sizes: 31 dysarthric
speakers in the Italian-language EasyCall dataset (Turrisi et al.,
2021), 44 in the Chinese-language CDSD corpus (Sun et al.,
2023), and 30 in the Tamil SSNCE corpus (A. et al., 2016).

would require parameter efficient approaches (Hu 100

et al., 2022a; V Ganesan et al., 2021). To this, we 101

compare two parameter efficient strategies of train- 102

ing ASR models against standard full fine-tuning, 103

namely, only tuning the speech encoder and only 104

tuning the language decoder to quantify its effect 105

on performance. 106

Our main contributions include: (1) Systematic 107

comparison between different ways to improve 108

dysarthric speech recognition model to quantify the 109

contributions of dysarthric speech characteristics 110

and person-specific speech characteristics. (2) a 111

parameter efficient approach to fine-tune ASR mod- 112

els to achieve the best performance (3) Analysis 113

of the different models’ WER against individuals’ 114

severity scores of motor functions. We found that: 115

(a) 30.5% of performance improved from learn- 116

ing dysarthric speech characteristics, and 23.57% 117

improved from learning speaker specific character- 118

istics. (b) training the speech encoder part of the 119

ASR models led to consistent improvements over 120

full fine-tuning or language encoder alone for all 121

adaptation strategies. (c) the improvements in the 122

ASR model for dysarthric speech corresponded to 123

decreased correlation with motor control severity 124

scores of the individuals. 125

2 Related Work 126

In recent years, ASR has achieved remarkable 127

progress in the detection of atypical speech pat- 128

terns, primarily through alignment-based data aug- 129

mentations (Xiong et al., 2019), contrastive learn- 130

ing (Wu et al., 2021; Yang et al., 2025), and self- 131

supervised learning with augmentations to both 132

data and deep neural architectures (Hu et al., 2024; 133

Takashima et al., 2024a,b). Self-supervised learn- 134

ing was significantly aided by the introduction of 135

wav2vec (Baevski et al., 2020), leading to demon- 136

strable improvements in atypical speech recogni- 137

tion and severity assessments (Javanmardi et al., 138

2023, 2024; Nguyen et al., 2024). Despite this suc- 139

cess, some reports indicate that supervised learn- 140

ing maintains superior performance in pathological 141

speech recognition (for example, (Violeta et al., 142

2022) and (Baskar et al., 2022)). 143

As such, a sizable body of work has explored the 144

use of large-scale ASR models trained on typical 145

speech and subsequently fine-tuned on small atypi- 146

cal speech corpora (Shor et al., 2019; Doshi et al., 147

2021; Green et al., 2021). Further, to overcome 148

concerns of data paucity, efficient adaptations have 149
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demonstrably improved atypical speech detection150

