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Abstract

State-of-the-art automatic speech recognition
(ASR) models like Whisper, perform poorly
on atypical speech, such as that produced
by individuals with dysarthria. Past works
for atypical speech have mostly investigated
fully personalized (or idiosyncratic) models,
but modeling strategies that can both gener-
alize and and handle idiosyncracy could be
more effective for capturing atypical speech.
To investigate this, we compare four strate-
gies: (a) normative models trained on typical
speech (no personalization), (b) idiosyncratic
models completely personalized to individu-
als, (c) dysarthric-normative models trained
on other dysarthric speakers,and (d) dysarthric-
idiosyncratic models which combine strategies
by first modeling normative patterns before
adapting to individual speech. We find the
dysarthric-idiosyncratic model performs bet-
ter than idiosyncratic approach while requiring
less than half as much personalized data (36.43
WER with 128 train size vs 36.99 with 256).
Further, we found that tuning the speech en-
coder alone (as opposed to the LM decoder)
yielded the best results reducing word error
rate from 71% to 32% on average. Our findings
highlight the value of leveraging both norma-
tive (cross-speaker) and idiosyncratic (speaker-
specific) patterns to improve ASR for underrep-
resented speech populations.

1 Introduction

ASR models are predominantly trained on norma-
tive populations, failing to generalize on individu-
als with atypical speech, such as dysarthria. Past
works addressing this predominantly take an id-
iosyncratic modeling approach by training (or fine-
tuning) separate models, one specific to each indi-
vidual (Shor et al., 2019; Green et al., 2021). On
top of requiring vast amounts of data from the in-
dividual, such idiosyncratic models might fail to
capture the speaker’s changing speech character-
istics over time, eventually causing the model to
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Figure 1: Four types of models. Normative model
is Whisper-small and we do one-shot predictions on
it. Idiosyncratic models create a model for each user.
Dysarthric Normative model, creates one model for a
user while excluding it and using evry other user for
cross validation. Dysarthric Idiosyncratic model uses a
users normative model and personalizes it.

generalize poorly (Tomanek et al., 2023). Alterna-
tively, learning from the cross-section of dysarthric
individuals could allow the model to adapt to indi-
vidual’s changing patterns within practical sample
sizes.

In this work, we compare models with differ-
ing degrees of idiosyncratic (personalized) versus
normative (the same for all) models. Specifically,
we compare the performance of four strategies: (a)
normative models trained on typical speech (b) id-
iosyncratic models, i.e., normative models tuned to



individuals, (c) dysarthric normative models, i.e.,
normative models tuned to dysarthric population,
(d) dysarthric idiosyncratic models, i.e., dysarthric
normative models tuned to individuals. The differ-
ence in performances between (c) and (a) informs
the contributions of learned speech characteristics
of dysarthria, whereas the difference between (d)
and (c), and (d) and (b) shows the contribution of
speaker-specific characteristics.

Dysarthria is a motor speech disorder caused by
damage to the nervous system, making it difficult
for individuals to control and coordinate the mus-
cles involved in speech. People with dysarthria of-
ten have trouble clearly pronouncing words, result-
ing in production of unclear speech from slurred,
stuttered or arrhythmic patterns. This difference in
the acoustic signal between dysarthric individuals
and the normative population, causes normative
models to fail. However, dysarthria does not affect
a person’s ability to think or understand language;
rather, it affects their ability to physically produce
speech like normative population due to muscle
weakness or lack of coordination. With the typical
size of dysarthria speech datasets ranging in 10s
of people!, it is more viable to leverage transfer
learning of normative models rather than adopt-
ing an extremely challenging approach of train-
ing a model from scratch. With supporting evi-
dence (Goldstein et al., 2025; Tuckute et al., 2024;
Aw et al., 2024) for shared activation regions be-
tween human brain and deeper layers of speech &
language models, normative models can be adapted
to capture the differences in surface form speech
patterns to map back to the same activation regions
of language, thus avoiding the need to train a model
from scratch.

