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Abstract

The hierarchical Dirichlet process (HDP) can
provide a nonparametric prior for a mix-
ture model with grouped data, where mixture
components are shared across groups. How-
ever, the computational cost is generally very
high in terms of both time and space com-
plexity. Therefore, developing a method for
fast inference of HDP remains a challenge.
In this paper, we assume a symmetric mul-
tiprocessing (SMP) cluster, which has been
widely used in recent years. To speed up
the inference on an SMP cluster, we explore
hybrid two-level parallelization of the Chi-
nese restaurant franchise sampling scheme for
HDP, especially focusing on the application
to topic modeling. The methods we devel-
oped, Hybrid-AD-HDP and Hybrid-Diff-AD-
HDP, make better use of SMP clusters, re-
sulting in faster HDP inference. While the
conventional parallel algorithms with a full
message-passing interface does not benefit
from using SMP clusters due to higher com-
munication costs, the proposed hybrid par-
allel algorithms have lower communication
costs and make better use of the computa-
tional resources.
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1. Introduction

Topic modeling is one of the approaches to analyz-
ing grouped data, such as words in documents. Topic
models (a.k.a. mixed membership models) are based
on the idea that each group can be represented as
a mixture model, where mixture components called
topics are shared across groups. Latent Dirichlet al-
location (LDA) (Blei et al., 2003) is a well known
topic model. In a scenario where the number of
topics is unknown, the hierarchical Dirichlet process
(HDP) (Teh et al., 2006) can provide a prior for a topic
model such as LDA.

However, inference of the unknown HDP parameters
remains a significant challenge in terms of computa-
tion time and memory requirements. Fast inference
for HDP via parallelization was developed for this
purpose (Newman et al., 2009; Asuncion et al., 2008).
We assume in this paper a symmetric multiprocessing
(SMP) cluster, which has been widely used in recent
years, and explore how to achieve hybrid two-level par-
allelization for HDP inference on an SMP cluster. We
demonstrate through experiments using an SMP clus-
ter that the proposed hybrid parallel algorithms in-
crease inference speed substantially while maintaining
inference accuracy, compared to the conventional par-
allel algorithms with a full message-passing interface
(MPI).

2. Related Work

In this section, we briefly introduce HDP and the
Chinese restaurant franchise (CRF) sampling scheme.
We then review prior studies on distributed inference
methods for HDP.

2.1. Hierarchical Dirichlet Process

HDP is a non-parametric Bayesian approach devel-
oped by Teh et al. (Teh et al., 2006). It is a hierarchi-
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Figure 1. Graphical model of HDP.

cal extension of the Dirichlet process (DP) (Ferguson,
1973). HDP’s generative process is represented as

G0|γ,H ∼ DP (γ,H) (1)

Gj |α0, G0 ∼ DP (α0, G0) (2)

θj |Gj ∼ Gj (3)

xji|θj ∼ F (θji), (4)

where H is a base distribution, and both α0 and γ are
hyperparameters. DP (·) indicates drawing a sample
from DP using the parameters in parentheses. Figure
1 shows a graphical model representation of HDP.

HDP can be used as a prior for a mixture model
with grouped data (such as words in documents),
where mixture components or topics are shared across
groups. When HDP is used as a prior for a standard
topic model, LDA (Blei et al., 2003), H and F can be
expressed as

H = Dir(β) (5)

F = Mult(θ), (6)

which is called HDP-LDA.

2.2. Chinese Restaurant Franchise Scheme

The Chinese restaurant franchise (CRF) inference
scheme is widely used for HDP (Teh et al., 2006).
While other inference schemes can be used for HDP,
we use CRF here because it is relatively accurate and
intuitively understandable.

CRF naturally extends the Chinese restaurant process
(CRP) (Teh et al., 2006) to represent dishes shared
across multiple restaurants. In topic models, restau-
rants, dishes, and customers respectively represent

Figure 2. Chinese restaurant franchise metaphor.

groups (e.g., documents), topics, and data points (e.g.,
words). Figure 2 depicts this metaphor, and Table 1
lists the notation used.

The CRF is used to construct HDP as fol-
lows (Teh et al., 2006; Wang & Blei, 2012).

