Under review as a conference paper at ICLR 2026

TRANSPORTING TOKENS:
OPTIMAL-TRANSPORT VIEW OF PARALLEL LLM DE-
CODING

Anonymous authors
Paper under double-blind review

ABSTRACT

Autoregressive decoding is a primary bottleneck for large language models
(LLMs), as its inherent sequentiality severely limits inference speed. While spec-
ulative decoding methods mitigate this via a draft-and-verification pipeline their
effectiveness is severely constrained by dependency on draft model quality and
availability. We rethink the generation pattern and introduces a novel theoretical
perspective by reframing token generation as a predictable state transition pro-
cess in probability space, formalized through Optimal Transport (OT) theory. We
demonstrate that the temporal consistency of hidden states induces a stable trans-
port map, enabling theoretically grounded multi-step prediction. Building on this
insight, we develop SHAPE, an OT-based predictor that implements lightweight
Sinkhorn iterations. Extensive evaluations across diverse models (e.g., Qwen, Vi-
cuna, LLaMA, DeepSeek) and tasks (text, code, math) show that SHAPE achieves
up to 5.23x speedup with minimal quality loss (< 1.2% accuracy drop), empir-
ically validating our distributional transition hypothesis. This work establishes a
new theoretical foundation for understanding autoregressive decoding and a prac-
tical path toward high-speed generation beyond token-wise limitations.

1 INTRODUCTION

Large Language Models (LLMs) have become the cornerstone of modern artificial intelligence,
achieving remarkable success across tasks ranging from natural language understanding to text gen-
eration Mo et al.| (2024); [Wul| (2024)); IL1 et al. (2024a); [Shu et al.| (2024)); Thakur et al. (2024).
LLMs of varying scales have been widely deployed in cloud server clusters (e.g., GPT-4 OpenAl
et al.| (2024), Llama3 |Grattafiori et al.| (2024)), and Grokl xAIl (2024))) and edge devices (e.g., the
6B-parameter GPT-3 and 7B-parameter LLaMA-2 variants as lightweight LLMs |Lu et al.| (2024));
Sun et al.|(2020)). With their increasing adoption in search Wang et al.|(2024) and conversational
Al|Ouyang et al|(2022)), there is a growing demand for low-latency long-sequence generation, mak-
ing the optimization of effective token generation rate under constrained computational resources a
critical research challenge.

Unfortunately, both cloud-based large models and edge-side small models rely on autoregressive
token-by-token generation, which requires sequential computation of each token without paralleliza-
tion. Additionally, the quadratic complexity of attention mechanisms with respect to context length
exacerbates the issue. The standard autoregressive decoding used in existing LLMs suffers from
inherent inefficiencies [Touvron et al.| (2023)); Jiang et al.[(2023)—generation time scales linearly
with both context length and model size, and its sequential nature leads to cumulative latency. Our
benchmarking experiments across diverse models reveal that larger model sizes and longer context
lengths lead to significantly higher per-token latency. This cost is compounded by the sequential
nature of decoding, highlighting the urgent need for optimization to achieve practical deployment
efficiency. Comprehensive results are presented in Appendix

Speculative decoding |Cai et al.| (2024) addresses this by introducing a fast draft model to predict
multiple tokens in advance, followed by verification from the target model. However this two-stage
draft-and-verification paradigm still incurs sequential latency and is highly sensitive to the quality of
draft models. Lookahead Fu|(2023) and Medusa|Cai et al.|(2024) reduce decoding time using n-gram