The scaling trends have directed the models into
100s of millions of parameters with growing num-
ber of layers, hidden dimensions, and the norma-
tive data it was trained with (Kaplan et al., 2020;
Hoffmann et al., 2022), whilst maintaining the
poor performances on underrepresented population.
Adapting these large scale models using transfer
learning, especially with characteristic drift in the
speech signals compared to normative population

"The UASpeech corpus (Kim et al., 2008) comprises 19
speakers with dysarthria, while the TORGO dataset (Rudzicz
et al., 2012) used in this work comprises 15 speakers — 8 with
dysarthria, and 7 for control. Others corpora, including those
for non-English speakers, offer similar sizes: 31 dysarthric
speakers in the Italian-language EasyCall dataset (Turrisi et al.,
2021), 44 in the Chinese-language CDSD corpus (Sun et al.,
2023), and 30 in the Tamil SSNCE corpus (A. et al., 2016).

would require parameter efficient approaches (Hu
et al., 2022a; V Ganesan et al., 2021). To this, we
compare two parameter efficient strategies of train-
ing ASR models against standard full fine-tuning,
namely, only tuning the speech encoder and only
tuning the language decoder to quantify its effect
on performance.

Our main contributions include: (1) Systematic
comparison between different ways to improve
dysarthric speech recognition model to quantify the
contributions of dysarthric speech characteristics
and person-specific speech characteristics. (2) a
parameter efficient approach to fine-tune ASR mod-
els to achieve the best performance (3) Analysis
of the different models’ WER against individuals’
severity scores of motor functions. We found that:
(a) 30.5% of performance improved from learn-
ing dysarthric speech characteristics, and 23.57%
improved from learning speaker specific character-
istics. (b) training the speech encoder part of the
ASR models led to consistent improvements over
full fine-tuning or language encoder alone for all
adaptation strategies. (c) the improvements in the
ASR model for dysarthric speech corresponded to
decreased correlation with motor control severity
scores of the individuals.

2 Related Work

In recent years, ASR has achieved remarkable
progress in the detection of atypical speech pat-
terns, primarily through alignment-based data aug-
mentations (Xiong et al., 2019), contrastive learn-
ing (Wu et al., 2021; Yang et al., 2025), and self-
supervised learning with augmentations to both
data and deep neural architectures (Hu et al., 2024;
Takashima et al., 2024a,b). Self-supervised learn-
ing was significantly aided by the introduction of
wav2vec (Baevski et al., 2020), leading to demon-
strable improvements in atypical speech recogni-
tion and severity assessments (Javanmardi et al.,
2023, 2024; Nguyen et al., 2024). Despite this suc-
cess, some reports indicate that supervised learn-
ing maintains superior performance in pathological
speech recognition (for example, (Violeta et al.,
2022) and (Baskar et al., 2022)).

As such, a sizable body of work has explored the
use of large-scale ASR models trained on typical
speech and subsequently fine-tuned on small atypi-
cal speech corpora (Shor et al., 2019; Doshi et al.,
2021; Green et al., 2021). Further, to overcome
concerns of data paucity, efficient adaptations have



demonstrably improved atypical speech detection
through the use of residual adapters (Tomanek et al.,
2021b) and transfer learning with small amounts
of cohort data (Tomanek et al., 2021a), or a fusion
of cohort and individual data (Qi and Van hamme,
2023).

Recent improvements have largely followed
this two-stage methodology: employing an ASR
model pretrained on general speech for fine-tuning
with cohort-level data, and then individual per-
sonalization (Takashima et al., 2020a; Miiller-
Eberstein et al., 2024). As this approach is the-
oretically grounded in knowledge transfer prin-
ciples, it echoes earlier work leveraging transfer-
learning (Vachhani et al., 2017; Takashima et al.,
2020b) as well as more recent explorations that use
meta-learning (Wang et al., 2021; Hu et al., 2022b)
and few-shot learning (Hermann and Magimai-
Doss, 2023) to demonstrate that even limited id-
iosyncratic (i.e., speaker-specific) data can improve
speech recognition for dysarthric speakers. In a
similar vein, the recent work by (Hsieh et al., 2024)
and (Qi and Van hamme, 2025) explore the utility
of curriculum learning by combining phonological
features with model representations and traditional
acoustic features. For a comprehensive review of
studies on dysarthric speech and ASR systems, we
point the reader to the recent survey by (Bhat and
Strik, 2025).

