
Rethinking the Capacity of Graph Neural Networks
for Branching Strategy

Ziang Chen
Massachusetts Institute of Technology

ziang@mit.edu

Jialin Liu
University of Central Florida

jialin.liu@ucf.edu

Xiaohan Chen Xinshang Wang Wotao Yin
Alibaba US, DAMO Academy

{xiaohan.chen,xinshang.w,wotao.yin}@alibaba-inc.com

Abstract

Graph neural networks (GNNs) have been widely used to predict properties and
heuristics of mixed-integer linear programs (MILPs) and hence accelerate MILP
solvers. This paper investigates the capacity of GNNs to represent strong branching
(SB), the most effective yet computationally expensive heuristic employed in the
branch-and-bound algorithm. In the literature, message-passing GNN (MP-GNN),
as the simplest GNN structure, is frequently used as a fast approximation of SB and
we find that not all MILPs’s SB can be represented with MP-GNN. We precisely
define a class of “MP-tractable" MILPs for which MP-GNNs can accurately approx-
imate SB scores. Particularly, we establish a universal approximation theorem: for
any data distribution over the MP-tractable class, there always exists an MP-GNN
that can approximate the SB score with arbitrarily high accuracy and arbitrarily
high probability, which lays a theoretical foundation of the existing works on
imitating SB with MP-GNN. For MILPs without the MP-tractability, unfortunately,
a similar result is impossible, which can be illustrated by two MILP instances with
different SB scores that cannot be distinguished by any MP-GNN, regardless of
the number of parameters. Recognizing this, we explore another GNN structure
called the second-order folklore GNN (2-FGNN) that overcomes this limitation,
and the aforementioned universal approximation theorem can be extended to the
entire MILP space using 2-FGNN, regardless of the MP-tractability. A small-scale
numerical experiment is conducted to directly validate our theoretical findings.

1 Introduction

Mixed-integer linear programming (MILP) involves optimization problems with linear objectives and
constraints, where some variables must be integers. These problems appear in various fields, from
logistics and supply chain management to planning and scheduling, and are in general NP-hard. The
branch-and-bound (BnB) algorithm [33] is the core of a MILP solver. It works by repeatedly solving
relaxed versions of the problem, called linear relaxations, which allow the integer variables to take on
fractional values. If a relaxation’s solution satisfies the integer requirements, it is a valid solution to
the original problem. Otherwise, the algorithm divides the problem into two subproblems and solves
their relaxations. This process continues until it finds the best solution that meets all the constraints.

Branching is the process of dividing a linear relaxation into two subproblems. When branching,
the solver selects a variable with a fractional value in the relaxation’s solution and create two new
subproblems. In one subproblem, the variable is forced to be less than or equal to the nearest integer

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

below the fractional value. In the other, it is bounded above the fractional value. The branching
variable choice is critical because it can impact the solver’s efficiency by orders of magnitude.

A well-chosen branching variable can lead to a significant improvement in the lower bound, which
is a quantity that can quickly prove that a subproblem and its further subdivisions are infeasible or
not promising, thus reducing the total number of subproblems to explore. This means fewer linear
relaxations to solve and faster convergence to the optimal solution. On the contrary, a poor choice
may result in branches that do little to improve the bounds or reduce the solution space, thus leading
to a large number of subproblems to be solved, significantly increasing the total solution time. The
choice of which variable to branch on is a pivotal decision. This is where branching strategies,
such as strong branching and learning to branch, come into play, evaluating the impact of different
branching choices before making a decision.

Strong branching (SB) [3] is a sophisticated strategy to select the most promising branches to explore.
In SB, before actually performing a branch, the solver tentatively branches on several variables and
calculates the potential impact of each branch on the objective function. This “look-ahead” strategy
evaluates the quality of branching choices by solving linear relaxations of the subproblems created by
the branching. The variable that leads to the most significant improvement in the objective function is
selected for the actual branching. Usually recognized as the most effective branching strategy, SB
often results in a significantly lower number of subproblems to resolve during the branch-and-bound
(BnB) process compared to other methods [18]. As such, SB is frequently utilized directly or as a
fundamental component in cutting-edge solvers.

While SB can significantly reduce the size of the BnB search space, it comes with high computational
cost: evaluating multiple potential branches at each decision point requires solving many LPs. This
leads to a trade-off between the time spent on SB and the overall time saved due to a smaller search
space. In practice, MILP solvers use heuristics to limit the use of SB to where it is most beneficial.

Learning to branch (L2B) introduces a new approach by incorporating machine learning (ML) to
develop branching strategies, offering new solutions to address this trade-off. This line of research
begins with imitation learning [2, 5, 19, 24, 25, 29, 35, 56, 58], where models, including SVM,
decision tree, and neural networks, are trained to mimic SB outcomes based on the features of
the underlying MILP. They aim to create a computationally efficient strategy that achieves the
effectiveness of SB on specific datasets. Furthermore, in recent reinforcement learning approaches,
mimicking SB continues to take crucial roles in initialization or regularization [45, 60].

While using a heuristic (an ML model) to approximate another heuristic (the SB procedure) may
seem counterintuitive, it is important to recognize the potential benefits. The former can significantly
reduce the time required to make branching decisions as effectively as the latter. As MILPs become
larger and more complex, the computational cost of SB grows at least cubically, but some ML models
grow quadratically, even just linearly after training on a set of similar MILPs. Although SB can
theoretically solve LP relaxations in parallel, the time required for different LPs may vary greatly,
and there is a lack of GPU-friendly methods that can effectively utilize starting bases for warm
starts. In contrast, ML models, particularly GNNs, are more amenable to efficient implementation
on GPUs, making them a more practical choice for accelerating the branching variable selection
process. Furthermore, additional problem-specific characteristics can be incorporated into the ML
model, allowing it to make more informed branching decisions tailored to each problem instance.

Graph neural network (GNN) stands out as an effective class of ML models for L2B, sur-
passing other models like SVM and MLP, due to the excellent scalability and the permutation-
invariant/equivariant property. To utilize a GNN on a MILP, one first conceptualizes the MILP
as a graph and the GNN is then applied to that graph and returns a branching decision. This ap-
proach [15, 19] has gained prominence in not only L2B but various other MILP-related learning
tasks [13, 17, 26, 30, 32, 36, 40, 43, 44, 48, 50–52, 54, 57]. More details are provided in Section 2.

Despite the widespread use of GNNs on MILPs, a theoretical understanding remains largely elusive.
A vital concept for any ML model, including GNNs, is its capacity or expressive power [27, 34, 46],
which in our context is their ability to accurately approximate the mapping from MILPs to their SB
results. Specifically, this paper aims to answer the following question:

Given a distribution of MILPs, is there a GNN model capable of mapping each
MILP problem to its strong branching result with a specified level of precision?

(1.1)

2

Related works and our contributions. While the capacity of GNNs for general graph tasks, such
as node and link prediction or function approximation on graphs, has been extensively studied
[4, 10, 22, 28, 37, 39, 47, 55, 59], their capacities in approximating SB remains largely unexplored.
The closest studies [11, 12] have explored GNNs’ ability to represent properties of linear programs
(LPs) and MILPs, such as feasibility, boundedness, or optimal solutions, but have not specifically
focused on branching strategies. Recognizing this gap, our paper makes the following contributions:

• In the context of L2B using GNNs, we first focus on the most widely used type: message-passing
GNNs (MP-GNNs). Our study reveals that MP-GNNs can reliably predict SB results, but only
for a specific class of MILPs that we introduce as message-passing-tractable (MP-tractable).
We prove that for any distribution of MP-tractable MILPs, there exists an MP-GNN capable
of accurately predicting their SB results. This finding establishes a theoretical basis for the
widespread use of MP-GNNs to approximate SB results in current research.

• Through a counter-example, we demonstrate that MP-GNNs are incapable of predicting SB
results beyond the class of MP-tractable MILPs. The counter-example consists of two MILPs
with distinct SB results to which all MP-GNNs, however, yield identical branching predictions.

• For general MILPs, we explore the capabilities of second-order folklore GNNs (2-FGNNs), a
type of higher-order GNN with enhanced expressive power. Our results show that 2-FGNNs can
reliably answer question (1.1) positively, effectively replicating SB results across any distribution
of MILP problems, surpassing the capabilities of standard MP-GNNs.

Overall, as a series of works have empirically shown that learning an MP-GNN as a fast approximation
of SB significantly benefits the performance of an MILP solver on specific data sets [2, 5, 19, 24, 25,
29, 35, 56, 58], our goal is to determine whether there is room, in theory, to further understand and
improve the GNNs’ performance on this task.

2 Preliminaries and problem setup
We consider the MILP defined in its general form as follows:

min
x∈Rn

c⊤x, s.t. Ax ◦ b, ℓ ≤ x ≤ u, xj ∈ Z, ∀ j ∈ I, (2.1)

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn, ◦ ∈ {≤,=,≥}m is the type of constraints, ℓ ∈ ({−∞} ∪ R)n
and u ∈ (R∪{∞})n are the lower bounds and upper bounds of the variable x, and I ⊂ {1, 2, . . . , n}
identifies which variables are constrained to be integers.

Graph Representation of MILP. Here we present an approach to represent MILP as a bipartite
graph, termed the MILP-graph. This conceptualization was initially proposed by [19] and has quickly
become a prevalent model in ML for MILP-related tasks. The MILP-graph is defined as a tuple
G = (V,W,A, FV , FW), where the components are specified as follows: V = {1, 2, . . . ,m} and
W = {1, 2, . . . , n} are sets of nodes representing the constraints and variables, respectively. An edge
(i, j) connects node i ∈ V to node j ∈ W if the corresponding entry Aij in the coefficient matrix
of (2.1) is non-zero, with Aij serving as the edge weight. FV are features/attributes of constraints,
with features vi = (bi, ◦i) attached to node i ∈ V . FW are features/attributes of variables, with
features wj = (cj , ℓj , uj , δI(j)) attached to node j ∈ W , where δI(j) ∈ {0, 1} indicates whether
the variable xj is integer-constrained.

We define NW (i) =: {j ∈ W : Aij ̸= 0} ⊂ W as the neighbors of i ∈ V and similarly define
NV (j) =: {i ∈ V : Aij ̸= 0} ⊂ V . This graphical representation completely describes a MILP’s
information, allowing us to interchangeably refer to a MILP and its graph throughout this paper. An
illustrative example is presented in Figure 1. We also introduce a space of MILP-graphs:
Definition 2.1 (Space of MILP-graphs). We use Gm,n to denote the collection of all MILP-graphs
induced from MILPs of the form (2.1) with n variables and m constraints.1

Message-passing graph neural networks (MP-GNNs) are a class of GNNs that operate on
graph-structured data, by passing messages between nodes in a graph to aggregate information
from their local neighborhoods. In our context, the input is an aforementioned MILP-graph
G = (V,W,A, FV , FW), and each node in W is associated with a real-number output. We use
the standard MP-GNNs for MILPs in the literature [12, 19].

Specifically, the initial layer assigns features s0i , t
0
j for each node as

1Rigorously, the space Gm,n
∼= Rm×n×Rn×Rm×(R∪{−∞})n×(R∪{+∞})n×{≤,=,≥}m×{0, 1}n

is equipped with product topology, where all Euclidean spaces have standard Eudlidean topologies, discrete
spaces {−∞}, {+∞}, {≤,=,≥}, and {0, 1} have the discrete topologies, and all unions are disjoint unions.

3

min [x1 x2 x3]

[
1
2
3

]

s.t.
2 x1 + x2 ≤ 5

x2 + 3 x3 ≥ 0

0 ≤ x1 , x2 , x3 ≤ 1
x1 ∈ Z

w1

(1, 0, 1, 1)
w2

(2, 0, 1, 0)
w3

(3, 0, 1, 0)

v1
(5,≤) v2

(0,≥)

2 1 1 3

Figure 1: An illustrative example of MILP and its graph representation.

• s0i = p0(vi) for each constraint i ∈ V , and t0j = q0(wj) for each variable j ∈W .

Then message-passing layers l = 1, 2, . . . , L update the features via

• sli = pl
(
sl−1
i ,

∑
j∈NW (i) f

l(tl−1
j , Aij)

)
for each constraint i ∈ V , and

• tlj = ql
(
tl−1
j ,

∑
i∈NV (j) g

l(sl−1
i , Aij)

)
for each variable j ∈W .

Finally, the output layer produces a read-number output yj for each node j ∈W :

• yj = r
(∑

i∈V s
L
i ,

∑
j∈W tLj , t

L
j

)
.

In practice, functions {pl, ql, f l, gl}Ll=1, r, p
0, q0 are learnable and usually parameterized with multi-

linear perceptrons (MLPs). In our theoretical analysis, we assume for simplicity that those functions
are continuous on given domains. The space of MP-GNNs is introduced as follows.

Definition 2.2 (Space of MP-GNNs). We use FMP-GNN to denote the collection of all MP-GNNs
constructed as above with pl, ql, f l, gl, r being continuous with f l(·, 0) ≡ 0 and gl(·, 0) ≡ 0.2

Overall, any MP-GNN F ∈ FMP-GNN maps a MILP-graph G to a n-dim vector: y = F (G) ∈ Rn.

