
CQARE: Contrastive Question-Answering for Few-shot Relation
Extraction with Prompt Tuning

Anonymous ACL submission

Abstract

Prompt tuning with pre-trained language mod-001
els (PLM) has exhibited outstanding perfor-002
mance by closing the gap between pre-training003
tasks and various downstream applications,004
without the need for uninitialized parameters005
to be introduced. However, prompt tuning006
requires vast amounts of prompt engineering007
and predefined label word mapping, which ob-008
structs its implements in practice. Besides, the009
ample label space makes prompt tuning more010
arduous and challenging when it comes to re-011
lation extraction (RE). To tackle these issues,012
we propose a Contrastive Question-Answering013
method with prompt tuning for few-shot RE014
(CQARE). CQARE carries out a RE task-015
specific pre-training with four entity-relation-016
aware pre-training objects, including a prompt017
pre-training to automatically generate contin-018
uous prompts. The proposed pre-training can019
provide more robust initialization with prompt020
tuning while maintaining semantic consistency021
with the proposed PLM. Furthermore, CQARE022
can effectively avoid label words mapping by023
reformulating RE as contrastive question an-024
swering. The results indicate CQARE raising025
averaged accuracy of 5.11% on a cross-domain026
few-shot dataset, demonstrating that robust ini-027
tialization is crucial for prompt tuning and ef-028
fective contrastive question answering.029

1 Introduction030

Relation extraction (RE) is a fundamental task in031

natural language processing (NLP), aiming to pop-032

ulate knowledge with facts from unstructured text.033

Many downstream applications rely on extracted034

relations, such as information retrieval (Guo et al.,035

2020), question answering (QA) (Lan and Jiang,036

2021), and knowledge graph construction (Li et al.,037

2020). However, most existing RE models are038

prone to labeled data in practice and face non-039

negligible challenges due to the variations of do-040

mains and languages. Few-shot learning only re-041

quires a handful of labeled examples, which has042

raised more attention in recent research. 043

For few-shot tasks, GPT-3 (Brown et al., 2020) 044

proves the prominent ability for predictions without 045

any further fine-tuning by fusing manual prompts. 046

Some following studies (Lester et al., 2021; Liu 047

et al., 2021; Vu et al., 2021) explore different meth- 048

ods to tune neural models with prompts and obtain 049

promising results. The main idea behind prompt 050

tuning is reformulating various downstream appli- 051

cations as mask language tasks. The approach 052

closes the gap between the pre-training language 053

model (PLM) and downstream applications with- 054

out introducing any uninitialized parameters. Ben- 055

efiting from the above advantages, prompt tuning 056

becomes a promising technology in the low-data 057

regime, without the requirements of sufficient data 058

to train any uninitialized parameters. 059

Despite the great empirical success, prompt tun- 060

ing still has two major limitations. The first limita- 061

tion is that prompt tuning requires extra prompts. 062

Some prompt tuning works (Schick et al., 2020; 063

Schick and Schütze, 2021b,a) make an effort to 064

manually create prompts. However, handcrafting 065

prompts exists three drawbacks: (1) there is not 066

enough annotated data to validate them in a few- 067

shot setting; (2) handcrafting meaningful prompts 068

is brain-draining work, especially designed for an 069

abstract relation with two different entities; (3) 070

more importantly, the nuances in semantically sim- 071

ilar natural language prompts may result in signifi- 072

cant differences in model performance (Liu et al., 073

2021). To deal with the above problems, several 074

automatically prompt designs are proposed (Jiang 075

et al., 2020; Shin et al., 2020; Gao et al., 2021). 076

However, they will suffer a discrete form or iso- 077

lation problem with employed PLM. A robust ini- 078

tialization for prompt tuning is not paying enough 079

attention in the above studies. 080

The second limitation is that prompt tuning 081

needs an extra process to map model-predicted 082

words to class labels, named label words mapping. 083
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Figure 1: The prompt tuning for few-shot relation extraction. CQARE decodes the last [MASK] into “yes” or “no”
answer for predictions. Compared with manual prompts, our automatically generated prompts utilize special marker
[Pr] as virtual words instead of natural language. These markers will input the prompt generator to get continuous
embeddings.

⊕
means the concatenation.

