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ABSTRACT

Guiding pretrained flow-based generative models for conditional generation or
to produce samples with desired target properties enables solving diverse tasks
without retraining on paired data. We present ESS-Flow, a gradient-free method
that leverages the typically Gaussian prior of the source distribution in flow-based
models to perform Bayesian inference directly in the source space using Ellipti-
cal Slice Sampling. ESS-Flow only requires forward passes through the genera-
tive model and observation process, no gradient or Jacobian computations, and
is applicable even when gradients are unreliable or unavailable, such as with
simulation-based observations or quantization in the generation or observation
process. We demonstrate its effectiveness on designing materials with desired tar-
get properties and predicting protein structures from sparse inter-residue distance
measurements.

1 INTRODUCTION

In generative modeling, we are given data samples and aim to construct a sampler that approximates
the data distribution. Diffusion models (Ho et al., 2020; Song et al., 2021) and continuous normal-
izing flows (Lipman et al., 2023; Liu et al., 2023; Albergo et al., 2023) achieve this by transporting
samples from a simple source distribution to the data distribution. Instead of just unconditional sam-
pling, we often need to generate samples with specific properties or to match observed data in the
context of inverse problems. If sufficient paired data is available, we can train conditional generative
models (Dhariwal & Nichol, 2021; Rombach et al., 2022; Miller et al., 2024). However, this requires
specialized models for each task and large amounts of paired training data.

Training-free conditional generation methods offer a more flexible alternative by reusing pretrained
models. Instead of paired training data, these methods often use a likelihood function to measure
how well a sample matches the desired observation. Guidance-based methods modify the trans-
port map towards the target distribution using the conditional likelihood score (Song et al., 2021),
though the score often has to be approximated. Alternatively, optimization-based methods minimize
the negative log-likelihood with gradient descent, using the generative model as either an explicit
regularizer through noising-denoising procedures (Martin et al., 2025; Levy et al., 2024) or an im-
plicit one that constraints the gradient flow to the data manifold (Ben-Hamu et al., 2024).

While optimization-based methods are empirically shown to perform well in image inverse tasks,
they only provide point estimates rather than samples, offer little guarantees against local optima,
and fail when gradients are unreliable or unavailable. Notably, this occurs when the generative pro-
cess involves non-differentiable operations like quantization, or when likelihood evaluations require
non-differentiable simulations which is common in scientific applications (e.g. Alhossary et al.,
2015; Alford et al., 2017). Some of the former limitations can be addressed by formulating con-
trolled generation as Bayesian inference, where the pretrained generative model provides the prior,
enabling inference methods that sample from the target distribution. However, many state-of-the-art
methods for solving Bayesian inverse problems with generative model priors still requires gradients
(Chung et al., 2023; Zhang et al., 2025; Janati et al., 2024; Wu et al., 2023) or are limited to linear
Gaussian observations (Kelvinius et al., 2025; Cardoso et al., 2024), limiting their applicability.

Our key insight is that many pretrained diffusion and flow-based models can be recast as continuous
normalizing flows with Gaussian source distributions. This enables us to perform Bayesian inference
in the source space, instead of the complex data space, and use tailored Markov chain Monte Carlo
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Figure 1: Illustration of ESS-Flow. We sample the target distribution π(z) in the source space of
flow-based models, which typically has a Gaussian prior p(z). This allows gradient-free sampling
with elliptical slice sampling, which defines an ellipse through the current MCMC iterate zi and a
sample from the prior ν, and moves to the next iterate by searching along the ellipse. At stationarity,
the transformed ellipse passes through regions of high potential in the data space by construction.

(MCMC) methods like elliptical slice sampling (Murray et al., 2010). This results in ESS-Flow, a
new training-free controlled generation method, approximating the target distribution in the source
space of flow-based models, as illustrated in Figure 1.