Despite these advances in adapting to dysarthric
speech, the critical interplay between speech en-
coder specialization and efficient use of data re-
mains underexplored. Existing frameworks often
overlook systematic evaluation of modular adapta-
tions, particularly the counterproductive effects of
language model decoder tuning observed in our
work. Our findings not only challenge prevail-
ing adaptation strategies but also empirically es-
tablish encoder-focused tuning and hybrid cohort-
idiosyncratic learning as superior paradigms, ad-
vancing both performance and practicality in low-
resource clinical settings.

3 Dataset

In this work, we use the TORGO database, a collec-
tion of acoustic and articulatory speech data from
individuals with dysarthria caused by either cere-
bral palsy or amyotrophic lateral sclerosis (Rudzicz
etal., 2012). All participants read English text from
a screen displaying prompts, which included short
words, sentences, images (described by the partici-

pants), and non-words resembling speech sounds.
The participants were labeled FO1, FO3, FO4, MO1,
MO02, M03, MO0O5, and MO5. Note that FO2 is not
present in any of the experiments.

The dataset includes speech from eight
dysarthric speakers, whose motor functions were
assessed using the Frenchay Dysarthria Assess-
ment (FDA) (Enderby, 2011). The FDA evaluates
28 perceptual dimensions of speech, categorized
into reflex, respiration, lips, jaw, soft palate, laryn-
geal function, tongue function, and intelligibility 1.

For this study, non-textual prompts—images
and non-words—were removed during the data-
cleaning process. The final dataset consists of ap-
proximately 132 minutes of audio data, encompass-
ing all speakers. There are a total of 482 unique
prompts, and each speaker’s speech was split into
three parts for training, development, and testing
to ensure that the training data from one user does
not contaminate the test data of another.

To prevent data leakage, we ensured that the test
prompts of one user were not seen during train-
ing, even though the model was trained on data
from all users. We randomly split the prompts in
an 80-20 ratio, reserving 385 for training and 97
prompts for testing. The train-validation split was
then performed over the train audio-text pairs using
the same 80-20 ratio.

4 Experiments

4.1 Methodology

We evaluated three adaptation approaches to the
baseline (Off-the-shelf pre-trained Whisper) as
shown in Figure 1: (1) Idiosyncratic Model:
Fine-tuned ASR models on individual users’ data.
Each model was tested on both - its target speaker
(within-user evaluation) and other speakers (cross-
user evaluation) to assess generalization capabil-
ities. (2) Dysarthric-Normative Models: De-
veloped through leave-one-out cross-validation
(LOOCYV), where we trained on data from all but
one speaker and selected each of the remaining
speakers for cross-validation. (3) Iterative Com-
bined Integration (ICI) Models: Further adapted
the Dysarthric-Normative models to individual
speakers using limited target-user data.

To identify critical components for dysarthric
speech recognition, we compared three tuning con-
figurations: (1) Full Model finetuning to update all
parameters (2) Encoder-Only finetuning to modify
only the speech feature extractor (or preserves lan-



Category FO01 FO03 F04 MO1 MO2 MO3 M04 MOS
Reflex 80 6.7 67 80 80 7.7 70 73
Resp. 50 80 80 3.0 30 75 3.0 1.5
Lips 56 80 80 50 50 78 32 3.6
Jaw 55 80 80 8.0 8.0 80 5.0 8.0
Palate 53 80 80 6.7 6.7 80 73 7.3
Laryngeal 3.0 8.0 8.0 25 2.5 70 23 4.5
Tongue 23 67 67 23 23 7.7 33 22
Intel. 23 80 80 23 2.3 8.0 1.7 53
SUM 371 613 613 378 378 61.6 328 39.8