It should notice that the selection of label words084

depends on empirical attempts entirely. An elabo-085

rated label words mapping may also be costly and086

time-consuming. Most existing prompt tuning stud-087

ies focus on text classification tasks, where possible088

categories are no more than five, such as positive089

or negative in sentiment analysis. When it comes090

to RE, the label space becomes much larger. For091

example, the corpus FewRel 2.0 (Gao et al., 2019)092

contains 124 relations, which makes it highly ardu-093

ous to construct all label words mapping for each094

relation with a constant endeavor.095

To address the above two limitations, we propose096

contrastive QA for few-shot RE with prompt tun-097

ing (CQARE). CQARE contains four pre-training098

objects for obtaining an entity-relation-aware PLM,099

including tasks of mask entity prediction, entity typ-100

ing, distant supervised RE, and contrastive prompt101

pre-training. Compared with generating prompts in102

natural language, CQARE learns the prompt repre-103

sentations in a continual vector space based on an104

entity-relation orientated string template. Prompt105

pre-training is included in CQARE, which can106

learn a more robust initialization for prompt tuning107

by integrating the contexts, entities, and relation in108

automatically generated prompts. Moreover, RE is109

reformulated as a prompt tuning based contrastive110

QA task, as Figure 1 (b) and (c) shows. Given a111

context, combined with generated relation-specific112

prompts, CQARE aims to predict the probabilities113

of “yes”(positive) or “no”(negative), appearing in 114

a [MASK] position to distinguish whether the two 115

entities share the specific relation. In this way, the 116

multi-relation classification issue can be simpli- 117

fied as a binary classification task. By comparing 118

semantic similarity with positive and negative pro- 119

totypes, we can exempt cumbersome label word 120

mapping. Our main contributions are threefold: 121

• Robust presentations for prompt tuning. 122

The proposed CQARE contains an entity- 123

relation-aware language model and a non- 124

aggressive prompt generator, enabling joint 125

pre-training to automatically provide prompts 126

in vector space with robust initialization for 127

prompt tuning. 128

• Exempt from label words mapping. We 129

reformulate few-shot RE as a contrastive QA 130

task. By concatenating different prompts as 131

yes-no questions, CQARE can avoid the labor- 132

intensive label word mappings when utilizing 133

prompt tuning in RE tasks. 134

• Promising performance. We expand prompt 135

tuning to few-shot RE tasks. The results 136

demonstrates that CQARE is effective for few- 137

shot RE, raising average accuracy of 5.11% 138

on a cross-domain few-shot dataset. Mean- 139

while, 18.61% accuracy improvement brought 140

by our pre-training demonstrates that robust 141

initialization is crucial for prompt tuning. 142
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2 Related Work143