through the use of residual adapters (Tomanek et al.,151

2021b) and transfer learning with small amounts152

of cohort data (Tomanek et al., 2021a), or a fusion153

of cohort and individual data (Qi and Van hamme,154

2023).155

Recent improvements have largely followed156

this two-stage methodology: employing an ASR157

model pretrained on general speech for fine-tuning158

with cohort-level data, and then individual per-159

sonalization (Takashima et al., 2020a; Müller-160

Eberstein et al., 2024). As this approach is the-161

oretically grounded in knowledge transfer prin-162

ciples, it echoes earlier work leveraging transfer-163

learning (Vachhani et al., 2017; Takashima et al.,164

2020b) as well as more recent explorations that use165

meta-learning (Wang et al., 2021; Hu et al., 2022b)166

and few-shot learning (Hermann and Magimai-167

Doss, 2023) to demonstrate that even limited id-168

iosyncratic (i.e., speaker-specific) data can improve169

speech recognition for dysarthric speakers. In a170

similar vein, the recent work by (Hsieh et al., 2024)171

and (Qi and Van hamme, 2025) explore the utility172

of curriculum learning by combining phonological173

features with model representations and traditional174

acoustic features. For a comprehensive review of175

studies on dysarthric speech and ASR systems, we176

point the reader to the recent survey by (Bhat and177

Strik, 2025).178

Despite these advances in adapting to dysarthric179

speech, the critical interplay between speech en-180

coder specialization and efficient use of data re-181

mains underexplored. Existing frameworks often182

overlook systematic evaluation of modular adapta-183

tions, particularly the counterproductive effects of184

language model decoder tuning observed in our185

work. Our findings not only challenge prevail-186

ing adaptation strategies but also empirically es-187

tablish encoder-focused tuning and hybrid cohort-188

idiosyncratic learning as superior paradigms, ad-189

vancing both performance and practicality in low-190

resource clinical settings.191

3 Dataset192

In this work, we use the TORGO database, a collec-193

tion of acoustic and articulatory speech data from194

individuals with dysarthria caused by either cere-195

bral palsy or amyotrophic lateral sclerosis (Rudzicz196

et al., 2012). All participants read English text from197

a screen displaying prompts, which included short198

words, sentences, images (described by the partici-199

pants), and non-words resembling speech sounds. 200

The participants were labeled F01, F03, F04, M01, 201

M02, M03, M05, and M05. Note that F02 is not 202

present in any of the experiments. 203

The dataset includes speech from eight 204

dysarthric speakers, whose motor functions were 205

assessed using the Frenchay Dysarthria Assess- 206

ment (FDA) (Enderby, 2011). The FDA evaluates 207

28 perceptual dimensions of speech, categorized 208

into reflex, respiration, lips, jaw, soft palate, laryn- 209

geal function, tongue function, and intelligibility 1. 210

For this study, non-textual prompts—images 211

and non-words—were removed during the data- 212

cleaning process. The final dataset consists of ap- 213

proximately 132 minutes of audio data, encompass- 214

ing all speakers. There are a total of 482 unique 215

prompts, and each speaker’s speech was split into 216

three parts for training, development, and testing 217

to ensure that the training data from one user does 218

not contaminate the test data of another. 219

To prevent data leakage, we ensured that the test 220

prompts of one user were not seen during train- 221

ing, even though the model was trained on data 222

from all users. We randomly split the prompts in 223

an 80-20 ratio, reserving 385 for training and 97 224

prompts for testing. The train-validation split was 225

then performed over the train audio-text pairs using 226

the same 80-20 ratio. 227

4 Experiments 228

4.1 Methodology 229

We evaluated three adaptation approaches to the 230

baseline (Off-the-shelf pre-trained Whisper) as 231

shown in Figure 1: (1) Idiosyncratic Model: 232

Fine-tuned ASR models on individual users’ data. 233

Each model was tested on both - its target speaker 234

(within-user evaluation) and other speakers (cross- 235

user evaluation) to assess generalization capabil- 236

ities. (2) Dysarthric-Normative Models: De- 237

veloped through leave-one-out cross-validation 238

(LOOCV), where we trained on data from all but 239

one speaker and selected each of the remaining 240

speakers for cross-validation. (3) Iterative Com- 241

bined Integration (ICI) Models: Further adapted 242

the Dysarthric-Normative models to individual 243

speakers using limited target-user data. 244

To identify critical components for dysarthric 245

speech recognition, we compared three tuning con- 246

figurations: (1) Full Model finetuning to update all 247

parameters (2) Encoder-Only finetuning to modify 248

only the speech feature extractor (or preserves lan- 249
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Category F01 F03 F04 M01 M02 M03 M04 M05
Reflex 8.0 6.7 6.7 8.0 8.0 7.7 7.0 7.3
Resp. 5.0 8.0 8.0 3.0 3.0 7.5 3.0 1.5
Lips 5.6 8.0 8.0 5.0 5.0 7.8 3.2 3.6
Jaw 5.5 8.0 8.0 8.0 8.0 8.0 5.0 8.0
Palate 5.3 8.0 8.0 6.7 6.7 8.0 7.3 7.3
Laryngeal 3.0 8.0 8.0 2.5 2.5 7.0 2.3 4.5
Tongue 2.3 6.7 6.7 2.3 2.3 7.7 3.3 2.2
Intel. 2.3 8.0 8.0 2.3 2.3 8.0 1.7 5.3
SUM 37.1 61.3 61.3 37.8 37.8 61.6 32.8 39.8

Table 1: Frenchay Dysarthria Assessment (FDA) for all users across speech-related categories, an 8 point scale with
8 corresponding to normal speech and 1 corresponding to severely affected speech.

