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Abstract

Behavioral cloning has proven to be effective for learning sequential decision-
making policies from expert demonstrations. However, behavioral cloning often
suffers from the causal confusion problem where a policy relies on the noticeable
effect of expert actions due to the strong correlation but not the cause we desire.
This paper presents Object-aware REgularizatiOn (OREO), a simple technique
that regularizes an imitation policy in an object-aware manner. Our main idea is
to encourage a policy to uniformly attend to all semantic objects, in order to pre-
vent the policy from exploiting nuisance variables strongly correlated with expert
actions. To this end, we introduce a two-stage approach: (a) we extract semantic
objects from images by utilizing discrete codes from a vector-quantized variational
autoencoder, and (b) we randomly drop the units that share the same discrete code
together, i.e., masking out semantic objects. Our experiments demonstrate that
OREO significantly improves the performance of behavioral cloning, outperform-
ing various other regularization and causality-based methods on a variety of Atari
environments and a self-driving CARLA environment. We also show that our
method even outperforms inverse reinforcement learning methods trained with a
considerable amount of environment interaction.

1 Introduction

Imitation learning (IL) holds the promise of learning skills or behaviors directly from expert demon-
strations, effectively reducing the need for costly and dangerous environment interaction [21, 45]. Its
simplest and effective form is behavioral cloning (BC), which learns a policy by solving a supervised
learning problem over state-action pairs from expert demonstrations. While being simple, BC has
been successful in a wide range of tasks [4, 7, 31, 33] with careful designs. However, it has been
recently evidenced that BC often suffers from the causal confusion problem, where the policy relies
on nuisance variables strongly correlated with expert actions, instead of the true causes [11, 12, 54].

For example, when we train a BC policy on the Atari Pong environment (see Figure 1a), we observe
that a policy relies on nuisance variables in images (i.e., scores) for predicting expert actions, instead
of learning the underlying fundamental rule of the environment that experts would have used for
making decisions. In particular, Table 1c shows that the policy trained using images with scores
struggles to generalize to images with scores masked out (see Figure 1b). However, the policy trained
with masked images could generalize to original images with scores, which shows that it successfully
learned the rule of the environment. This implies that learning the policy that can identify the true
cause of expert actions is important for stable performance at deployment time, where nuisance
correlates usually do not hold as in expert demonstrations.
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(a) Original (b) Masked

Setup ScoresTrain Eval

Original Original 3.1± 1.4

Masked -15.6± 9.2

Masked Original 15.9± 0.4

Masked 16.6± 0.6

(c) Performance of behavioral cloning

Figure 1: Atari Pong environment with (a) original images and (b) images where scores are masked
out. (c) Performance of behavioral cloning (BC) policy trained in Original and Masked environments,
averaged over four runs. We observe that the policy trained with original images suffers in both
environments, which shows that the policy exploits score information for predicting expert actions,
instead of learning the underlying fundamental rule of the environment.

In order to address this causal confusion problem, one can consider causal discovery approaches to
deduce the cause-effect relationships from observational data [26, 48]. However, it is difficult to apply
these approaches to domains with high-dimensional inputs, as (i) causal discovery from observational
data is impossible in general without certain conditions3 [38], and (ii) these domains usually do not
satisfy the assumption that inputs are structured into random variables connected by a causal graph,
e.g., objects in images [29, 46]. To address these limitations, de Haan et al. [12] recently proposed a
method that learns a policy on top of disentangled representations from a β-VAE encoder [19] with
random masking, and infers an optimal causal mask during the environment interaction by querying
interactive experts [43] or environment returns. However, given that environment interaction could be
dangerous and incur additional costs, we argue that it is important to develop a method for learning
the policy robust to causal confusion problem without such a costly environment interaction.

In this paper, we present OREO: Object-aware REgularizatiOn, a new regularization technique that
addresses the causal confusion problem in imitation learning without environment interaction. The
key idea of our method is to regularize a policy to attend uniformly to all semantic objects in images,
in order to prevent the policy from exploiting nuisance correlates for predicting expert actions. To
this end, we propose to extract semantic objects from raw images by utilizing vector-quantized
variational autoencoder (VQ-VAE) [35]. In our experiments, we discover that the units of a feature
map corresponding to the objects with similar semantics, e.g., backgrounds, scores, and characters,
are mapped into the same or similar discrete codes (see Figure 3). Based upon this observation,
we propose to regularize the policy by randomly dropping units that share the same discrete code
together throughout training. Namely, our method randomly masks out semantically similar objects,
which allows object-aware regularization of the policy.