Under review as a conference paper at ICLR 2026

heuristics or shallow predictors, but their limited accuracy (e.g., 0.6 for Medusa) results in subopti-
mal speedup. EAGLE |Li et al.|(2024b) improves draft accuracy by leveraging hidden-state features,
achieving better acceleration, yet it remains draft-model-dependent, introducing overhead and lim-
iting scalability across diverse model configurations. CLLMs |Kou et al.|(2024) accelerate decoding
by directly predicting future token distributions via conditional probabilities, enabling parallel gen-
eration. However, they require fine-tuning parts of the original model, increasing training costs, and
while particularly effective for mathematical reasoning, they exhibit limited stability in long-form
generation. In contrast, our approach reconceptualizes decoding itself through a distributional lens.
In this work, we propose a paradigm shift by reconceptualizing token generation as a distributional
transition process. Our key insight stems from the empirical observation that hidden states exhibit
strong temporal consistency during decoding—consecutive states maintain high semantic similarity
with a predictable lower bound. This regularity suggests that token generation follows a structured
evolution in probability space, a perspective we formalize through optimal transport (OT) theory.

By modeling the transition between successive token distributions as a mass transport problem,
where the semantic similarity between hidden states induces a stable OT map. To empirically vali-
date this theoretical framework, we develop SHAPE (Step-ahead Hidden-state Accelerated Predic-
tion Engine) as a concrete instantiation of our OT-based perspective. SHAPE operationalizes the
theoretical transport maps by learning lightweight operators between hidden states, enabling paral-
lel token prediction without auxiliary draft models. The empirical success of SHAPE—achieving
substantial speedups while maintaining quality—serves as strong evidence for the correctness of our
underlying theoretical insight: that token generation can indeed be understood as a predictable trans-
port process in probability space. We evaluated SHAPE on a range of models—including Qwen,
Vicuna, LLaMA, and DeepSeek—across general language (WikiText, Alpaca, MT-Bench) and
reasoning-heavy tasks (MATH500, AIME24, LiveCodeBench v5). The results show that SHAPE
achieves speedups of up to 5.23x while maintaining output quality within a minimal margin of
degradation (< 1.2% accuracy drop on reasoning tasks). In comparative experiments, SHAPE con-
sistently outperforms existing acceleration methods: it surpasses EAGLE3 by 1.1x, Medusa-1 by
2.1x, and Medusa-2 by 1.6x across different models and datasets.

Beyond performance, this work makes the following key contributions:

* A Novel Theoretical Foundation: We introduce a paradigm shift by reconceptualizing
token generation as a predictable transition of probability distributions. This perspective is
rigorously formalized through Optimal Transport theory and validated empirically, estab-
lishing a new principled understanding of decoding dynamics.

* A Practical, Plug-and-Play Predictor: We develop SHAPE, a lightweight prediction en-
gine that operationalizes this theory. Crucially, SHAPE requires no modifications to the
base LLM’s parameters, offering a draft-free, plug-and-play solution for immediate de-
ployment that significantly enhances decoding efficiency.

e Scalability to Arbitrary Future Steps. SHAPE generalizes to predict hidden states at
arbitrary future time steps (e.g., t + 1, £ + 2, t + 3), providing greater flexibility for long-
sequence generation tasks. This scalability supports diverse applications with varying se-
quence lengths and complexity.

By fundamentally rethinking the decoding process rather than optimizing within its constraints, this
work opens new directions for efficient LLM inference.

2 FROM STATE SIMILARITY TO DISTRIBUTIONAL TRANSITION

2.1 SEMANTIC SIMILARITY OF HIDDEN STATES

Building on recent work that recognizes the regularity of hidden-state sequences |L1 et al.| (2024b))
and their utility for parallel prediction |Cai et al.| (2024), we systematically analyze the temporal
correlations between consecutive hidden states during autoregressive decoding. Let h; € R denote
the final-layer hidden state at decoding step ¢. We quantify the semantic consistency between states
at steps ¢ and ¢{+n using cosine similarity:

ht : ht+n

sSC h/ah, n) = T s
(e been) = T Tl

(D

Under review as a conference paper at ICLR 2026

Table 1: Hidden State Cosine Similarity Across Models and Domains

Model ShareGPT (Text) The Stack (Code)
n=1 n=2 n=3 n=1 n=2 n=3

Qwen-7B 0.83 0.78 0.75 0.63 053 050
Qwen-32B 0.85 0.81 0.78 0.75 0.65 0.65
Qwen-72B 091 0.86 082 083 0.73 0.71
Llama-7B 0.64 057 054 052 046 044
Llama-33B 090 0.84 0.78 0.80 0.74 0.68
Llama-70B 091 086 081 0.82 0.76 0.70