Table 1: Frenchay Dysarthria Assessment (FDA) for all users across speech-related categories, an 8 point scale with
8 corresponding to normal speech and 1 corresponding to severely affected speech.

guage processing) and (3) Decoder-Only finetuning
to adapt only the language model component (or
preserves acoustic patterns)

We also measured the effect of data by pro-
gressively increasing training data starting with 16
prompts, doubling until 128 for each user. The in-
cremental data experiment was performed on both
the base normative and the pre-adapted dysarthric
normative models. This tests real-world feasibility
given the practical challenges of collecting large
dysarthric speech samples.

4.2 Model Training Parameters

We utilized Whisper small model from Ope-
nAl (Radford et al., 2022), a transformer-based
encoder-decoder model optimized for speech recog-
nition tasks. Training was conducted on a combina-
tion of NVIDIA T4 and RTX A6000 GPUs, with a
total compute time of 160 GPU hours. The model
employs a micro-batch size of 2 samples per GPU
with gradient accumulation steps of 4, resulting in
an effective batch size of 8.

Optimization was performed using the AdamW
optimizer with a learning rate of le-5 and mixed
precision training (bfloat16) for efficiency. The
training protocol consisted of 7 epochs with a 10%
warm-up ratio. Model selection was based on val-
idation Word Error Rate (WER), with generated
sequences limited to 50 tokens.

To address potential overfitting due to limited
dysarthric data, we conducted experiments with
various regularization techniques. L2 weight decay
was tested with values of 0.1, 0.01, and 0.001 on the
development set. Additionally, attention dropout
rates of 0.05 and 0.01 were evaluated. These reg-
ularization parameters were systematically varied
to balance model capacity with the constraints of
limited training data.

The model was trained for seq2seq generation
task using the Hugging Face (Wolf et al., 2020) li-
brary, with key configurations including per-device
train batch size, gradient accumulation steps, learn-
ing rate, number of training epochs, mixed preci-
sion settings, and the metric for model selection
(WER). This approach allowed for efficient utiliza-
tion of computational resources while exploring
the impact of different regularization strategies on
model performance.

4.3 Evaluation Procedure

We evaluated model performance using Word Error
Rate (WER), calculated as WER = 32 % 100%,
where S, I, and D represent substitutions, insertions,
and deletions, respectively, and N is the total num-
ber of words in the reference transcript. Text nor-
malization was applied using the jiwer library, in-
cluding case normalization, contraction expansion,
punctuation removal, and whitespace standardiza-
tion. Note that the values of WER can go above
100 depending on how many of S, I and D were
made compared to N.

5 Results

5.1 Idiosyncratic Models

In our first experiment, we trained idiosyncratic
models by fine-tuning a base normative model. The
results for full fine-tuning are presented in Table 2,
while Table 3 shows the results for encoder only
fine-tuning.

A key observation from these results is that the
best performance in each column is consistently
found along the diagonal, where the test and train
data come from the same user. Additionally the
diagonal values are always equal to or better than
those of the base normative model (See Table 5).



Trained on

Tested on —

F01 FO3 F04 MO1 MO02 MO3 M04 MOS RowAvg
FO1 47.22 3835 1532 7647 6833 12.74 88.82 85.71 54.12
FO3 771778 30.82 13.06 7540 62.78 10.38 88.82 78.57 54.70
FO4 69.44 3728 991 71.66 6333 896 81.58 75.00 52.14
MO1 63.89 40.14 13.06 47.59 6833 12.74 84.87 7143 50.25
MO02 69.44 39.07 12.16 70.05 38.89 1132 91.45 75.00 50.92
MO3 69.44 4229 1036 78.07 65.00 8.02 90.79 71.43 54.42
MO04 5833 40.14 14.86 6631 62.78 16.51 55.92 78.57 49.17
MO5 83.33 4050 11.26 6524 5944 1226 75.00 57.14 50.52
Col Avg 67.36 38.57 1250 6885 61.11 11.61 82.16 74.11

Table 2: Cross-User Generalization Results (WER %) with full model Finetuning (incl. encoder and decoder).
Lower is better. An idiosyncratic model is trained over each user and that model is tested for all users.