We highlight the main contributions of this paper below:

• We present OREO, a simple and effective regularization method for addressing the causal
confusion problem, and support the effectiveness of OREO with extensive experiments.

• We show that OREO significantly improves the performance of behavioral cloning on confounded
Atari environments [5, 12], outperforming various other regularization methods [13, 15, 55, 50]
and causality-based methods [12, 47].

• We show that OREO even outperforms inverse reinforcement learning methods trained with a
considerable amount of environment interaction [8, 20].

2 Related work

Imitation learning. Imitation learning (IL) aims to solve complex tasks where learning a pol-
icy from scratch is difficult or even impossible, by learning useful skills or behaviors from expert
demonstrations [2, 18, 25, 37, 39, 40, 56]. There are two main approaches for IL: inverse reinforce-
ment learning (IRL) methods that find a cost function under which the expert is uniquely optimal
[8, 20, 34, 44, 59], and behavioral cloning methods that formulate the IL problem as a supervised
learning problem that predicts expert actions from states [3, 4, 7, 31, 33, 40]. Our work employs

3de Haan et al. [12] showed that causal discovery methods that depend on faithfulness condition [38] are not
applicable to imitation learning setup, as the condition does not hold in environments with nuisance correlates.
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Figure 2: Overview of OREO. We first train a VQ-VAE model that encodes images into discrete
codes from a codebook, where each discrete (prototype) representation represents different semantic
objects in images. We then regularize a policy by randomly dropping units that share the same
discrete code together, i.e., random objects, throughout training.

behavioral cloning as it exhibits the benefit of avoiding costly and dangerous environment interaction,
which is crucial for applying imitation learning to real-world scenarios.

Distributional shift and the causal confusion problem. Despite its simplicity, BC is known to
suffer from the distributional shift, where the state distribution induced by a policy gets different from
the training distribution on which the policy was trained. Several approaches have been proposed
for learning the policy robust to distributional shift, including interactive IL methods that query
experts [42, 43, 51], and regularization techniques [4, 7]. Recently, it has been evidenced that
distributional shift leads to the causal confusion problem [4, 12, 54] where a policy exploits the
nuisance correlates in states for predicting expert actions. To address this problem, Bansal et al.
[4] proposed to randomly drop previous samples from a sequence of samples, and Wen et al. [54]
proposed an adversarial training scheme of removing information related to previous actions. The
work closest to ours is de Haan et al. [12], which learns a policy with randomly masked disentangled
representations and infers the best mask through during environment interaction. Our approach
differs in that we regularize the policy to be robust to the causal confusion problem, without any
environment interaction.

Causal discovery from observational data. Causal discovery aims to discover causal relations
among variables by utilizing observational data [38]. Most prior approaches assume that inputs are
structured as disentangled variables [6, 16, 26, 36, 48, 47], which often does not hold in domains
with high-dimensional inputs, i.e., images. While Lopez-Paz et al. [29] demonstrated the possibility
of observational causal discovery from high-dimensional images, combining causal models and
representation learning in such domains still remains an open problem [46]. Hence, we instead
explore the approach of regularizing a policy that operates on high-dimensional states.

