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Abstract

Conformational ensembles of protein structures
are immensely important both to understanding
protein function, and for drug discovery in novel
modalities such as cryptic pockets. Current tech-
niques for sampling ensembles such as molecular
dynamics are computationally inefficient. On the
other hand, many recent machine-learning meth-
ods do not generalize well outside their training
data. We propose JAMUN, that performs MD in
a smoothed, noised space of all-atom 3D confor-
mations of molecules by utilizing the framework
of walk-jump sampling. JAMUN enables ensem-
ble generation at orders of magnitude faster rates
than traditional molecular dynamics or state-of-
the-art ML methods. This physical prior enables
JAMUN to transfer to systems outside its training
data. JAMUN is even able to generalize across
length scales it was not trained on.

1. Introduction

Proteins are inherently dynamic entities constantly in mo-
tion, and these movements can be vitally important. They
are not well characterized as single structures as has tradi-
tionally been the case, but rather as ensembles of structures
drawn from the Boltzmann distribution (Henzler-Wildman
& Kern, 2007). Protein dynamics is required for the function
of most proteins, for instance the global tertiary structure
motions for myglobin to bind oxygen and move it around the
body (Miller & Phillips, 2021), or the beta-sheet transition
to a disordered strand for insulin to dissociate and find and
bind to its receptor (Antoszewski et al., 2020). Similarly,
drug discovery on protein kinases depends on characteriz-
ing kinase conformational ensembles (Gough & Kalodimos,
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2024). In general the search for druggable ‘cryptic pockets’
requires understanding protein dynamics (Colombo, 2023),
and antibody design is deeply affected by conformational
ensembles (Fernandez-Quintero et al., 2023). However,
while machine learning (ML) methods for molecular struc-
ture prediction have experienced enormous success recently,
ML methods for dynamics have yet to have similar impact.
ML models for generating molecular ensembles are widely
considered the ‘next frontier’ (Bowman, 2024; Miller &
Phillips, 2021; Zheng et al., 2023). In this work, we present
JAMUN (Walk-Jump Accelerated Molecular ensembles
with Universal Noise), a generative ML model which ad-
vances this frontier by demonstrating improvements in both
speed and transferability over previous approaches.

While the importance of protein dynamics is well-
established, it can be exceedingly difficult to sufficiently
sample large biomolecular systems. The most common
sampling method is molecular dynamics (MD), which will
sample the Boltzmann distribution in the limit of infinite
sampling time, but is limited by the need for very short
timesteps of 1-2 femtoseconds in the numerical integra-
tion scheme. Many important protein dynamic phenomena
occur on the timescale of milliseconds. As described by
Borhani & Shaw (2012), simulating with this resolution
is ‘...equivalent to tracking the advance and retreat of the
glaciers of the last Ice Age — tens of thousands of years — by
noting their locations each and every second.” Importantly,
there is nothing fundamental about this small time-step lim-
itation; it is an artifact of high-frequency motions, such as
bond vibrations, that have little effect on protein ensem-
bles (Leimkuhler & Matthews, 2015). Enhanced sampling
methods have been developed in an attempt to accelerate
sampling, but they often require domain knowledge about
relevant collective variables, and, more importantly, do not
address the underlying time-step problem (Vitalis & Pappu,
2009).

A large number of generative models have been developed
to address the sampling inefficiency problems of MD using
machine learning, which we discuss in greater detail in
Section 4. The key requirement is that of transferability: any
model must be able to generate conformational ensembles
for molecules that are significantly different from those
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Figure 1. Overview of walk-jump sampling in JAMUN.

in its training set. To benchmark this transferability, we
focus on small peptides whose MD trajectories can be run
to convergence in a reasonable amount of time, unlike those
for much larger proteins (Shaw et al., 2010).

Here, we propose a new method, JAMUN, that bridges
molecular dynamics with score-based learning in a latent
space. This physical prior enables JAMUN to transfer well —
just like force fields for molecular dynamics can — to unseen
systems. The key idea is to run Langevin molecular dy-
namics in a noisy ‘latent’ space Y € R >3, instead of the
original space X € R™*3 of all-atom 3D positions. Indeed,
Y is constructed by adding a small amount of i.i.d Gaussian
noise € to X:

Y =X+o0¢ @))]

To run this Langevin MD over Y, the crucial component is
the score function V,, log py (y), which needs to be mod-
elled. (This is identical to how a force field needs to be
parametrized in classical MD). Once the MD trajectory over
Y is run, the resulting samples need to be mapped back to
clean data via a denoising procedure.

This framework is actually mathematically described by
Walk-Jump Sampling (WJ]S), as first introduced by Saremi
& Hyvirinen (2019). WIS has been used in voxelized
molecule generation (Pinheiro et al., 2024a;b) and protein se-
quence generation (Frey et al., 2024). In particular, JAMUN
corresponds to a SF(3)-equivariant Walk-Jump sampler of
point clouds.

The WIS framework actually tells us that the score function
V, log py (y) can be used for denoising as well, removing
the need to learn a separate model. Indeed, this mathemati-
cal connection is used to learn the score function, similar to

the training of diffusion models. Unlike diffusion models
such as DDPM (Ho et al., 2020), however, we only need to
learn the score function at a single noise level. The choice
of this noise level is important; we aim to simply smooth
out the distribution enough to resolve sampling difficulties
without fully destroying the information present in the data
distribution.

In short, the score function V, logpy (y) is learned by
adding noise to clean data x, and a denoising neural net-
work is trained to recover the clean samples = from y. This
denoiser defines the score function of the noisy manifold Y
which we sample using Langevin dynamics (walk step) and
allows us to periodically project back to the original data
distribution (jump step). Crucially, the walk and jump steps
are decoupled from each other.

Rather than starting over from an uninformative prior for
each sample as is commonly done in diffusion (Ho et al.,
2020; Song et al., 2022) and flow-matching (Lipman et al.,
2023; Klein et al., 2024b), JAMUN is able to simply denoise
samples from the slightly noised distribution, enabling much
greater sampling efficiency.

We train JAMUN on a large dataset of MD simulations of
small peptides. We demonstrate that this model can gen-
eralize to a holdout set of unseen peptides. In all of these
cases, generation with JAMUN yields converged sampling
of the conformational ensemble faster than MD with a stan-
dard force field, even outperforming several state-of-the-art
baselines. These results suggest that this transferability is a
consequence of retaining the physical priors inherent in MD
data. Significantly, we find that JAMUN performs well even
for peptides longer than the ones seen in the training set.

2. Methods

2.1. Representing Peptides as Point Clouds

Each point cloud of N atoms can be represented by the
tuple (x, h) where z € R™V*3 represents the 3D coordinates
of each of the N atoms and h € R” represents atom and
covalent bonding information. h can be easily computed
from the amino acid sequence for each peptide, and hence
is not learned or sampled. For clarity of presentation, we
omit the conditioning on A in the distributions and models
below. We discuss how our model uses & in Section 2.4.