Trained on

Tested on —

Fo1 FO03 FO4 MO1 MO02 MO3 MO4 MOS  Row Avg
FO1 41.67 39.78 11.26 84.49 68.33 6.13 13553 107.14 61.79
FO3 63.89 3047 11.71 80.75 62778 991 11579 75.00 56.29
F04 7222 3978 9.01 7380 6333 943 87.50 89.29 55.55
MO1 58.33 4229 1396 43.32 6833 6.60 8355 89.29 50.71
MO02 69.44 3799 1577 7540 37.78 943 86.18 71.43 50.43
MO03 83.33 45.88 1441 81.82 65.00 6.60 100.00 82.14 59.90
MO04 7222 4229 11.71 6471 6278 1321 59.21 64.29 48.80
MO5 83.33 3943 1036 71.66 59.44 6.13 8487 64.29 52.44
Col Avg 68.05 39.74 12.27 7199 6097 843 94.08 80.36

Table 3: Cross-User Generalization Results (WER %) with Encoder only Finetuning. Lower is better. An
idiosyncratic model is trained over each user and that model is tested for all users.

To assess how well the models generalize across
users, we analyze the row averages. The mean of
these row averages is 54.49 for models where only
Speech is tuned and 52.03 for Speech+LM tuned
models, with standard deviations of 4.70 and 2.14,
respectively. These results suggest that, for this
user set, fully fine-tuned models achieve slightly
better one-to-one cross-user generalization com-
pared to encoder only finetuned models.

However, one notable exception is observed
when encoder-finetuned models are tested on M03,
where performance does not follow the expected
trend (Table 3). This could be attributed to M03’s
clearer speech(Table 1), making personalized adap-
tation less necessary. Interestingly, the models
trained on FO1 and MOS5, who have more severe
dysarthria based on their FDA scores, generalize
better than models trained on M03. This raises the
possibility that severe dysarthric speech patterns
might provide more distinctive cues for adapta-

tion compared to milder dysarthria. Investigating
whether models trained on highly dysarthric speech
can better recognize mild dysarthria could be a
valuable direction for future research.

5.2 Dysarthric Normative Models

To further improve performance, we developed 56
dysarthric normative models using a leave-one-out
approach. For each model, one user was excluded
from training, and an additional user was excluded
for validation. For each excluded user, every other
user was used for cross-validation once. Each nor-
mative model was trained using the remaining six
users’ training data, and WER was calculated using
the omitted user’s test data.

Table 5 presents the WER scores for these
models, demonstrating significant improvement
over the base normative model (WER 70.94; Ta-
ble 5). On average, the dysarthric normative mod-
els reduced WER to 49.30, showing improvements



Model Speech & LM Speech Only LM Only
Normative 70.94

Idiosyncratic 36.58 36.54 54.23
Dysarthric Normative 58.19 49.30 64.44
Dysarthric Idiosyncratic 46.96 32.58 46.82

Table 4: Average WER% over each models when tuning different parts of Whisper. For Dysarthric Normative, all
normative models of all users are averaged and for Dysarthric Idiosyncratic, only the best of all models is chosen.

across all users except FO4 and MO03 (Table 5).
Notably, for FO4, the performance remained un-
changed, while for M03, the dysarthric normative
model performed slightly worse than the base nor-
mative model.

According to Table 4, the best results were
obtained when only the speech component was
fine-tuned, rather than incorporating the language
model (LM). The results shown in Table 5 reflect
this optimal configuration.

These findings indicate that learning dysarthric
speech patterns from multiple users, while ex-
cluding the target user, is an effective strat-
egy. The results suggest that training on speech
alone—without LM adaptation—provides the most
robust dysarthric normative models.