3 Method

3.1 Preliminaries

We consider the standard imitation learning (IL) framework where an agent learns to solve a target
task from expert demonstrations. Specifically, IL is typically defined in the context of a discrete-
time Markov decision process (MDP) [52] without an explicitly-defined reward function, which is
defined as a tuple (S,A, p, γ, ρ0). Here, S is the state space, A is the action space, p(s′|s, a) is the
transition dynamics, ρ0 is the initial state distribution, and γ ∈ [0, 1) is the discount factor. The goal
of IL is to learn a policy π, mapping from states to actions, using a set of expert demonstrations
D = {(si, ai)}Ni=1. In our problem setup, an agent cannot interact with the environment, hence it
should learn the policy by using only expert demonstrations.
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Figure 3: Visualization of the discrete codes from a VQ-VAE model trained on 8 confounded Atari
environments, where previous actions are augmented to the images as nuisance variables following
the setup in de Haan et al. [12]. The considered environments are Frostbite, Pong, Qbert, Gopher,
KungFuMaster, BattleZone, Krull, and Boxing (from left to right, top to bottom). The odd columns
show images from environments, and even columns show the corresponding quantized feature maps,
respectively. The discrete codes are visualized in 1D using t-SNE [30]. We observe that the units
with similar semantics (e.g., the paddles in Pong environment and the carrots in Gopher environment)
exhibit similar colors, i.e., mapped into the same or similar discrete codes.

Behavioral cloning. Behavioral cloning (BC) reduces an imitation learning problem to the supervised
learning problem of training a policy that imitates expert actions. Specifically, we introduce a policy
π that maps a state st to an action at, and a convolutional encoder f that maps a state st to a
low-dimensional feature map. Then π and f are learned by minimizing the negative log-likelihood of
expert actions from demonstrations as follows:

LBC(st, at) = − log π(at|f(st)), (1)

where π is modeled as a multinomial distribution over actions to handle discrete action spaces.

Vector quantized variational autoencoder. The VQ-VAE [35] model consists of an encoder g that
compresses images into discrete latent representations, and a decoder d that reconstructs images from
these discrete representations. Both encoder and decoder share a codebook C of prototype vectors
which are also learned throughout training. Formally, given a state st, the encoder g encodes st into
a feature map ht ∈ RL×D that consists of a series of L latent vectors ht,i ∈ RD, i ∈ {1, 2, ..., L}.
Then ht = g(st) is quantized to discrete representations e ∈ RL×D based on the distance of latent
vectors ht,i to the prototype vectors in the codebook C = {ek}Kk=1 as follows:

et = (eq(t,1), eq(t,2), · · · , eq(t,L)), where q(t, i) = argmin
k∈[K]

‖ht,i − ek‖2, (2)

where [K] is the set {1, · · · ,K}. Then the decoder d learns to reconstruct st from discrete represen-
tations et. The VQ-VAE is trained by minimizing the following objective:

LVQVAE(st) = ‖st − d(et)‖22︸ ︷︷ ︸
Lrecon

+ ‖sg [ht]− et‖22︸ ︷︷ ︸
Lcodebook

+β · ‖sg [et]− ht‖22︸ ︷︷ ︸
Lcommit

, (3)

where the operator sg refers to a stop-gradient operator, Lrecon is a reconstruction loss for learning
representations useful for reconstructing images, Lcodebook is a codebook loss to bring codebook
representations closer to corresponding encoder outputs h, and Lcommit is a commitment loss weighted
by β to prevent encoder outputs from fluctuating frequently between different representations.

3.2 OREO: Object-aware regularization for behavioral cloning

In this section, we present OREO: Object-aware REgularizatiOn that regularizes a policy in an object-
aware manner to address the causal confusion problem. Our main idea is to encourage the policy
to uniformly attend to all semantic objects in images, in order to prevent the policy from exploiting
nuisance variables strongly correlated with expert actions. To this end, we introduce a two-stage
approach: we first train a VQ-VAE model that encodes images into discrete codes, then learn the
policy with our regularization scheme of randomly dropping units that share the same discrete codes
(see Figure 2 and Algorithm 1 for the overview and pseudocode of OREO, respectively).
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Algorithm 1 Object-aware regularization (OREO)

Initialize parameters of encoder g, decoder d, codebook C, policy π.
while not converged do // VQ-VAE TRAINING

Sample {si}Bi=1 ∼ D.
Update parameters of g, d, C by minimizing

∑B
i=1 LVQVAE(si)

end while
Initialize encoder f with parameters of g.
while not converged do // UPDATE POLICY VIA BEHAVIORAL CLONING

Sample {si, ai}Bi=1 ∼ D
Get random masks {Mi}Bi=1 in (4)