Second-order folklore graph neural networks (2-FGNNs) are an extension of MP-GNNs designed
to overcome some of the capacity limitations. It is proved in [55] the expressive power of MP-GNNs
can be measured by the Weisfeiler-Lehman test (WL test [53]). To enhance the ability to identify
more complex graph patterns, [42] developed high-order GNNs, inspired by high-order WL tests [9].
Since then, there has been growing literature about high-order GNNs and other variants including
high-order folklore GNNs [4, 20–22, 38, 61]. Instead of operating on individual nodes of the given
graph, 2-FGNNs operate on pairs of nodes (regardless of whether two nodes in the pair are neighbors
or not) and the neighbors of those pairs. We say two node pairs are neighbors if they share a common
node. Let G = (V,W,A, FV , FW) be the input graph. The initial layer performs:

• s0ij = p0(vi, wj , Aij) for each constraint i ∈ V and each variable j ∈W , and

• t0j1j2 = q0(wj1 , wj2 , δj1j2) for variables j1, j2 ∈W ,

where δj1j2 = 1 if j1 = j2 and δj1j2 = 0 otherwise. For internal layers l = 1, 2, . . . , L, compute

• slij = pl
(
sl−1
ij ,

∑
j1∈W f l(tl−1

j1j
, sl−1

ij1
)
)

for all i ∈ V, j ∈W , and

• tlj1j2 = ql
(
tl−1
j1j2

,
∑

i∈V g
l(sl−1

ij2
, sl−1

ij1
)
)

for all j1, j2 ∈W .

The final layer produces the output yj for each node j ∈W :

• yj = r
(∑

i∈V s
L
ij ,

∑
j1∈W tLj1j

)
.

Similar to MP-GNNs, the functions within 2-FGNNs, including {pl, ql, f l, gl}Ll=1, r, p
0, q0, are also

learnable and typically parameterized with MLPs. The space of 2-FGNNs is defined with:

Definition 2.3. We use F2-FGNN to denote the set of all 2-FGNNs with continuous pl, ql, f l, gl, r.

Any 2-FGNN, F ∈ F2-FGNN, maps a MILP-graph G to a n-dim vector: y = F (G). While MP-GNNs
and 2-FGNNs share the same input-output structure, their internal structures differ, leading to distinct
expressive powers.

2We require f l, gl yield 0 when the edge weight is 0 to avoid the discontinuity of functions in FMP-GNN.

4

3 Imitating strong branching by GNNs
In this section, we present some observations and mathematical concepts underlying the imitation
of strong branching by GNNs. This line of research, which aims to replicate SB strategies through
GNNs, has shown promising empirical results across a spectrum of studies [19, 24, 25, 35, 48, 56, 58],
yet it still lacks theoretical foundations. Its motivation stems from two key observations introduced
earlier in Section 1, which we elaborate on here in detail.

Observation I: SB is notably effective in reducing the size of the BnB search space. This size is
measured by the size of the BnB tree. Here, a "tree" refers to a hierarchical structure of "nodes,"
each representing a decision point or a subdivision of the problem. The tree’s size corresponds to the
number of these nodes. For instance, consider the instance "neos-3761878-oglio" from MIPLIB [23].
When solved using SCIP [7, 8] under standard configurations, the BnB tree size is 851, and it takes
61.04 seconds to attain optimality. However, disabling SB, along with all branching rules dependent
on SB, results in an increased BnB tree size to 35548 and an increased runtime to 531.0 seconds.

Observation II: SB itself is computationally expensive. In the above experiment under standard
settings, SB consumes an average of 70.40% of the total runtime, 42.97 out of 61.04 seconds in total.

Therefore, there is a clear need of approximating SB with efficient ML models. Ideally, if we
can substantially reduce the SB calculation time from 42.97 seconds to a negligible duration while
maintaining its effectiveness, the remaining runtime of 61.04−42.97 = 18.07 seconds would become
significantly more efficient.

To move forward, we introduce some basic concepts related to SB.

Concepts for SB. SB begins by identifying candidate variables for branching, typically those with
non-integer values in the solution to the linear relaxation but which are required to be integers. Each
candidate is then assigned a SB score, a non-negative real number determined by creating two linear
relaxations and calculating the objective improvement. A higher SB score indicates the variable has a
higher priority to be chosen for branching. Variables that do not qualify as branching candidates are
assigned a zero score. Compiling these scores for each variable results in an n-dimensional SB score
vector, denoted as SB(G) = (SB(G)1,SB(G)2, . . . ,SB(G)n).

Consequently, the task of approximating SB with GNNs can be described with a mathematical
language: finding an F ∈ FMP-GNN or F ∈ F2-FGNN such that F (G) ≈ SB(G). Formally, it is:

Formal statement of Problem (1.1): Given a distribution of G, is there F ∈ FMP-GNN or F ∈
F2-FGNN such that ∥F (G)− SB(G)∥ is smaller than some error tolerance with high probability?

To provide clarity, we present a formal definition of SB scores:
Definition 3.1 (LP relaxation with a single bound change). Pick a G ∈ Gm,n. For any j ∈
{1, 2, . . . , n}, l̂j ∈ {−∞} ∪ R, and ûj ∈ R ∪ {+∞}, we denote by LP(G, j, l̂j , ûj) the following
LP problem obtained by changing the lower/upper bound of xj in the LP relaxation of (2.1):

min
x∈Rn

c⊤x, s.t. Ax ◦ b, l̂j ≤ xj ≤ ûj , lj′ ≤ xj′ ≤ uj′ for j′ ∈ {1, 2, . . . , n}\{j}.

Definition 3.2 (Strong branching scores). Let G ∈ Gm,n be a MILP-graph associated with the
problem (2.1) whose LP relaxation is feasible and bounded. Denote f∗LP(G) ∈ R as the optimal
objective value of the LP relaxation of G and denote x∗LP(G) ∈ Rn as the optimal solution with the
smallest ℓ2-norm. The SB score SB(G)j for variable xj is defined via

SB(G)j =

{
0, if j /∈ I,

(f∗LP(G, j, lj , ûj)− f∗LP(G)) · (f∗LP(G, j, l̂j , uj)− f∗LP(G)), otherwise,

where f∗LP(G, j, lj , ûj) and f∗LP(G, j, l̂j , uj) are the optimal objective values of LP(G, j, lj , ûj) and
LP(G, j, l̂j , uj) respectively, with ûj = ⌊x∗LP(G)j⌋ being the largest integer no greater than x∗LP(G)j
and l̂j = ⌈x∗LP(G)j⌉ being the smallest integer no less than x∗LP(G)j , for j = 1, 2, . . . , n.

Remark: LP solution with the smallest ℓ2-norm. We only define the SB score for MILP problems
with feasible and bounded LP relaxations; otherwise the optimal solution x∗LP(G) does not exist. If
the LP relaxation of G admits multiple optimal solutions, then the strong branching score SB(G)
depends on the choice of the particular optimal solution. To guarantee that the SB score is uniquely
defined, in Definition 3.2, we use the optimal solution with the smallest ℓ2-norm, which is unique.

5

v1

v2

w1

w2

w3 Initialization l = 1 l = 2

The WL test (Algorithm 1)MILP-graph G

min x1 + x2 + x3,
s.t. x1 + x2 + x3 ≤ 1,

x1 + x2 ≤ 1,
0 ≤ x1, x2, x3 ≤ 1,
x1, x2, x3 ∈ Z.

MILP formula
Figure 2: An illustrative example of color refinement and partitions. Initially, all variables share a
common color due to their identical node attributes, as do the constraint nodes. After a round of
the WL test, x1 and x2 retain their shared color, while x3 is assigned a distinct color, as it connects
solely to the first constraint, unlike x1 and x2. Similarly, the colors of the two constraints can also be
differentiated. Finally, this partition stabilizes, resulting in I = {{1}, {2}}, J = {{1, 2}, {3}}.

Remark: SB at leaf nodes. While the strong branching score discussed here primarily pertains
to root SB, it is equally relevant to SB at leaf nodes within the BnB framework. By interpreting
the MILP-graph G in Definition 3.2 as representing the subproblems encountered during the BnB
process, we can extend our findings to strong branching decisions at any point in the BnB tree. Here,
root SB refers to the initial branching decisions made at the root of the BnB tree, while leaf nodes
represent subsequent branching points deeper in the tree, where similar SB strategies can be applied.

Remark: Other types of SB scores. Although this paper primarily focuses on the product SB scores
(where the SB score is defined as the product of objective value changes when branching up and
down), our analysis can extend to other forms of SB scores in [14]. (Refer to Appendix D.1)

4 Main results
4.1 MP-GNNs can represent SB for MP-tractable MILPs
In this subsection, we define a class of MILPs, named message-passing-tractable (MP-tractable)
MILPs, and then show that MP-GNNs can represent SB within this class.

To define MP-tractability, we first present the Weisfeiler-Lehman (WL) test [53], a well-known
criterion for assessing the expressive power of MP-GNNs [55]. The WL test in the context of
MILP-graphs is stated in Algorithm 1. It follows exactly the same updating rule as the MP-GNN,
differing only in the local updates performed via hash functions.

Algorithm 1 The WL test for MILP-Graphs

Require: A graph instance G ∈ Gm,n and iteration limit L > 0.
1: Initialize with CV

0 (i) = HASHV
0 (vi), C

W
0 (j) = HASHW

0 (wj).
2: for l = 1, 2, · · · , L do
3: CV

l (i) = HASHV
l

(
CV

l−1(i),
{{(

CW
l−1(j), Aij

)
: j ∈ NW (i)

}})
.

4: CW
l (j) = HASHW

l

(
CW

l−1(j),
{{(

CW
l−1(i), Aij

)
: i ∈ NV (j)

}})
.

5: end for
6: Output: Final colors CV

L (i) for all i ∈ V and CW
L (j) for all j ∈ V .

The WL test can be understood as a color refinement algorithm. In particular, each vertex in
G is initially assigned a color CV

0 (i) or CW
0 (j) according to its initial feature vi or wj . Then the

vertex colors CV
l (i) and CW

l (j) are iteratively refined via aggregation of neighbors’ information and
corresponding edge weights. If there is no collision of hash functions3, then two vertices are of the
same color at some iteration if and only if at the previous iteration, they have the same color and the
same multiset of neighbors’ information and corresponding edge weights. Such a color refinement
process is illustrated by an example shown in Figure 2.

One can also view a vertex coloring as a partition, i.e., all vertices are partitioned into several classes
such that two vertices are in the same class if and only if they are of the same color. After each round

3Here, "no collision of a hash function" indicates that the hash function doesn’t map two distinct inputs to
the same output during the WL test on a specific instance. Another stronger assumption, commonly used in WL
test analysis [27], assumes that all hash functions are injective.

6

of Algorithm 1, the partition always becomes finer if no collision happens, though it may not be
strictly finer. The following theorem suggests that this partition eventually stabilizes or converges,
with the final limit uniquely determined by the graph G, independent of the hash functions selected.
Theorem 4.1 ([11, Theorem A.2]). For any G ∈ Gm,n, the vertex partition induced by Algo-
rithm 1 (if no collision) will converge within O(m + n) iterations to a partition (I,J), where
I = {I1, I2, . . . , Is} is a partition of {1, 2, . . . ,m} and J = {J1, J2, . . . , Jt} is a partition of
{1, 2, . . . , n}, and that partition (I,J) is uniquely determined by the input graph G.

With the concepts of color refinement and partition, we can introduce the core concept of this paper:
Definition 4.2 (Message-passing-tractability). For G ∈ Gm,n, let (I,J) be the partition as in
Theorem 4.1. We say that G is message-passing-tractable (MP-tractable) if for any p ∈ {1, 2, . . . , s}
and q ∈ {1, 2, . . . , t}, all entries of the submatrix (Aij)i∈Ip,j∈Jq

are the same. We use GMP
m,n ⊂ Gm,n

to denote the subset of all MILP-graphs in Gm,n that are MP-tractable.
In order to help readers better understand the concept of "MP-tractable," let’s examine the MILP
instance shown in Figure 2. After numerous rounds of WL tests, the partition stabilizes to I =
{{1}, {2}} and J = {{1, 2}, {3}}. According to Definition 4.2, one must examine the following
submatrices to determine whether the MILP is MP-tractable:

A[1, 1 : 2] = [1, 1], A[2, 1 : 2] = [1, 1], A[1, 3] = [1], A[2, 3] = [0].

All elements within each submatrix are identical. Hence, this MILP is indeed MP-tractable. To
rigorously state our result, we require the following assumption of the MILP data distribution.
Assumption 4.3. P is a Borel regular probability measure on Gm,n and P[SB(G) ∈ Rn] = 1.
Borel regularity is a “minimal” assumption that is actually satisfied by almost all practically used
data distributions such as normal distributions, discrete distributions, etc. Let us also comment
on the other assumption P[SB(G) ∈ Rn] = 1. In Definition 3.2, the linear relaxation of G is
feasible and bounded, which implies f∗LP(G) ∈ R. However, it is possible for a linear program that
is initially bounded and feasible to become infeasible upon adjusting a single variable’s bounds,
potentially resulting in f∗LP(G, j, lj , ûj) = +∞ or f∗LP(G, j, l̂j , uj) = +∞ and leading to an infinite
SB score: SB(G)j = +∞. Although we ignore such a case by assuming P[SB(G) ∈ Rn] = 1, it is
straightforward to extend all our results by simply representing +∞ as −1 considering SB(G)j as a
non-negative real number, thus avoiding any collisions in definitions.

Based on the above assumptions, as well as an extra assumption: G is message-passing tractable
with probability one, we can show the existence of an MP-GNN capable of accurately mapping
a MILP-graph G to its corresponding SB score, with an arbitrarily high degree of precision and
probability. The formal theorem is stated as follows.
Theorem 4.4. Let P be any probability distribution over Gm,n that satisfies Assumption 4.3 and
P[G ∈ GMP

m,n] = 1. Then for any ε, δ > 0, there exists a GNN F ∈ FMP-GNN such that

P[∥F (G)− SB(G)∥ ≤ δ] ≥ 1− ϵ.