ESS-Flow is by design gradient-free, requiring only point-wise evaluations of the generative model
and the likelihood (or more generally, potential) function. This makes it particularly valuable for
problems involving quantization, such as molecular and material design with categorical atomic
numbers, where gradients are not well-defined. It is applicable for arbitrary, possibly non-linear and
non-differentiable, potential functions and does not require knowledge of the noising process used
during model training, only the final trained transport map. Furthermore, contrary to guidance-based
methods, ESS-Flow preserves the pretrained velocity field. As discussed by Wang et al. (2025), this
has the benefit that if the prior vector field is optimized for fast generation, for example when trained
with minibatch-OT coupling (Pooladian et al., 2023; Tong et al., 2024), this property is retained by
source sampling methods like ESS-Flow.

We summarize our main contributions as:

• We identify and illustrate limitations of gradient-based methods for controlled generation.

• We present ESS-Flow, a training-free and asymptotically exact sampling method for flow-
based models, which requires no gradients through the generative model or the potential
function.

• We propose a multi-fidelity extension of ESS-Flow, leveraging the fact that flow-based
generative models in practice are simulated from using a numerical solver, to improve the
computational efficiency of the method.

• We demonstrate ESS-Flow on materials design with target properties and protein structure
prediction from partial inter-residue distance measurements, achieving lower mean abso-
lute errors on materials and improved structural realism in proteins.

While the gradient-free nature of ESS-Flow is highly beneficial in many settings, it also limits the
applicability of the method in situations when the prior poorly informs the target distribution, for
instance when the target is constrained on a lower-dimensional manifold. The primary use-case
for ESS-Flow is thus applications, e.g. in scientific domains, where the target distribution is not
overly-collapsed. We discuss this limitation further below.

2 PRELIMINARIES

Flow-based generative models: Consider a generative model that transports samples x0 from a
simple source distribution at t = 0 to samples x1 from the data distribution at t = 1 through a
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learned velocity field uθ
t (x) by solving the ordinary differential equation (ODE):

x1 = Tθ(x0) := x0 +

∫ 1

0

uθ
t (xt) dt. (1)

Both diffusion models with the probability flow ODE for generation (Song et al., 2021) and models
trained with the conditional flow matching objective (Lipman et al., 2023; Albergo et al., 2023) can
be viewed as instances of this model class. We collectively refer to them as flow-based generative
models with a transport map Tθ and consider the case where the source distribution is Gaussian, i.e.,
the model defines a continuous normalizing flow. To simplify notation, we drop the time subscript
t and denote source samples x0 by z and data samples x1 by x, i.e., the generative model prior is
defined by x = Tθ(z) with z ∼ N (0, I).

Controlled generation as Bayesian inference: In controlled generation tasks, we seek to sample
from a target distribution π(x) ∝ g(x)pθ(x), where it is assumed that the normalization constant
is finite so that π(x) is indeed a probability distribution. Here, pθ(x) is the prior (unconditional)
generative model and g(x) is a nonnegative potential function that guides samples toward desired
properties. Under this formulation, π(x) is the posterior distribution p(x|y) when g(x) is a likeli-
hood function p(y|x) conditioned on observation y, or a tilted prior when g(x) is a general reward
function. In our setting, the prior data distribution is given by the pretrained flow-based generative
model of the form in equation (1).

3 RELATED WORK

Many methods have been proposed for controlled generation with diffusion and flow-based models
(see surveys in, e.g., Daras et al., 2024; Chung et al., 2025; Zhao et al., 2025). We focus on those
that are training-free and applicable to ODE-based generative models of the form in equation (1).

Methods such as DPS (Chung et al., 2023), FlowDPS (Kim et al., 2025), and OT-ODE (Pokle et al.,
2024) incorporate a guidance term into the transport map, obtaining target samples in a single pass
through the modified generative process. This term involves the score of the conditional likelihood,
which is often approximated, and the sequential process cannot correct for errors that occur early
in the generation. Methods like PnP-Flow (Martin et al., 2025), DAPS (Zhang et al., 2025), and
DDSMC (Kelvinius et al., 2025) overcome this limitation by alternating between noise space and the
data space with progressively annealed noise. PnP-Flow optimizes in the data space and regularizes
through noising-denoising steps between gradient updates. DAPS generalizes this framework for
posterior sampling and DDSMC extends DAPS using sequential Monte Carlo for linear Gaussian
potentials. These methods do not require differentiating the transport map and perform approximate
posterior updates in the data space at each iteration of the generative procedure. However, they
require access to the noising process used during training, as the noising step is part to the algorithm.