Update parameters of f , π by minimizing
∑B

i=1 LOREO(si, ai,Mi) in (5)
end while

Extracting semantic objects. To regularize a policy in an object-aware manner, we propose to
utilize discrete representations from a VQ-VAE model trained by optimizing the objective in (3) with
images from expert demonstrations D. Our motivation comes from the observation that the units of a
feature map corresponding to similar objects are mapped into similar discrete codes (see Figure 3).
Then, in order to extract semantic objects from images and utilize them for regularizing the policy,
we propose to randomly drop the units of a feature map that share the same discrete code together
throughout training. Formally, for each state st, we sample K binary random variables mk ∈ {0, 1},
k = 1, 2, ...,K from a Bernoulli distribution with probability 1− p, where p is the drop probability.
Then, we construct a mask Mt by utilizing the discrete representations et in (2) as follows:

Mt = (mq(t,1),mq(t,2), · · · ,mq(t,L)), where q(t, i) = argmin
k∈[K]

‖ht,i − ek‖2. (4)

By considering units of a feature map with the same discrete code, we remark that our method can
effectively extract semantic objects from high-dimensional images.

Behavioral cloning with OREO. Now we propose to utilize our object-aware masking scheme
for the regularization of a policy. To this end, we first initialize a convolutional encoder f with the
parameters of a VQ-VAE encoder g. We empirically find that employing f as our backbone encoder
for π instead of a fixed encoder g is more effective, as it allows an encoder to learn useful information
for predicting actions. Then, we train the policy π by minimizing the following objective:

LOREO (st, at,Mt) = − log π (at|f(st)�Mt) , (5)
where � denotes elementwise product, and the mask Mt is shared across all channels in a feature
map f(st). Here, our intuition is that our object-aware regularization scheme should be useful for
enforcing the policy not to exploit specific objects strongly correlated with expert actions, as the
policy should utilize all semantic objects throughout training. Additionally, following Srivastava et al.
[50], we scale the masked features by a factor of 1/(1− p) during the training to ensure the scale of
the expected output with masked features to match the scale of outputs at test time.

4 Experiments

In this section, we designed our experiments to answer the following questions:

• How does OREO compare to other regularization schemes that randomly drop units from a
feature map [15, 50], data augmentation schemes [13, 55], and causality-based methods [12, 47]
(see Table 1)?

• How does OREO compare to inverse reinforcement learning methods that learn a policy with
environment interaction [8, 20] (see Figure 5)?

• Why is regularization necessary for addressing the causal confusion problem (see Figure 6a), and
why is OREO effective for addressing this problem (see Figure 8)?

• Can OREO improve BC using various sizes of expert demonstrations (see Figure 7)?
• Can OREO also address the causal confusion problem when inputs are high-dimensional, complex

real-world images (see Table 3)?
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Table 1: Performance of policies trained on various confounded Atari environments without environ-
ment interaction. OREO achieves the best score on 15 out of 27 environments, and the best median
and mean human-normalized score (HNS) over all environments. The results for each environment
report the mean of returns averaged over eight runs. We provide standard deviations in Appendix I.
CCIL† denotes the results without environment interaction.