5.3 Dysarthric Idiosyncratic models

As shown in Table 5, the Idiosyncratic models
have an average WER of 36.54%, whereas the
Dysarthric Idiosyncratic models achieve a similar
average WER of 36.53% but a better best WER
of 32.58%. This improvement is observed for al-
most all users, suggesting that the speech patterns
learned by the Dysarthric Normative model are ef-
fectively transferable to individual users during per-
sonalization. Fine-tuning an idiosyncratic model
from a Dysarthric Normative model yields better
performance than starting directly from a Norma-
tive model.

From Table 5 we found that the Dysarthric
Idiosyncratic models improve WER by 54.07%
(70.94 — 32.58) compared to the Normative model.
This gain is attributed to two factors: 30.5% (70.94
— 49.30) of the improvement comes from learn-
ing common dysarthric speech patterns during the
normative stage, while 23.57% (49.30 — 32.58)
is due to further adaptation to personalized speech
patterns. This approach proves more effective than
relying solely on personalized adaptation, as seen
in the Idiosyncratic model, where the total improve-
ment was only 48.49% (70.94 — 36.54), derived
entirely from personalized speech patterns.

Next, we examine Table 4. The LM-only fine-
tuned Dysarthric Idiosyncratic models were initial-
ized from Speech-only Dysarthric Normative mod-
els. However, their performance gains are minimal
and significantly worse than Idiosyncratic models
using encoder or full fine-tuning.

For full fine-tuning, the Dysarthric Idiosyn-
cratic models were initialized from their Dysarthric
Normative counterparts that also underwent full
fine-tuning. Although these models performed
better than the LM-only models, they still un-
derperformed compared to the Speech-only mod-
els. This performance degradation can be at-
tributed to the cascading effect caused by itera-
tive LM tuning—first in the Dysarthric Norma-
tive model and then in the Dysarthric Idiosyncratic
model—potentially leading to overfitting or insta-
bility in language modeling.

From these results, it is evident that the Speech
Encoder plays the most crucial role in improving
the normative models. For this dataset, full fine-
tuning and encoder-only fine-tuning yield compara-
ble results for Idiosyncratic models, making it diffi-
cult to draw definitive conclusions about their rela-
tive effectiveness. Further investigation with larger
datasets may be necessary to determine whether
one approach consistently outperforms the other.

5.4 Effect of train data size

Since we have established that using a Speech-
tuned Dysarthric Normative model is beneficial
for training personalized models, the next exper-
iment aimed to determine how much less data is
required for effective personalization when starting
from a Dysarthric Normative model compared to
training directly from scratch.

Figure 2 illustrates the relationship between
training data size (X-axis) and average WER (Y-
axis). Models were trained for each user using 16,
32, 64, 128, and 256 recordings. If a user had fewer
than the specified number of recordings, all avail-
able training samples were used. The WER was
computed using the full test dataset of each user at



Whisper- ICI Model ICI Model
User Small Self Model Common (Avg. WER) (Best WER)
FO1 83.33 41.67 53.57 41.27 36.11
FO03 43.37 30.47 34.56 29.54 28.67
F04 13.96 9.01 12.55 10.10 9.01
MO1 99.47 43.32 65.39 44.31 37.43
MO02 81.67 37.78 66.82 36.03 35.00
MO03 7.08 6.60 9.77 9.10 6.60
MO04 149.34 59.21 83.83 57.05 50.66
MO5 89.29 64.29 67.86 64.80 57.14
Average 70.94 36.54 49.30 36.53 32.58

Table 5: Performance comparison across Encoder finetuned models (WER %). Lower is better The ICI Model (Avg.
WER) column shows the average WER from training the user with evry other normative model that excludes the
user. The last column chosses the best dyarthric idiosyncratic model for a user.

—e— Idiosyncratic

70.94

55.0 Dysarthric Idiosyncratic

36.99

35.0

0 16 32 64 128 256
Training Data

Figure 2: Error as a function of training size for both
idiosyncratic and dysarthric idiosyncratic. The benefits
of the dysarthric idiosyncratic, which generalizes across
dysarthric speakers, are larger at the smaller training set
sizes but a benefit remains even with greater training
sizes.

every step and then averaged.