At sampling time, we assume access to an initial sample
(9 € RNV*3 sampled from the clean data distribution px.
Similarly to how MD simulations of small peptides are
commonly seeded, we use the sequence command in the
LEaP program packaged with the Amber force fields to
procedurally generate z(?). In theory, z(°) could also be
obtained from experimental data, such as crystallized struc-
tures from the Protein Data Bank (Berman et al., 2000). We
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plan to explore this approach in the future to seed JAMUN
simulations for larger proteins.

2.2. Walk-Jump Sampling

JAMUN operates by performing walk-jump sampling on
molecular systems represented as 3D point clouds. A con-
ceptual overview of the process is illustrated in Figure 1,
with specific steps depicted in Figure 2.
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Figure 2. Illustrating each of the noise (Figure 2a), walk (Fig-
ure 2b) and jump steps (Figure 2¢) in walk-jump sampling.

Given the initial sample 2(®) ~ px, walk-jump sampling
performs the following steps:

1. Noise the initial structure 2(9) to create the initial sam-
ple (9 from the noisy data distribution py- (Figure 2a):

YO =20 4 5@ where e ~ N (0,Inx3). (2)
2. Walk to obtain samples y), ... y™) from py us-

ing Langevin dynamics which conists of numerically
solving the following Stochastic Differential Equation

(SDE) (Figure 2b):
dy = vydt, 3)
dv, = V, log py (y)dt — ~yv,dt + M~3\/2dB,,

“

where v,, represents the particle velocity, V, log py (y)
is the gradient of the log of the probability density
function (called the score function) of py, y is friction,
M 1is the mass, and B; is the standard Wiener process
in N x 3-dimensions: B; ~ N(0,#Ixx3). In prac-
tice, we employ the BAOAB solver (Appendix F) to
integrate Equation 3 numerically.

3. Jump back to px to obtain samples 1, . .
ure 2¢) :

., & (Fig-

& =2(y;) = E[X |Y = yil, (5)

where &(-) = E[X | Y = -] is called the denoiser. It
corresponds to the minimizer (Section E.1) of the /5-
loss between clean samples X and samples denoised
back from Y = X + oe.

() = argminEx vy cono.y o) 1/ (V) = X7,
f Y=X+o0¢e
(6)

where f : RV*3 — R¥*3 As shown by Robbins
(1956); Miyasawa (1960) (and Section E.2), the de-
noiser & is closely linked to the score V, log py:

i(y) =y + 0>V, logpy (y). ©)

Importantly, the score function V,, log py- shows up in both
the walk and jump steps, and we need to approximate this
quantity.

2.3. Learning to Denoise

In order to run Walk-Jump Sampling as outlined above, we
have the choice of modelling either the score V, log py or
the denoiser Z as they are equivalent by Equation 7. Follow-
ing trends in diffusion models (Karras et al., 2022; 2024),
we model the denoiser as a neural network Z¢(y, o) = &(y)
parameterized by model parameters 6.

Importantly, we only need to learn a model at a single,
fixed noise level o. This is unlike training diffusion or
flow-matching models where a wide range of noise levels
are required for sampling. In particular, the choice of noise
level o for WIS is important because mode-mixing becomes
faster as o is increased, but the task asked of the denoiser
becomes harder.

The denoiser 24 thus takes in noisy point clouds y formed by
adding noise (at a fixed noise level o) to clean point clouds
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z. The denoiser is tasked to reconstruct back x, given y. To
be precise, training the denoiser 'y consists of solving the
following optimization problem:

0" = arg min EXNpX e~N(0,Inx3) ”‘%O(Y’ J) - X||2 @)
0 Y=X+oe

to obtain 6*, the optimal model parameters. As is standard
in the empirical risk minimization (ERM) (Vapnik, 1991)
setting, we approximate the expectation in Equation 8 by
sampling X ~ px and ¢ ~ N(0,Iyx3). We minimize
the loss as a function of model parameters 6 using the first-
order optimizer Adam (Kingma & Ba, 2017) in PyTorch 2.0
(Ansel et al., 2024; Falcon & The PyTorch Lightning team,
2019).

2.4. Parametrization of the Denoiser Network

We summarize the key features of the denoiser network
Z¢(y, o) which will approximate #(y) in this section. Note
that o is fixed in our setting, but we explicitly mention it
in this section for clarity. A diagramatic overview of our
model along with specific hyperparameters are presented in
Appendix C.

We utilize the same parametrization of the denoiser as origi-
nally proposed by Karras et al. (2022; 2024) (in the context
of image generation):

Zo(y,0) = csip(0)Y + Cout(0) Fy(cin(0)Y, Cnoise (7)), (9)

where F) represents a learned network parameterized by pa-
rameters 6. In particular, Fy (Figure 16) is a geometric graph
neural network (GNN) model similar to NequlIP (Batzner
et al., 2022; Thomas et al., 2018). Importantly, F} is cho-
sen to be SE(3)-equivariant, in contrast to existing meth-
ods (Hoogeboom et al., 2022; Klein & Noé, 2024; Klein
et al., 2024a) that utilize the F(3)-equivariant EGNN model
(Satorras et al., 2022). As rightly pointed out by Dumitrescu
et al. (2024) and Schreiner et al. (2023), E'(3)-equivariant
models are equivariant under parity, which means that are
forced to transform mirrored structures identically. When
we experimented with E'(3)-equivariant architectures, we
found symmetric Ramachandran plots which arise from
the unnecessary parity constraint of the denoising network.
For this reason, TBG (Klein & Noé, 2024) and Timewarp
(Klein et al., 2024a) use a ‘chirality checker’ to post-hoc
fix the generated structures from their model. For JAMUN,
such post-processing is unnecessary because our model can
distinguish between chiral structures.

The coefficients cgip(0), Cout(0), Cin(0), Cnoise (0’) in Equa-
tion 9 are normalization functions (from R* to R) which
adjust the effective inputs and outputs to Fy. They are cho-
sen to encourage re-use of the input y at low noise levels,
but the opposite at high noise levels. Importantly, based on
the insight that F} uses relative vectors in the message pass-
ing steps, we adjust the values of these coefficients instead

of simply using the choices made in Karras et al. (2022;
2024); Wohlwend et al. (2024); Abramson et al. (2024), as
discussed in Appendix D.

In Fp, edges between atoms are computed using a radial
cutoff over the noisy positions in y. The edge features are a
concatenation of a one-hot feature indicating bonded-ness
and the radial distance embedded using Bessel functions.
As obtained from h, atom-level features are computed using
the embedding of the atomic number (eg. C and N), and
the atom name following PDB notation (eg. CA,CB for
alpha and beta carbons). Similarly, residue-level features
are obtained using the embedding of the residue code (eg.
ALA, CYS) and concatenated to each atom in the residue.
Importantly, we do not use the sequence index of the residues
(eg. 0,1,...) as we found that it hurts generalization to
longer peptide lengths.