The proof of Theorem 4.4 is deferred to Appendix A, with key ideas outlined here. First, we show
that if Algorithm 1 produces identical results for two MP-tractable MILPs, they must share the same
SB score. That is, if two MP-tractable MILPs have different SB scores, the WL test (or equivalently
MP-GNNs) can capture this distinction. Building on this result, along with a generalized version of
the Stone-Weierstrass theorem and Luzin’s theorem, we reach the final conclusion.

Let us compare our findings with [12] that establishes the existence of an MP-GNN capable of
directly mapping G to one of its optimal solutions, under the assumption that G must be unfoldable.
Unfoldability means that, after enough rounds of the WL test, each node receives a distinct color
assignment. Essentially, it assumes that the WL test can differentiate between all nodes in G, and the
elements within the corresponding partition (I,J) have cardinality one: |Ip| = 1 and |Jq| = 1 for all
p ∈ {1, 2, . . . , s} and q ∈ {1, 2, . . . , t}. Consequently, any unfoldable MILP must be MP-tractable
because the submatrices under the partition of an unfoldable MILP (Aij)i∈Ip,j∈Jq

must be 1 × 1
and obviously satisfy the condition in Definition 4.2. However, the reverse assertion is not true: The
example in Figure 2 serves as a case in point—it is MP-tractable but not unfoldable. Therefore,
unfoldability is a stronger assumption than MP-tractability. Our Theorem 4.4 demonstrates that, to
illustrate the expressive power of MP-GNNs in approximating SB, MP-tractability suffices; we do not
need to make assumptions as strong as those required when considering MP-GNN for approximating
the optimal solution.

7

4.2 MP-GNNs cannot universally represent SB beyond MP-tractability

Our next main result is that MP-GNNs do not have sufficient capacity to represent SB scores on the
entire MILP space without the assumption of MP-tractability, stated as follows.
Theorem 4.5. There exist two MILP problems with different SB scores, such that any MP-GNN has
the same output on them, regardless of the number of parameters.

There are infinitely many pairs of examples proving Theorem 4.5, and we show two simple examples:

min x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8,

s.t. x1 + x2 ≥ 1, x2 + x3 ≥ 1, x3 + x4 ≥ 1, x4 + x5 ≥ 1, x5 + x6 ≥ 1,

x6 + x7 ≥ 1, x7 + x8 ≥ 1, x8 + x1 ≥ 1, 0 ≤ xj ≤ 1, xj ∈ Z, 1 ≤ j ≤ 8,

(4.1)

min x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8,

s.t. x1 + x2 ≥ 1, x2 + x3 ≥ 1, x3 + x1 ≥ 1, x4 + x5 ≥ 1, x5 + x6 ≥ 1,

x6 + x4 ≥ 1, x7 + x8 ≥ 1, x8 + x7 ≥ 1, 0 ≤ xj ≤ 1, xj ∈ Z, 1 ≤ j ≤ 8.

(4.2)

We will prove in Appendix B that these two MILP instances have different SB scores, but they cannot
be distinguished by any MP-GNN in the sense that for any F ∈ FMP-GNN, inputs (4.1) and (4.2)
lead to the same output. Therefore, it is impossible to train an MP-GNN to approximate the SB
score meeting a required level of accuracy with high probability, independent of the complexity of
the MP-GNN. Any MP-GNN that accurately predicts one MILP’s SB score will necessarily fail
on the other. We also remark that our analysis for (4.1) and (4.2) can be generalized easily to any
aggregation mechanism of neighbors’ information when constructing the MP-GNNs, not limited to
the sum aggregation as in Section 2.

The MILP instances on which MP-GNNs fail to approximate SB scores, (4.1) and (4.2), are not
MP-tractable. It can be verified that for both (4.1) and (4.2), the partition as in Theorem 4.1 is given
by I = {I1} with I1 = {1, 2, . . . , 8} and J = {J1} with J1 = {1, 2, . . . , 8}, i.e., all vertices in
V form a class and all vertices in W form the other class. Then the matrices (Aij)i∈I1,j∈J1 and
(Āij)i∈I1,j∈J1

are just A and Ā, the coefficient matrices in (4.1) and (4.2), and have both 0 and 1 as
entries, which does not satisfies Definition 4.2.

Based on Theorem 4.5, we can directly derive the following corollary by considering a simple discrete
uniform distribution P on only two instances (4.1) and (4.2).
Corollary 4.6. There exists a probability distribution P over Gm,n satisfying Assumption 4.3 and
constants ϵ, δ > 0, such that for any MP-GNN F ∈ FMP-GNN, it holds that

P[∥F (G)− SB(G)∥ ≥ δ] ≥ ϵ.

This corollary indicates that the assumption of MP-tractability in Theorem 4.4 is not removable.

4.3 2-FGNNs are capable of universally representing SB

Although the universal approximation of MP-GNNs for SB scores is conditioned on the MP-
tractability, we find an unconditional positive result stating that when we increase the order of
GNNs a bit, it is possible to represent SB scores of MILPs, regardless of the MP-tractability.
Theorem 4.7. Let P be any probability distribution over Gm,n that satisfies Assumption 4.3. Then
for any ε, δ > 0, there exists a GNN F ∈ F2-FGNN such that

P[∥F (G)− SB(G)∥ ≤ δ] ≥ 1− ϵ.

The proof of Theorem 4.7 leverages the second-order folklore Weisfeiler-Lehman (2-FWL) test. We
show that for any two MILPs, whether MP-tractable or not, identical 2-FWL results imply they share
the same SB score, thus removing the need for MP-tractability. Details are provided in Appendix C.

Theorem 4.7 establishes the existence of a 2-FGNN that can approximate the SB scores of MILPs
well with high probability. This is a fundamental result illustrating the possibility of training a GNN
to predict branching strategies for MILPs that are not MP-tractable. In particular, for any probability
distribution P as in Corollary 4.6 on which MP-GNNs fail to predict the SB scores well, Theorem 4.7
confirms the capability of 2-FGNNs to work on it.

However, it’s worth noting that 2-FGNNs typically have higher computational costs, both during
training and inference stages, compared to MP-GNNs. This computational burden comes from

8

the fact that calculations of 2-FGNNs reply on pairs of nodes instead of nodes, as we discussed
in Section 2. To mitigate such computational challenges, one could explore the use of sparse or
local variants of high-order GNNs that enjoy cheaper information aggregation with strictly stronger
separation power than GNNs associated with the original high-order WL test [41].

4.4 Practical insights of our theoretical results
Theorem 4.4 and Corollary 4.6 indicate the significance of MP-tractability in practice. Before
attempting to train a MP-GNN to imitate SB, practitioners can first verify if the MILPs in their dataset
satisfy MP-tractability. If the dataset contains a substantial number of MP-intractable instances,
careful consideration of this approach is necessary, and 2-FGNNs may be more suitable according to
Theorem 4.7. Notably, assessing MP-tractability relies solely on conducting the WL test (Algorithm
1). This algorithm is well-established in graph theory and benefits from abundant resources and
repositories for implementation. Moreover, it operates with polynomial complexity (detailed below),
which is reasonable compared to solving MILPs.

Complexity of verifying MP-tractability. To verify MP-tractability of a MILP, one requires at most
O(m+ n) color refinement iterations according to Theorem 4.1. The complexity of each iteration is
bounded by the number of edges in the graph [49]. In our context, it is bounded by the number of
nonzeros in matrix A: nnz(A). Therefore, the overall complexity is O((m+ n) · nnz(A)), which is
linear in terms of (m+n) and nnz(A). In contrast, solving an MILP or even calculating its all the SB
scores requires significantly higher complexity. To calculate the SB score of each MILP, one needs to
solve at most n LPs. We denote the complexity of solving each LP as CompLP(m,n). Therefore,
the overall complexity of calculating SB scores is O(n · CompLP(m,n)). Note that, currently, there
is still no strongly polynomial-time algorithm for LP, thus this complexity is significantly higher than
that of verifying MP-tractability.

While verifying MP-tractability is polynomial in complexity, the complexity of GNNs is still not
guaranteed. Theorems 4.4 and 4.7 address existence, not complexity. In other words, this paper
answers the question of whether GNNs can represent the SB score. To explore how well GNNs can
represent SB, further investigation is needed.

Frequency of MP-tractability. In practice, the occurrence of MP-tractable instances is highly
dependent on the dataset. In both Examples 4.1 and 4.2 (both MP-intractable), all variables exhibit
symmetry, as they are assigned the same color by the WL test, which fails to distinguish them.
Conversely, in the 3-variable example in Figure 2 (MP-tractable), only two of the three variables,
x1 and x2, are symmetric. Generally, the frequency of MP-tractability depends on the level of
symmetry in the data — higher levels of symmetry increase the risk of MP-intractability. This
phenomenon is commonly seen in practical MILP datasets, such as MIPLIB 2017 [23]. According to
[12], approximately one-quarter of examples show significant symmetry in over half of the variables.

5 Numerical results
We implement numerical experiments to validate our theoretical findings in Section 4.

Experimental settings: We train an MP-GNN and a 2-FGNN with L = 2, where we replace the
functions f l(tl−1

j , Aij) and gl(sl−1
i , Aij) in the MP-GNN by Aijf

l(tl−1
j) and Aijg

l(sl−1
i) to guar-

antee that they take the value 0 whenever Aij = 0. For both GNNs, p0, q0 are parameterized as linear
transformations followed by a non-linear activation function; {pl, ql, f l, gl}Ll=1 are parameterized as
3-layer multi-layer perceptrons (MLPs) with respective learnable parameters; and the output mapping
r is parameterized as a 2-layer MLP. All layers map their input to a 1024-dimensional vector and
use the ReLU activation function. With θ denoting the set of all learnable parameters of a network,
we train both MP-GNN and 2-FGNN to fit the SB scores of the MILP dataset G, by minimizing
1
2

∑
G∈G ∥Fθ(G)− SB(G)∥2 with respect to θ, using Adam [31]. The networks and training scheme

is implemented with Python and TensorFlow [1]. The numerical experiments are conducted on a
single NVIDIA Tesla V100 GPU for two datasets:

• We randomly generate 100 MILP instances, with 6 constraints and 20 variables, that are MP-
tractable with probability 1. SB scores are collected using SCIP [6]. More details about instance
generation are provided in Appendix E.

• We train the MP-GNN and 2-FGNN to fit the SB scores of (4.1) and (4.2), i.e., the dataset only
consists of two instances that are not MP-tractable.

9

0 500 1000 1500 2000
Epoch

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Er
ro

r

MP-GNN
2-FGNN

(a) MP-tractable MILPs: Both MP-GNN and 2-FGNN
can fit the SB scores.

0 500 1000 1500 2000
Epoch

10 16

10 13

10 10

10 7

10 4

10 1

Er
ro

r

MP-GNN
2-FGNN

(b) MP-intractable MILPs (4.1) and (4.2): 2-FGNN
can fit SB scores while MP-GNN can not.

Figure 3: Numerical results of MP-GNN and 2-FGNN for SB score fitting. In the right figure, the
training error of MP-GNN on MP-intractable examples does not decrease after however many epochs.

Experimental results: The numerical results are displayed in Figure 3. One can see from Figure 3a
that both MP-GNN and 2-FGNN can approximate the SB scores over the dataset of random MILP
instances very well, which validates Theorem 4.4 and Theorem 4.7. As illustrated in Figure 3b,
2-FGNN can perfectly fit the SB scores of (4.1) and (4.2) simultaneously while MP-GNN can not,
which is consistent with Theorem 4.5 and Theorem 4.7 and serves as a numerical verification of the
capacity differences between MP-GNN and 2-FGNN for SB prediction. The detailed exploration
of training and performance evaluations of GNNs is deferred to future work to maintain a focused
investigation on the theoretical capabilities of GNNs in this paper.

Number of parameters: In Figure 3b, the behavior of MP-GNN remains unchanged regardless
of the number of parameters used, as guaranteed by Theorem 4.5. This error is intrinsically due to
the structure of MP-intractable MILPs and cannot be reduced by adding parameters. Conversely,
2-FGNN can achieve near-zero loss with sufficient parameters, as guaranteed by Theorem 4.7 and
confirmed by our numerical experiments. To further verify this, we tested 2-FGNN with embedding
sizes from 64 to 2,048. All models reached near-zero errors, though epoch counts varied, as shown in
Table 1. The results suggest that larger embeddings improve model capacity to fit counterexamples.
The gains level off beyond an embedding size of 1,024 due to increased training complexity.

Table 1: Epochs required to reach specified errors with varying embedding sizes for 2-FGNN.
Embedding size 64 128 256 512 1,024 2,048

Epochs to reach 10−6 error 16,570 5,414 2,736 1,442 980 1,126
Epochs to reach 10−12 error 18,762 7,474 4,412 2,484 1,128 1,174

Larger instances: While our study primarily focuses on theory and numerous empirical studies
have shown the effectiveness of GNNs in branching strategies (as noted in Section 1), we conducted
experiments on larger instances to further assess the scalability of this approach. We trained an
MP-GNN on 100 large-scale set covering problems, each with 1,000 variables and 2,000 constraints,
generated following the methodology in [19]. The MP-GNN achieved a training loss of 1.94× 10−4,
calculated as the average ℓ2 norm of errors across all training instances.