Source space methods like D-Flow (Ben-Hamu et al., 2024) performs gradient-based source point
optimization, relying on implicit regularization that leads to manifold-constrained gradient flow
in the data space. Purohit et al. (2025) extend D-Flow to posterior sampling in the source using
Langevin Monte Carlo. In work which is concurrent to ours, Wang et al. (2025) use Hamiltonian
Monte Carlo in the source space, which has also been considered earlier by Graham & Storkey
(2017) who demonstrated latent space sampling with constrained Hamiltonian Monte Carlo for
variational autoencoders. A key limitation of existing source space methods is their reliance on
gradients, requiring expensive backpropagation through the ODE solver. To the best of our knowl-
edge, our method, ESS-Flow is the only gradient-free method in this category. Furthermore, it does
not require knowledge of the noising process used in training, only the trained transport map.

4 METHOD

Suppose that we have a generative model prior pθ(x) from a flow-based model that maps samples
from a Gaussian source distribution z ∼ N (0, I) to the data space with the transport map x = Tθ(z).
Given a potential function g(x), such as the likelihood p(y|x) for an observation y or a general
reward function, we seek samples from the target π(x):

π(x) ∝ g(x) pθ(x) = g(x) p(z) |det(JTθ
(z))|−1

, (2)
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(a) D-Flow samples

y

x

(b) ESS-Flow samples

Figure 2: Conditional generation targeting a specific y indicated by the dotted line. Prior samples
are shown in gray with marginals along the border. Some D-Flow samples, which follow the source-
space gradient, become trapped in disconnected manifolds (indicated by arrow), while ESS-Flow,
being gradient-free, can avoid this problem.

where z = T−1
θ (x) and JTθ

(z) denotes the Jacobian of the transport map evaluated at z.

4.1 ESS-FLOW: AVOIDING GRADIENT COMPUTATIONS FOR SOURCE SPACE SAMPLING

Sampling the target distribution π(x) or optimizing for a point estimate in the data space requires
evaluating the Jacobian of the transport map, which is computationally expensive for continuous
flow-based models. Methods like PnP-Flow (Martin et al., 2025) avoid this by maximizing only
g(x) and regularizing with an iterative noising-denoising procedure, which does not guarantee con-
vergence to the maximum a posteriori (MAP), nor sampling from the target π(x).

With a change of variables, we can instead approximate the target distribution π(z) in the source:

π(z) = π(x) |det(JTθ
(z))| ∝ g(x) p(z) |det(JTθ

(z))|−1 |det(JTθ
(z))| = g(Tθ(z)) p(z). (3)

Note the cancellation of the Jacobian terms due to the fact that we express both the prior and the
posterior in the source space. While we no longer need the Jacobian for point-wise density evalua-
tion, optimizing for a MAP estimate or using gradient-based sampling with Langevin Monte Carlo
(Purohit et al., 2025) or Hamiltonian Monte Carlo (Graham & Storkey, 2017; Wang et al., 2025)
still requires it, since the gradient ∇zg(Tθ(z)) = JTθ

(z)T∇xg(x) involves the Jacobian. Beyond
computational expense, gradients may be entirely unavailable when the generative process involves
quantization as in Section 5.1, or when evaluating the potential requires non-differentiable simula-
tors or external programs that are not amendable to automatic differentiation.

Furthermore, gradient-based methods can struggle when the prior has multiple disconnected modes.
To illustrate this, consider D-Flow applied to the toy-problem in Figure 2, where pθ(x) consists
of two interleaving half-circles and we seek samples with a specific target y. D-Flow maxi-
mizes g(Tθ(z)) w.r.t. z using gradient-based optimization while relying on implicit regulariza-
tion. A small gradient step δz ∝ JTθ

(z)T∇xg(x) in the source space corresponds to the step
δx = JTθ

(z)JTθ
(z)T∇xg(x) in the data space. This projects gradients along the data manifold,

resulting in a manifold-constrained gradient flow (Ben-Hamu et al., 2024). However, as seen in Fig-
ure 2, even with a large learning rate that deviates significantly from a gradient flow, many D-Flow
samples remain trapped within the disconnected manifold component where they are initialized.