Experimental Settings We conduct experiments on two representative domains: conversational
text using the ShareGPT dataset and code generation using The Stack dataset. For each domain,
we use a context length of 2048 tokens and generate sequences of 512 tokens. All experiments
are performed on NVIDIA A100 80GB GPUs, with models ranging from 7B to 72B parameters.
For each model-dataset combination, we compute semantic consistency between hidden states at
positions ¢ and ¢ + n across 1000 randomly sampled sequences, reporting the 95th percentile values
across all valid token positions to ensure statistical significance and capture the lower bound of
similarity distribution.

As demonstrated in Table([T] during token generation, hidden states feature exhibit pronounced tem-
poral smoothness and strong semantic consistency: our quantitative analysis across all valid token
positions shows that for adjacent steps (n=1, 2, 3) at least 95% of positions satisfy SC(h¢, hyyp,) >
7 with 7=0.5, indicating high-probability local stability of the representation.We also observe a
consistent pattern of text > code and larger > smaller models, reinforcing that token transitions are
smooth and predictable rather than erratic.

The observed consistency persists even in challenging scenarios with potential semantic transitions
between dialogue turns in ShareGPT and code blocks in The Stack—demonstrating the generaliza-
tion of this property across domains with different structural characteristics. This empirical finding
suggests that transitions between consecutive token distributions are both small and structured: the
changes are concentrated along semantically meaningful directions rather than arbitrary noise, con-
strained by linguistic coherence in text and syntactic regularities in code. As a result, the generative
process of large language models behaves like a smooth dynamical system in a latent state space,
where each new token constitutes a predictable, low-dimensional adjustment to the current semantic
state rather than a radical reconstruction—providing a stable foundation for predictive modeling and
multi-step forecasting.

2.2 MODELING TOKEN GENERATION WITH OPTIMAL TRANSPORT

Building upon the empirical observation of strong temporal consistency in hidden states, we intro-
duce a theoretical perspective that elevates token generation to a structured probability flow prob-
lem. This formulation recognizes that the evolution of hidden states imposes geometric constraints
on how token distributions change over time.

Such constraints are not captured by conventional next-token prediction objectives. In contrast,
optimal transport (OT) offers a mathematically grounded framework for modeling distributional
evolution under minimal geometric distortion. By embedding token generation within the OT for-
malism, we uncover a deeper structure underlying autoregressive decoding: distribution transitions
follow low-cost paths governed by hidden-state continuity. This perspective is not merely as a
re-description, but as a foundation for building new path of token evolution, deriving stability guar-
antees, and enabling multi-step step ahead generation. In short, OT transforms our understanding of
decoding from a static pointwise prediction problem to a dynamic, diffusion like, geometry-aware
process.

To mathematically capture this structured diffusion evolution, we represent the token distribution as
a discrete measure in the hidden state features space:

%
L = Z p:(i) dg,, where p; = softmax(Wh, /7).
i=1

Under review as a conference paper at ICLR 2026

The transition from g to fiy4, is then formulated as an entropic-regularized optimal transport
problem:
IIF = ar min II, C) + e KL(II N
t ng:pt,HT1=pg+n< > (||ptpt+n)a
where the cost matrix C' € RV*V is defined by the squared Euclidean distance between token
embeddings (C;; = |E; — E;||?), and € > 0 is the regularization strength.