6 Conclusion
In this work, we study the expressive power of two types of GNNs for representing SB scores. We
find that MP-GNNs can accurately predict SB results for MILPs within a specific class termed
"message-passing-tractable" (MP-tractable). However, their performance is limited outside this class.
In contrast, 2-FGNNs, which update node-pair features instead of node features as in MP-GNNs, can
universally approximate the SB scores on every MILP dataset or for every MILP distribution. These
findings offer insights into the suitability of different GNN architectures for varying MILP datasets,
particularly considering the ease of assessing MP-tractability. We also comment on limitations and
future research topics. Although the universal approximation result is established for MP-GNNs
and 2-FGNNs to represent SB scores, it is still unclear what is the required complexity/number of
parameters to achieve a given precision. It would thus be interesting and more practically useful to
derive some quantitative results. In addition, exploring efficient training strategies or alternatives of
higher order GNNs for MILP tasks is an interesting and significant future direction.

10

Acknowledgments and Disclosure of Funding

We would like to express our deepest gratitude to Prof. Pan Li from the School of Electrical and
Computer Engineering at Georgia Institute of Technology (GaTech ECE), for insightful discussions
on second-order folklore GNNs and their capacities for general graph tasks. We would also like to
thank Haoyu Wang from GaTech ECE for helpful discussions during his internship at Alibaba US
DAMO Academy.

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu

Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. {TensorFlow}: a system for
{Large-Scale} machine learning. In 12th USENIX symposium on operating systems design and
implementation (OSDI 16), pages 265–283, 2016.

[2] Alejandro Marcos Alvarez, Quentin Louveaux, and Louis Wehenkel. A machine learning-based
approximation of strong branching. INFORMS Journal on Computing, 29(1):185–195, 2017.

[3] David Applegate, Robert Bixby, Vašek Chvátal, and William Cook. Finding cuts in the TSP,
volume 95. Citeseer, 1995.

[4] Waiss Azizian and Marc Lelarge. Expressive power of invariant and equivariant graph neural
networks. In International Conference on Learning Representations, 2021.

[5] Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. Learning to branch.
In International conference on machine learning, pages 344–353. PMLR, 2018.

[6] Ksenia Bestuzheva, Mathieu Besançon, Wei-Kun Chen, Antonia Chmiela, Tim Donkiewicz,
Jasper van Doornmalen, Leon Eifler, Oliver Gaul, Gerald Gamrath, Ambros Gleixner, et al. The
scip optimization suite 8.0. arXiv preprint arXiv:2112.08872, 2021.

[7] Suresh Bolusani, Mathieu Besançon, Ksenia Bestuzheva, Antonia Chmiela, João Dionísio, Tim
Donkiewicz, Jasper van Doornmalen, Leon Eifler, Mohammed Ghannam, Ambros Gleixner,
Christoph Graczyk, Katrin Halbig, Ivo Hedtke, Alexander Hoen, Christopher Hojny, Rolf
van der Hulst, Dominik Kamp, Thorsten Koch, Kevin Kofler, Jurgen Lentz, Julian Manns, Gioni
Mexi, Erik Mühmer, Marc E. Pfetsch, Franziska Schlösser, Felipe Serrano, Yuji Shinano, Mark
Turner, Stefan Vigerske, Dieter Weninger, and Lixing Xu. The SCIP Optimization Suite 9.0.
Technical report, Optimization Online, February 2024.

[8] Suresh Bolusani, Mathieu Besançon, Ksenia Bestuzheva, Antonia Chmiela, João Dionísio, Tim
Donkiewicz, Jasper van Doornmalen, Leon Eifler, Mohammed Ghannam, Ambros Gleixner,
Christoph Graczyk, Katrin Halbig, Ivo Hedtke, Alexander Hoen, Christopher Hojny, Rolf
van der Hulst, Dominik Kamp, Thorsten Koch, Kevin Kofler, Jurgen Lentz, Julian Manns, Gioni
Mexi, Erik Mühmer, Marc E. Pfetsch, Franziska Schlösser, Felipe Serrano, Yuji Shinano, Mark
Turner, Stefan Vigerske, Dieter Weninger, and Lixing Xu. The SCIP Optimization Suite 9.0.
ZIB-Report 24-02-29, Zuse Institute Berlin, February 2024.

[9] Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of
variables for graph identification. Combinatorica, 12(4):389–410, 1992.

[10] Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between graph
isomorphism testing and function approximation with gnns. Advances in neural information
processing systems, 32, 2019.

[11] Ziang Chen, Jialin Liu, Xinshang Wang, Jianfeng Lu, and Wotao Yin. On representing linear
programs by graph neural networks. In The Eleventh International Conference on Learning
Representations, 2023.

[12] Ziang Chen, Jialin Liu, Xinshang Wang, Jianfeng Lu, and Wotao Yin. On representing mixed-
integer linear programs by graph neural networks. In The Eleventh International Conference on
Learning Representations, 2023.

11

[13] Cheng Chi, Amine Aboussalah, Elias Khalil, Juyoung Wang, and Zoha Sherkat-Masoumi. A
deep reinforcement learning framework for column generation. Advances in Neural Information
Processing Systems, 35:9633–9644, 2022.

[14] Santanu S Dey, Yatharth Dubey, Marco Molinaro, and Prachi Shah. A theoretical and com-
putational analysis of full strong-branching. Mathematical Programming, 205(1):303–336,
2024.

[15] Jian-Ya Ding, Chao Zhang, Lei Shen, Shengyin Li, Bing Wang, Yinghui Xu, and Le Song.
Accelerating primal solution findings for mixed integer programs based on solution prediction.
In Proceedings of the aaai conference on artificial intelligence, volume 34, pages 1452–1459,
2020.

[16] Lawrence C Evans and Ronald F Garzepy. Measure theory and fine properties of functions.
Routledge, 2018.

[17] Jonas K Falkner, Daniela Thyssens, Ahmad Bdeir, and Lars Schmidt-Thieme. Learning to
control local search for combinatorial optimization. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 361–376. Springer, 2022.

[18] Gerald Gamrath and Christoph Schubert. Measuring the impact of branching rules for mixed-
integer programming. In Operations Research Proceedings 2017: Selected Papers of the Annual
International Conference of the German Operations Research Society (GOR), Freie Universiät
Berlin, Germany, September 6-8, 2017, pages 165–170. Springer, 2018.

[19] Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact
combinatorial optimization with graph convolutional neural networks. Advances in Neural
Information Processing Systems, 32, 2019.

[20] Floris Geerts. The expressive power of kth-order invariant graph networks. arXiv preprint
arXiv:2007.12035, 2020.

[21] Floris Geerts. Walk message passing neural networks and second-order graph neural networks.
arXiv preprint arXiv:2006.09499, 2020.

[22] Floris Geerts and Juan L Reutter. Expressiveness and approximation properties of graph neural
networks. In International Conference on Learning Representations, 2022.

[23] Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael Bastubbe,
Timo Berthold, Philipp Christophel, Kati Jarck, Thorsten Koch, Jeff Linderoth, et al. Miplib
2017: data-driven compilation of the 6th mixed-integer programming library. Mathematical
Programming Computation, 13(3):443–490, 2021.

[24] Prateek Gupta, Maxime Gasse, Elias Khalil, Pawan Mudigonda, Andrea Lodi, and Yoshua
Bengio. Hybrid models for learning to branch. Advances in neural information processing
systems, 33:18087–18097, 2020.

[25] Prateek Gupta, Elias Boutros Khalil, Didier Chételat, Maxime Gasse, Andrea Lodi, Yoshua
Bengio, and M. Pawan Kumar. Lookback for learning to branch. Transactions on Machine
Learning Research, 2022.

[26] Abdelrahman Hosny and Sherief Reda. Automatic milp solver configuration by learning
problem similarities. Annals of Operations Research, pages 1–28, 2023.

[27] Stefanie Jegelka. Theory of graph neural networks: Representation and learning. arXiv preprint
arXiv:2204.07697, 2022.

[28] Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks.
Advances in Neural Information Processing Systems, 32, 2019.

[29] Elias Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. Learning to
branch in mixed integer programming. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 30, 2016.

12

[30] Elias B Khalil, Christopher Morris, and Andrea Lodi. Mip-gnn: A data-driven framework for
guiding combinatorial solvers. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pages 10219–10227, 2022.

[31] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[32] Abdel Ghani Labassi, Didier Chételat, and Andrea Lodi. Learning to compare nodes in branch
and bound with graph neural networks. Advances in Neural Information Processing Systems,
35:32000–32010, 2022.

[33] AH Land and AG Doig. An automatic method of solving discrete programming problems.
Econometrica: Journal of the Econometric Society, pages 497–520, 1960.

[34] Pan Li and Jure Leskovec. The Expressive Power of Graph Neural Networks, pages 63–98.
Springer Nature Singapore, Singapore, 2022.

[35] Jiacheng Lin, Jialin Zhu, Huangang Wang, and Tao Zhang. Learning to branch with tree-aware
branching transformers. Knowledge-Based Systems, 252:109455, 2022.

[36] Defeng Liu, Matteo Fischetti, and Andrea Lodi. Learning to search in local branching. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages 3796–3803,
2022.

[37] Andreas Loukas. What graph neural networks cannot learn: depth vs width. In International
Conference on Learning Representations, 2020.

[38] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful
graph networks. Advances in neural information processing systems, 32, 2019.

[39] Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of invariant
networks. In International conference on machine learning, pages 4363–4371. PMLR, 2019.

[40] Tom Marty, Tristan François, Pierre Tessier, Louis Gautier, Louis-Martin Rousseau, and Quentin
Cappart. Learning a generic value-selection heuristic inside a constraint programming solver.
In 29th International Conference on Principles and Practice of Constraint Programming (CP
2023). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2023.

[41] Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and leman go sparse: Towards
scalable higher-order graph embeddings. Advances in Neural Information Processing Systems,
33:21824–21840, 2020.

[42] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural
networks. In Proceedings of the AAAI conference on artificial intelligence, volume 33, pages
4602–4609, 2019.

[43] Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid Von Glehn, Pawel Lichocki, Ivan Lobov,
Brendan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al.
Solving mixed integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020.

[44] Max B Paulus, Giulia Zarpellon, Andreas Krause, Laurent Charlin, and Chris Maddison.
Learning to cut by looking ahead: Cutting plane selection via imitation learning. In International
conference on machine learning, pages 17584–17600. PMLR, 2022.

[45] Qingyu Qu, Xijun Li, Yunfan Zhou, Jia Zeng, Mingxuan Yuan, Jie Wang, Jinhu Lv, Kexin Liu,
and Kun Mao. An improved reinforcement learning algorithm for learning to branch. arXiv
preprint arXiv:2201.06213, 2022.

[46] Ryoma Sato. A survey on the expressive power of graph neural networks. arXiv preprint
arXiv:2003.04078, 2020.

[47] Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Approximation ratios of graph neural
networks for combinatorial problems. Advances in Neural Information Processing Systems, 32,
2019.

13

[48] Lara Scavuzzo, Feng Yang Chen, Didier Chételat, Maxime Gasse, Andrea Lodi, Neil Yorke-
Smith, and Karen Aardal. Learning to branch with tree MDPs. In Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information Processing
Systems, 2022.

[49] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9),
2011.

[50] Wen Song, Zhiguang Cao, Jie Zhang, Chi Xu, and Andrew Lim. Learning variable ordering
heuristics for solving constraint satisfaction problems. Engineering Applications of Artificial
Intelligence, 109:104603, 2022.

[51] Mark Turner, Thorsten Koch, Felipe Serrano, and Michael Winkler. Adaptive cut selection in
mixed-integer linear programming. Open Journal of Mathematical Optimization, 4:1–28, 2023.

[52] Zhihai Wang, Xijun Li, Jie Wang, Yufei Kuang, Mingxuan Yuan, Jia Zeng, Yongdong Zhang,
and Feng Wu. Learning cut selection for mixed-integer linear programming via hierarchical
sequence model. arXiv preprint arXiv:2302.00244, 2023.

[53] Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. NTI, Series, 2(9):12–16, 1968.

[54] Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Learning large neighborhood search
policy for integer programming. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Processing Systems, 2021.

[55] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

[56] Yu Yang, Natashia Boland, Bistra Dilkina, and Martin Savelsbergh. Learning generalized strong
branching for set covering, set packing, and 0–1 knapsack problems. European Journal of
Operational Research, 301(3):828–840, 2022.

[57] Huigen Ye, Hua Xu, Hongyan Wang, Chengming Wang, and Yu Jiang. Gnn&gbdt-guided fast
optimizing framework for large-scale integer programming. In International Conference on
Machine Learning, pages 39864–39878. PMLR, 2023.

[58] Giulia Zarpellon, Jason Jo, Andrea Lodi, and Yoshua Bengio. Parameterizing branch-and-bound
search trees to learn branching policies. In Proceedings of the aaai conference on artificial
intelligence, volume 35, pages 3931–3939, 2021.

[59] Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. Rethinking the expressive power
of GNNs via graph biconnectivity. In The Eleventh International Conference on Learning
Representations, 2023.

[60] Tianyu Zhang, Amin Banitalebi-Dehkordi, and Yong Zhang. Deep reinforcement learning for
exact combinatorial optimization: Learning to branch. In 2022 26th International Conference
on Pattern Recognition (ICPR), pages 3105–3111. IEEE, 2022.

[61] Lingxiao Zhao, Neil Shah, and Leman Akoglu. A practical, progressively-expressive gnn.
Advances in Neural Information Processing Systems, 35:34106–34120, 2022.

14

A Proof of Theorem 4.4

This section presents the proof of Theorem 4.4. We define the separation power of WL test in
Definition A.1 and prove that two MP-tractable MILP-graphs, or two vertices in a single MP-tractable
graph, indistinguishable by WL test must share the same SB score in Theorem A.3. In other words,
WL test has sufficient separation power to distinguish MP-tractable MILP graphs, or vertices in a
single MP-tractable graph, with different SB scores.