To overcome the limitations of gradient-based methods we propose to use elliptical slice sam-
pling (ESS, Murray et al., 2010) to sample from the target distribution in the source space. This
leverages the fact that the prior p(z) is a multivariate Gaussian, whereas the complexity of the trans-
port map Tθ(z) has been incorporated in the potential according to equation (3). This is precisely the
setup where ESS excels. Our resulting approach, ESS-Flow, requires only point-wise evaluations of
the generative model and involves no gradient or Jacobian computation. Being an MCMC method,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

ESS-Flow is flexible with initialization, e.g., by sampling z0 from the Gaussian prior, and then pro-
ceeding iteratively. As illustrated in Figure 1, a proposal is drawn from an ellipse in the source space
defined by the current state zi and a random sample ν from the Gaussian prior. Assuming that the
transport map Tθ is continuous in z, it non-linearly maps the ellipse to a continuous, connected curve
in the data space that will pass through the current state xi. The potential function g(Tθ(z)) evalu-
ated in the data space determines if the proposal will be accepted. When the proposal is rejected, the
algorithm shrinks the angular bracket around the ellipse, excluding regions that contain the rejected
proposal while maintaining support near the current state, and draws a new proposal. As discussed
by Murray et al. (2010), this guarantees that the procedure will terminate by accepting a proposal in
finite time when the pullback potential function g◦Tθ is continuous. However, it excludes potentials
that constrain the target distribution to a lower-dimensional manifold in the source space, such as
with exact equality constraints. Searching along the ellipse in the source corresponds to gradient-
free exploration of the target data space, and the resulting Markov chain in the source {zi} yields the
corresponding Markov chain {xi} when passed through the transport map. ESS-Flow has minimal
hyperparameters to tune, and one MCMC step is summarized in Algorithm 1.

The convergence of ESS is discussed by Murray et al. (2010) who show that the induced Markov
kernel leaves the target distribution invariant. A more detailed convergence analysis is provided by
Hasenpflug et al. (2025) and Natarovskii et al. (2021). For completeness we state one of the main
results here, adapted to our setting of flow-based models.

Proposition 1 (Geometric convergence of ESS-Flow, Theorem 2.2 by Natarovskii et al. (2021))
Suppose that the pullback potential z 7→ g ◦ Tθ(z) is bounded away from 0 and∞ on compact sets
and has regular tail behavior (details in Natarovskii et al. (2021), Assumption 2.1), then the ESS
Markov chain, which we denote ν(·, x), converges geometrically fast to the target measure π:

∥νn(·, z)− π∥TV ≤ c (1 + ∥z∥2)βn, ∀z ∈ Rd,

where ∥·∥TV stands for the total variation distance, νn is the n-th iteration of the chain, and c > 0
and 0 < β < 1 are constants.

Algorithm 1 ESS-Flow: one MCMC iteration

Require: source N (0, I), transport map Tθ, potential g, current state-potential (z, g(Tθ(z)))

1: Sample ν ∼ N (0, I), u ∼ U(0, 1)
2: Sample θ ∼ U(0, 2π)
3: Initialize bracket [θl, θu]← [θ − 2π, θ]
4: while true do
5: z′ = z cos θ + ν sin θ
6: x′ = Tθ(z

′)
7: if log g(x′) > log g(x) + log u then
8: return (z′, g(x′))
9: else

10: θl, θu ← SHRINKBRACKET(θ, θl, θu)
11: Resample θ ∼ U(θl, θu)

12: function SHRINKBRACKET(θ, θl, θu)
13: if θ < 0 then
14: θl ← θ
15: else
16: θu ← θ

17: return θl, θu

4.2 MULTI-FIDELITY SAMPLING WITH ESS-FLOW

Flow-based generative models are defined in continuous time according to equation (1), but in prac-
tice the transport map is solved numerically with finite discretization ∆ rather than exactly. This
means that we in principle have access to a class of approximate priors {p∆θ (x) : ∆ ∈ (0, 1)} corre-
sponding to different discretization levels, where, intuitively, smaller ∆ gives rise to more accurate
models.