2.1 Few-Shot Relation Extraction144

Generally, few-shot RE can be categorized into two145

classes. The formal one seeks better presentations146

through pre-training. Kepler (Wang et al., 2021)147

integrated knowledge embedding into PLMs by en-148

coding textual entity descriptions and then jointly149

optimized the knowledge embedding and language150

modeling objectives. Peng et al. (2020) designed151

a contrastive relation pre-training object. The re-152

sults demonstrated that task-specific pre-training153

could vastly improve the performance of related154

few-shot tasks. Another group explores the differ-155

ent predicted methods based on existing PLMs. Qu156

et al. (2020) proposed a Bayesian meta-learning157

method to learn the posterior distribution of the158

prototype vectors of relations, and parameterized it159

with a global relation graph for RE. MIML (Dong160

et al., 2020) employed a meta-information guided161

meta-learning method, taking advantage of seman-162

tic concepts of classes to enable more effective ini-163

tialization and faster adaptation. Unlike these meth-164

ods, CQARE simultaneously explores integrating165

entity and relation knowledge by our particular pre-166

training tasks and utilizes different approaches for167

few-shot predictions.168

2.2 prompt tuning169

GPT-3 (Brown et al., 2020) firstly created man-170

ual prompts for different tasks, including transla-171

tion, QA, and probing tasks. Schick et al. (2020);172

Schick and Schütze (2021b) were another two early173

studies that utilized prompts for text classification.174

They manually constructed prompts, explored semi-175

supervised solutions for few-shot tasks, and pro-176

posed a PET approach to map multi-label words177

into categories.178

Manually constructed appropriate prompts are179

cumbersome and uncertain. For such reason, some180

automated prompt creation methods were proposed.181

Han et al. (2021) applied logic rules to construct182

prompts, and tried to encode prior knowledge of183

each class into prompt tuning. AutoPrompt (Shin184

et al., 2020) explored combining a set of trigger185

tokens according to a template with the original186

task inputs to create prompts, and employed a187

gradient-based search strategy to update them. Gao188

et al. (2021) utilized separated PLM to generate189

prompts automatically and dynamically and in-190

corporated demonstrations into context. BERTese191

(Haviv et al., 2021) adopted a paraphrasing-based192

approaches to generate prompts. It converted an 193

existing seed prompt to a collection of candidate 194

prompts, and selected ones with the best perfor- 195

mance to use. Li and Liang (2021) and Lester et al. 196

(2021) were declared as a lightweight alternative 197

to fine-tuning. These methods froze the parameters 198

of PLM, and only updated a small task-specific 199

vector as prompts. However, these freezing pa- 200

rameters methods became competitive with typical 201

fine-tuning when the used PLM had more than 11 202

billion parameters (T5 XXL). 203

KnowPrompt (Chen et al., 2021) was similar 204

to our work, which adapted prompt tuning in RE 205

tasks. The difference was that KnowPrompt fo- 206

cused on injecting entity and relation information 207

into generated prompts. Their prompts were two en- 208

tity representations concatenated an extra [MASK], 209

which was too brief to provide meaningful informa- 210

tion. It should notice that conditional generation 211

based prompt tuning needs enough information 212

for interring in a different context. Different from 213

the above studies, CQARE focused on joint pre- 214

training a prompt generator with PLM for more 215

robust initialization, and explored how to utilize 216

these continuous prompts on few-shot RE tasks. 217

3 Preliminary 218

Prompt tuning reformulates downstream applica- 219

tions as mask language tasks. Typically, it needs 220

extra prompts and a predefined label words map- 221

ping. A typical prompt is a natural language sen- 222

tence with a special [MASK] marker. As shown in 223

Figure 1 (a), "Bush Junior is the [MASK] of Bush 224

Senior" is a typical prompts corresponding to the 225

relation type "father_son". With original sentences 226

concatenated prompts as inputs, prompt tuning tries 227

to generate label words w ∈ Vlabel, where Vlabel is 228

the predefined label words set. Vlabel ∈ V , where V 229

is the vocabulary of PLM. Next, w will be mapped 230

into a predicted category c ∈ C by a label words 231

mapping. The set C is the label set of the adopted 232

corpus. For example, as shown in Figure 1 (a), if 233

the [MASK] is decoded as "son", this label word 234

will be mapped into the relation "father_son" cor- 235

rectly. 236

This process proposes a severe challenge in RE 237

tasks by manually creating prompts. For exam- 238

ple, "Bush Junior and Bush Senior are father and 239

son presidents" represents a clear relation type 240

"father_son". For such simple instances, manual 241

prompts could be easily designed. However, for 242
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Figure 2: The architecture of CQARE. (a): The module for decoding [MASK] with prompt tuning. CQARE only
decodes hm for obtaining an answer. hm is the last [MASK]’s hidden state of a prompt generator’s input. wr1, ..., wk

is a token sequence of relation name. (b): A example of 5-way-1-shot contrastive QA. (c): Joint pre-training for
prompt generator and entity-relation-aware PLM. hi is ith hidden state of a input sequence. hl is the representation
of [EOS] in Sent. hPG

−1 (Pos/Neg) are positive/negative prompts in Eq. 11. PGET
input and PGRE

input are predefined
templates for the prompt generator as shown in Eq. 7 and 9.