Before stating the major result, we first introduce some definitions and useful theorems.
Definition A.1. Let G, Ḡ ∈ Gm,n and let CV

l (i), CW
l (j) and C̄V

l (i), C̄W
l (j) be the colors gen-

erated by the WL test (Algorithm 1) for G and Ḡ. We say G W∼ Ḡ if
{{
CV

L (i) : i ∈ V
}}

={{
C̄V

L (i) : i ∈ V
}}

and CW
L (j) = C̄W

L (j), ∀ j ∈W holds for any L and any hash functions.
Theorem A.2 ([11, Theorem A.2]). The partition defined in Theorem 4.1 satisfies:

(a) vi = vi′ , ∀ i, i′ ∈ Ip, p ∈ {1, 2, . . . , s},

(b) wj = wj′ , ∀ j, j′ ∈ Jq, q ∈ {1, 2, . . . , t},

(c) {{Aij : j ∈ Jq}} = {{Ai′j : j ∈ Jq}}, ∀ i, i′ ∈ Ip, p ∈ {1, 2, . . . , s}, q ∈ {1, 2, . . . , t},

(d) {{Aij : i ∈ Ip}} = {{Aij′ : i ∈ Ip}}, ∀ j, j′ ∈ Jq, p ∈ {1, 2, . . . , s}, q ∈ {1, 2, . . . , t},

where {{}} denotes the multiset considering both the elements and the multiplicities.

In Theorem A.2, conditions (a) and (b) mean vertices in the same class share the same features,
while conditions (c) and (d) state that vertices in the same class interact with another class with the
same multiset of weights. In other words, for any p ∈ {1, 2, . . . , s} and q ∈ {1, 2, . . . , t}, different
rows/columns of the submatrix (Aij)i∈Ip,j∈Jq

provide the same multiset of entries.

With the above preparations, we can state and prove the main result now.
Theorem A.3. For any G, Ḡ ∈ GMP

m,n with SB(G) ∈ Rn and SB(Ḡ) ∈ Rn, the followings are true:

(a) If G W∼ Ḡ, then SB(G) = SB(Ḡ).

(b) If CW
L (j1) = CW

L (j2) holds for any L and any hash functions, then SB(G)j1 = SB(G)j2 .

Proof. (a) Since G W∼ Ḡ, after applying some permutation on V (relabelling vertices in V) in the
graph Ḡ, the two G and Ḡ share the same partition I = {I1, I2, . . . , Is} and J = {J1, J2, . . . , Jt}
as in Theorem A.2 and we have

• For any p ∈ {1, 2, . . . , s}, vi = v̄i is constant over all i ∈ Ip,

• For any q ∈ {1, 2, . . . , t}, wj = w̄j is constant over all j ∈ Jq ,

• For any p ∈ {1, 2, . . . , s} and q ∈ {1, 2, . . . , t}, {{Aij : j ∈ Jq}} = {{Āij : j ∈ Jq}} is
constant over all i ∈ Ip,

• For any p ∈ {1, 2, . . . , s} and q ∈ {1, 2, . . . , t}, {{Aij : i ∈ Ip}} = {{Āij : i ∈ Ip}} is
constant over all j ∈ Jq .

Here, we slightly abuse the notation not to distinguish Ḡ and the MILP-graph obtained from Ḡ by
relabelling vertice in V , and these two graphs have exactly the same SB scores since the vertices in
W are not relabelled.

Note that both G and Ḡ are MP-tractable, i.e., for any p ∈ {1, 2, . . . , s} and q ∈ {1, 2, . . . , t},
(Aij)i∈Ip,j∈Jq

and (Āij)i∈Ip,j∈Jq
are both matrices with identical entries, which combined with the

third and the fourth conditions above implies that Aij = Āij for all i ∈ Ip and j ∈ Jq . Therefore, we
have G = Ḡ and hence SB(G) = SB(Ḡ).

(b) The result is a directly corollary of (a) by considering G and the MILP-graph obtained from G by
relabeling j1 as j2 and relabeling j2 as j1.

15

In addition to Theorem A.3, we also need the following two theorem to prove Theorem 4.4.

Theorem A.4 (Lusin’s theorem [16, Theorem 1.14]). Suppose that µ is a Borel regular measure
on Rn and that f : Rn → Rm is µ-measurable, i.e., for any open subset U ⊂ Rm, f−1(U) is
µ-measurable. Then for any µ-measurable X ⊂ Rn with µ(X) <∞ and any ϵ > 0, there exists a
compact set E ⊂ X with µ(X\E) < ϵ, such that f |E is continuous.

Theorem A.5 ([11, Theorem E.1]). Let X ⊂ Gm,n be a compact subset that is closed under the
action of Sm × Sn. Suppose that Φ ∈ C(X,Rn) satisfies the followings:

(a) For any σV ∈ Sm, σW ∈ Sn, and G ∈ X , it holds that Φ((σV , σW) ∗ G) = σW (Φ(G)),
where (σV , σW) ∗G represents the MILP-graph obtained from G by reordering vertices
with permutations σV and σW .

(b) Φ(G) = Φ(Ḡ) holds for all G, Ĝ ∈ X with G W∼ Ḡ.

(c) Given any G ∈ X and any j1, j2 ∈ {1, 2, . . . , n}, if CW
L (j1) = CW

L (j2) holds for any L
and any hash functions, then Φ(G)j1 = Φ(G)j2 .

Then for any ϵ > 0, there exists F ∈ FMP-GNN such that

sup
G∈X

∥Φ(G)− F (G)∥ < ϵ.

Now we can present the proof of Theorem 4.4.

Proof of Theorem 4.4. Lemma F.2 and Lemma F.3 in [11] prove that the function that maps LP
instances to its optimal objective value/optimal solution with the smallest ℓ2-norm is Borel measurable.
Thus, SB : Gm,n ⊃ SB−1(Rn) → Rn is also Borel measurable, and is hence P-measurable due to
Assumption 4.3. In addition, GMP

m,n is a Borel subset of Gm,n since the MP-tractability is defined
by finitely many operations of comparison and aggregations. By Theorem A.4 and the assumption
P[G ∈ GMP

m,n] = 1, there exists a compact subset X1 ⊂ GMP
m,n∩SB−1(Rn) such that P[Gm,n\X1] ≤ ϵ

and SB|X1
is continuous. For any σV ∈ Sm and σW ∈ Sn, (σV , σW) ∗ X1 is also compact and

SB|(σV ,σW)∗X1
is also continuous by the permutation-equivariance of SB. Set

X2 =
⋃

σV ∈Sm,σW∈Sn

(σV , σW) ∗X1.

Then X2 is permutation-invariant and compact with

P[Gm,n\X2] ≤ P[Gm,n\X1] ≤ ϵ.

In addition, SB|X2
is continuous by pasting lemma.

The rest of the proof is to apply Theorem A.5 for X = X2 and Φ = SB, for which we need to verify
the four conditions in Theorem C.10. Condition (a) is true since SB is permutation-equivalent by its
definition. Conditions (b) and (c) follow directly from Theorem A.3. According to Theorem A.5,
there exists some F ∈ F2-FGNN such that

sup
G∈X2

∥F (G)− SB(G)∥ ≤ δ.

Therefore, one has
P[∥F (G)− SB(G)∥ > δ] ≤ P[Gm,n\X2] ≤ ϵ,

which completes the proof.

B Proof of Theorem 4.5

In this section, we verify that the MILP instances (4.1) and (4.2) prove Theorem 4.5. We will first
show that they have different SB scores while cannot be distinguished by any MP-GNNs.

16

Different SB scores Denote the graph representation of (4.1) and (4.2) asG and Ḡ, respectively. For
both (4.1) and (4.2), the same optimal objective value is 4 and the optimal solution with the smallest
ℓ2-norm is (1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2). To calculate SB(G)j or SB(Ḡ)j , it is necessary
create two LPs for each variable xj . In one LP, the upper bound of xj is set to ûj = ⌊1/2⌋ = 0,
actually fixing xj at its lower bound lj = 0. Similarly, the other LP sets xj to 1.

For the problem (4.1), even if we fix x1 = 1, the objective value of the LP relaxation can still achieve
4 by x = (1, 0, 1, 0, 1, 0, 1, 0). A similar observation also holds for fixing x1 = 0. Therefore, the SB
score for x1 (also for any xj in (4.1)) is 0. In other words,

SB(G) = (0, 0, 0, 0, 0, 0, 0, 0).

However, for the problem (4.2), if we fix x1 = 1, then the optimal objective value of the LP relaxation
is 9/2 since

8∑
i=1

xi = 1 + (x2 + x3) +
1

2
(x4 + x5) +

1

2
(x5 + x6) +

1

2
(x6 + x4) + (x7 + x8) ≥ 9/2

and the above inequality is tight as x = (1, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2). If we fix x1 = 0, then
x2, x3 ≥ 1 and the optimal objective value of the LP relaxation is also 9/2 since

8∑
i=1

xi ≥ 0 + 1 + 1 +
1

2
(x4 + x5) +

1

2
(x5 + x6) +

1

2
(x6 + x4) + (x7 + x8) ≥ 9/2,

and the equality holds when x = (0, 1, 1, 1/2, 1/2, 1/2, 1/2, 1/2). Therefore, the the SB score for x1
(also for any xi (1 ≤ i ≤ 6) in (4.2)) is (9/2− 4) · (9/2− 4) = 1/4. If we fix x7 = 1, the optimal
objective value of the LP relaxation is still 4 since (1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1, 0) is an optimal
solution. A similar observation still holds if x7 is fixed to 0. Thus the SB scores for x7 and x8 are
both 0. Combining these calculations, we obtain that

SB(Ḡ) =
(
1

4
,
1

4
,
1

4
,
1

4
,
1

4
,
1

4
, 0, 0

)
.

MP-GNNs’ output Although G and Ḡ are non-isomorphic with different SB scores, they still
have the same output for every MP-GNN. We prove this by induction. Referencing the graph
representations in Section 2, we explicitly write down the features:

vi = v̄i = (1,≥), wj = w̄j = (1, 0, 1, 1), for all i ∈ {1, · · · , 8}, j ∈ {1, · · · , 8}.
Considering the MP-GNN’s initial step where s0i = p0(vi) and t0j = q0(wj), we can conclude that
s0i = s̄0i is a constant for all i and t0j = t̄0j is a constant for all j, regardless of the choice of functions
p0 and q0. Thus, the initial layer generates uniform outcomes for nodes in V and W across both
graphs, which is the induction base. Suppose that the principle of uniformity applies to sli, s̄

l
i, t

l
j , t̄

l
j

for some 0 ≤ l ≤ L− 1. Since sli, s̄
l
i are constant across all i, we can denote their common value as

sl and hence sl = sli = s̄li for all i. Similarly, we can define tl with tl = tlj = t̄lj for all j. Then it
holds that

sl+1
i = s̄l+1

i = pl
(
sl, 2f l(tl, 1)

)
and tl+1

j = t̄l+1
j = ql

(
tl, 2gl(sl, 1)

)
,

where we used {{Aij′ : j
′ ∈ W}} = {{Āij′ : j

′ ∈ W}} = {{Ai′j : i′ ∈ W}} = {{Āi′j : i′ ∈
W}} = {{1, 1, 0, 0, 0, 0, 0, 0}} for all i and j. This proves the uniformity for l + 1. Therefore, we
obtain the existence of sL, tL such that sLi = s̄Li = sL and tLj = t̄Lj = tL for all i, j. Finally, the
output layer yields:

yj = ȳj = r
(
8sL, 8tL, tL

)
for all j ∈ {1, · · · , 8},

which finishes the proof.

C Proof of Theorem 4.7

This section presents the proof of Theorem 4.7. The central idea is to establish a separation result in
the sense that two MILPs with distinct SB scores must be distinguished by at least one F ∈ F2-FGNN,
and then apply a generalized Stone-Weierstrass theorem in [4].

17

C.1 2-FWL test and its separation power

The 2-FWL test [9], as an extension to the classic WL test [53], is a more powerful algorithm for the
graph isomorphism problem. By applying the 2-FWL test algorithm (formally stated in Algorithm 2)
to two graphs and comparing the outcomes, one can determine the non-isomorphism of the two graphs
if the results vary. However, identical 2-FWL outcomes do not confirm isomorphism. Although this
test does not solve the graph isomorphism problem entirely, it can serve as a measure of 2-FGNN’s
separation power, analogous to how the WL test applies to MP-GNN [55].

Algorithm 2 2-FWL test for MILP-Graphs

1: Input: A graph instance G = (V,W,A, FV , FW) and iteration limit L > 0.
2: Initialize with

CVW
0 (i, j) = HASHVW

0 (vi, wj , Aij),

CWW
0 (j1, j2) = HASHWW

0 (wj1 , wj2 , δj1j2).

3: for l = 1, 2, . . . , L do
4: Refine the color

CVW
l (i, j) = HASHVW

l

(
CVW

l−1 (i, j),
{{

(CWW
l−1 (j1, j), C

VW
l−1 (i, j1)) : j1 ∈W

}})
,

CWW
l (j1, j2) = HASHWW

l

(
CWW

l−1 (j1, j2),
{{

(CVW
l−1 (i, j2), C

VW
l−1 (i, j1)) : i ∈ V

}})
.

5: end for
6: Output: Final colors CVW

L (i, j) for all i ∈ V, j ∈W and CWW
L (j1, j2) for all j1, j2 ∈W .