Our proposed MCMC based sampler could be generalized in different ways to take advantage of
such a multi-fidelity setup. The high-level idea is to rely on coarser, and thus computationally
cheaper, evaluations of the transport map for a large portion of the evaluations, while ensuring that
the final samples nevertheless target a prespecified high-fidelity model. This could be accomplished
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by delayed acceptance ESS (Bitterlich et al., 2025), or by methods resembling parallel tempering
(Earl & Deem, 2005) or simulated tempering (Marinari & Parisi, 1992) where the annealing temper-
ature is replaced by the discretization level. A simpler approach, which we elaborate here as a proof
of concept, is a post-correction of the generated samples using importance weighting.

Let T∆
θ (z) denote the transport map with coarse discretization ∆ and T δ

θ (z) with fine discretization
δ ≪ ∆. The target distribution from equation (3) for the high-fidelity model can be rewritten as:

πδ(z) ∝ g(T δ
θ (z)) p(z) =

g(T δ
θ (z))

g(T∆
θ (z))

g(T∆
θ (z)) p(z) ∝ w π∆(z) (4)

We sample from ESS-Flow targeting π∆(z) using the coarse transport map T∆
θ and re-weight sam-

ples with self-normalized importance weights wi ∝ g(T δ
θ (zi))/g(T

∆
θ (zi)) after thinning. The ex-

pensive high-fidelity transport map is evaluated only on the final subsampled MCMC samples, not
during the ESS itself, significantly reducing computational cost while maintaining accuracy of the
target.

5 EXPERIMENTS

We evaluate ESS-Flow on generating materials with target properties and predicting protein
backbone structures from sparse inter-residue distances. We compare against state-of-the-art
optimization-based methods: D-Flow (Ben-Hamu et al., 2024), PnP-Flow (Martin et al., 2025) and
ADP-3D (Levy et al., 2024); and sampling-based method: DAPS (Zhang et al., 2025).

5.1 MATERIAL GENERATION

We use FlowMM (Miller et al., 2024), a flow-based generative model trained with Riemannian flow
matching on the MP-20 dataset (Jain et al., 2013), as the prior over materials. A crystalline material c
with unit lattice consisting of n atoms is represented by the tuple (a,f , l,β), where a ∈ {−1, 1}n×7

are the binarized atomic numbers, f ∈ [0, 1]n×3 are the fractional coordinates of each atom, l ∈ R3
+

are the lattice cell lengths, and β ∈ [60◦, 120◦]3 are the lattice angles. We convert the uniform and
log-normal source distributions of f , l,β into a standard Gaussian via a change of variables.

To enable comparison with gradient-based methods, we predict material properties using auto-
differentiable ALIGNN (Choudhary & DeCost, 2021) models trained on the JARVIS-DFT (Choud-
hary et al., 2020) dataset, rather than simulation-based procedures. For target properties, we consider
bulk modulus, shear modulus, and band gap, choosing target values above the 99th percentile of the
prior property distribution. We also evaluate guiding generation toward stable materials, where
stability is measured by the predicted energy above hull. Since FlowMM requires specifying the
number of atoms per unit lattice, we choose values based on the distribution of atoms for materials
with large property values. Target property values, number of atomic sites per lattice, and potential
function details are summarized in Table 1.