Sampling tji: A table at which the i-th customer
sits in the j-th restaurant is drawn in accordance with

p(tji = t|t−ji,k) ∝
{

njt· if t is previously used.
α0 if t = tnew

(7)

Sampling kjt: A dish on table t in the j-th restau-
rant is drawn in accordance with

p(kjt = k|t,k−jt) ∝
{

m·k if k is previously used.
γ if k = knew

(8)

Sampling xji: Finally, the customers are drawn in
accordance with

p(x|t,k) =
∏
k

fk({xji : kji = k}) (9)

fk({xji : kji = k}) = Γ(V β)

Γ(n··k + V β)

∏
v Γ(n

v
··k + β)

Γ(β)
(10)

where V indicates the size of the vocabulary, β in-
dicates a Dirichlet hyperparameter, and nv

··k indicates
the frequency that customer v has dish k in any restau-
rant. In the context of topic models, nv

··k means the
frequency with which vocabulary v was assigned to
topic k in any document.
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Table 1. Notation.
Notation Description

Φk dish k on global menu (which is shared across all restaurants)
θji dish that customer i has in restaurant j
ϕjt dish served at table t in restaurant j
tji index of table at which customer i sits in restaurant j
kjt index of dish served at table t in restaurant j
xji index of customer i who sits in restaurant j
njtk number of customers having dish k at table t in restaurant j
njt· number of customers who sit at table t in restaurant j
n··k number of customers who have dish k in any restaurant
mjk number of tables on which dish k is served in restaurant j
m·k number of tables on which dish k is served in any restaurant

2.3. Distributed Inference Algorithms for
HDP

Newman et al. developed an approximate (syn-
chronous) distributed inference algorithm for HDP
(AD-HDP) (Newman et al., 2009). AD-HDP is based
on the hypothesis that dependencies between random
variables are weak. In AD-HDP, each thread (or node)
p first learns a model with the subset data allocated to
the thread and then sends the resulting count nkvp to
the master thread, which computes nkv using nkvp of
all p. Here nkv is the same as nv

··k in Eq.(10). AD-HDP
generally produces more accurate perplexity than non-
parallel HDP.

Asuncion et al. developed an asynchronous dis-
tributed inference algorithm for HDP (Async-
HDP), assuming a heterogeneous computing environ-
ment (Asuncion et al., 2008). In Async-HDP, each
node p first learns a model with the subset data al-
located to the node. Then, node p exchanges the
resulting count nkvp with another randomly selected
node q. Next, nkvp is integrated in q’s belief of the
counts of all the other processors with which node q
has already communicated. As mentioned previously,
Async-HDP is designed for a heterogeneous comput-
ing environment, which is not our focus in this paper,
and therefore, we extend the idea of AD-HDP for SMP
clusters.

3. Hybrid Parallel Inference for HDP

Tora et al. developed a hybrid parallel inference ap-
proach to LDA that uses a MPI/OpenMP scheme on
SMP clusters (Tora & Eguchi, 2011). Here we explore
the use of this approach to HDP, especially to HDP-
LDA, which is a more complex problem than that of
LDA. We developed two hybrid parallel inference al-
gorithms, Hybrid-AD-HDP and Hybrid-Diff-AD-HDP,

as extensions of the AD-HDP. Our hybrid algrithms
use MPI only to communicate with each node, and
multi-threading is used for parallelization within each
node.

3.1. Hybrid-AD-HDP

The Hybrid-AD-HDP algorithm is a hybrid parallel in-
ference algorithm based on AD-HDP (Newman et al.,
2009). It applies the AD-HDP algorithm to both
parallelization within each node and synchronization
across nodes, while the original AD-HDP uses an MPI
scheme to communicate directly with each processor
core.

Algorithm 1 shows the steps in the Hybrid-AD-HDP
algorithm. The master node distributes global model
parameters to each node, and the nodes then begin to
learn the model parameters using the allocated sub-
set data, parallelized by multi-threading based on AD-
HDP within the node. The master node then collects
the resulting local model parameters from the nodes
and computes the difference in those local model pa-
rameters from the previous global model parameters
to update the global model parameters. This proce-
dure is repeated, and the global model parameters are
updated until convergence.

3.2. Hybrid-Diff-AD-HDP

The difference-based Hybrid-AD-HDP (Hybrid-Diff-
AD-HDP) algorithm is a modification of the Hybrid-
AD-HDP algorithm. Let us first describe the
difference-based AD-HDP (Diff-AD-HDP) algorithm:
our modification of AD-HDP for robust inference. In
Diff-AD-HDP, each thread p first learns a model with
the subset data allocated to the thread and then sends
the resulting difference count ∆nkvp to the master
thread, which sums up ∆nkvp over all p to obtain nkv.