guage processing) and (3) Decoder-Only finetuning250

to adapt only the language model component (or251

preserves acoustic patterns)252

We also measured the effect of data by pro-253

gressively increasing training data starting with 16254

prompts, doubling until 128 for each user. The in-255

cremental data experiment was performed on both256

the base normative and the pre-adapted dysarthric257

normative models. This tests real-world feasibility258

given the practical challenges of collecting large259

dysarthric speech samples.260

4.2 Model Training Parameters261

We utilized Whisper small model from Ope-262

nAI (Radford et al., 2022), a transformer-based263

encoder-decoder model optimized for speech recog-264

nition tasks. Training was conducted on a combina-265

tion of NVIDIA T4 and RTX A6000 GPUs, with a266

total compute time of 160 GPU hours. The model267

employs a micro-batch size of 2 samples per GPU268

with gradient accumulation steps of 4, resulting in269

an effective batch size of 8.270

Optimization was performed using the AdamW271

optimizer with a learning rate of 1e-5 and mixed272

precision training (bfloat16) for efficiency. The273

training protocol consisted of 7 epochs with a 10%274

warm-up ratio. Model selection was based on val-275

idation Word Error Rate (WER), with generated276

sequences limited to 50 tokens.277

To address potential overfitting due to limited278

dysarthric data, we conducted experiments with279

various regularization techniques. L2 weight decay280

was tested with values of 0.1, 0.01, and 0.001 on the281

development set. Additionally, attention dropout282

rates of 0.05 and 0.01 were evaluated. These reg-283

ularization parameters were systematically varied284

to balance model capacity with the constraints of285

limited training data.286

The model was trained for seq2seq generation 287

task using the Hugging Face (Wolf et al., 2020) li- 288

brary, with key configurations including per-device 289

train batch size, gradient accumulation steps, learn- 290

ing rate, number of training epochs, mixed preci- 291

sion settings, and the metric for model selection 292

(WER). This approach allowed for efficient utiliza- 293

tion of computational resources while exploring 294

the impact of different regularization strategies on 295

model performance. 296

4.3 Evaluation Procedure 297

We evaluated model performance using Word Error 298

Rate (WER), calculated as WER = S+I+D
N ×100%, 299

where S, I, and D represent substitutions, insertions, 300

and deletions, respectively, and N is the total num- 301

ber of words in the reference transcript. Text nor- 302

malization was applied using the jiwer library, in- 303

cluding case normalization, contraction expansion, 304

punctuation removal, and whitespace standardiza- 305

tion. Note that the values of WER can go above 306

100 depending on how many of S, I and D were 307

made compared to N. 308

5 Results 309

5.1 Idiosyncratic Models 310

In our first experiment, we trained idiosyncratic 311

models by fine-tuning a base normative model. The 312

results for full fine-tuning are presented in Table 2, 313

while Table 3 shows the results for encoder only 314

fine-tuning. 315

A key observation from these results is that the 316

best performance in each column is consistently 317

found along the diagonal, where the test and train 318

data come from the same user. Additionally the 319

diagonal values are always equal to or better than 320

those of the base normative model (See Table 5). 321
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Trained on Tested on →
F01 F03 F04 M01 M02 M03 M04 M05 Row Avg

F01 47.22 38.35 15.32 76.47 68.33 12.74 88.82 85.71 54.12
F03 77.78 30.82 13.06 75.40 62.78 10.38 88.82 78.57 54.70
F04 69.44 37.28 9.91 71.66 63.33 8.96 81.58 75.00 52.14
M01 63.89 40.14 13.06 47.59 68.33 12.74 84.87 71.43 50.25
M02 69.44 39.07 12.16 70.05 38.89 11.32 91.45 75.00 50.92
M03 69.44 42.29 10.36 78.07 65.00 8.02 90.79 71.43 54.42
M04 58.33 40.14 14.86 66.31 62.78 16.51 55.92 78.57 49.17
M05 83.33 40.50 11.26 65.24 59.44 12.26 75.00 57.14 50.52
Col Avg 67.36 38.57 12.50 68.85 61.11 11.61 82.16 74.11

Table 2: Cross-User Generalization Results (WER %) with full model Finetuning (incl. encoder and decoder).
Lower is better. An idiosyncratic model is trained over each user and that model is tested for all users.