Crucially, the observed semantic consistency provides theoretical guarantees for this formulation.
As proven in Lemmal[C.2] (Appendix), the Wasserstein distance between consecutive distributions is
bounded by:

Wc(ﬂtvﬂﬂrn) S l_/\/l - SC(ht, ht+n) S I_/V 1-— T,
which ensures the existence and uniqueness of the optimal coupling IT; (Proposition[C.3] Appendix).

The row-normalized optimal coupling K; = diag(IT;1)~'II} defines a principled stochastic transi-
tion matrix that characterizes the distributional evolution:

Pt+n = KtTpt~

This formulation casts token generation as a path-following process in the probability simplex,
where the temporal stability of hidden states ensures the stability of the transport map. This the-
oretical insight forms the cornerstone of the SHAPE method, providing a mathematically sound
framework for analyzing and intervening in the generation process. Complete proofs and detailed
analysis are provided in Appendix [C]

3 SHAPE: AN OT-GUIDED MULTI-TOKEN PREDICTOR

To validate and operationalize the OT-based transition view, we propose SHAPE (Step-ahead
Hidden-state Accelerated Prediction Engine), a draft-free, plug-and-play framework for parallel
decoding. As shown in Figure [Il SHAPE consists of two key components: Step-ahead Hidden
State Prediction and Tree Rejection Sampling. The core design of the framework focuses on
capturing the semantic correlation of hidden states by capturing temporal features and training a
predictor to approximate future hidden states. With tree reject sampling select the longest accepted
prefix in parallel dynamically, so we can get o accepted token in one LLM forward to achieve
parallel acceleration.

LM_Head = help

[P 1
I a(a>=1) 1
: accepted !

1
4 Last hidden . e i tokens]
{1,dim] Step ahead hiddenstate prediction K candidates |
v for each time step ;
Transition]
t+l
Transformer Residual et _’D:D_’ RTr'eet !
- predic
layers combinea | PrEdictor hidden elec :
T |—| states | | nn t+2 sampling ;
T Feature combiner R te] hea; -- " :
2 = :
-]) e e
embedding modeling Residual predictor on
Input: How can|| Output: How can | help you with fiffig

Figure 1: Illustration of the SHAPE (Step-ahead Hidden-state Accelerated Prediction Engine)
framework. SHAPE leverages strong temporal correlations in hidden states to predict multiple future
tokens by modeling hidden state transitions. It includes temporal modeling and residual predictors
for hidden state prediction, followed by edge-to-edge LM head training to generate multiple can-
didates for each future step. SHAPE uses tree-based rejection sampling to select optimal token
candidates at each time step, enabling efficient multi-token generation without a draft model.

3.1 HIDDEN STATE SEMANTIC CORRELATION MODELING

The main structure of step-ahead hidden state prediction is shown in Figure 2] with three main
trainable components. To first extract features in hidden state temporal modeling, the hidden states

Under review as a conference paper at ICLR 2026

from the current and previous three-time steps are concatenated and passed through a series of
transformations, including linear projections, layer normalization, activation functions, and dropout.
These steps capture temporal dependencies and refine the features, resulting in a final representation
that effectively encodes the relationships between the time steps.

3.2 STEP AHEAD HIDDEN STATE RESIDUAL PREDICTOR

3.2.1 PREDICTOR CONSTRUCTION

Predicting hidden states directly in the full transformer dimension is challenging. To improve sta-
bility, we adopt a residual-based transition model: instead of predicting the entire hidden state, the
predictor learns the delta between consecutive states. An adaptive gating mechanism (a Linear—
Sigmoid network) dynamically scales the predicted residual based on both the current hidden state
and the predicted change, effectively controlling uncertainty and preventing error accumulation in
multi-step prediction. Beyond residual modeling, we optionally introduce an Optimal Transport
(OT) refinement module to further regularize the transition between H; and H;,,. When enabled,
the refinement consists of three lightweight stages:

(1) Dimensionality Reduction. A learned projection P; : R — R? compresses hidden states
into a lower-dimensional space:

hi = Pi(Hy), by, = Pi(Hpyn).