Table 1: Target properties and values for the material generation experiments

Property Pc Target y Atoms n Potential function g(c) Scale σy

Bulk modulus 300 GPa 4 exp(−(Pc − y)2/2σ2
y) 10 GPa

Shear modulus 200 GPa 4 exp(−(Pc − y)2/2σ2
y) 10 GPa

Band gap 10 eV 12 exp(−(Pc − y)2/2σ2
y) 0.1 eV

Energy above hull - 8 exp(−Pc/σy) 0.01 eV

We apply dimension-wise learning rates for all methods, as gradient magnitudes vary between
(a,f , l,β). FlowMM outputs ã ∈ Rn×7, a soft 7-bit encoding that gets rounded to discrete values
a. ALIGNN expects integer atomic numbers ki for the i-th atom to create atom embeddings hi

by selecting the ki-th row of its embedding matrix E. To maintain differentiability for D-Flow and
PnP-Flow, we use the continuous values k̃i, derived from ãi, to create soft atom embeddings hi:

zij = (j − k̃i)
2, vi = softmax(−zi/τ), hi = ETvi, (5)
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Table 2: Mean and standard deviation (in parentheses) of absolute errors between the sample prop-
erties and targets, and mean and standard deviation of energy above hull values.

Method Bulk modulus Shear modulus Band gap Energy above hull

Unconditional 198.37 (66.44) 166.71 (22.51) 9.44 (0.98) 2.19 (1.42)
D-Flow 193.86 (69.54) 158.91 (35.13) 9.10 (1.29) 1.52 (1.28)
PnP-Flow 50.98 (31.34) 69.53 (30.83) 5.76 (1.09) -0.02 (0.06)
DAPS 26.67 (16.83) 55.83 (34.76) 3.34 (1.47) -0.08 (0.07)
ESS-Flow 9.05 (5.64) 8.30 (6.93) 0.50 (1.09) -0.20 (0.05)

Table 3: Quality of ESS-Flow samples obtained in different tasks.

Tasks Validity (%) Stability (%) Uniqueness (%) Novelty (%) S.U.N. (%)

Bulk modulus 97.3 45.6 37.9 96.2 15.2
Shear modulus 99.8 55.2 18.2 98.9 6.1
Band gap 50.3 29.2 28.9 50.3 21.6
Energy above hull 71.7 53.1 10.0 71.7 6.7

where we set τ = 0.1. For DAPS, we avoid this approximation by using Langevin Monte Carlo
only for (f , l,β) and sampling a with Metropolis–Hastings using proposals that flip one bit of the
binarized atomic numbers. The noising and denoising steps are adapted from the original diffusion
formulation to match FlowMM. Hyperparameter details are provided in the Appendix.

We measure performance using the absolute errors between sample properties and targets for condi-
tional generation, and the predicted energy above hull for stability, as shown in Table 2. Even with
the continuous approximation for a, D-Flow fails to explore atomic compositions far from initial-
ization. PnP-Flow, which optimizes in data space, is less restricted by this limitation. By avoiding
gradient-based exploration of a, DAPS and ESS-Flow perform better, specifically ESS-Flow out-
performs all other methods significantly with the lowest errors. The approximation quality is further
illustrated in Figure 3, where we see that ESS-Flow can better recover the sharp target distributions.

For ESS-Flow samples, we assess their qualities by computing validity percentage and S.U.N. rate
(stability, uniqueness, and novelty). Valid materials have lattice volume greater than 0.1 Å3, atomic
numbers within range, and balanced charge. After filtering invalid materials, we follow FlowMM
and relax lattice structures with CHGNet (Deng et al., 2023), without further density functional
theory based relaxations. Stability rate is the proportion of relaxed structures with energy above
hull <0.1 eV/atom according to CHGNet. This procedure differs from the predictor used to guide
generation of meta-stable materials and can thus produce different results. Uniqueness and novelty
rates measure the proportion of unique samples among themselves and with respect to the training
set, respectively, using pymatgen’s StructureMatcher (Ong et al., 2013) with default settings.
Results computed over 1000 generated samples are reported in Table 3.

Validity and stability rates are limited by the FlowMM prior, which may produce unrelaxed struc-
tures and has compositional validity of approximately 83%. The uniqueness rate could be improved
by using parallel MCMC chains instead of one chain with thinning, which may result in correlated
samples. The S.U.N. rates are naturally low compared to unconditional generation, but they should
be viewed in light of the fact that we are (successfully) targeting extreme values for the desired
properties, with target values set to the 99th percentile based on the unconditional model. Despite
this challenging controlled generation problem, the resulting S.U.N. rates indicate that ESS-Flow
does generate a subset of materials that are good candidates for further exploration.