Trained on Tested on →
F01 F03 F04 M01 M02 M03 M04 M05 Row Avg

F01 41.67 39.78 11.26 84.49 68.33 6.13 135.53 107.14 61.79
F03 63.89 30.47 11.71 80.75 62.78 9.91 115.79 75.00 56.29
F04 72.22 39.78 9.01 73.80 63.33 9.43 87.50 89.29 55.55
M01 58.33 42.29 13.96 43.32 68.33 6.60 83.55 89.29 50.71
M02 69.44 37.99 15.77 75.40 37.78 9.43 86.18 71.43 50.43
M03 83.33 45.88 14.41 81.82 65.00 6.60 100.00 82.14 59.90
M04 72.22 42.29 11.71 64.71 62.78 13.21 59.21 64.29 48.80
M05 83.33 39.43 10.36 71.66 59.44 6.13 84.87 64.29 52.44
Col Avg 68.05 39.74 12.27 71.99 60.97 8.43 94.08 80.36

Table 3: Cross-User Generalization Results (WER %) with Encoder only Finetuning. Lower is better. An
idiosyncratic model is trained over each user and that model is tested for all users.

To assess how well the models generalize across322

users, we analyze the row averages. The mean of323

these row averages is 54.49 for models where only324

Speech is tuned and 52.03 for Speech+LM tuned325

models, with standard deviations of 4.70 and 2.14,326

respectively. These results suggest that, for this327

user set, fully fine-tuned models achieve slightly328

better one-to-one cross-user generalization com-329

pared to encoder only finetuned models.330

However, one notable exception is observed331

when encoder-finetuned models are tested on M03,332

where performance does not follow the expected333

trend (Table 3). This could be attributed to M03’s334

clearer speech(Table 1), making personalized adap-335

tation less necessary. Interestingly, the models336

trained on F01 and M05, who have more severe337

dysarthria based on their FDA scores, generalize338

better than models trained on M03. This raises the339

possibility that severe dysarthric speech patterns340

might provide more distinctive cues for adapta-341

tion compared to milder dysarthria. Investigating 342

whether models trained on highly dysarthric speech 343

can better recognize mild dysarthria could be a 344

valuable direction for future research. 345

5.2 Dysarthric Normative Models 346

To further improve performance, we developed 56 347

dysarthric normative models using a leave-one-out 348

approach. For each model, one user was excluded 349

from training, and an additional user was excluded 350

for validation. For each excluded user, every other 351

user was used for cross-validation once. Each nor- 352

mative model was trained using the remaining six 353

users’ training data, and WER was calculated using 354

the omitted user’s test data. 355

Table 5 presents the WER scores for these 356

models, demonstrating significant improvement 357

over the base normative model (WER 70.94; Ta- 358

ble 5). On average, the dysarthric normative mod- 359

els reduced WER to 49.30, showing improvements 360

5



Model Speech & LM Speech Only LM Only
Normative 70.94
Idiosyncratic 36.58 36.54 54.23
Dysarthric Normative 58.19 49.30 64.44
Dysarthric Idiosyncratic 46.96 32.58 46.82

Table 4: Average WER% over each models when tuning different parts of Whisper. For Dysarthric Normative, all
normative models of all users are averaged and for Dysarthric Idiosyncratic, only the best of all models is chosen.