some complex relations like "place served by trans-243

port hub" or "is the primary anatomic site of dis-244

ease", meaningful and effective prompts are not245

easy for handcrafts. Besides, the predefined label246

words for these relations are based on empirical247

attempts entirely. This process is also costly and248

unexplainable. It is hard to understand why a label249

word can outperform other label words with similar250

semantic meaning. To deal with this issue, CQARE251

employs several virtual tokens to create a learnable252

prompt and use a contrastive QA way to avoid the253

label words mapping, as shown in Figure 1 (b) and254

(c).255

4 Methodology256

CQARE consists of a contrastive QA-based few-257

shot RE with prompt tuning, and a joint pre-258

training for the prompt generator and PLM. The259

joint pre-training contains tasks of mask entity pre-260

diction (ME), entity typing (ET), distant supervised261

RE (DRE), and contrastive prompt pre-training262

(CP). The above tasks make our PLM understand263

entities and relations better while initializing a264

prompt generator. Then, the PLM and prompt gen- 265

erator are employed for a prototype-based module. 266

By comparing the instances with positive and neg- 267

ative answer prototypes calculated from support 268

sets, CQARE gets rid of a predefined label words 269

mapping. 270

4.1 A Contrastive Question-answering with 271

Prompt Tuning 272

CQARE regards each N-way-K-shot sample as a 273

meta-task M. Each M will be formulated as N ∗ 274

K ∗ N QA instances. In particular, N relation- 275

specific prompts in M will be concatenated with 276

each original sentence Sent as different contrastive 277

questions. All inputs of M are shown as: 278

inputs = {inputns |1 ≤ n ≤ N, 1 ≤ s ≤ N ∗K} (1) 279

An input instance inputns for CQARE consists of 280

one Sent, plusing one prompt with one symbol "?" 281

and one [mask], as shown in the Eq. 2: 282

inputns =[BOS]⊕ Sent⊕ [EOS]

⊕ promptn ⊕ “?”⊕ [MASK]⊕ [EOS]
(2) 283

where [BOS] is a special marker stands for the 284

start of a sentence, [EOS] for the end of a sentence. 285
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prompt is generated from a non-aggressive prompt286