5.1.1 EVALUATION OF MULTI-FIDELITY SAMPLING

We perform preliminary evaluation of the suggested proof of concept for multi-fidelity sampling in
Section 4.2. The ESS-Flow samples obtained from evaluating the potential with a coarse discretiza-
tion ∆ = 1/50, is re-weighted with importance weights by using much finer discretization for the
ODE δ = 1/1000 as described in equation (4). The weighted samples have a reasonable effec-
tive sample size of 68.1% and 74.1% for the bulk modulus and shear modulus tasks respectively.
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(c) Band gap: 10 eV
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Figure 3: Sample property distributions. Property values are along the X-axis, prior property dis-
tribution is shown in gray, and target values are shown as dotted lines. ESS-Flow samples are near
target values across all tasks.

However, in the band gap and stability tasks that have sharper target distributions, they are lower,
6.8% and 11.7% respectively. This is a shortcoming of the simple importance re-weighting approach
which assigns large weights for samples with low potentials under the coarse discretization.

5.2 PROTEIN STRUCTURE PREDICTION

For protein backbone structure prediction from partial inter-residue distances, we follow Levy et al.
(2024). We use Chroma (Ingraham et al., 2023), a pretrained diffusion model, as our prior over
protein backbone structures denoted by x ∈ R4n×3, which are the 3D coordinates of all four heavy
atoms from n amino acid residues. Since we require a deterministic mapping between source and
data samples, we modify Chroma’s random protein graph construction to use k-nearest neighbors
and generate samples with the probability flow ODE.

Levy et al. (2024) compute all pairwise distances between α-carbons in protein PDB:7r5b (War-
stat et al., 2023) containing 147 residues and randomly sample distances without noise. However,
they note that this is simplified, as nuclear magnetic resonance spectroscopy cannot probe distances
above 6 Å. We account for this by sampling only 300 out of 330 distances that are <6 Å and adding
Gaussian noise N (0, 0.52), as the protein is deposited at the resolution of 1.77 Å. This results in a
highly underdetermined inverse problem, suggesting that a Bayesian approach is suitable for captur-
ing the diversity of structures that agree with the observed data. Conditioned on these observations,
we generate 10 backbone structures with D-Flow, ADP-3D, DAPS, and ESS-Flow. We report the
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L2 distance dy between observations and corresponding sample distances, and the root mean square
distance RMSDgt between the ground truth structure and samples in Table 4.

Table 4: Mean and standard deviation (in parenthesis) of the metrics for the sampled structures.

Method dy RMSDgt min. RMSDgt ELBO

Unconditional 80.21 (9.69) 16.98 (0.83) 15.53 8.70 (0.20)
D-Flow 46.54 (8.58) 14.44 (1.35) 11.54 8.64 (0.35)
ADP-3D 3.43 (0.34) 11.45 (1.52) 8.91 -5.68 (1.24)
DAPS 11.79 (1.67) 11.41 (1.17) 9.47 -8.07 (1.27)
ESS-Flow 37.02 (5.06) 13.55 (1.32) 10.63 8.89 (0.21)

Following Levy et al. (2024), we use the lower bound on the log marginal data likelihood (ELBO)
from Chroma as a measure of structural realism. While L2 distances suggest that ADP-3D and
DAPS samples best match observations, the ELBO values and Figure 4 reveal that resulting struc-
tures are highly unnatural. In both methods, as noise levels are annealed, regularization from the pre-
trained generative model diminishes, shifting optimization toward maximum likelihood estimates.
This results in prioritizing a good data fit (low RMSD) at the expense of weaker prior regularization
(unrealistic structures). ESS-Flow explicitly enforces the prior, resulting in more realistic samples.
We observe a limitation, however, where ESS-Flow does not explore the target distribution as effec-
tively as in the material generation experiments and tends to become trapped in modes. Therefore,
samples are obtained from 10 independent parallel MCMC chains.