Environment BC Dropout DropBlock Cutout RandomShift CCIL† CRLR OREO

Alien 954.1 1003.8 926.4 973.3 806.5 820.0 82.5 1056.2
Amidar 95.8 89.4 110.1 118.7 98.0 74.9 12.0 105.7
Assault 793.8 820.4 815.0 687.6 828.9 683.3 0.0 840.9
Asterix 292.2 313.8 345.4 212.4 135.5 643.2 650.0 180.8
BankHeist 442.1 485.7 508.4 486.1 367.2 653.5 0.0 493.9
BattleZone 11921.2 12457.5 12025.0 11107.5 9180.0 6370.0 1468.8 12700.0
Boxing 18.8 20.3 32.2 20.5 38.3 34.8 -43.0 36.4
Breakout 5.7 5.4 4.8 1.0 2.0 0.5 0.0 4.2
ChopperCommand 874.2 921.4 919.4 1016.1 936.4 760.6 1077.2 977.4
CrazyClimber 45372.9 39501.6 38345.6 44523.2 41924.0 22616.8 112.5 55523.4
DemonAttack 157.2 180.5 167.8 173.1 241.8 171.3 0.0 224.5
Enduro 241.4 250.4 341.8 119.6 316.4 143.1 3.9 522.8
Freeway 32.3 32.4 32.7 32.5 33.0 33.1 21.4 32.7
Frostbite 116.3 124.5 128.2 139.4 121.6 53.3 80.0 129.9
Gopher 1713.9 1819.1 1818.2 1481.0 1995.0 1404.5 0.0 2515.0
Hero 11923.1 14109.7 14711.4 14896.6 12816.0 6567.8 346.2 15219.8
Jamesbond 419.0 451.0 473.8 381.8 428.4 387.2 0.0 502.8
Kangaroo 2781.5 2912.9 3217.1 2824.0 1923.9 1670.5 122.8 3700.2
Krull 3634.3 3892.1 3832.1 3656.4 3788.7 3090.8 0.1 4051.6
KungFuMaster 15074.8 14452.1 15753.0 11405.6 13389.9 13394.9 0.0 18065.6
MsPacman 1432.9 1733.1 1446.4 1711.0 1223.5 1084.2 105.3 1898.4
Pong 3.2 10.2 11.5 6.8 -0.1 -2.7 -21.0 14.2
PrivateEye 2681.8 2599.1 2720.6 2670.6 3969.2 305.3 -1000.0 3124.9
Qbert 5438.4 6469.0 6140.3 5748.6 3921.4 5138.0 125.0 6966.4
RoadRunner 18381.5 21470.9 22265.4 12417.1 16210.0 11834.1 1022.9 24644.2
Seaquest 454.4 471.3 486.8 330.1 1016.8 271.2 172.5 753.1
UpNDown 4221.1 4147.1 4789.2 4159.6 3880.2 2631.1 20.0 4577.9

Median HNS 44.1% 47.4% 49.8% 42.0% 47.6% 36.2% -1.5% 51.2%
Mean HNS 73.2% 79.0% 91.7% 69.5% 88.1% 71.7% -45.9% 105.6%

(a) Pong (b) Enduro (c) Seaquest

Figure 4: Confounded Atari environments with
previous actions (white number in lower left).

Environments and datasets. We evaluate
OREO on 27 Atari environments [5], which are se-
lected by following prior works [12, 49]. Follow-
ing de Haan et al. [12], we consider confounded
Atari environments, where images are augmented
with previous actions (see Figure 4). We utilize
a single frame as an input to a policy, to focus
on the causal confusion problem from nuisance
correlates in the current state4. In our experiments,
we report two evaluation metrics: average score
from environments and human-normalized score (HNS := Agentscore−Randomscore

Humanscore−Randomscore
), following Mnih et al.

[32]. For expert demonstrations, we utilize DQN Replay dataset [1]. As this dataset consists of 50M
transitions of each environment collected during the training of a DQN agent [32], we use the last N
trajectories as expert demonstrations. We preprocess input images to grayscale images of 84×84×1,
by utilizing Dopamine library [9]. We provide more details in Appendix B.

Implementation. We use a single Nvidia P100 GPU and 8 CPU cores for each training run. The
training time for OREO is 6 hours on the dataset of size 50000, compared to 3 hours for BC, which
is because OREO additionally trains a VQ-VAE model. As for hyperparameter selection, we use the
default hyperparameters from previous or similar works [35, 50], i.e., a drop probability of p = 0.5, a
codebook size of K = 512, and a commitment cost of β = 0.25. We use the same hyperparameters
across all environments. We report the results over 8 runs unless specified. Source code and more
details on implementation are available in Appendix A and B, respectively.

4We refer to Wen et al. [54] for the discussion on the causal confusion problem from stacking states. While
we mainly focus on the single frame setup, OREO is also effective on multiple frame setup (see Appendix F).
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Figure 5: We compare OREO to inverse reinforcement learning methods that require environment
interaction for learning a policy, on 6 confounded Atari environments. OREO outperforms baseline
methods in most cases, even without using any interaction with environments. The solid line and
shaded regions represent the mean and standard deviation, respectively, across eight runs.