generator, which is updated during both the prompt287

tuning and the pre-training phases, as shown in288

Figure 2 (a) and (c). With a generated prompt and289

symbol "?", the representation of the last [MASK]290

marker will be decoded as answers to these prompt291

questions, as shown in Figure 1 (a).292

Different from standard prompt tuning needs to293

decode the [MASK] embedding hm into natural294

language tokens and map the tokens into the label295

set with predefined label-word mapping, CQARE296

directly compares the continuous hm (answers) in297

M to get prediction results. With the symbol "?"298

and a pre-trained prompts, the answer is prone299

to positive if the concatenated prompt is correct300

for the original sentence Sent, and negative for a301

wrong prompt. In such a way, CQARE can simplify302

few-shot RE as a binary classification QA task.303

In particular, CQARE calculates the prototype304

Protop and Proton by averaging all the positive305

answers hmp and negative answers hmn in the sup-306

port set of M:307

Protop/n = Avg.(hm
p/n) (3)308

Next, we utilize Euclidean distance d to calculate309

the probability that the query answers hmi are more310

close to Protop or Proton in support set:311

P (ŷi = p/n) =
exp(−d(hm

i , P rotop/n))∑
i∈N exp(−d(hm

i , P rotop/n)
(4)312

The final prediction ŷ is the most confident pos-313

itive instance as shown in Eq. 5 and Figure 2 (b).314

315
P (ŷ) = argmax

i∈N
(P (ŷi = p)) (5)316

In such a way, CQARE achieves prompt tuning317

without listing all possible label words for each318

relation, avoiding cumbersome labeling and extra319

unnecessary error. It also simplifies the RE into bi-320

nary classification, which is proved effective under321

the few-shot setting in the following experiments.322

Finally, we use the binary-class cross-entropy loss323

to train all parameters of CQARE without freezing324

PLM.325

4.2 Joint pre-training for prompt generator326

and entity-relation-aware PLM327

The representations of entity and relation are useful328

information in various natural language tasks, es-329

pecially for RE. We design four pre-training tasks330

to improve entity and relation understanding for331

PLM, and integrate a prompt generator into the pre- 332

training process for a more robust prompt tuning, 333

as shown in Figure 2 (c). 334

We first collect general data from a Wikipedia 335

database dump (Attardi, 2015), labeling the entity 336

type with NER tools (spaCy) automatically. The 337

utilized biomedical data with entity information are 338

from (Xu et al., 2020), employed PubMed (Canese 339

and Weis, 2013) as a data resource. Next, we em- 340

ploy distant supervision (Ren et al., 2017; Ji et al., 341

2017) to generate relation annotations by aligning 342

with the knowledge base wiki-5M (Wang et al., 343

2021) and UMLS (Wheeler et al., 2007), and filter 344

out sentences without any relation. 345

The first pre-training task is a masked entity 346

(ME) task. Given an input sentence, 10% single 347

tokens and 50% entities are randomly replaced by 348

[MASK], and CQARE tries to decode a single to- 349

ken or a multiple-token entity from each [MASK] 350

marker. The ME pre-training loss is defined as: 351

LME = −
∑
k∈k

log
∏

wi∈words

p(ŷk
ME |w{i≤k−1}) (6) 352

where K is the position set of [MASK] markers, 353

ŷkME is the sequence of decoded tokens correspond- 354

ing kth [MASK] marker. 355

The second pre-training task is entity typing (ET) 356

with prompts. Firstly, a random initialized prompt 357

generator takes a predefined template, filled with 358

one entity mention e and one sampled entity type 359

eType as inputs PGET
input: 360

PGET
input =[Pr]n1 ⊕ e⊕ [Pr]n2 ⊕ eType

⊕ [Pr]n3 ⊕ “?”⊕ [MASK]
(7) 361

where n1, n2, n3 is the number of inserted virtual 362

markers [Pr]. The outputs embeddings of prompt 363

generator are the generated prompts PGET
h for ET 364

task. We denote a positive entity typing prompt by 365

PGET
input if the sampled entity type is correct for 366

the entity mention, otherwise negative prompt. Sec- 367

ondly, CQARE inserts the special marker [Entity] 368

and [/Entity] before and after each annotated en- 369

tity. We randomly sample equal numbers of posi- 370

tive and negative PGET
h following the original sen- 371

tence’s input embeddings as inputs of PLM. After 372

encoding by our PLM, the [Entity]’s representa- 373

tion he and [MASK]’s representations in the last of 374

a prompt hm will be summed up for the ET task: 375

p(ŷe
ET ) ∝ Exp(We · (he + hm) + be) (8) 376

where all we and be are trainable parameter, yeET is 377

the prediction of ET, and cross entropy loss LET 378

is calculated for optimization. 379

5



Distant supervised RE (DRE) is the third pre-380

training task. Given a set of labeled entities in one381

sentence, CQARE combined any two entities as a382

pair for RE. With the alignment with knowledge383

base wiki-5m and UMLS, we automatically anno-384

tate relations among these entity pairs in a distant385

supervised way. In particularly, for sampled entity386

pairs (e1, e2), the related prompt inputs are shown387

as :388

PGRE
input = [Pr]n1 ⊕ e1 ⊕ [Pr]n2 ⊕ e2 ⊕ [Pr]n3

⊕ relation⊕ [Pr]n4⊕?⊕ [MASK]
(9)389

The output embeddings from prompt generator are390

the generated prompts PGRE
h for RE task. Similar391

with ET task, PGRE
h is following the raw sentence392

representation as an input for PLM. After encoding,393

relation type ŷe1,e2DRE is predicted as:394

p(ŷe1,e2
DRE |hr) ∝

Exp(Wr · (he1 + he2 + hr + hm) + br)
(10)395

where he1, he2, and hr are representation of396

entityh, entityt, and relationr, hm is the last397

[MASK]’s representation in Eq. 9. The cross en-398

tropy loss LRE is calculated for optimization.399

The last pre-training task is contrastive prompt400

pre-training (CP). CQARE employs a contrastive401

triplet loss (Vassileios Balntas and Mikolajczyk,402

2016), aiming at learning representations by403

pulling instances with similar meaning together404

and pushing different instances apart. In particu-405

lar, this task takes a raw sentence Sent, a positive406

prompt, and a negative prompt for calculating the407

loss Ltri as Eq. 11. This loss can ensure the gener-408

ated prompts are more similar to the corresponding409

raw sentence, obtaining a "yes" answer with posi-410

tive prompts.411

Ltri(a, p, n) = max{||ai − pi||2−
||ai − ni||2 +margin, 0}

(11)412

where a, p, n are the last hidden states of sam-413

pled raw sentence hl, positive and negative prompts414

hPG
−1 . Finally, the total loss Ltotal is formulated as:415

416

Ltotal =λMELME + λCPLCP

+ λETLET · I(random)

+ λRELRE · (1− I(random))