3. Datasets

For development, demonstration, and benchmarking against
existing models, we use three different datasets consisting
of peptides from 2 to 5 amino acids (AA) long: TIMEWARP
2AA-LARGE and TIMEWARP 4AA-LARGE from Klein
et al. (2024a), MDGEN 4AA EXPLICIT from Jing et al.
(2024), and our own MD data simulated with OpenMM
(Eastman et al., 2017). A summary of these datasets is
presented in Table 1. The differing simulation conditions
across these datasets allows us to test the broad applicability
of our approach.

These TIMEWARP and MDGEN datasets consist of ‘un-
capped’ peptides, whose termini are zwitterionic amino and
carboxyl groups, as shown in the left panel of Figure 3.
These are not ideal analogues of amino acids in proteins due
to local charge interactions as well as lack of steric effects.

Figure 3. A side-by-side comparison of uncapped (left) compared
to capped (right) ALA-CYS. The acetyl (ACE) and N-methyl
(NME) capping groups provide steric hindrance and prevent local
charge interactions on the N-terminal and C-terminal ends.

We also create a similar dataset called CAPPED 2AA of
2AA peptides by adding ACE (acetyl) and NME (N-methyl
amide) caps, a common practice in molecular dynamics
simulations of very small peptides. As illustrated in the right
panel of Figure 3, these caps introduce additional peptide
bonds with the first and last residues. These peptide bonds
remove the need for the zwitterion, while the methyl group
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Dataset Peptide Length  Capped? Force Field Solvent Model Temperature Train Split ~ Validation Split ~ Test Split
TIMEWARP 2AA-LARGE 2 X amberl4 Implicit 310K 200 80 100
CAPPED 2AA 2 v amberl4 Explicit 300K 200 80 100
TIMEWARP 4AA-LARGE 4 X amberl4 Implicit 310K 1459 379 182
MDGEN 4AA-EXPLICIT 4 X amberl4 Explicit 350K 3109 100 100
UNCAPPED 5AA 5 X amberl4 Implicit 310K — - 3

Table 1. Simulation conditions of the different datasets investigated in this work.

provides some steric interactions. These capping groups
increase the complexity of the modelling task, but ensure
a more realistic distribution of conformations. We choose
the same splits as in TIMEWARP 2AA-LARGE. Since we
simulated this data ourselves, we can also measure the wall-
clock speed-ups of JAMUN relative to MD on this dataset.

For the 2AA datasets, the training set consists of 50% of
all possible 2A A peptides. For the 4AA datasets, the gener-
alization task is much harder, because the number of 4AA
peptides in the training sets is less than 1% and 2% respec-
tively of the total number of possible 4AA peptides.

We also use the implicit MD code from Timewarp to gen-
erate trajectories for three randomly picked SAA peptides
with codes NRLCQ, VWSPF and KTYDI. We call this
dataset UNCAPPED 5AA. Further details on MD simulation
conditions can be found in Appendix B.

4. Related Work and Baseline Models

The goal of building machine learning models that can gen-
erate conformational ensembles of molecular systems is not
new. While a full overview of this field is beyond the scope
of this work — see (Aranganathan et al., 2024) for a recent
review — we note a few relevant previous efforts. Boltzmann
Generators (Noé et al., 2019) introduced the idea that a
neural network could be used to transform the underlying
data distribution into an easier-to-sample Gaussian distri-
bution. DiffMD (Wu & Li, 2023) learns a diffusion model
over conformations of small organic molecules from MD17
(Chmiela et al., 2017), showing some level of transferability
across C7;0,H;j( isomers (Schiitt et al., 2017). Timewarp
(Klein et al., 2024a) uses a normalizing flow as a proposal
distribution in MCMC sampling of the Boltzmann distribu-
tion to approximate the conditional distribution of future
conformational states z(*+2%) conditional on the present
state (Y. ITO (Schreiner et al., 2023) modelled this dis-
tribution using diffusion with a SFE(3)-equivariant PaiNN
architecture. Equijump (dos Santos Costa et al., 2024) ex-
tended this idea with a protein-specific message-passing
neural network with reweighting to sample rarer conforma-
tions of fast-folding proteins. Importantly, Timewarp was
the first truly transferable Boltzmann generator, but was still
too slow relative to molecular dynamics on unseen systems.
Later, Transferable Boltzmann Generators (TBG) (Klein &

Noé, 2024) built upon Timewarp by using flow-matching
instead of maximum likelihood estimation and a more ef-
ficient continuous normalizing flow architecture. “Two for
One’ (Arts et al., 2023) showed that the score learned by
diffusion models can be used for running molecular dynam-
ics simulations. However, as they choose the noise level
for the score function close to 0, the molecular dynamics
is effectively run in the original space X, not in the latent
space Y as JAMUN does, which again limits the effective
timestep of simulation.

MDGen (Jing et al., 2024) creates a SE(3)-invariant to-
kenization of the backbone and sidechain torsion angles,
relative to a known initial conformation (here, z(?)). Then,
they learn a stochastic interpolant (Albergo et al., 2023)
(a generalization of diffusion and flow-matching) over the
trajectories of these tokens.

BioEmu (Lewis et al., 2024) is a diffusion model for
backbone conformations of large proteins built using the
EvoFormer stack from AlphaFold2 (Jumper et al., 2021).
BioEmu is pretrained on 200 million protein structures from
the AlphaFold Protein Structure Database (Varadi et al.,
2023) and finetuned on over 200ms of MD data, which are
orders of magnitude larger than the datasets we benchmark
here. BioEmu is technically only a backbone-only model,
but their repository provides an additional side-chain recon-
struction step using H-Packer (Visani et al., 2024), allowing
comparison to the all-atom models. As seen in Table 2, the
side-chain reconstruction can be quite expensive, because
of the lack of support for batched inference with H-Packer.

Finally, we also perform some comparisons to Boltz-1
(Wohlwend et al., 2024), an open-source reproduction of
AlphaFold3 (Abramson et al., 2024). Boltz-1 was trained
exclusively on static crystalline structures of folded states,
without any dynamics or conformational information, al-
lowing us to evaluate how effectively the conformational
landscape can be inferred from structural data alone.