Hybrid Parallel Inference for Hierarchical Dirichlet Process

Algorithm 1 Hybrid-AD-HDP

1: repeat
2: for each node p in parallel do
3: run AD-HDP
4: report nkvp, njt to master node
5: end for
6: merge njt

7: update nkv ← nkv +
∑

p(nkvp − nkv)
8: sample α0, γ
9: broadcast nkv, α0, γ

10: until convergence

Algorithm 2 Hybrid-Diff-AD-HDP

1: repeat
2: for each node p in parallel do
3: run Diff-AD-HDP
4: calculate n̂kvp derived from the node
5: report n̂kvp, njt to master node
6: end for
7: merge njt

8: update nkv ←
∑

p n̂kvp

9: sample α0, γ
10: broadcast nkv, α0, γ
11: until convergence

Note that ∆nkvp is the difference count between nkv

that was distributed from the master thread and nkvp

that was updated from nkv at node p. In Hybrid-Diff-
AD-HDP, the manner of communications in Diff-AD-
HDP is applied not only to parallelization within each
node, but also to synchronization across nodes.

The Hybrid-AD-HDP algorithm has to synchronize af-
ter every Gibbs sweep. Otherwise, some estimated
models may be inaccurate and some count variables
may turn into negative values. The Hybrid-Diff-AD-
HDP algorithm avoids such problems. In Hybrid-Diff-
AD-HDP, the master node collects from each node the
difference in the local model parameters from the pre-
vious global model parameters rather than collecting
the local model parameters themselves. The master
node then sums up the differences over all nodes to ob-
tain the global model parameters. Algorithm 2 shows
the steps in the Hybrid-Diff-AD-HDP algorithm.

4. Experiments

In this paper, we used two data sets: KOS blog entries
and NIPS full papers.1 The statistics of these data
sets are shown in Table 2.

1These data sets are available at
http://archive.ics.uci.edu/ml/datasets/Bag+of+Words

Table 2. Dataset statistics.
KOS NIPS

Number of documents (D) 3,430 1,500
Size of vocabulary (V ) 6,906 12,419
Number of words (N) 467,714 1,932,365

Figure 3. Effect of number of topics that are set at time
of initialization using KOS dataset. Results were averaged
over 10 runs; error bars represent one standard error.

We evaluated the estimated models by using 10-fold
cross-validation. Here we split both datasets into a
training set and a test set by assigning 10% of the
words in each document to the test set, in accordance
with Teh et al. (Teh et al., 2007), and repeated this
procedure 10 times. We used (test-set) perplexity as
the evaluation metric:

exp

{
− 1

N
log p(w|Training set)

}
, (11)

where w indicates a test set, and N indicates the total
number of words in the test set.

4.1. Initialization

Preliminary experiments revealed the effects of the two
initialization methods:

(1) Start with a predefined number of topics and
randomly assign a topic to each word as the
initialization of collapsed Gibbs sampling for
LDA (Griffiths & Steyvers, 2004).

(2) Initialize in accordance with the CRF generative
process.

We set the hyperparameters in accordance with
Teh (Teh et al., 2006): α = 1/K and β = 0.5
for LDA and α0 = E[Gamma(1, 1)] = 1, γ =



Hybrid Parallel Inference for Hierarchical Dirichlet Process

Figure 4. Effect of number of topics that are set at time of
initialization using NIPS dataset. Results were averaged
over 10 runs; error bars represent one standard error.

Figure 5. Perplexity of HDP for two initialization methods
and LDA using KOS dataset (K = 45). Number of topics
for LDA varied between 10 and 150. Results were averaged
over 10 runs; error bars represent one standard error.

E[Gamma(1, 0.1)] = 10, and β = 0.5 for HDP-
LDA. Each Gamma distribution was specified by a
shape parameter and a rate parameter. We updated
the hyperparameters for HDP-LDA after each Gibbs
sweep (Escobar & West, 1995).