across all users except F04 and M03 (Table 5).361

Notably, for F04, the performance remained un-362

changed, while for M03, the dysarthric normative363

model performed slightly worse than the base nor-364

mative model.365

According to Table 4, the best results were366

obtained when only the speech component was367

fine-tuned, rather than incorporating the language368

model (LM). The results shown in Table 5 reflect369

this optimal configuration.370

These findings indicate that learning dysarthric371

speech patterns from multiple users, while ex-372

cluding the target user, is an effective strat-373

egy. The results suggest that training on speech374

alone—without LM adaptation—provides the most375

robust dysarthric normative models.376

5.3 Dysarthric Idiosyncratic models377

As shown in Table 5, the Idiosyncratic models378

have an average WER of 36.54%, whereas the379

Dysarthric Idiosyncratic models achieve a similar380

average WER of 36.53% but a better best WER381

of 32.58%. This improvement is observed for al-382

most all users, suggesting that the speech patterns383

learned by the Dysarthric Normative model are ef-384

fectively transferable to individual users during per-385

sonalization. Fine-tuning an idiosyncratic model386

from a Dysarthric Normative model yields better387

performance than starting directly from a Norma-388

tive model.389

From Table 5 we found that the Dysarthric390

Idiosyncratic models improve WER by 54.07%391

(70.94 → 32.58) compared to the Normative model.392

This gain is attributed to two factors: 30.5% (70.94393

→ 49.30) of the improvement comes from learn-394

ing common dysarthric speech patterns during the395

normative stage, while 23.57% (49.30 → 32.58)396

is due to further adaptation to personalized speech397

patterns. This approach proves more effective than398

relying solely on personalized adaptation, as seen399

in the Idiosyncratic model, where the total improve-400

ment was only 48.49% (70.94 → 36.54), derived401

entirely from personalized speech patterns.402

Next, we examine Table 4. The LM-only fine- 403

tuned Dysarthric Idiosyncratic models were initial- 404

ized from Speech-only Dysarthric Normative mod- 405

els. However, their performance gains are minimal 406

and significantly worse than Idiosyncratic models 407

using encoder or full fine-tuning. 408

For full fine-tuning, the Dysarthric Idiosyn- 409

cratic models were initialized from their Dysarthric 410

Normative counterparts that also underwent full 411

fine-tuning. Although these models performed 412

better than the LM-only models, they still un- 413

derperformed compared to the Speech-only mod- 414

els. This performance degradation can be at- 415

tributed to the cascading effect caused by itera- 416

tive LM tuning—first in the Dysarthric Norma- 417

tive model and then in the Dysarthric Idiosyncratic 418

model—potentially leading to overfitting or insta- 419

bility in language modeling. 420

From these results, it is evident that the Speech 421

Encoder plays the most crucial role in improving 422

the normative models. For this dataset, full fine- 423

tuning and encoder-only fine-tuning yield compara- 424

ble results for Idiosyncratic models, making it diffi- 425

cult to draw definitive conclusions about their rela- 426

tive effectiveness. Further investigation with larger 427

datasets may be necessary to determine whether 428

one approach consistently outperforms the other. 429

5.4 Effect of train data size 430

Since we have established that using a Speech- 431

tuned Dysarthric Normative model is beneficial 432

for training personalized models, the next exper- 433

iment aimed to determine how much less data is 434

required for effective personalization when starting 435

from a Dysarthric Normative model compared to 436

training directly from scratch. 437

Figure 2 illustrates the relationship between 438

training data size (X-axis) and average WER (Y- 439

axis). Models were trained for each user using 16, 440

32, 64, 128, and 256 recordings. If a user had fewer 441

than the specified number of recordings, all avail- 442

able training samples were used. The WER was 443

computed using the full test dataset of each user at 444
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User Whisper-
Small Self Model Common ICI Model

(Avg. WER)
ICI Model

(Best WER)
F01 83.33 41.67 53.57 41.27 36.11
F03 43.37 30.47 34.56 29.54 28.67
F04 13.96 9.01 12.55 10.10 9.01
M01 99.47 43.32 65.39 44.31 37.43
M02 81.67 37.78 66.82 36.03 35.00
M03 7.08 6.60 9.77 9.10 6.60
M04 149.34 59.21 83.83 57.05 50.66
M05 89.29 64.29 67.86 64.80 57.14
Average 70.94 36.54 49.30 36.53 32.58

Table 5: Performance comparison across Encoder finetuned models (WER %). Lower is better The ICI Model (Avg.
WER) column shows the average WER from training the user with evry other normative model that excludes the
user. The last column chosses the best dyarthric idiosyncratic model for a user.