(12)417

where λME , λET , λCP , λRE are the weights of418

losses, random ∈ [0, 1] and I(O) is a switching419

function to choose one task from RE and ET. It is420

defined as:421

I(random) =

{
1, if random ≤ β

0, if random > β
(13)422

where β is the hyper-parameter for dynamically 423

controlling the ratio of pre-training ET and RE. 424

5 Experiments 425

5.1 Experiment Settings 426

Formulation for N-way-K-shot In this work, we 427

focus on N-way-K-shot RE tasks. It first divides the 428

whole dataset into train, valid, and test sets as usual, 429

without overlapped relation types among them. The 430

training, validation, and test sets are divided into 431

pairs of support sets and query sets. A support 432

set contains N classes randomly sampled from all 433

corpus, and each class has K instances. A query 434

set contains arbitrary instances to be predicted, and 435

the related categories for these instances should 436

be in the corresponding support set. 5-way-1-shot, 437

5-way-5-shot, 10-way-1-shot, 10-way-5-shot are 438

four common combinations in this setting. 439

Data We evaluate CQARE on the FewRel (Han 440

et al., 2018) and FewRel 2.0 (Gao et al., 2019), 441

which following the above N-way-K-shot setting. 442

FewRel only focuses on few-shot RE, and its train- 443

ing, validation, and test set all come from wiki data. 444

FewRel 2.0 proposed a few-shot domain adapta- 445

tion (DA) challenge, which tries to further evaluate 446

across domain abilities of few-shot models. Its val- 447

idation and test set come from the medical domain, 448

while the train set is still in the general domain. 449

Evaluation Following the FewRel and FewRel 450

2.0, we report performances measured by averaged 451

accuracies on the online test set from the official 452

website1, which contains 10,000 test instances. 453

Hyper-parameter CQARE utilizes base-BART, 454

with 768 hidden dimensions, and the maximum 455

length of the sentence is 128. Adam optimizer 456

(Kingma and Ba, 2017) is employed with the initial 457

learning rate 2e-5 and batch size 4. n1, n2, n3, n4 458

are 1, 3, 3, 1 in Eq .9, respectively. Our ex- 459

periments utilize 4 A100 GPUs for contrastive 460

question-answering and joint pre-training, and a 461

total of 200G data are employed to pre-train 20 462

days for our pre-training. The remaining details of 463

CQARE can be obtained from the source code in 464

GitHub2. 465

5.2 Main Results 466

Table 1 shows the accuracy of the test set of DA 467

challenge of FewRel 2.0. We manually create two 468

prompts for each relation in FewRel and FewRel 469

1https://thunlp.github.io/fewrel.html
2Anonymous
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FewRel 2.0 (DA) 5-1 5-5 10-1 10-5 Avg.

Proto-Glove 35.09 49.37 22.98 35.22 35.67
Proto-BERT 40.12 51.50 26.45 36.93 38.75
Pair-BERT 67.41 78.57 54.89 66.85 66.93
Pair-KEPLER 67.23 82.09 54.32 71.01 68.66
Proto-KEPLER 66.41 84.02 51.85 73.60 68.97
CP 79.70 84.90 68.10 79.80 78.12

CQA-B-M 68.74 85.03 55.71 72.11 70.40
CQA-K-M 73.84 89.88 59.52 78.81 75.51
CQA-Ba-M 68.48 84.67 56.50 73.55 70.80
CQA-Ba-C 64.49 76.20 50.09 67.70 64.62
Proto-P 78.12 91.14 63.99 79.59 78.21
CQA-P-M 79.60 91.48 67.69 80.43 79.80
CQA-P-C 83.39 92.97 74.32 82.23 83.23

Table 1: Accuracy (%) on FewRel 2.0 Domain adaption
(DA) challenge. CP (Peng et al., 2020) and KEPLER
(Wang et al., 2021) are two recent baseline methods.
Proto, Pair, and CQA mean using prototype network
(Snell et al., 2017), pair network (Gao et al., 2019) and
our contrastive QA; -B, -K, -Ba, and -P mean using
BERT, KEPLER, BART, and our PLM, respectively;
-M and -C mean using manual or continual prompts gen-
erated by CQARE. As CQARE follows the prototype
network, CQARE and Proto can be regarded as compar-
isons between prompt tuning based contrastive QA and
typical fine-tuning.