Concretely, we compare to several of these state-of-the art
methods on our benchmark datasets:

e TBG (Klein & Noé, 2024) on TIMEWARP 2AA-
LARGE.

e MDGen (Jing et al., 2024) on MDGEN 4AA-
EXPLICIT.
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Model Time per Sample  Number of Samples  Total Time
TBG 720 ms 5,000 60 min
MDGen 6ms 10,000 1min
Boltz-1 360 ms 10,000 60 min
BioEmu 15ms 10,000 2.5 min
BioEmu + H-Packer 4320 ms 10,000 720 min
JAMUN (2AA) 2ms 100,000 3min
JAMUN (4AA) 3ms 100, 000 5min
JAMUN (5AA) 8ms 100, 000 12.5min
CAPPED 2AA 40 ms 60,000 40 min
MDGEN 4AA-EXPLICIT 11ms 1,000, 000 180 min
UNCAPPED 5AA 108 ms 100, 000 180 min

Table 2. Comparison of (approximate and batched) sampling times
per test peptide for baseline models (top), baseline MD simula-
tions (middle) and JAMUN. All models and baselines were run
on a single NVIDIA RTX A100 GPU, except for MDGEN 4AA-
EXPLICIT which was simulated on a single NVIDIA T4 GPU, as
mentioned in Jing et al. (2024).

¢ Boltz-1 (Wohlwend et al., 2024) and BioEmu (Lewis
et al., 2024) on UNCAPPED 5AA.

In Appendix I, we discuss some preliminary results with
JAMUN on cyclic peptides (macrocyles), which are becom-
ing popular as a new drug modality (Garcia Jimenez et al.,
2023), but are not modelled well by existing models due to
lack of support for non-canonical and methylated residues
in their parametrizations.

Table 2 contains a summary of the sampling efficiencies for
different models, averaged over the corresponding test sets
peptides. While the TBG model can technically produce
reweighted samples, we run it in the un-reweighted mode,
making it a Boltzmann emulator which is almost 10x faster
in practice. This allows for a fair comparison to JAMUN.

For a fair comparison, TBG and MDGen were compared
on their representative benchmark datasets. Unfortunately,
these models do not transfer to UNCAPPED 5AA due to
fixed-length positional embeddings, despite our best efforts.
In particular, we initialized the positional embeddings to
support longer peptides, but this resulted in broken topolo-
gies in the resulting samples. Instead, we choose Boltz-1
and BioEmu which support sampling on UNCAPPED SAA
to compare against JAMUN trained on TIMEWARP 4 A A-
LARGE.

Due to the different simulation conditions across the datasets
shown in Table 1, we train a different JAMUN model for
each dataset. However, the same noise level of o = 0.4A is
applied for training and sampling on all datasets. In fact, all
training hyperparameters are kept identical across datasets.
Appendix A contains a discussion of how this noise level
was chosen. Our denoiser model is built with the e3nn
library (Geiger & Smidt, 2022), and contains approximately
10.5M parameters.

5. Metrics

We adopt the analysis methods of MDGen (Jing et al.,
2024). In particular, we compare models by projecting their
sampled distributions of all-atom positions onto a variety
of variables: pairwise distances, dihedral angles of back-
bone (known as Ramachandran plots) and sidechain torsion
angles, TICA (time-lagged independent coordinate analy-
sis) projections, and metastable state probabilities as com-
puted by Markov State Models (MSMs) fit with PYEMMA
(Scherer et al., 2015). TICA (Molgedey & Schuster, 1994)
is a popular dimensionality reduction method for larger
molecules which aims to extract slow collective degrees of
freedom from a trajectory (Pérez-Herndndez et al., 2013;
Schwantes & Pande, 2013). As is standard practice, all
TICA projections and MSMs are estimated using the refer-
ence MD data.

6. Results

6.1. Results on TIMEWARP 2AA-LARGE and TIMEWARP
4AA-LARGE

First, we show that JAMUN samples similar states as the ref-
erence MD data. Indeed, Figure 4 shows that the metastable
state probabilities over JAMUN sampled trajectories match
very well with those over the reference MD data on the
TIMEWARP 2AA-LARGE and TIMEWARP 4AA-LARGE
datasets.

e R2 = 0.881

0.0 -
0.00 0.25 0.50 0.75 1.00
Reference

0.0
0.00 0.25 0.50 0.75 1.00
Reference

Figure 4. Across both TIMEWARP 2A A-LARGE (left) and TIME-
WARP 4AA-LARGE (right), MSM state probabilities for JAMUN
samples (on the y-axis) and those for the reference MD trajectories
(on the z-axis) across all test peptides are strongly correlated. The
perfect sampler will obtain an R? of 1.

Table 3 shows that on TIMEWARP 2A A-LARGE, JAMUN
outperforms TBG when run for equal amounts of time
(based on Table 2), and is only slightly worse when TBG is
run for 20x longer.

In Figure 5 and Figure 6 , we visualize the TICA-0,1 pro-
jections and Ramachandran plots for randomly chosen test
peptides from TIMEWARP 2A A-LARGE, highlighting that
TBG misses certain basins that JAMUN is able to sample.
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Figure 5. Ramachandran plots for 4 randomly chosen test peptides
on TIMEWARP 2AA-LARGE.
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Figure 6. TICA-0,1 projections for 4 randomly chosen test peptides
on TIMEWARP 2AA-LARGE.

6.2. Results on CAPPED 2AA

Here, we compute the ratio of the decorrelation times for
the backbone and sidechain torsions in JAMUN and the
reference MD data. Figure 7 highlights how sampling in
the smoothed space Y compared to the original space X
enables much faster decorrelation.

In Table 3, we compare JAMUN with the reference MD
shortened by a factor of 10. JAMUN outperforms this short-
ened MD trajectory across all metrics, even though it takes
approximately 2 x longer to sample than JAMUN, according
to Table 2.

6.3. Results on MDGEN 4AA-EXPLICIT

Table 3 shows that JAMUN is very competitive with MDGen
on the JSD metrics. In fact, Figure 9 shows that MDGen
is missing some basins that JAMUN is able to sample. On
the other hand, Figure 10 show an example where JAMUN
hallucinates a basin.

Figure 8 shows the significant speedups in backbone and
sidechain torsion decorrelation times for JAMUN compared
to the reference MD data. This matches our intuition about
taking ‘larger’ integrator steps in the smoothed manifold of
the noisy latent space.
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Figure 7. Speedups defined as the ratio between decorrelation
times between the reference MD and JAMUN for backbone (left)
and sidechain (right) torsions for all test peptides in CAPPED 2AA.