(a) Ground truth
(7.91)

(b) ADP-3D
(-3.54)

(c) DAPS
(-7.30)

(d) D-Flow
(8.49)

(e) ESS-Flow
(8.82)

Figure 4: Ground truth protein structure PDB:7r5b, conditional sample with the lowest RMSDgt
from each method, and their ELBO from Chroma (in parenthesis). While samples from ADP-3D
and DAPS resemble partially collapsed polymers, ESS-Flow achieves a better trade-off between
data fidelity and sample realism.

6 CONCLUSION

We introduce ESS-Flow, a training-free sampling method for controlled generation with pretrained
flow-based generative models. The method requires minimal hyperparameter tuning and is entirely
gradient-free, making it particularly valuable for problems where gradient-based optimization strug-
gles, such as when the generative process involves quantization, or evaluating the potential requires
non-differentiable simulations. However, this gradient-free approach limits ESS-Flow’s effective-
ness when the prior does not well inform the target distribution, such as in noiseless image inpaint-
ing tasks. Currently, we use moderate numbers of function evaluations in the ODE solver, fewer
than what is typically used for unconditional generation. We propose and evaluate a multi-fidelity
setup where samples obtained by using coarse ODE discretization are re-weighted with importance
weights, as a proof of concept. Future work could explore more principled combinations of coarse
and fine ODE discretization to better guide exploration of target distributions. Additionally, devel-
oping adaptive strategies for problems where the prior poorly covers the target distribution could
expand the applicability of the method to a broader range of controlled generation tasks.
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A APPENDIX

A.1 ADDITIONAL DETAILS FOR THE EXPERIMENTS

The hyperparameters for methods used in the material generation experiment and protein structure
prediction are given in Table 5 and 6 respectively.
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Table 5: Hyperparameters for the material generation tasks

Method / Parameter Bulk modulus Shear modulus Band gap Energy above hull

Unconditional
ODE integration steps N 50 50 50 50

D-Flow
ODE integration steps N 50 50 50 50
Optimizer SGD SGD SGD SGD
Optimization steps Nopt 100 100 100 100
Learning rate (a, l,β) 10−6 10−5 10−4 10−4

Learning rate (f) 10−8 10−7 10−6 10−6

PnP-Flow
Optimizer SGD SGD SGD SGD
Optimization steps Nopt 100 100 100 100
Learning rate decay linear linear linear linear
Min. learning rate 0 0 0 0
Max. learning rate (a) 10−4 10−3 10−1 10−2

Max. learning rate (f) 10−6 10−5 10−3 10−4

Max. learning rate (l,β) 10−5 10−4 10−2 10−3

ODE integration steps N 100− n 100− n 100− n 100− n

DAPS
ODE integration steps N 5 5 5 5
Optimization steps Nopt 100 100 100 100
Sampling steps Ns 20 20 20 20
Learning rate decay linear linear linear linear
Min. learning rate 10−2α 10−2α 10−2α 10−2α
Max. learning rate (αf ) 10−3 10−3 10−5 10−4

Max. learning rate (αl, αβ) 10−2 10−2 10−4 10−3

p(x0|xt) scale (ra) 3(1− t) 3(1− t) 3(1− t) 3(1− t)
p(x0|xt) scale (rf , rl, rbeta) 1− t 1− t 1− t 1− t

ESS-Flow
ODE integration steps N 50 50 50 50
MCMC steps 1200 1200 1200 1200
Burn-in 200 200 200 200
Thinning factor 10 10 10 10
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Table 6: Hyperparameters for the protein structure prediction

Method / Parameter
Unconditional
ODE integration steps N 20

D-Flow
ODE integration steps N 20
Optimizer SGD
Optimization steps Nopt 500
Learning rate schedule CyclicLR
Min. learning rate 10−6

Max. learning rate 10−5

Step size up/down 125
Momentum 0.9

ADP-3D
Optimizer SGD
Optimization steps Nopt 1000
Learning rate 0.67
Momentum 0.99

DAPS
ODE integration steps N 5
Optimization steps Nopt 1000
Sampling steps Ns 5
Learning rate decay linear
Min. learning rate 10−5

Max. learning rate 10−4

p(x0|xt) scale 2t

ESS-Flow
ODE integration steps N 20
MCMC steps 201
Burn-in 200
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