In particular, given the input graph G, the 2-FWL test assigns a color for every pair of nodes in the
form of (i, j) with i ∈ V, j ∈ W or (j1, j2) with j1, j2 ∈ W . The initial colors are assigned based
on the input features and the colors are refined to subcolors at each iteration in the way that two
node pairs are of the same subcolor if and only if they have the same color and the same neighbors’
color information. Here, the neighborhood of (i, j) involves {{((j1, j), (i, j1)) : j1 ∈W}} and the
neighborhood of (j1, j2) involves {{((i, j2), (i, j1)) : i ∈ V }}. After sufficient iterations, the final
colors are determined. If the final color multisets of two graphs G and Ḡ are identical, they are
deemed indistinguishable by the 2-FWL test, denoted by G ∼2 Ḡ. One can formally define the
separation power of 2-FWL test via two equivalence relations on Gm,n as follows.

Definition C.1. Let G, Ḡ ∈ Gm,n and let CVW
l (i, j), CWW

l (j1, j2) and C̄VW
l (i, j), C̄WW

l (j1, j2)
be the colors generated by 2-FWL test for G and Ḡ.

(a) We define G ∼2 Ḡ if the followings hold for any L and any hash functions:{{
CVW

L (i, j) : i ∈ V, j ∈W
}}

=
{{
C̄VW

L (i, j) : i ∈ V, j ∈W
}}

, (C.1){{
CWW

L (j1, j2) : j1, j2 ∈W
}}

=
{{
C̄WW

L (j1, j2) : j1, j2 ∈W
}}

. (C.2)

(b) We define G W∼2 Ḡ if the followings hold for any L and any hash functions:{{
CVW

L (i, j) : i ∈ V
}}

=
{{
C̄VW

L (i, j) : i ∈ V
}}

, ∀ j ∈W, (C.3){{
CWW

L (j1, j) : j1 ∈W
}}

=
{{
C̄WW

L (j1, j) : j1 ∈W
}}

, ∀ j ∈W. (C.4)

It can be seen that (C.3) and (C.4) are stronger than (C.1) and (C.2), since the latter requires that the
entire color multiset is the same while the former requires that the color multiset associated with
every j ∈W is the same. However, we can show that they are equivalent up to a permutation.

Theorem C.2. For any G, Ḡ ∈ Gm,n, G ∼2 Ḡ if and only if there exists a permutation σW ∈ Sn

such that G W∼2 σW ∗ Ḡ, where σW ∗ Ḡ is the graph obtained by relabeling vertices in W using σW .

One can understand that both G ∼2 Ḡ and G W∼2 Ḡ mean that G and Ḡ cannot be distinguished by
2-FWL test, with the difference that G ∼2 Ḡ allows a permutation on W .

18

Proof of Theorem C.2. It is clear that G W∼2 σW ∗ Ḡ implies that G ∼2 Ḡ. We then prove the reverse
direction, i.e., G ∼2 Ḡ implies G W∼2 σW ∗ Ḡ for some σW ∈ Sn. It suffices to consider L and
hash functions such that there are no collisons in Algorithm 2 and no strict color refinement in the
L-th iteration when G and Ḡ are the input, which means that two edges are assigned with the same
color in the L-th iteration if and only if their colors are the same in the (L− 1)-th iteration. For any
j1, j2, j

′
1, j

′
2 ∈W , it holds that

CWW
L (j1, j2) = CWW

L (j′1, j
′
2)

=⇒
{{

(CVW
L (i, j2), C

VW
L (i, j1)) : i ∈ V

}}
=

{{
(CVW

L (i, j′2), C
VW
L (i, j′1)) : i ∈ V

}}
=⇒

{{
CVW

L (i, j1) : i ∈ V
}}

=
{{
CVW

L (i, j′1) : i ∈ V
}}

and{{
CVW

L (i, j2) : i ∈ V
}}

=
{{
CVW

L (i, j′2) : i ∈ V
}}

.

Similarly, one has that

CWW
L (j1, j2) = C̄WW

L (j′1, j
′
2)

=⇒
{{
CVW

L (i, j1) : i ∈ V
}}

=
{{
C̄VW

L (i, j′1) : i ∈ V
}}

and{{
CVW

L (i, j2) : i ∈ V
}}

=
{{
C̄VW

L (i, j′2) : i ∈ V
}}

,

and that

C̄WW
L (j1, j2) = C̄WW

L (j′1, j
′
2)

=⇒
{{
C̄VW

L (i, j1) : i ∈ V
}}

=
{{
C̄VW

L (i, j′1) : i ∈ V
}}

and{{
C̄VW

L (i, j2) : i ∈ V
}}

=
{{
C̄VW

L (i, j′2) : i ∈ V
}}

.

Therefore, for any

C ∈
{{{

CVW
L (i, j) : i ∈ V

}}
: j ∈W

}
∪
{{{

C̄VW
L (i, j) : i ∈ V

}}
: j ∈W

}
,

it follows from (C.2) that{{
CWW

L (j1, j2) :
{{
CVW

L (i, j1) : i ∈ V
}}

=
{{
CVW

L (i, j2) : i ∈ V
}}

= C
}}

=
{{
C̄WW

L (j1, j2) :
{{
C̄VW

L (i, j1) : i ∈ V
}}

=
{{
C̄VW

L (i, j2) : i ∈ V
}}

= C
}}

.
(C.5)

Particularly, the number of elements in the two multisets in (C.5) should be the same, which implies
that

#
{
j ∈W :

{{
CVW

L (i, j) : i ∈ V
}}

= C
}
= #

{
j ∈W :

{{
C̄VW

L (i, j) : i ∈ V
}}

= C
}
,

which then leads to{{{{
CVW

L (i, j) : i ∈ V
}}

: j ∈W
}}

=
{{{{

C̄VW
L (i, j) : i ∈ V

}}
: j ∈W

}}
.

One can hence apply some permutation on W to obtain (C.3). Next we prove (C.4). For any j ∈W ,
we have{{

CVW
L (i, j) : i ∈ V

}}
=

{{
C̄VW

L (i, j) : i ∈ V
}}

=⇒ CVW
L (i1, j) = C̄VW

L (i2, j) for some i1, i2 ∈ V

=⇒
{{

(CWW
L (j1, j), C

VW
l−1 (i1, j1)) : j1 ∈W

}}
=

{{
(C̄WW

L (j1, j), C̄
VW
l−1 (i2, j1)) : j1 ∈W

}}
for some i1, i2 ∈ V

=⇒
{{
CWW

L (j1, j) : j1 ∈W
}}

=
{{
C̄WW

L (j1, j) : j1 ∈W
}}

,

which completes the proof.

C.2 SB scores of MILPs distinguishable by 2-FWL test

The following theorem establishes that the separation power of 2-FWL test is stronger than or equal
to that of SB, in the sense that two MILP-graphs, or two vertices in a single graph, that cannot be
distinguished by the 2-FWL test must share the same SB score.
Theorem C.3. For any G, Ḡ ∈ Gm,n, the followings are true:

19

(a) If G W∼2 Ḡ, then SB(G) = SB(Ḡ).

(b) If G ∼2 Ḡ, then there exists some permutation σW ∈ Sn such that SB(G) = σW (SB(Ḡ)).

(c) If
{{
CWW

L (j, j1) : j ∈W
}}

=
{{
CWW

L (j, j2) : j ∈W
}}

holds for any L and any hash
functions, then SB(G)j1 = SB(G)j2 .

We briefly describe the intuition behind the proof here. The color updating rule of 2-FWL test is based
on monitoring triangles while that of the classic WL test is based on tracking edges. More specifically,
in 2-FWL test colors are defined on node pairs and neighbors share the same triangle, while in WL
test colors are equipped with nodes with neighbors being connected by edges. When computing the
j-th entry of SB(G), we change the upper/lower bound of xj and solve two LP problems. We can
regard j ∈W as a special node and if we fixed it in 2-FWL test, a triangle containing j ∈W will be
determined by the other two nodes, one in V and one in W , and their edge. This “reduces” to the
setting of WL test. It is proved in [11] that the separation power of WL test is stronger than or equal
to the properties of LPs. This is to say that even when fixing a special node, the 2-FWL test still has
enough separation power to distinguish different LP properties and hence 2-FWL test could separate
different SB scores. We present the detailed proof of Theorem C.3 in the rest of this subsection.

Theorem C.4. For any G, Ḡ ∈ Gm,n, if G W∼2 Ḡ, then for any j ∈ {1, 2, . . . , n}, l̂j ∈ {−∞} ∪ R,
and ûj ∈ R ∪ {+∞}, the two LP problems LP(G, j, l̂j , ûj) and LP(Ḡ, j, l̂j , ûj) have the same
optimal objective value.
Theorem C.5 ([11]). Consider two LP problems with n variables and m constraints

min
x∈Rn

c⊤x, s.t. Ax ◦ b, l ≤ x ≤ u, (C.6)

and
min
x∈Rn

c̄⊤x, s.t. Āx ◦̄ b̄, l̄ ≤ x ≤ ū. (C.7)

Suppose that there exist I = {I1, I2, . . . , Is} and J = {J1, J2, . . . , Jt} that are partitions of
V = {1, 2, . . . ,m} and W = {1, 2, . . . , n} respectively, such that the followings hold:

(a) For any p ∈ {1, 2, . . . , s}, (bi, ◦i) = (b̄i, ◦̄i) is constant over all i ∈ Ip;

(b) For any q ∈ {1, 2, . . . , t}, (cj , lj , uj) = (c̄j , l̄j , ūj) is constant over all j ∈ Jq;

(c) For any p ∈ {1, 2, . . . , s} and q ∈ {1, 2, . . . , t},
∑

j∈Jq
Aij =

∑
j∈Jq

Āij is constant over
all i ∈ Ip.

(d) For any p ∈ {1, 2, . . . , s} and q ∈ {1, 2, . . . , t},
∑

i∈Ip
Aij =

∑
i∈Ip

Āij is constant over
all j ∈ Jq .

Then the two problems (C.6) and (C.7) have the same feasibility, the same optimal objective value,
and the same optimal solution with the smallest ℓ2-norm (if feasible and bounded).

Proof of Theorem C.4. Choose L and hash functions such that there are no collisons in Algorithm 2
and no strict color refinement in the L-th iteration when G and Ḡ are the input. Fix any j ∈W and
construct the partions I = {I1, I2, . . . , Is} and J = {J1, J2, . . . , Jt} as follows:

• i1, i2 ∈ Ip for some p ∈ {1, 2, . . . , s} if and only if CVW
L (i1, j) = CVW

L (i2, j).

• j1, j2 ∈ Jq for some q ∈ {1, 2, . . . , t} if and only if CWW
L (j1, j) = CWW

L (j2, j).

Without loss of generality, we can assume that j ∈ J1. One observation is that J1 = {j}. This
is because j1 ∈ J1 implies that CWW

L (j1, j) = CWW
L (j, j), which then leads to CWW

0 (j1, j) =
CWW

0 (j, j) and δj1j = δjj = 1 since there is no collisions. We thus have j1 = j.

Note that we have (C.3) and (C.4) from the assumption G W∼2 Ḡ. So after permuting Ḡ on V and
W\{j}, one can obtain CVW

L (i, j) = C̄VW
L (i, j) for all i ∈ V and CWW

L (j1, j) = C̄WW
L (j1, j) for

all j1 ∈ W . Another observation is that such permutation does not change the optimal objective
value of LP(Ḡ, j, l̂j , ûj) as j is fixed.

20

Next, we verify the four conditions in Theorem C.5 for two LP problems LP(G, j, l̂j , ûj) and
LP(Ḡ, j, l̂j , ûj) with respect to the partitions I = {I1, I2, . . . , Is} and J = {J1, J2, . . . , Jt}.

Verification of Condition (a) in Theorem C.5 Since there is no collision in the 2-FWL test
Algorithm 2, CVW

L (i, j) = C̄VW
L (i, j) implies that CVW

0 (i, j) = C̄VW
0 (i, j) and hence that vi = v̄i,

which is also constant over all i ∈ Ip since CVW
L (i, j) is contant over all i ∈ Ip by definition.

Verification of Condition (b) in Theorem C.5 It follows from CWW
L (j1, j) = C̄WW

L (j1, j) that
CWW

0 (j1, j) = C̄WW
0 (j1, j) and hence that wj1 = w̄j1 , which is also constant over all j1 ∈ Iq since

CWW
L (j1, j) is contant over all j1 ∈ Iq by definition.

Verification of Condition (c) in Theorem C.5 Consider any p ∈ {1, 2, . . . , s} and any i ∈ Ip. It
follows from CVW

L (i, j) = C̄VW
L (i, j) that{{

(CWW
L−1 (j1, j), C

VW
L−1(i, j1)) : j1 ∈W

}}
=

{{
(C̄WW

L−1 (j1, j), C̄
VW
L−1(i, j1)) : j1 ∈W

}}
,

and hence that{{
(CWW

L (j1, j), Aij1) : j1 ∈W
}}

=
{{

(C̄WW
L (j1, j), Āij1) : j1 ∈W

}}
,

where we used the fact that there is no strict color refinement in the L-th iteration and there is no
collision in Algorithm 2. We can thus conclude for any q ∈ {1, 2, . . . , t} that

{{Aij1 : j1 ∈ Jq}} = {{Āij1 : j1 ∈ Jq}},

which implies that
∑

j1∈Jq
Aij1 =

∑
j1∈Jq

Āij1 that is constant over i ∈ Ip since CVW
L (i, j) =

C̄VW
L (i, j) is constant over i ∈ Ip.