Backbone Sidechain All . Metastable

Trajectory Torsions Torsions Torsions TIeA0 Tieaol Probs
TIMEWARP 2AA-LARGE
JAMUN 0.130+£0.020 0.185%0.044 0.165+£0.030 0.177+0.053 0.26040.052 0.155 +0.063
TBG 0.083£0.028 0.115+0.045 0.105£0.038 012240051 0.22540.070 0.101 £ 0.046
TBG (20 shorter) 0.203+£0.070 0.235+0.073 022540071 024040072 04840073 0.124+0.054
CAPPED 2AA
JAMUN 0.291+0.119 0.320%0.108 0.304+0.112 035140130 0.438+0.117 0.264+0.108
Reference (10 shorter) ~ 0.447£0.057 0.40620.071 0.424£0.056 0.557+0.043 0.564+0.041 0543 +0.073
MDGEN 4AA-EXPLICIT
JAMUN 0.159+£0.060 0.210%0.057 0.187+0.051 0.257+0.111 0.353+0.120 0.262+0.118
Reference (10 shorter) ~ 0.1000.035  0.092 % 0.027 0.095+0.025 0.23440.068 0.33240.067 0.286 = 0.066
Reference (100 shorter)  0.227+0.062 0.2540.060 0.240+£0.051 0.444+0.131 0.56940.108 0.482 +0.138
MDGen 0.1200.039 0.089+0.032 0.107+£0.028 022840092 0.32040.087 0.233 +0.093
UNCAPPED SAA

JAMUN 0.196+0.027 0.196+0.013 0.197+£0.010 0.336+0.049 0.440+0.048 0.250 +0.075
Reference (10 shorter) ~ 0.118+£0.013  0.150%0.032  0.135+£0.015 0.43040.077  0.504 +0.079 0.460 + 0.051
Reference (100 shorter)  0.272+0.062  0.3070.023 0.290+£0.030 0.555+0.070 0.678+0.034  0.601 £ 0.112
Boltz-1 0.425+0.033 0.402+0.036 0.411+£0.020 0.457+0.050 0.58440.026  0.483 £ 0.047
BioEmu 0.320+£0.013 0.48920.024 042040018 0.41540.092 0.597+0.026 0321 +0.018

Table 3. Comparison of Jensen-Shannon distances for different
methods on corresponding benchmark datasets.

6.4. Assessing Generalization over Peptide Lengths with
UNCAPPED 5AA

JAMUN’s graph neural network architecture enables it to
operate on molecules of larger sizes than it was originally
trained on. Thus, we test whether JAMUN can generalize
to peptides of lengths beyond its training set. This is a
challenging task, and one that we believe conformational
generation models have not been adequately benchmarked
on. As we mentioned before in Section 4, the TBG and
MDGen models are not compatible with this experiment.

Surprisingly, we find that the JAMUN model trained only
on 4AA peptides can accurately predict ensembles for 5AA
peptides. Figure 11 and Figure 12 show that JAMUN is able
to recover most states and even reproduce relative probabili-
ties. Interestingly, the same experiment does not work if we
train on TIMEWARP 2A A-LARGE instead, suggesting that
the 2AA reference MD data may not be informative enough
to generalize from.

On the other hand, we find that Boltz-1 is unable to sample
the diversity of peptide conformations. This is not entirely
surprising as Boltz-1 was not trained on any MD data, as
we noted before. Further, Boltz-1 also utilizes a common
pair representation, as computed by its Pairformer stack,
across all diffusion samples. The pair representation intu-
itively represents the residue-wise distance matrix, and thus
encodes a significant portion of the geometry. Keeping this
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Figure 8. Speedups defined as the ratio between decorrelation
times between the reference MD and JAMUN for backbone and
sidechain torsions for all test peptides in MDGEN 4A A-EXPLICIT.
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Figure 9. TICA-0,1 projections for 4 randomly chosen test peptides
on MDGEN 4AA-EXPLICIT.

representation fixed possibly prevents the sampling of large
conformational changes.

Surprisingly, BioEmu also seems to struggle in this setting,
even when considering distributions of backbone torsion
angles only. This suggests that BioEmu cannot capture the
relative flexibility of smaller peptides.

Quantitatively, Table 3 shows that JAMUN significantly
outperforms Boltz-1 and BioEmu on the metrics from Sec-
tion 5. As seen in Table 2, JAMUN is roughly 5x faster
than Boltz-1, and is roughly 60 x faster than BioEmu when
we perform side-chain reconstruction with H-Packer.

7. Conclusion

We present JAMUN, a walk-jump sampling model for
generating ensembles of molecular conformations, outper-
forming the state-of-the-art TBG model, and competitive
with the performance of MDGen with no protein-specific
parametrization. This represents an important step toward
the ultimate goal of a transferable generative model for
protein conformational ensembles. Performing MD in the
noised space gives the model a clear physics interpretation,
and allows faster decorrelation (and hence, sampling) than
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Figure 10. Ramachandran plots for JAMUN and MDGen on a
randomly chosen test peptide LIRH in MDGEN 4A A-EXPLICIT.
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Figure 11. TICA-0,1 projections for the three test peptides
NRLCQ, VWSPF and KTYDI in UNCAPPED 5AA.

classical MD.

The model has some limitations that motivate future work.
While it is highly transferable in the space of two to five
amino acid peptides, we have not tested the model’s abil-
ity to transfer to larger proteins. We leave exploring this
important direction to future work. Additionally, while the
current S F(3)-equivariant denoiser architecture works well,
further development of the denoising network could speed
up sampling. Alternative jump methods, such as multiple
denoising steps (a la diffusion), could also serve to sharpen
generation. Lastly, a promising direction that has not yet
been explored is the application of classical enhanced sam-
pling methods, such as metadynamics, for traversing the
noisy space.

8. Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Choice of Noise Scale ¢

As we discussed in Section 2.3, the scale of noise ¢ used to define Y is important. We found that the scale of noise chosen
in the paper for all experiments (o = 0.4A) is large enough to result in significant disruption of structure, leading to the
smoothed Gaussian convolved ‘walk’ manifold. However, the scale is also small enough to avoid atoms ‘swapping’ position,
for instance, or pairs of bonded atoms ending up very far from each other with reasonable probability. Indeed, as shown in
Figure 13, we find that higher noise levels (such as o = 0.8A) result in samples with broken topologies, while lower noise
levels (such as o = 0.2A) require many more sampling steps to explore the entire conformational landscape.

Reference

JAMUN
(o= 0.4A)

JAMUN
(o0=0.24)

0.84)

JAMUN B
(o

-m—-n/20 n/2 n -m—-n/20 n/2 n
¢ [0} (o)

-

Figure 13. Ramachandran plots for an example test peptide GCSL from TIMEWARP 4 A A-LARGE for JAMUN models trained at different
noise levels o and sampled for the same number of steps, showing the tradeoff between smaller noise levels (slower mode mixing at
o = 0.2A) and larger noise levels (broken topologies at o = 0.8A).

B. Simulation Details for CAPPED 2AA

We ensure that our unbiased molecular dynamics runs are converged or representative by comparing against biased molecular
dynamics runs using Non-Equilibrium Umbrella Sampling (NEUS) (Dinner et al., 2018; Vani et al., 2022), a trajectory
stratification based enhanced sampling algorithm. The protein is represented by the AMBERO3 force field (Ponder & Case,
2003). The simulations are performed at 300 K with the BAOAB integrator (Leimkuhler & Matthews, 2013) in OpenMM
(Eastman et al., 2017); LINCS is used to constrain the lengths of bonds to hydrogen atoms (Hess et al., 1997); Particle Mesh
Ewald is used to calculate electrostatics (Darden et al., 1993); the step size was 2 fs. The systems are solvated with TIP3P
water models and equilibrated under NVT and NPT ensembles for 100ps each.