Baselines. We consider BC as the most basic baseline method. To evaluate the effectiveness of our
object-aware regularization scheme, we compare to regularization techniques that drop the randomly
sampled units (i.e., Dropout [50]) or randomly sampled blocks (i.e., DropBlock [15]) from the feature
map of a convolutional encoder. We also compare to data augmentation schemes, i.e., Cutout [13] that
randomly masks out a square patch from images, and RandomShift [55] that randomly shifts pixels
of images for regularization. We also consider the method of de Haan et al. [12] that learns a policy
on top of disentangled representations from a β-VAE [19] (i.e., CCIL), and an observational causal
inference method that estimates the causal contribution of each variable by confounder balancing
(i.e., CRLR [47]). We provide the details for baselines in Appendix B and H.

Comparative evaluation. Table 1 shows the performance of various methods that learn a policy
without environment interaction. OREO significantly improves the performance of BC in most
environments, outperforming other regularization techniques. In particular, OREO achieves the
mean HNS of 105.6%, while the second-best method, i.e., DropBlock, achieves 91.7%. This
demonstrates that our object-aware regularization scheme is indeed effective for addressing the causal
confusion problem (see Figure 8 for qualitative experimental results). We found that CCIL without
environment interaction does not exhibit strong performance in most environments, possibly due
to the difficulty of learning disentangled representations from high-dimensional images [28]. We
also provide experimental results for CCIL with environment interaction in Appendix D, where the
performance slightly improves but overall trends are similar. We observe that CRLR underperforms
in most environments, which shows the difficulty of causal inference from high-dimensional images.
We emphasize that OREO also outperforms other baselines in original Atari environments, which
implies that our method is also effective for addressing the causal confusion that naturally occurs (see
Figure 1). We provide experimental results for the original setup in Appendix C.

Comparison with inverse reinforcement learning methods. To demonstrate that OREO can
exhibit strong performance without environment interaction, we compare our method to inverse
reinforcement learning (IRL) methods that first learn a reward function using expert demonstrations,
and train a policy with environment interaction using learned reward function. Specifically, we
consider GAIL [20], a method that learns reward function by discriminating expert states from
on-policy states during environment interaction; and DRIL [8], one of the strongest IRL methods that
utilizes the disagreement between ensemble policies as a reward function. As shown in Figure 5, we
observe that OREO exhibits superior performance to GAIL and DRIL on most confounded Atari
environments, which are trained with 20M environment steps following the setup in Brantley et al. [8].
While IRL methods might outperform OREO asymptotically with more environment interaction, this
result demonstrates that OREO indeed allows for achieving strong performance without interaction.
We also found that GAIL exhibits almost zero performance in most environments, which is similar to
the observation of previous works that GAIL suffers in environments with high-dimensional image
inputs [8, 12, 41]. We remark that OREO can also be applied to IRL methods (see Appendix E for
relevant experimental results of DRIL + OREO on confounded Atari environments).
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Figure 6: (a) Score and validation accuracy on confounded Pong environment, where validation
accuracy is not aligned with the score at test time, which necessitates the use of regularization for
addressing the causal confusion problem. We visualize the performance of OREO over 8 confounded
Atari environments with varying (b) the drop probability of each code from a codebook and (c)
codebook size. Boxplots are drawn using mean human-normalized scores obtained from eight runs.

Why is regularization necessary in confounded environments? A simple and widely used ap-
proach to address the overfitting problem in supervised learning is a model selection with a validation
dataset. To see how this works in our setup, we first introduce a validation dataset consisting of 5
expert demonstrations on confounded Pong environment, and visualize the scores and validation
accuracies measured by a policy learned with BC in Figure 6a. We observe that this simple scheme
is not helpful for confounded Atari environments, i.e., validation accuracy is not aligned with the
score at test time, because the distribution of the validation dataset could be significantly different
from the distribution induced by a learned policy. As the evaluation of the policy in environments
during training could be dangerous or even impossible, this result implies that regularizing the policy
is necessary for successful imitation learning in confounded environments.