The results indicate that when training a
Dysarthric Idiosyncratic model, using only 128
recordings (~50% of the full dataset) achieves bet-
ter performance than training a personalized model
with all 256 recordings from scratch. This finding
suggests that by leveraging a Dysarthric Normative
model, users can obtain a highly personalized ASR
model with less than half the usual data collection
effort, significantly reducing the burden of dataset
creation while still achieving optimal recognition
performance.

5.5 Correlation of Model WERs and FDA
scores

A high correlation between negative WER and FDA
scores indicates that word error rates increase as

Correlation between the negative WER and FDA score
(Row-Normalized)

Reflex -0.224

-0.312

Resp. 0.819 0.902
Lips 0.917 0.917 0.938 0.906
Jaw 0.432 0.466 0.396
Palate 0.429 0.516 0412
Laryngeal 0.716 0.879 0.696
Tongue 0.803 0.828 0.883 0.823
Intel. 0.872 0.688 0.867 0.667
Overall 0.840 0.937 0.824

Whisper Self Common Best ICI

Figure 3: Correlation between negative WER and FDA
score. A higher value in a row means that the WER
and degree of imparity are more related. A better model
would reduce this correlation as its able to better under-
stand speech.

speech quality worsens, indicating that the tran-
scription errors are explained by the disfluencies in
speech from dysarthria. When training on Idiosyn-
cratic (Self) and Dysarthric Idiosyncratic (ICI)
models, this correlation is reduced. This suggests
that the relationship between WER and speech dis-
ability weakens in these models—implying that
disability becomes less of a factor in transcription
efficiency, which is a desired outcome. Except for
Respiration and Tongue, all rows show a similar
trend of improvement from Normative to Idiosyn-
cratic models.

6 Conclusions

Our study demonstrates that personalized fine-
tuning remains critical for recognizing dysarthric
speech, but can be made more efficient by lever-
aging dysarthric-normative pretraining and selec-
tively adapting the speech encoder. By identify-



ing the role of parameter subspaces in ASR mod-
els—specifically the greater impact of tuning the
speech encoder over the language decoder—we en-
able a dysarthric-idiosyncratic approach to perform
on par with, or better than, the widely used idiosyn-
cratic models. To the best of our knowledge, this
is the first work to show how combined modeling
can outperform purely personalized strategies for
disordered speech recognition under constrained
data settings.

Limitations

This study has a few important limitations. First,
the models were trained on data from only eight
users, which restricts the generalizability of the
findings. Additionally, speaker-specific factors
such as regional accents or linguistic backgrounds
were not accounted for, despite their potential im-
pact on speech transcription performance. The
limited dataset also constrains the quality of the
Normative models; more diverse and extensive nor-
mative data would likely improve their robustness.
Finally, we did not explore any incremental or lon-
gitudinal training techniques that could capture the
progressive nature of degenerative speech condi-
tions—an important direction for future work to
better reflect real-world disease trajectories.

Ethical Considerations

This work uses publicly available datasets contain-
ing dysarthric speech. All data used in this study
were collected and released by their original cre-
ators and made available for research purposes. We
ensured compliance with the dataset licenses and
terms of use.

We acknowledge that dysarthric speech origi-
nates from individuals with medical conditions,
and thus represents sensitive data. While no per-
sonally identifiable information (PII) is present in
the data, we took care to treat the speech recordings
and associated metadata respectfully and strictly
for the intended research purpose.

Our models are not designed for diagnostic use,
and we caution against misuse of automatic sys-
tems for clinical decision-making without expert
oversight. Additionally, while this study focuses on
improving transcription accuracy, we recognize the
importance of inclusive Al development that does
not reinforce biases against people with disabilities.
Future work should prioritize user-centered evalua-
tion and collaboration with affected communities.
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