14



JAMUN: Bridging Smoothed Molecular Dynamics and Score-Based Learning for Conformational Ensemble Generation

C. Overview of Denoiser

The denoiser is a S F(3)-equivariant graph neural network. The graph is defined by a radial cutoff of 10A in y. The overall
computation performed by the denoiser is shown in Figure 14, with the initial embedding, message-passing and output head
blocks shown in Figure 15, Figure 16 and Figure 17 respectively.

For all datasets, we train and sample with ¢ = 0.4 A. For the Langevin dynamics (Equation 68), we set M = 1, friction of
~ = 1.0 and a step size of At = o.

£
Y
(.\_
A
Cskip (O
o ?] Initial SE(3)-Equivariant y, Sklp( ) .
: 2% —>( ¢ —> —_ Geometric Output
Sl — y hedt i * Q fol
il & A Embedder Message-Passing Head _>'“‘—>t9—> oeotolcn
¢ Module i
Cin( ) Cout(o—) A
Yy (4 blocks) Zo(y,0)
i Cnoise\ O
Noise Level noise ()
g

Figure 14. Overview of the denoiser network Z¢. The submodule Fy sees input atom coordinates § = cin(o)y and outputs predicted atom
coordinates ', which gets scaled and added to a noise-conditional skip connection to finally obtain #¢(y).

The hidden features h(™) for n = 0, ..., 4 contain 120 scalar and 32 vector features per atom. We use spherical harmonics
up to [ = 1 for the tensor product.

We use the Adam optimizer with learning rate .002. Models are trained with a batch size of 32 over 2 NVIDIA RTX A100
GPUs.

15



JAMUN: Bridging Smoothed Molecular Dynamics and Score-Based Learning for Conformational Ensemble Generation

Compute Compute Compute
o ¢ Edge-Level Atom-Level Residue-Level ©
Q o Q Compute Features Features Features e ¥
N Q{ e ¢ —> | Edgeswith | —_ — — Cp O C
° '] Radial Cutoff Bond Info Atom Type Residue Type % 4 i‘
C Atom Distances Atom PDB Code Residue Index '
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Figure 15. Overview of the initial embedder in the denoiser network, creating initial features h(® at each atom and edge.

° 0 Noise SE(3)-Equivariant SE(3)-Equivariant Noise ® ©
O p: Conditional Tensor Product Linear Layer and Conditional Q- Q
V4 ’sz o —— Scaling = | withSpherical | = | Gate Activation Skip °j QZ "o
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Cnoise(o') cnoise(o')
Noise Level
g

Figure 16. Overview of a single S E(3)-equivariant message-passing block (indexed by n) in the denoiser network. There are four such

blocks iteratively updating the atom features from R to h™ . The atom coordinates denoted by § = cin(0)y (and hence, the edge
features) are unchanged throughout these blocks.

%]
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Co-a — | Unearter | 5 O & —> | coordinatesby | —> @ Gg
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Figure 17. Overview of the output head, which predicts the coordinates y' = Fy(cin(0)y, Cnoise (7))-
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D. Normalization

As the noise level o is increased, y = x + o0& where ¢ ~ N(0,y3) expands in space. Let  represent the ‘normalized’
input y, as seen by the network Fjy:

7 = cin(0)y (10)
To control the expansion of y, ¢z (o) is chosen such that the following property holds:

E(i,j)NUniform(E)[Hgi - §j||2] = 1 at all noise levels o. (1
ENN(Ov]INxfi)

Note that this is distinct from the normalization chosen by (Karras et al., 2022; 2024), which normalizes ||y|| directly. The
intuition behind this normalization is that the GNN model Fj does not operate on atom positions y directly, but instead
uses the relative vectors y; — y; to account for translation invariance, and controlling this object directly ensures that the
topology of the graph does not change with varying noise level o.

To achieve this, we compute:
1
Cin(a) = /C + 60'2

where C' = E(; j)~uniform(E) [|7i — ; ||2 can be easily estimated from the true data distribution. The full derivation can be
found in Section D.1.

(12)

As the input is now appropriately normalized, the target output of the network Fy should also be appropriately normalized.
A full derivation, found in Section D.2, leads to:

C
Cskip(U) = m (13)
C - 602
) =\ T 60 o
Cnoise(0) = logqp 0 (15)

The noise normalization is a scaled version of the recommendation of % In o for images in Karras et al. (2022; 2024).

D.1. Input Normalization

Fix an (i, j) € E from Equation 11. As ¢;,¢; " N(0,I3), we have ; —e; ~ N(0, 2I3) from the closure of the multivariate
Gaussian under linear combinations. Thus, for each component d = 1, 2and3, we have: (¢; — €;)(q) ~ N(0,2) and hence:

Bern (01w xo) (@i — 25) (i — )] = ) (i — x;)@El(e; — &) (@) =0 (16)

<N
e |l o
[S

2
Ecn(oinys)lllei = &5lI°71 = D El(es — 5)(y] = 6 (17)
d=1

We can now compute:

-2
E:[l15: — ;7]

2 (llzi = 511 + 20 [(@s — 2,)" (63 — )] + 0*Eellles — <5111
2 (llzi = w511 + oBeles — 2517

= ¢in(0)? (Hxi—xj||2+602) . (18)
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Now, taking the expectation over all (i, j) € F uniformly:

2 2
Es,jy~vnitorm(£) [[|T: — U511 = Es, 5y ~Unitorm() [Be [T — 7;|7]]
ENN(OJINXZ%)

= cin(0)? (E(i,j)NUniform(E) i — ;]| + 602) (19)

Let C' = E(; j)~Uniform(E) [|[Zi — 25 ||2, which we estimate from the true data distribution. Then, from Equation 19 and our
intended normalization given by Equation 11:

1

cin(0) = NS (20)

D.2. Output Normalization

The derivation here is identical that of (Karras et al., 2022; 2024), but with our normalization. The denoising loss at a single
noise level is:

L(26,0) = Exmpy Econ(0.1n o) [|Z0(X + 02,0) — X|?] 1)
which gets weighted across a distribution p,, of noise levels by (unnormalized) weights A(o):
L(#9) = Eonp, [Ma)L(Z0,0)]
= Eonp, Exnpy B (0115 0) N0) | 80(X + 02, 0) — X|P)
= Eonp, Exnpx By an (X 021) [A0) |20 (Y, 0) = X]|]
= Eorp, Exmpx By wh (X 0715 05) N0 [|Cskip(0) Y+ Cou(0) Fo (cin(0) Y, Cnoise () — |7]