Effects of hyperparameters. We investigate the effect of two major hyperparameters, i.e., p ∈
{0.25, 0.5, 0.75} for the drop probability in (4), and K ∈ {64, 128, 512} for the codebook size
in (2). Figure 6b shows that the performance improves as p increases, which implies that more
strong regularization is effective for addressing the causal confusion problem on confounded Atari
environments. Figure 6c shows that too small or large codebook size could be harmful to the
performance. We remark that our experiments used default hyperparameters p = 0.5 and K = 512
for reporting the results, so the performance of OREO could be further improved with more tuning.
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Figure 7: Mean human-normalized score over
8 confounded Atari environments with a vary-
ing number of expert demonstrations. The
solid line and shaded regions represent the
mean and standard deviation, respectively,
across four runs.

Effects of expert demonstration size. To investi-
gate the effectiveness of OREO with various sizes of
expert demonstrations, we evaluate the performance
of OREO with a varying number of expert demon-
strations N ∈ {5, 10, 20, 35, 50}. Specifically, we
report the mean HNS over 8 confounded Atari en-
vironments, which are randomly selected due to the
high computation cost of running experiments for all
environments. As shown in Figure 7, OREO con-
sistently improves the performance of BC across a
wide range of dataset sizes. As for the comparison
with other baselines, OREO achieves superior per-
formance to Dropout and DropBlock except for the
extreme case of N = 5, which is because learning a
VQ-VAE model with a limited number of data could
be unstable. We also observe that DropBlock and
OREO consistently outperform Dropout, which sup-
ports our intuition that dropping individual units from
a feature map is not sufficient for effective regulariza-
tion to address the causal confusion problem.
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Table 2: Performance of policies trained on various confounded Atari environments without environ-
ment interaction. VQ-VAE + BC learns a BC policy on top of fixed VQ-VAE representations. The
results for each environment report the mean and standard deviation of returns over eight runs.

Environment BC VQ-VAE + BC VQ-VAE + Dropout VQ-VAE + DropBlock OREO

BankHeist 442.1± 20.7 358.8± 25.8 491.1± 28.9 488.0± 49.7 493.9± 17.6
Enduro 241.4± 28.4 154.6± 10.7 57.1± 12.6 111.2± 16.4 522.8± 29.1
KungFuMaster 15074.8± 275.5 11055.1± 867.2 13323.0± 1390.0 14861.1± 1561.5 18065.6± 1411.5
Pong 3.2± 0.7 3.6± 1.8 10.4± 0.8 13.6± 0.3 14.2± 0.4
PrivateEye 2681.8± 270.2 2255.8± 569.5 390.2± 300.9 746.8± 527.8 3124.9± 349.6
RoadRunner 18381.5± 1519.9 5783.2± 403.6 6633.8± 716.8 7771.1± 843.6 24644.2± 2235.1
Seaquest 454.4± 53.5 344.9± 35.2 325.6± 28.2 396.6± 36.8 753.1± 63.6
UpNDown 4221.1± 214.5 2676.9± 268.9 3310.8± 536.2 4073.9± 760.9 4577.9± 307.6

Median HNS 62.7% 47.9% 45.3% 53.2% 72.9%
Mean HNS 70.8% 41.3% 45.7% 53.0% 100.1%

Figure 8: We visualize the spatial attention map from a convolutional encoder trained with BC and
OREO in confounded (left) and original (right) Enduro environment. We observe that the encoder
trained with OREO attends to important objects from images (e.g., approaching cars), while the
encoder trained with BC only attends the small region around a car.

Contribution of a separate convolutional encoder. In order to verify the effect of introducing an
additional convolutional encoder f instead of learning a policy on top of the fixed VQ-VAE encoder g
in (5), we provide the experimental results that evaluate VQ-VAE + BC, where a BC policy is learned
on top of fixed VQ-VAE representations in Table 2. We first observe that the performance of VQ-VAE
+ BC performs worse than vanilla BC, which is because fixed VQ-VAE representations learned by
reconstruction objective (3) do not contain fine-grained features required for imitating expert actions.
Instead, one can see that OREO significantly improves the performance of BC and outperforms all
baselines based on fixed VQ-VAE representations, achieving the mean HNS of 100.1% compared to
53.0% of VQ-VAE + DropBlock. This shows that OREO is not the naïve combination of VQ-VAE
and BC, but a carefully designed method to exploit the discrete codes from VQ-VAE for object-aware
regularization to address the causal confusion problem.