Verification of Condition (d) in Theorem C.5 Consider any q ∈ {1, 2, . . . , t} and any j1 ∈ Jq . It
follows from CWW

L (j1, j) = C̄WW
L (j1, j) that{{

(CVW
L−1(i, j), C

VW
L−1(i, j1)) : i ∈ V

}}
=

{{
(C̄VW

L−1(i, j), C̄
VW
L−1(i, j1)) : i ∈ V

}}
,

and hence that {{
(CVW

L (i, j), Aij1) : i ∈ V
}}

=
{{

(C̄VW
L (i, j), Āij1) : i ∈ V

}}
,

where we used the fact that there is no strict color refinement at the L-th iteration and there is no
collision in Algorithm 2. We can thus conclude for any p ∈ {1, 2, . . . , s} that

{{Aij1 : i ∈ Ip}} = {{Āij1 : i ∈ Ip}},

which implies that
∑

i∈Ip
Aij1 =

∑
i∈Ip

Āij1 that is constant over j1 ∈ Jq since CWW
L (j1, j) =

C̄WW
L (j1, j) is constant over j1 ∈ Jq .

Combining all discussion above and noticing that J1 = {j}, one can apply Theorem C.5 and conclude
that the two LP problems LP(G, j, l̂j , ûj) and LP(Ḡ, j, l̂j , ûj) have the same optimal objective value,
which completes the proof.

Corollary C.6. For any G, Ḡ ∈ Gm,n, if G W∼2 Ḡ, then the LP relaxations of G and Ḡ have the
same optimal objective value and the same optimal solution with the smallest ℓ2-norm (if feasible
and bounded).

Proof. If no collision, it follows from (C.4) that CWW
L (j, j) = C̄WW

L (j, j) which implies lj = l̄j
and uj = ūj for any j ∈ W . Then we can apply Theorem C.4 to conclude that two LP problems
LP(G, j, lj , uj) and LP(Ḡ, j, l̄j , ūj) that are LP relaxations of G and Ḡ have the same optimal
objective value.

In the case that the LP relaxations of G and Ḡ are both feasible and bounded, we use x and x̄ to
denote their optimal solutions with the smallest ℓ2-norm. For any j ∈ W , x and x̄ are also the
optimal solutions with the smallest ℓ2-norm for LP(G, j, lj , uj) and LP(Ḡ, j, l̄j , ūj) respectively. By
Theorem C.5 and the same arguments as in the proof of Theorem C.4, we have the xj = x̄j . Note
that we cannot infer x = x̄ by considering a single j ∈W because we apply permutation on V and
W\{j} in the proof of Theorem C.4. But we have xj = x̄j for any j ∈W which leads to x = x̄.

21

Proof of Theorem C.3. (a) By Corollary C.6 and Theorem C.4.

(b) By Theorem C.2 and (a).

(c) Apply (a) on G and the graph obtained from G by switching j1 and j2.

C.3 Equivalence between the separation powers of the 2-FWL test and 2-FGNNs

The section establishes the equivalence between the separation powers of the 2-FWL test and 2-
FGNNs.
Theorem C.7. For any G, Ḡ ∈ Gm,n, the followings are true:

(a) G W∼2 Ḡ if and only if F (G) = F (Ḡ) for all F ∈ F2-FGNN.

(b)
{{
CWW

L (j, j1) : j ∈W
}}

=
{{
CWW

L (j, j2) : j ∈W
}}

holds for any L and any hash
functions if and only if F (G)j1 = F (G)j2 , ∀ F ∈ F2-FGNN.

(c) G ∼2 Ḡ if and only if f(G) = f(Ḡ) for all scalar function f with f1 ∈ F2-FGNN.

The intuition behind Theorem C.7 is the color updating rule in 2-FWL test is of the same format
as the feature updating rule in 2-FGNN, and that the local update mappings pl, ql, f l, gl, r can be
chosen as injective on current features. Results of similar spirit also exist in previous literature; see
e.g., [4, 11, 22, 55]. We present the detailed proof of Theorem C.7 in the rest of this subsection.

Lemma C.8. For any G, Ḡ ∈ Gm,n, if G W∼2 Ḡ, then F (G) = F (Ḡ) for all F ∈ F2-FGNN.

Proof. Consider any F ∈ F2-FGNN with L layers and let slij , t
l
j1j2

and s̄lij , t̄
l
j1j2

be the features in the
l-th layer of F . Choose L and hash functions such that there are no collisons in Algorithm 2 when G
and Ḡ are the input. We will prove the followings by induction for 0 ≤ l ≤ L:

(a) CVW
l (i, j) = CVW

l (i′, j′) implies slij = sli′j′ .

(b) CVW
l (i, j) = C̄VW

l (i′, j′) implies slij = s̄li′j′ .

(c) C̄VW
l (i, j) = C̄VW

l (i′, j′) implies s̄lij = s̄li′j′ .

(d) CWW
l (j1, j2) = CWW

l (j′1, j
′
2) implies tlj1j2 = tlj′1j′2

.

(e) CWW
l (j1, j2) = C̄WW

l (j′1, j
′
2) implies tlj1j2 = t̄lj′1j′2

.

(f) C̄WW
l (j1, j2) = C̄WW

l (j′1, j
′
2) implies t̄lj1j2 = t̄lj′1j′2

.

As the induction base, the claims (a)-(f) are true for l = 0 since HASHVW
0 and HASHWW

0 do not
have collisions. Now we assume that the claims (a)-(f) are all true for l − 1 where l ∈ {1, 2, . . . , L}
and prove them for l. In fact, one can prove the claim (a) for l as follow:

CVW
l (i, j) = CVW

l (i′, j′)

=⇒ CVW
l−1 (i, j) = CVW

l−1 (i′, j′) and{{
(CWW

l−1 (j1, j), C
VW
l−1 (i, j1)) : j1 ∈W

}}
=

{{
(CWW

l−1 (j1, j
′), CVW

l−1 (i′, j1)) : j1 ∈W
}}

=⇒ sl−1
ij = sl−1

i′j′ and
{{

(tl−1
j1j

, sl−1
ij1

) : j1 ∈W
}}

=
{{

(tl−1
j1j′

, sl−1
i′j1

) : j1 ∈W
}}

=⇒ slij = sli′j′ .

The proof of claims (b)-(f) for l is very similar and hence omitted.

Using the claims (a)-(f) for L, we can conclude that

G
W∼2 Ḡ

=⇒
{{
CVW

L (i, j) : i ∈ V
}}

=
{{
C̄VW

L (i, j) : i ∈ V
}}

, ∀ j ∈W, and

22

{{
CWW

L (j1, j) : j1 ∈W
}}

=
{{
C̄WW

L (j1, j) : j1 ∈W
}}

, ∀ j ∈W

=⇒
{{
sLij : i ∈ V

}}
=

{{
s̄Lij : i ∈ V

}}
, ∀ j ∈W, and{{

tLj1j : j1 ∈W
}}

=
{{
t̄Lj1j : j1 ∈W

}}
, ∀ j ∈W

=⇒ r

∑
i∈V

sLij ,
∑
j1∈W

tLj1j

 = r

∑
i∈V

s̄Lij ,
∑
j1∈W

t̄Lj1j

 , ∀ j ∈W

=⇒ F (G) = F (Ḡ),

which completes the proof.

Lemma C.9. For any G, Ḡ ∈ Gm,n, if F (G) = F (Ḡ) for all F ∈ F2-FGNN, then G W∼2 Ḡ.

Proof. We claim that for any L there exists 2-FGNN layers for l = 0, 1, 2, . . . , L, such that the
followings hold true for any 0 ≤ l ≤ L and any hash functions:

(a) slij = sli′j′ implies CVW
l (i, j) = CVW

l (i′, j′).

(b) slij = s̄li′j′ implies CVW
l (i, j) = C̄VW

l (i′, j′).

(c) s̄lij = s̄li′j′ implies C̄VW
l (i, j) = C̄VW

l (i′, j′).

(d) tlj1j2 = tlj′1j′2
implies CWW

l (j1, j2) = CWW
l (j′1, j

′
2).

(e) tlj1j2 = t̄lj′1j′2
implies CWW

l (j1, j2) = C̄WW
l (j′1, j

′
2).

(f) t̄lj1j2 = t̄lj′1j′2
implies C̄WW

l (j1, j2) = C̄WW
l (j′1, j

′
2).

Such layers can be constructed inductively. First, for l = 0, we can simply choose p0 that is injective
on {(vi, wj , Aij) : i ∈ V, j ∈ W} ∪ {(v̄i, w̄j , Āij) : i ∈ V, j ∈ W} and q0 that is injective on
{(wj1 , wj2 , δj1j2) : j1, j2 ∈W} ∪ {(w̄j1 , w̄j2 , δj1j2) : j1, j2 ∈W}.

Assume that the conditions (a)-(f) are true for l − 1 where 1 ≤ l ≤ L, we aim to construct the
l-th layer such that (a)-(f) are also true for l. Let α1, α2, . . . , αu collect all different elements in
{sl−1

ij : i ∈ V, j ∈ W} ∪ {s̄l−1
ij : i ∈ V, j ∈ W} and let β1, β2, . . . , βu′ collect all different

elements in {tl−1
j1j2

: j1, j2 ∈ W} ∪ {t̄l−1
j1j2

: j1, j2 ∈ W}. Choose some constinuous f l such that
f l(βk′ , αk) = eu

′

k′ ⊗ euk ∈ Ru′×u, where eu
′

k′ is a vector in Ru′
with the k′-th entry being 1 and other

entries being 0, and euk is a vector in Ru with the k-th entry being 1 and other entries being 0. Choose

some continuous pl that is injective on the set
{
sl−1
ij ,

∑
j1∈W f l(tl−1

j1j
, sl−1

ij1
) : i ∈ V, j ∈W

}
∪{

s̄l−1
ij ,

∑
j1∈W f l(t̄l−1

j1j
, s̄l−1

ij1
) : i ∈ V, j ∈W

}
. By the injectivity of pl and the linear independence

of {eu′

k′ ⊗ euk : 1 ≤ k ≤ u, 1 ≤ k′ ≤ u′}, we have that

slij = sli′j′

=⇒ sl−1
ij = sl−1

i′j′ and
∑
j1∈W

f l(tl−1
j1j

, sl−1
ij1

) =
∑
j1∈W

f l(tl−1
j1j′

, sl−1
i′j1

)

=⇒ sl−1
ij = sl−1

i′j′ and for any 1 ≤ k ≤ u, 1 ≤ k′ ≤ u′

#
{
j1 ∈W : tl−1

j1j
= βk′ , sl−1

ij1
= αk

}
= #

{
j1 ∈W : tl−1

j1j′
= βk′ , sl−1

i′j1
= αk

}
=⇒ sl−1

ij = sl−1
i′j′ and

{{
(tl−1

j1j
, sl−1

ij1
) : j1 ∈W

}}
=

{{
(tl−1

j1j′
, sl−1

i′j1
) : j1 ∈W

}}
=⇒ CVW

l−1 (i, j) = CVW
l−1 (i′, j′) and{{

(CWW
l−1 (j1, j), C

VW
l−1 (i, j1)) : j1 ∈W

}}
=

{{
(CWW

l−1 (j1, j
′), CVW

l−1 (i′, j1)) : j1 ∈W
}}

=⇒ CVW
l (i, j) = CVW

l (i′, j′),

23

which is to say that the condition (a) is satisfied. One can also verify that the conditions (b) and (c) by
using the same argument. Similarly, we can also construct gl and ql such that the conditions (d)-(f)
are satisfied.

Suppose that G W∼2 Ḡ is not true. Then there exists L and hash functions such that{{
CVW

L (i, j) : i ∈ V
}}

̸=
{{
C̄VW

L (i, j) : i ∈ V
}}

,

or {{
CWW

L (j1, j) : j1 ∈W
}}

̸=
{{
C̄WW

L (j1, j) : j1 ∈W
}}

,

holds for some j ∈ W . We have shown above that the conditions (a)-(f) are true for L and some
carefully constructed 2-FGNN layers. Then it holds for some j ∈W that{{

sLij : i ∈ V
}}

̸=
{{
s̄Lij : i ∈ V

}}
, (C.8)

or {{
tLj1j : j1 ∈W

}}
̸=

{{
t̄Lj1j : j1 ∈W

}}
. (C.9)

In the rest of the proof we work with (C.8), and the argument can be easily modified in the case that
(C.9) is true. It follows from (C.8) that there exists some continuous function φ such that∑

i∈V

φ(sLij) ̸=
∑
i∈V

φ(s̄Lij).

Then let us construct the (L+ 1)-th layer yielding

sL+1
ij = φ(sLij) and s̄L+1

ij = φ(s̄Lij),

and the output layer with

r

∑
i∈V

sL+1
ij ,

∑
j1∈W

tL+1
j1j

 =
∑
i∈V

φ(sLij) ̸=
∑
i∈V

φ(s̄Lij) = r

∑
i∈V

s̄L+1
ij ,

∑
j1∈W

t̄L+1
j1j

 .

This is to say F (G)j ̸= F (Ḡ)j for some F ∈ F2-FGNN, which contradicts the assumtion that F has

the same output on G and Ḡ. Thus we can conclude that G W∼2 Ḡ.

Proof of Theorem C.7 (a). By Lemma C.8 and Lemma C.9.

Proof of Theorem C.7 (b). Apply Theorem C.7 on G and the graph obtained from G by switching j1
and j2.

Proof of Theorem C.7 (c). Suppose that G ∼2 Ḡ. By Theorem C.2, there exists some permutation
σW ∈ Sn such that G W∼2 σW ∗ Ḡ. For any scalar function f with f1 ∈ F2-FGNN, by Theorem C.7,
it holds that (f1)(G) = (f1)(σW ∗ Ḡ) = (f1)(Ḡ), where we used the fact that f1 is permutation-
equivariant. We can thus conclude that f(G) = f(Ḡ).