2
T — Ceip(0)Y
= Eomp, Bty By (X [A(a)amt(of |Fren(o)Y:cuselo)) — 2= k0l
out
= Eonpe Ex~px By on(X,021nxs) [)‘(U)cout(‘f)z [ Fo(cin(0)Y, cnoise(0)) — FHQ} (22)
where:
T — Cuip(0)y
F(y,0) = ———F—== (23)
( ) Coul(a)
is the effective training target for the network Fy. We want to normalize F' similarly as the network input:
E(;,j)~uniform( &) [|| Fi — F} ||2] = 1 at all noise levels o. (24)
gNN(OJIini)
Again, for a fixed (4, j) € E, we have:
2
Ee ||Fz o F]||2 _ EE H(xl - Jf]) - CSkip2(U)(yi - y])“
Coul(U)
2
_ Ecf[(d = cip(9)) (@i — 25) — caip(0)0 - (€0 — &)
Cout(o')2
2
_ (1= caip(0))? [l — 25| + caip(0)? - 60 (25)
Cout(0)?
and hence:
2
IE(i,j)NUniform(E)[”F‘i - FJH ] =1
e~N(0,Inx3)
(1~ cain(0))* - C + cuip(0)? - 602 _
Cout(0)2
— Cout(O')Q = (1 — Cskip(U))2 -C+ Cskip(U)z - 602 (26)
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where C was defined above. Now, to minimize ¢y, (o) to maximize reuse and avoid amplifying network errors, as
recommended by Karras et al. (2022; 2024):

d 2
———Cout(0)* =0
dCSkip(U) [( )
— —2(1 — Cskip(U)) -C+ 2Cskip(0) . 602 =0
C
— Cskip<0') = m (27)

Substituting into Equation 26, we get after some routine simplification:

C 602
(@) = \| o (28)

The noise normalization is chosen as cyoise (07) = log;( 0, a scaled version of the recommendation of % In o for images in
Karras et al. (2022; 2024).

From Equation 22, we set A\(o) = m to normalize the loss at at all noise levels, as in Karras et al. (2022; 2024).

D.3. Rotational Alignment

As described in Algorithm 1, we use the Kabsch-Umeyama algorithm (Kabsch, 1976; Umeyama, 1991) to rotationally align
y to x before calling the denoiser.

Algorithm 1 Rotational Alignment with the Kabsch-Umeyama Algorithm

Require: Noisy Sample y € RV*3, True Sample z € RV *3,

H+ 2Ty > H € R3%3
U,S, VT «+ SVD(H) > UV e R¥>3
R* < Udiag[1,1,det(U) det(V)|VT

return y(R*)7

Note that both y and x are mean-centered to respect translational equivariance:

N

> yi=0eR? (29)
=1

N
Z 7, =0€R3 (30)
=1

so there is no net translation.

E. Proofs of Theoretical Results

For completeness, we prove the main theoretical results here, as first established by Robbins (1956); Miyasawa (1960);
Saremi & Hyvérinen (2019).

E.1. The Denoiser Minimizes the Expected Loss

Here, we prove Equation 6, rewritten here for clarity:

() =EX|Y =)= agmin  Exop con(oinnl/(Y) — X[ (€2))
FIRN X3 RN x3 Y=X+toe
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First, we can decompose the loss over the domain RYX3 of YV

Exmpy e (01 ) 1F(¥) = X[ = Ex o vopy [1F(Y) = X|7]

Y=X+o¢e
= / / 1f(y) — 2| px.y (z,y)dzdy
RNXB RNXS

- / / 1£(9) — 2 pyix (9 | 2)px (2)dady
RNXB RNXS

I(fy)

Z/RNXSl(f,y)dy

(32)

(33)

(34)

(35)

where [(f,y) > 0 for all functions f and inputs y. Hence, any minimizer f* must minimize the local denoising loss I(f*,y)
at each point y € RV*3, For a fixed y € RV >3, the loss I(f, %) is convex as a function of f(y). Hence, the global minimizer

can be found by finding the critical points of I(f,y) as a function of f(y):

Vipl(fiy) =0

— Vi [, 10—l pyixly | s e)ds =0

= 2(f*(y) — 2)py x (v | )px (x)dr = 0

RNXS

Rearranging:

_ Jenxs oy x (y | )px (z)dx
fRNXS pY|X(y ‘ ‘T)pX (x)dx
 Janes T oy x (Y | 2)px (x)dz
Py (Y)
_ / - pyix (v | 2)px(z)
RN X3 py(y)

= / QSPX|Y(I | y)dx
RNXS

()

dx

by Bayes’ rule. Hence, the denoiser as defined by Equation 5 is indeed the minimzer of the denoising loss:

~ . 2
() =EX|Y =]= argmin  Exopecan(oineaIf(Y) = X|]
fIRNX3 RN X3 Y=X+o¢

as claimed.

E.2. Relating the Score and the Denoiser
Here, we rederive Equation 7, relating the score function V log py and the denoiser Z.

Let X ~ px defined over RV *3 and ) ~ N'(0,Ixx3). Let Y = X + on, which means:

— N __ 1 ly — x|
pY\X(y |z) = N(y; 2, Inxs) = WGXP <_W

Then:

EX|Y =y]=y+0°V,logpy(y)

20

(36)
(37)

(38)

(39)

(40)

(41)

(42)

(43)
(44)

(45)

(46)
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To prove this:

y—x
Vypyx(y | z) = — o2 pyix(y|z) (48)
= (z—y)py x| 2) ="Vypyx(y | z) (49)
= / (x —y)py|x (¥ | ©) px (z)dx = / o*Vypyx (v | ) px (z)dx (50
RN x3 RN x3
By Bayes’ rule:
pyix (v | 2)px(z) = px v (z,y) = px|y (@|y)py (¥) (1
and, by definition of the marginals:
[ pxstnds =) (52)
RNXLS
For the left-hand side, we have:
[ e upvxtyopx@is = [ (@ ypxrleis (53)
RNXS RNXS
[ ooxy@do- [ ypxy(@ads (54)
RNXS ]RNX3

o) ([ ot lnds=y [ pevtelnas) 69

=py(y) (EX|Y =y] —y) (56)
For the right-hand side, we have:
o [ Vst epx@ds =V, [ pyixly | opx()ds (57)
RN x3 RN x3
= O'QVy/ px,y(z,y)dz (58)
RNXS
= 0*Vypy (y) (59)
Thus,
py(y) (BIX |Y =y] —y) = 0*Vypy () (60)
— EX|Y =y =y + o2 W) (61)
PY(Z/)
=y+0°V,logpy (y) (62)
as claimed.