Figures 3 and 5 show that, for KOS, both initialization
methods did not work as well as the best performance
for LDA (i.e., perplexity = 1550 at K = 55 as shown
in Figure 5). This is probably because the total num-
ber of words was small compared with the number of
documents for KOS. The perplexity with initialization
method (1) was slightly better than that with initial-
ization method (2).

Figures 4, 6, and 7 show that, for NIPS, initialization
method (1) with K = 120, 170, or 220 and initializa-

Figure 6. Perplexity of HDP for two initialization methods
and LDA using NIPS dataset (K = 120). Number of topics
for LDA varied between 20 and 200. Results were averaged
over 10 runs; error bars represent one standard error.

Figure 7. Perplexity of HDP for two initialization methods
and LDA using NIPS dataset (K = 120), in a finer scale.
Number of topics for LDA varied between 70 and 200. Re-
sults were averaged over 10 runs; error bars represent one
standard error.

tion method (2) performed as well as or even better
than the best performance of LDA (i.e., the perplexity
is 1450 at K = 130 as shown in Figures 6 and 7). How-
ever, initialization method (1) with K = 20 or 70 did
not work well because fewer topics were learned than
with K = 120, 170, or 220. The perplexity with (1)
was slightly better than that with (2), as with KOS.

The convergence speed with NIPS is shown in Figure 8.
The convergence speed with initialization method (2)
was comparable to that of LDA, and convergence with
initialization method (1) was the fastest. However, ini-
tialization method (1) used much more memory than
initialization method (2). This indicates that the num-
ber of tables was learned more efficiently with (2). We
thus used initialization method (2) for our scalability
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Figure 8. Convergence speed of HDP for two initialization
methods (K = 120) and LDA. Results were averaged over
10 runs; error bars represent one standard error.

Table 3. Experimental environment.

CPU Speed (GHz) Sockets Mem Network
Xeon E5410 2.33 2 32 GB 10 GbE

GCC Open MPI Boost
4.7.2 1.6.3 1.52

experiment.

4.2. Scalability

We experimentally measured the speed-up rate with
NIPS dataset for our hybrid parallel inference algo-
rithms using the experimental environment, including
toolchain versions, summarized in Table 3. At that
time, the test-set perplexity of the hybrid parallel al-
gorithms was almost the same as that of the parallel
algorithm with MPI-HDP algorithm, which was a full
MPI implementation based on AD-HDP.

Figure 9 clearly shows that the Hybrid-AD-HDP and
Hybrid-Diff-AD-HDP algorithms learned topic models
much faster than the MPI-HDP algorithm. MPI-HDP
did not achieve speed-up under conditions exceeding
‘4(32)’ (4 nodes with 32 processor cores) because its
communication and synchronization costs were larger
than the speed-up due to parallelization somewhere
between ‘3(24)’ and ‘4(32).’ This did not happen with
either hybrid parallel inference algorithm, and speed-
up was observed until ‘6(48).’ The speed-up rate de-
creased after ‘7(56)’ probably because the data set was
small. Better performance should be obtained with the
hybrid algorithms if larger data sets are used.

As shown in Figure 9, the performances of the two
hybrid parallel inference algorithms were compara-

Figure 9. Speedup rate with Hybrid-AD-HDP, Hybrid-
Diff-AD-HDP, and MPI-HDP

ble. While Hybrid-AD-HDP has to synchronize with
all nodes at every Gibbs sweep, Hybrid-Diff-AD-HDP
does not. This means that Hybrid-Diff-AD-HDP has
room for further speed-up.

5. Conclusions

We developed two different hybrid two-level parallel al-
gorithms for HDP, Hybrid-AD-HDP and Hybrid-Diff-
AD-HDP, that make better use of SMP clusters. We
demonstrated that initialization in accordance with
the CRF generative process achieves good cost per-
formance in terms of model accuracy and memory us-
age. We then showed that the conventional parallel
algorithm with full MPI does not benefit from using
SMP clusters due to higher communication costs. In
contrast, our hybrid parallel algorithms cut communi-
cation costs and make better use of the computational
resources.

Future work includes developing algorithms for use un-
der more challenging network bandwidth conditions.
It also includes evaluating the effectiveness of Hybrid-
Diff-AD-HDP as an approach to solving the problem
inherent in non-approximate parallelization methods
like that of Williamson et al. (Williamson et al., 2012);
i.e., while they can learn exact models, they incur a
certain amount of communication costs when running
on SMP clusters.
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