Now suppose that G ∼2 Ḡ is not true. Then there exist some L and hash functions such that{{
CVW

L (i, j) : i ∈ V, j ∈W
}}

̸=
{{
C̄VW

L (i, j) : i ∈ V, j ∈W
}}

,

or {{
CWW

L (j1, j2) : j1, j2 ∈W
}}

̸=
{{
C̄WW

L (j1, j2) : j1, j2 ∈W
}}

.

By the proof of Lemma C.9, one can construct the l-th 2-FGNN layers inductively for 0 ≤ l ≤ L,
such that the condition (a)-(f) in the proof of Lemma C.9 are true. Then we have{{

sLij : i ∈ V, j ∈W
}}

̸=
{{
s̄Lij : i ∈ V, j ∈W

}}
, (C.10)

or {{
tLj1j2 : j1, j2 ∈W

}}
̸=

{{
t̄Lj1j2 : j1, j2 ∈W

}}
. (C.11)

We first assume that (C.10) is true. Then there exists a continuous function φ with∑
i∈V,j∈W

φ(sLij) ̸=
∑

i∈V,j∈W

φ(s̄Lij).

24

Let us construct the (L+ 1)-th layer such that

sL+1
ij = pL+1

sLij , ∑
j1∈W

fL+1(tLj1j , s
L
ij1)

 =
∑
j1∈W

φ(sLij1),

s̄L+1
ij = pL+1

s̄Lij , ∑
j1∈W

fL+1(t̄Lj1j , s̄
L
ij1)

 =
∑
j1∈W

φ(s̄Lij1),

and the output layer with

r

∑
i∈V

sL+1
ij ,

∑
j1∈W

tL+1
j1j

 =
∑
i∈V

∑
j1∈W

φ(sLij1) ̸=
∑
i∈V

∑
j1∈W

φ(s̄Lij1) = r

∑
i∈V

s̄L+1
ij ,

∑
j1∈W

t̄L+1
j1j

 ,

which is independent of j ∈ W . This constructs F ∈ F2-FGNN of the form F = f1 with f(G) ̸=
f(Ḡ).

Next, we consider the case that (C.11) is true. Then{{{{
tLj1j2 : j1 ∈W

}}
: j2 ∈W

}}
̸=

{{{{
t̄Lj1j2 : j1 ∈W

}}
: j2 ∈W

}}
, (C.12)

and hence there exists some continuous ψ such that
 ∑

j1∈W

ψ(tLj1j2) : j2 ∈W

 ̸=

 ∑

j1∈W

ψ(t̄Lj1j2) : j2 ∈W

 .

Let us construct the (L+ 1)-th layer such that

sL+1
ij = pL+1

sLij , ∑
j1∈W

fL+1(tLj1j , s
L
ij1)

 =
∑
j1∈W

ψ(tLj1j),

s̄L+1
ij = pL+1

s̄Lij , ∑
j1∈W

fL+1(t̄Lj1j , s̄
L
ij1)

 =
∑
j1∈W

ψ(t̄Lj1j),

and we have from (C.12) that{{
sL+1
ij : i ∈ V, j ∈W

}}
̸=

{{
s̄L+1
ij : i ∈ V, j ∈W

}}
.

We can therefore repeat the argument for (C.10) and show the existence of f with f1 ∈ F2-FGNN and
f(G) ̸= f(Ḡ). The proof is hence completed.

C.4 Proof of Theorem 4.7

We finalize the proof of Theorem 4.7 in this subsection. Combining Theorem C.3 and Theorem C.7,
one can conclude that the separation power of F2-FGNN is stronger than or equal to that of SB scores.
Hence, we can apply the Stone-Weierstrass-type theorem to prove Theorem 4.7
Theorem C.10 (Generalized Stone-Weierstrass theorem [4]). LetX be a compact topology space and
let G be a finite group that acts continuously on X and Rn. Define the collection of all equivariant
continuous functions from X to Rn as follows:

CE(X,Rn) = {F ∈ C(X,Rn) : F (g ∗ x) = g ∗ F (x), ∀ x ∈ X, g ∈ G}.

Consider any F ⊂ CE(X,Rn) and any Φ ∈ CE(X,Rn). Suppose the following conditions hold:

(a) F is a subalgebra of C(X,Rn) and 1 ∈ F , where 1 is the constant function whose ouput is
always (1, 1, . . . , 1) ∈ Rn.

(b) For any x, x′ ∈ X , if f(x) = f(x′) holds for any f ∈ C(X,R) with f1 ∈ F , then for any
F ∈ F , there exists g ∈ G such that F (x) = g ∗ F (x′).

25

(c) For any x, x′ ∈ X , if F (x) = F (x′) holds for any F ∈ F , then Φ(x) = Φ(x′).

(d) For any x ∈ X , it holds that Φ(x)j1 = Φ(x)j2 , ∀ (j1, j2) ∈ J(x), where

J(x) =
{
(j1, j2) ∈ {1, 2, . . . , n}2 : F (x)j1 = F (x)j2 , ∀ F ∈ F

}
.

Then for any ϵ > 0, there exists F ∈ F such that

sup
x∈X

∥F (x)− Φ(x)∥ ≤ ϵ.

Proof of Theorem 4.7. Lemma F.2 and Lemma F.3 in [11] prove that the function that maps LP
instances to its optimal objective value/optimal solution with the smallest ℓ2-norm is Borel measurable.
Thus, SB : Gm,n ⊃ SB−1(Rn) → Rn is also Borel measurable, and is hence P-measurable due to
Assumption 4.3. By Theorem A.4 and Assumption 4.3, there exists a compact subsetX1 ⊂ SB−1(Rn)
such that P[Gm,n\X1] ≤ ϵ and SB|X1

is continuous. For any σV ∈ Sm and σW ∈ Sn, (σV , σW)∗X1

is also compact and SB|(σV ,σW)∗X1
is also continuous by the permutation-equivariance of SB. Set

X2 =
⋃

σV ∈Sm,σW∈Sn

(σV , σW) ∗X1.

Then X2 is permutation-invariant and compact with

P[Gm,n\X2] ≤ P[Gm,n\X1] ≤ ϵ.

In addition, SB|X2
is continuous by pasting lemma.

The rest of the proof is to apply Theorem C.10 for X = X2, G = Sm × Sn, Φ = SB, and
F = F2-FGNN. We need to verify the four conditions in Theorem C.10. Condition (a) can be proved
by similar arguments as in the proof of Lemma D.2 in [11]. Condition (b) follows directly from
Theorem C.7 (a) and (c) and Theorem C.2. Condition (c) follows directly from Theorem C.7 (a)
and Theorem C.3 (a). Condition (d) follows directly from Theorem C.7 (b) and Theorem C.3 (c).
According to Theorem C.10, there exists some F ∈ F2-FGNN such that

sup
G∈X2

∥F (G)− SB(G)∥ ≤ δ.

Therefore, one has
P[∥F (G)− SB(G)∥ > δ] ≤ P[Gm,n\X2] ≤ ϵ,

which completes the proof.

D Extensions of the theoretical results

This section will explore some extensions of our theoretical results.

D.1 Extension to other types of SB scores

The same analysis for Theorem 4.4 and Theorem 4.7 still works as long as the SB score is a function
of f∗LP(G, j, lj , ûj), f

∗
LP(G, j, l̂j , uj), and f∗LP(G):

• We prove in Theorem A.3 that if two MILP-graphs are indistinguishable by the WL test,
then they must be isomorphic and hence have identical SB scores (no matter how we define
the SB scores). So Theorem 4.4 is still true.

• We prove in Theorem C.4 that if two MILP-graphs are indistinguishable by 2-FWL test, then
they have the same value of f∗LP(G, j, lj , ûj) (and f∗LP(G, j, l̂j , uj)). Therefore, Theorem
C.3 still holds if the SB score is a function of f∗LP(G, j, lj , ûj), f

∗
LP(G, j, l̂j , uj), and f∗LP(G),

which implies that Theorem 4.7 is still true.

Therefore, Theorems 4.4 and 4.7 work for both linear product score functions in [14].

26

D.2 Extension to varying MILP sizes

While Theorems 4.4 and 4.7 assume MILP sizes m and n are fixed, we now discuss extending these
results to data distributions with variable m and n.

First, our theoretical results can be directly extended to MILP datasets or distributions where m and n
vary but remain bounded. Following Lemma 36 in [4], if a universal-approximation theorem applies
to Gm,n for any fixed m and n (as shown in our work) and at least one GNN can distinguish graphs
of different sizes, then the result holds across a disjoint union of finitely many Gm,n.

If the distribution has unbounded m or n, for any ϵ > 0, one can always remove a portion of the tail
to ensure boundedness in m and n. In particular, there always exist large enough m0 and n0 such
that P[m(G) ≤ m0] ≥ 1− ϵ and P[n(G) ≤ n0] ≥ 1− ϵ. The key point is that for any ϵ > 0, such
m0 and n0 can always be found. Although these values may be large and dependent on ϵ, they are
still finite. This allows us to apply the results for the bounded-support case.

Note that the "tail removal" technique mentioned above comes from the fact that a probability
distribution has a total mass of 1:

1 =

∞∑
n=0

P(n(G) = n) = lim
n0→∞

n0∑
n=0

P(n(G) = n) = lim
n0→∞

P(n(G) ≤ n0)

By the definition of a limit, this clearly implies that for any ϵ > 0, there exists a sufficiently large n0
such that P[n(G) ≤ n0] ≥ 1− ϵ. A similar argument applies to m.

E Details about numerical experiments

Random MILP instances generation We generate 100 random MILP instances for the experiments
in Section 5. We set m = 6 and n = 20, which means each MILP instance contains 6 constraints and
20 variables. The sampling schemes of problem parameters are described below.

• The bounds of linear constraints: bi ∼ N (0, 1).
• The coefficients of the objective function: cj ∼ N (0, 1).
• The non-zero elements in the coefficient matrix: Aij ∼ N (0, 1). The coefficient matrix A

contains 60 non-zero elements. The positions are sampled randomly.
• The lower and upper bounds of variables: lj , uj ∼ N (0, 102). We swap their values if
lj > uj after sampling.

• The constraint types ◦ are randomly sampled. Each type (≤, = or ≥) occurs with equal
probability.

• The variable types are randomly sampled. Each type (continuous or integer) occurs with
equal probability.

Implementation and training details We implement MP-GNN and 2-FGNN with Python 3.6
and TensorFlow 1.15.0 [1]. Our implementation is built by extending the MP-GNN implementation
of [19] in https://github.com/ds4dm/learn2branch. The SB scores of randomly generated
MILP instances are collected using SCIP [6].

For both GNNs, p0, q0 are parameterized as linear transformations followed by a non-linear activa-
tion function; {pl, ql, f l, gl}Ll=1 are parameterized as 3-layer multi-layer perceptrons (MLPs) with
respective learnable parameters; and the output mapping r is parameterized as a 2-layer MLP. All
layers map their input to a 1024-dimensional vector and use the ReLU activation function. Under
these settings, MP-GNN contains 43.0 millions of learnable parameters and 2-FGNN contains 35.7
millions of parameters.

We adopt Adam [31] to optimize the learnable parameters during training with a learning rate of
10−5 for all networks. We decay the learning rate to 10−6 and 10−7 when the training error reaches
10−6 and 10−12 respectively to help with stabilizing the training process.

27

https://github.com/ds4dm/learn2branch

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible ML research, addressing issues
of reproducibility, transparency, research ethics, and societal impact. Do not remove the checklist:
The papers not including the checklist will be desk rejected. The checklist should follow the
references and follow the (optional) supplemental material. The checklist does NOT count towards
the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The results claimed in the abstract and the introduction are established theoret-
ically in Section 4 and verified numerically in Section 5.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

28

Justification: The limitations are discussed in the last paragraph of Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The assumptions are stated in Section 4 and the complete proofs are included
in the appendices.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experimental settings and details are presented in Section 5 and Ap-
pendix E, which is sufficient to reproduce the results.
Guidelines:

29

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the source code and data to reproduce the main results, along with
sufficient instructions to run the code, in the supplementary materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

30

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental settings and details are presented in Section 5 and Ap-
pendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Our experiments are only for directly validating the theoretical findings rather
than competing with state-of-the-arts and no statistical significance needs to be considered.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Information on the computation resources used for experiments are provided
in Section 5.

31

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed the NeurIPS Code of Ethics and confirm that this
paper conforms with it in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper conducts theoretical research in machine learning and has no
societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

32

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper conducts theoretical research in machine learning and poses no
such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We used synthesized data for numerical experiments. The creators of the code,
based on which we build our implementation of the networks and training schemes, are
credited in Appendix E.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

33

paperswithcode.com/datasets

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper conducts fundamental research in machine learning and does not
involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper conducts fundamental research in machine learning and does not
involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

34

	Introduction
	Preliminaries and problem setup
	Imitating strong branching by GNNs
	Main results
	MP-GNNs can represent SB for MP-tractable MILPs
	MP-GNNs cannot universally represent SB beyond MP-tractability
	2-FGNNs are capable of universally representing SB
	Practical insights of our theoretical results

	Numerical results
	Conclusion
	Proof of Theorem 4.4
	Proof of Theorem 4.5
	Proof of Theorem 4.7
	2-FWL test and its separation power
	SB scores of MILPs distinguishable by 2-FWL test
	Equivalence between the separation powers of the 2-FWL test and 2-FGNNs
	Proof of Theorem 4.7

	Extensions of the theoretical results
	Extension to other types of SB scores
	Extension to varying MILP sizes

	Details about numerical experiments