F. Numerical Solvers for Langevin Dynamics

As mentioned in Section 2.2, solving the Stochastic Differential Equation corresponding to Langevin dynamics is often
performed numerically. In particular, BAOAB (Leimkuhler & Matthews, 2012; 2015; Sachs et al., 2017) refers to a ‘splitting
method’ that solves the Langevin dynamics SDE by splitting it into three different components labelled by A, B and O
below:

dy = v,dt (63)
~—~
A
dv, = M~V log py (y)dt — yv,dt + \/2yM~2dB, (64)

B O
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where both y, v, € R?. This leads to the following update operators:

[y ] _ [y + vy At
Asc| g =" (65)
Yy Yy
= 66
Ba: vy oy + MY, logpy(y)At] (66)
OAt J = —~AL _:li S~ AL :| (67)
| Uy | e 72y + M7 21 — e 272t B

where B ~ N (0,1;) is resampled every iteration. As highlighted by Kieninger & Keller (2022), the A and B updates are
obtained by simply discretizing the updates highlighted in Equation 63 by the Euler method. The O update refers to a
explicit solution of the Ornstein-Uhlenbeck process, which we rederive for completeness in Appendix G.

Finally, the iterates of the BAOAB algorithm are given by a composition of these update steps, matching the name of the
method:

(D) y®
Vy 2 2 2 Vy

G. The Ornstein-Uhlenbeck Process

For completeness, we discuss the distributional solution of the Ornstein-Uhlenbeck process, taken directly from the excellent
Leimkuhler & Matthews (2015). In one dimension, the Ornstein-Uhlenbeck Process corresponds to the following Stochastic
Differential Equation (SDE):

dv, = —yvydt + \/2yM "2 dB, (69)
Multiplying both sides by the integrating factor e7*:
e”tdvy = —et (vydt + et \/ﬂM* B dB; (70)
— (v, + yu,dt) = 7'\/2yM~3dB, (71)
and identifying:
e (dvy + yv,dt) = d(evy) (72)

We get after integrating from ¢; to ¢, two adjacent time steps of our integration grid:

d(ev,) = e'\/2yM~2dB, (73)
ta to
= / d(e”"vy) = / €"'\/2yM "2 dB, (74)
t1 t1

t

2
= e"tzvy(tg) — e”tlvy(tl) = \/27]\/[7% / e'tdB, (75)

t1

Now, for a Wiener process By, if g(t) is a deterministic function, j;tf g(t)d By is distributed as N/ (0, f:f g(t)%lt) by 1td’s
integral. Thus, applying this result to g(t) = €7, we get:

1 62’yt2 _ 62’7t1
e, (ta) — ey, (t1) = /2YM 2N <O, 2’y> (76)
2yt 29t
— vy (ty) = e 7Ty (1) + /2y Mz VRN <0, 6;) (77

1 — e2v(t1—t2)
=e‘”“2‘“>vy(t1)+v%M‘%\/iez —N(0,1) (78)
Y

— ety (1) + M~2\/1 — e (-1 N (0,1) (79)
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In the N x 3 dimensional case, as the Wiener processes are all independent of each other, we directly get:
vy(ta) = e VE"y (1) + M~3/1 — 21—t \ (0, Iy x3) (80)

Setting At = to — t1, we get the form of the O operator (Equation 65) of the BAOAB integrator in Appendix F.

H. Parallelizing Sampling with Multiple Independent Chains

Our sampling strategy batches peptides in order to increase throughput. Another potential method to increase throughput
(but which we did not employ for the results in this paper) is to sample multiple chains in parallel.

(0) (0)

This can be done by initializing multiple chains: y; *, ..., yy/ , where:
vy =0 +oel) (81)
where 5&?) id N(0,Tnx3) for ch = 1,..., Ny are all independent of each other. Then, the chains can be evolved

independently withindependent walk steps (Equation 3) and denoised with independent jump steps (Equation 7). This
independence allows batching over the yc(l? over all chains ch at each iteration ¢.

Note that at ¢ = 0, the chains are correlated as they are all initialized from the same (9, However, if the number of samples
per chain is large enough, the chains are no longer correlated, as they have now mixed into the stationary distribution.

I. Preliminary Results on Macrocycles

One of the most important aspects of JAMUN is its highly general input, a point cloud, unlike other protein ensemble models
that are frequently more bespoke, using dihedral or frame representations. While this may be a slight disadvantage for us in
the protein space, it also makes us extremely flexible and easily transferable to other modalities, unlike existing models in
this space. Here, we demonstrate that on macrocyclic peptides with several non-canonical residues.

The exploration of conformational ensembles in macrocyclic peptides is crucial due to their emerging role as therapeutic
modalities. These molecules present significant challenges in computational modeling because of their conformational
diversity and inherent geometric constraints. In fact, molecular dynamics trajectories for these molecules are particularly
slow as good classical forcefields are unavailable and it is necessary to use quantum mechanical calculations to compute
forces. Macrocyclic peptides are also extremely unwieldy in their open”, most common conformations, forming hydrogen
bond networks with water. However, those macrocycles that are able to occupy smaller "crumpled” conformations are
greasy and able to permeate through biological membranes, making them more suitable for biodelivery. Here, as an example,
we use macrocycles from the CREMP dataset (Grambow et al., 2024), generate ensembles with the CREST protocol (Pracht
& Grimme, 2020), and benchmark the resulting conformers against the RINGER model (Grambow et al., 2023). Figure 18
illustrates the transferability of JAMUN to macrocyclic peptides.

It is clear that we are able to recover most basins sampled, even though it does seem like there are new basins uncovered.
We note that our outputs look significantly more diffusive than the ground truth. The main reason for this is that the CREST
data is clustered and filtered to represent the local minima, whereas JAMUN is designed to sample entire distributions. In
some sense, the data is strictly not complete for the task JAMUN is designed for. It is impressive that in spite of this JAMUN
learns enough from the denoising ”jump” step with very local data to still perform the Langevin dynamics “walk” step and
sample multiple basins.

We find that for 4-mers, which is what we trained our model for, we are able to recover all the sampled basins. We also
attempt to run inference for 5 and 6-mers with the same model to test generalizability.

While this is a preliminary study, it points to the potential of JAMUN being used universally, not just for proteins, and in
particular shows that it is effective even in a low-data regime.
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Figure 18. Macrocycle results trained on 4AA: 3D image of the (a) CREMP (green) and (b) JAMUN (cyan) MeS.MeS.V.L macrocycle.
(c) Ramachandran plot for CREMP, JAMUN, and RINGER samples of the 4AA MeS.MeS.V.L macrocycle. (d) Ramachandran plots for
CREMP and JAMUN samples of the 5AA F.Q.L.G.Met macrocycle.(e) Ramachandran plots for CREMP and JAMUN samples of the
6AA Mes.T.Q.Mei.V.W macrocycle. 24