0 16 32 64 128 256
Training Data

35.0

40.0

45.0

50.0

55.0

W
E

R
%

70.94

56.04

49.77

42.78 41.23

36.99

48.94

43.56
42.13

39.05
36.43

32.99

Idiosyncratic
Dysarthric Idiosyncratic

Figure 2: Error as a function of training size for both
idiosyncratic and dysarthric idiosyncratic. The benefits
of the dysarthric idiosyncratic, which generalizes across
dysarthric speakers, are larger at the smaller training set
sizes but a benefit remains even with greater training
sizes.

every step and then averaged.445

The results indicate that when training a446

Dysarthric Idiosyncratic model, using only 128447

recordings (∼50% of the full dataset) achieves bet-448

ter performance than training a personalized model449

with all 256 recordings from scratch. This finding450

suggests that by leveraging a Dysarthric Normative451

model, users can obtain a highly personalized ASR452

model with less than half the usual data collection453

effort, significantly reducing the burden of dataset454

creation while still achieving optimal recognition455

performance.456

5.5 Correlation of Model WERs and FDA457

scores458

A high correlation between negative WER and FDA459

scores indicates that word error rates increase as460

Whisper Self Common Best ICI

Reflex

Resp.

Lips

Jaw

Palate

Laryngeal

Tongue

Intel.

Overall

-0.224 -0.160 -0.312 -0.149

0.819 0.870 0.902 0.867

0.917 0.917 0.938 0.906

0.628 0.432 0.466 0.396

0.489 0.429 0.516 0.412

0.862 0.716 0.879 0.696

0.803 0.828 0.883 0.823

0.872 0.688 0.867 0.667

0.918 0.840 0.937 0.824

Correlation between the negative WER and FDA score
(Row-Normalized)

Figure 3: Correlation between negative WER and FDA
score. A higher value in a row means that the WER
and degree of imparity are more related. A better model
would reduce this correlation as its able to better under-
stand speech.

speech quality worsens, indicating that the tran- 461

scription errors are explained by the disfluencies in 462

speech from dysarthria. When training on Idiosyn- 463

cratic (Self) and Dysarthric Idiosyncratic (ICI) 464

models, this correlation is reduced. This suggests 465

that the relationship between WER and speech dis- 466

ability weakens in these models—implying that 467

disability becomes less of a factor in transcription 468

efficiency, which is a desired outcome. Except for 469

Respiration and Tongue, all rows show a similar 470

trend of improvement from Normative to Idiosyn- 471

cratic models. 472

6 Conclusions 473

Our study demonstrates that personalized fine- 474

tuning remains critical for recognizing dysarthric 475

speech, but can be made more efficient by lever- 476

aging dysarthric-normative pretraining and selec- 477

tively adapting the speech encoder. By identify- 478

7



ing the role of parameter subspaces in ASR mod-479

els—specifically the greater impact of tuning the480

speech encoder over the language decoder—we en-481

able a dysarthric-idiosyncratic approach to perform482

on par with, or better than, the widely used idiosyn-483

cratic models. To the best of our knowledge, this484

is the first work to show how combined modeling485

can outperform purely personalized strategies for486

disordered speech recognition under constrained487

data settings.488

Limitations489

This study has a few important limitations. First,490

the models were trained on data from only eight491

users, which restricts the generalizability of the492

findings. Additionally, speaker-specific factors493

such as regional accents or linguistic backgrounds494

were not accounted for, despite their potential im-495

pact on speech transcription performance. The496

limited dataset also constrains the quality of the497

Normative models; more diverse and extensive nor-498

mative data would likely improve their robustness.499

Finally, we did not explore any incremental or lon-500

gitudinal training techniques that could capture the501

progressive nature of degenerative speech condi-502

tions—an important direction for future work to503

better reflect real-world disease trajectories.504

Ethical Considerations505

This work uses publicly available datasets contain-506

ing dysarthric speech. All data used in this study507

were collected and released by their original cre-508

ators and made available for research purposes. We509

ensured compliance with the dataset licenses and510

terms of use.511

We acknowledge that dysarthric speech origi-512

nates from individuals with medical conditions,513

and thus represents sensitive data. While no per-514

sonally identifiable information (PII) is present in515

the data, we took care to treat the speech recordings516

and associated metadata respectfully and strictly517

for the intended research purpose.518

Our models are not designed for diagnostic use,519

and we caution against misuse of automatic sys-520

tems for clinical decision-making without expert521

oversight. Additionally, while this study focuses on522

improving transcription accuracy, we recognize the523

importance of inclusive AI development that does524

not reinforce biases against people with disabilities.525

Future work should prioritize user-centered evalua-526

tion and collaboration with affected communities.527
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