2.0 datasets to compare with the continual prompts470

generated by CQARE. Proto and Pair are proto-471

type network (Snell et al., 2017) and pair network472

(Gao et al., 2019). As CQARE is based on the473

prototype network, Proto can be compared with474

CQARE for analyzing the reasons of improve-475

ments. By keeping the same PLM, the results476

in Table 1 show prompt tuning has a promising477

few-shot ability. For example, CQARE-B-M raises478

average accuracy of 31.65% and 3.47% compared479

with Proto-BERT and Pair-BERT, and raises 6.54%480

and 6.85% compared with Proto-KEPLER and Pair-481

KEPLER. Similar conclusions can also be found in482

Table 2. CQARE-B-M raises of 7.55% compared483

with Proto-BERT.484

Besides, the results confirm that the different485

PLMs have significant effects on few-shot RE, espe-486

cially for DA tasks. The performance gap between487

Proto-Glove and Proto-KEPLER reaches 33.33%.488

These gaps are even more apparent when compared489

with CQARE-P. By comparing -Ba (original BART490

model) and -P (our PLM) in both Table 1 and Ta-491

ble 2, it confirms proposed entity-relation-aware492

pre-training obtains 9.00% and 3.84% average ac-493

curacy improvements, by using manual prompts.494

These improvements become more significant by495

achieving 18.61% in FewRel 2.0 and 5.46% in496

FewRel when using continual prompts.497

FewRel 5-1 5-5 10-1 10-5 Avg.

Proto-BERT 80.68 89.60 71.48 82.89 81.16
Pair-BERT 88.32 93.22 80.63 87.02 87.30
Proto-KEPLER 88.30 95.94 81.10 92.67 89.50
Pair-KEPLER 90.31 94.28 85.48 90.51 90.14
JAKET 87.40 92.10 78.90 - -
REGRAB 90.30 94.25 84.09 88.20 89.21
CP 95.10 97.10 91.10 94.70 94.50

CQA-B-M 87.83 95.10 82.81 89.11 88.71
CQA-K-M 91.02 96.06 84.15 90.03 90.32
CQA-Ba-M 89.26 94.42 82.50 88.12 88.95
CQA-Ba-C 90.07 94.76 83.30 89.22 89.34
Proto-P 90.18 96.07 86.05 92.90 91.30
CQA-P-M 92.82 96.70 88.39 92.45 92.59
CQA-P-C 95.32 97.84 90.08 95.96 94.80

Table 2: Accuracy (%) on FewRel dataset. JAKET (Yu
et al., 2020), REGRAB (Qu et al., 2020), and CP (Peng
et al., 2020) are three recent baseline studies. JAKET
does not report the 10-way-5-shot result. Acronym is
the same with Table 1.

Comparing -M and -C, the related results rep- 498

resent the continual and manual prompts’ effects. 499

Without pre-training, the continual prompts are 500

only slightly better than manual prompts when com- 501

bined with original BART in FewRel. CQARE-Ba- 502

C only raise average accuracy of 0.39% compared 503

with CQARE-Ba-M in Table 2. It is even worse 504

than manual prompts in the cross-domain FewRel 505

2.0 (see CQARE-Ba-C versus CQARE-Ba-M in 506

Table 1). However, the advantages of continual 507

prompts are represented when the prompt genera- 508

tor is joint pre-training with employed PLM. With 509

robust initialization (-P), continual prompts out- 510

perform manual prompts by 3.43% in Table 1 and 511

2.21% in Table 2 (CQARE-P-M versus CQARE-P- 512

C). 513

6 Discussion 514

Why our continual prompt outperforms manual 515

or discrete prompt ? First of all, the proposed 516

prompt generator contains a certain amount of pre- 517

training parameters. These parameters can enable 518

CQARE to output different prompts for different 519

contexts, even with the same relation. In particu- 520

lar, a triple (entity1, relationship, entity2) and its 521

different context both decide the prompt represen- 522

tation after encoding by PLM. It is significantly 523

different from typical prompt tuning studies, which 524

usually utilize the unchanged prompt for each class. 525

Besides, all generated prompts from CQARE take 526

virtual markers [Pr] as parts of inputs, which have 527

no any specific semantics. In such condition, these 528

virtual markers can be trained by the context infor- 529
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5-1 [n1,n2,n3,n4] Pat1 Pat2 Pat3

CQARE
-Ba-C

[1, 1, 1, 1] 64.57 63.72 65.55
[2, 2, 2, 2] 67.45 62.92 66.25
[1, 3, 3, 1] 67.57 62.32 65.53
[3, 3, 3, 3] 63.32 62.52 65.37