How does OREO improve the performance of BC? To understand how OREO improves the
performance of BC, we visualize spatial attention maps from the last convolutional layer of a policy
encoder in Figure 8. Specifically, following prior works [24, 57], we compute a spatial attention
map by averaging the absolute values of a feature map along the channel dimension. We then apply
2-dimensional spatial softmax and multiply the upscaled attention map with images for visualization.
We observe that the activations from the encoder trained with OREO are capturing all important
objects of the environment (e.g., car that an agent controls and approaching cars), while the activations
from BC are missing information of approaching cars by only focusing on the small region around a
car and a scoreboard. This shows that our regularization scheme that encourages a policy to uniformly
attend to all semantic objects allows for learning the policy that attends to important objects.

Effectiveness on real-world applications. To further demonstrate the effectiveness of OREO on
real-world applications where inputs are high-dimensional, complex images, we additionally consider
a self-driving CARLA environment [14]. Specifically, we train a conditional imitation learning policy

9



Table 3: Performance of policies trained on 150 expert demonstrations from the CARLA driving
dataset, under a weather condition of daytime. The results for each environment report the mean and
standard deviation of success rates over four runs. OREO achieves the best success rate on all tasks.

Task BC Dropout DropBlock OREO

Straight 75.0± 1.7 82.0± 8.3 74.0± 3.5 87.0± 4.4
One turn 43.0± 9.1 59.0± 3.3 53.0± 5.2 70.0± 7.2
Navigation 16.9± 7.6 30.4± 10.7 21.7± 9.2 35.7± 10.2
Navigation w/ dynamic obstacles 18.0± 4.5 26.0± 6.0 19.0± 5.2 30.0± 4.5

[10] using 150 expert demonstrations from the dataset [53] consisting of 200× 88× 3 real-world
images under a weather condition of daytime. Table 3 shows the average success rate of OREO
and baseline methods on four CARLA benchmark tasks, i.e., Straight, One turn, Navigation, and
Navigation with dynamics obstacles, where each task consists of 25 different navigation routes.
The results show that OREO improves the performance of BC and outperforms other regularization
methods, which implies that our object-aware regularization can also be effective on more complex
real-world applications.

5 Discussion

In this paper, we present OREO, a simple regularization method to address the causal confusion
problem in imitation learning. OREO regularizes a policy in an object-aware manner, by randomly
dropping the units of a feature map that share the same discrete codes from a VQ-VAE model. Our
experimental results demonstrate that OREO improves the performance of behavioral cloning without
costly environment interaction, which is crucial for safe and successful imitation learning.

Limitations. One limitation of our method is that it is only designed to regularize a policy when
inputs are images, and not applicable to state-based environments. However, we still believe that
OREO can be a practical solution to the causal confusion problem in various image-based applications,
e.g., video games [32], self-driving [7], and robotic manipulation [23]. Another limitation is that we
do not deduce the cause-effect relations for addressing the causal confusion problem, but instead
regularize the policy to prevent it from exploiting nuisance correlates. However, given that it is an
open problem to infer the structured disentangled variables and discover the causal relations among
the variables [46], we believe encouraging the policy to attend to all semantic objects is a reasonable
and promising direction for addressing this problem.

Potential negative impacts. Real-world applications of behavioral cloning, e.g., autonomous driv-
ing [4], require a large amount of data that often contain sensitive information, therefore raising
privacy concerns. As our method is built upon a variational autoencoder, it could be exposed to
privacy violation attacks that infer training data information, such as model inversion [58], and mem-
bership inference [17]. For example, the facial information of pedestrians may be reconstructed via
membership inference attack. To address this vulnerability to privacy violation attacks, a differentially
private variational autoencoder would be required for real applications. In addition, pre-training
VQ-VAE requires additional computing resources, which might lead to the increased energy cost
for learning imitation learning policies. Also, a behavioral cloning policy will imitate whatever
demonstrations one specifies. If some bad actions are included in expert demonstrations, the policy
would perform dangerous actions to users. For these reasons, in addition to developing algorithms for
better performance, it is also important to consider safe adaptation.
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