CQARE
-P-C

[1, 1, 1, 1] 84.96 81.42 83.44
[2, 2, 2, 2] 85.33 82.77 84.01
[1, 3, 3, 1] 87.62 81.73 84.63
[3, 3, 3, 3] 87.58 83.95 86.57

CQARE
-Ba-M

- M1 M2

- 69.75 62.13

Table 3: The effects for different patterns of prompts.
n1, n2, n3, n4 are control parameters for [Pr] in each
position. The reported accuracy is the results on
the 5-way-1-shot validation set of Fewrel 2.0. The
Pat1 is [P1, e

h, P2, e
t, P3, r, P4,M ], where Pi means

[Pr]ni, eh means entityh, et means entityt as Eq. 9
shown. Pat2 is [P1, r, P2, e

h, P3, e
t, P4,M ], and Pat3

is [P1, e
h, P2, r, P3, e

t, P4,M ]. M1 and M2 are two
sets of manual prompts finished by two isolated annota-
tors.

mation to obtain a more unbiased representation.530

It should notice that the generation of natural lan-531

guage prompts may lose some information. PLM532

usually carries out a LogSoftMax operation for the533

continual representation and takes the most confi-534

dent index to output natural language tokens. These535

tokens will be further replaced by other PLMs in536

downstream tasks with new representations corre-537

sponding to generated tokens rather than the orig-538

inal continual representation. To this end, the dis-539

crete prompts may be confined to isolated natural540

language tokens, while the original continual repre-541

sentation is in a specific context. Such inconsisten-542

cies may cause the neural network hard to achieve543

global optimum when utilizing prompt tuning for544

predictions.545

Does the pattern of prompts matter ? Liu546

et al. (2021) presents an example that using dif-547

ferent manual prompts on the same instance re-548

sults in a 19.79% P@1 measure gap. Considering549

this problem, we explore the effects of a contin-550

ual prompt with different patterns, namely differ-551

ent numbers and positions for inserted [Pr] mark-552

ers. As shown in Eq. 9, we try different hyper-553

parameters n1, n2, n3, n4 as [1,1,1,1], [2,2,2,2], [1,554

3, 3, 1], and [3,3,3,3], respectively. We also try to555

replace Eq. 9 as other patterns, as shown in Table 3.556

The results indicate that the continual prompts are557

also influenced by their patterns. When the accu-558

racy gap reaches 7.62% for the two sets of manual559

prompts, different patterns of continual prompts560

Figure 3: The comparison of combinations of continual
prompts, manual prompts, original BART and our PLM
with the raising numbers of training instances. The
reported accuracy is on the validation set of 5-way-K-
shot of Fewrel 2.0. Acronym is the same with Table 1.

also have a maximum 6.20% difference. Besides, 561

the patterns play a more influenced role compared 562

with the numbers of [Pr] in each position. 563

How does the number of data effects prompt 564

tuning ? Considering the advantages of prompt 565

tuning for few-shot tasks, we compared different 566

methods with CQARE under increasing data quan- 567

tities. As Figure 3 indicates, all methods benefit 568

from more shots, while CQARE outperforms than 569

prototype and pair network (Gao et al., 2019) more 570

obviously when the data number is no more than 571

10. When data numbers increase to 10-shot and 572

15-shot, it has fewer effects for CQARE, while pro- 573

totype and pair network still keep growing. This 574

phenomenon confirms that prompt tuning has the 575

promising ability in the low-data regime. Besides, 576

our entity-relation-aware pre-training also can alle- 577

viate the data dependence to some extent. 578

7 Conclusion and Future Work 579

This paper proposed CQARE, which expands 580

prompt tuning to few-shot RE tasks. CQARE uti- 581

lized continual prompts automatically generated 582

from a pre-trained generator. By reformulating 583

few-shot RE as a contrastive QA, CQARE elimi- 584

nates the labor-intensive label words mapping in 585

the task with large label spaces. The results demon- 586

strate that robust initialization is crucial for prompt 587

tuning and contrastive question answering is effec- 588

tive. Intuitively, the study can be further explored 589

by (1) overcoming the instability associated with 590

patterns of continual prompts; (2) designing bet- 591

ter prompt pre-training tasks to integrate PLM and 592

prompt tuning. 593
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