(2) OT-based Alignment. The reduced states are normalized into distributions:
p = softmax(h{), q = softmax(h{,),
and aligned via entropy-regularized optimal transport:

mTin<T, C)+eH(T) st. Tl=p, T'l=gq.

The cost matrix C' reflects semantic discrepancy in the reduced space, and the entropy term prevents
overly sparse or unstable transport plans. Since d < H, the transport computation is efficient.

(3) Dimension Recovery. The aligned representation is then projected back to the original space
via Py : R — R

HPT = Py(T71).

Finally, the refined hidden state combines the raw residual predictor output and the OT-aligned
result:

Hiin=(1—a)H™ +aHOT,

where « € [0, 1] controls the strength of OT refinement.

gate control Transition Residual Predictor

[Predicted Layer ‘

Optimal Transport J

|
LM_head

next n token's last
hidden state

Figure 2: Step-ahead hidden state predictor: temporal modeling (blue), residual prediction (green),
and LM-head projection (yellow).

Under review as a conference paper at ICLR 2026

3.2.2 PREDICTOR TRAINING

The hidden state predictor architecture is designed to maintain dimensional consistency with the
source large language model, preserving the original hidden state dimensionality. The training pro-
cedure utilizes optimal transport learning (o« = 0.5, ¢ = 0.1) to enhance multi-step prediction
accuracy. The training corpus consists of preprocessed hidden states extracted from both English
ShareGPT conversational data and Chinese THUC_News articles, enabling bilingual prediction ca-
pabilities. The training was conducted using AdamW optimization with mixed-precision compu-
tation, incorporating uniform noise augmentation (std = 0.2) to improve model robustness. Input
sequences were truncated at 2048 tokens to maintain computational efficiency with batch size = 16.
The training objective combined two loss terms:

Hidden State Loss This loss optimizes the consistency between predicted hidden states ht +n
and target hidden states ht 4+ n using mean squared error:

| X
Lhidden = N Z; ‘

2

.) 2
i i
ht+n - ht+n 9

where NN is the sample size.

Token Distribution Loss This cross-entropy loss ensures alignment between predicted and target
token distributions:

N V
£token = - N Z Z Prarget (]) IOg Poutput (j))

i=1 j=1

where Puarger () and pougpui (j) represent the target and predicted token distributions respectively, and
V is the vocabulary size.

3.3 TREE REJECT SAMPLING

Tree Rejection Sampling generates multiple candidate paths for the next N tokens at time step ¢,
forming a tree structure of width k and depth N (thus producing k¥ candidate paths). The model
then computes the joint probabilities of these paths in parallel. Low-probability paths are rejected
based on a predefined acceptance threshold, and the remaining paths are merged by selecting the
longest valid prefix. This design balances generation diversity and quality by exploring multiple
future branches in a single forward pass. Detailed algorithm implementation is shown in Appendix.

4 EXPERIMENTS

We evaluate SHAPE across major LLM families—including Vicuna(7B/13B), LLaMA2-
Chat(7B/13B/70B), Qwen (7B/14B/72B), and recent long-chain reasoning models such as Qwen3
and DeepSeek-R1 both efficiency and output quality. Our benchmarks span three categories: (1)
general text generation (Alpaca, WikiLingua; evaluated with PPL), (2) knowledge and reasoning
tasks (MMLU accuracy and MT-Bench scores), and (3) challenging long-context reasoning datasets
(MATHS00, AIME24, LiveCodeBench v5). All experiments are conducted on NVIDIA A100 80GB
GPUs under consistent settings to ensure fair comparison.

4.1 EFFICIENCY

We present a comprehensive comparison of SHAPE against Lookahead, Medusa-1, Medusa-2, and
EAGLE3 under both temperature 0 and 1 across eight major model families. As shown in Table
SHAPE consistently achieves the highest or near-highest speedups across all datasets and tempera-
tures.

Compared with Lookahead, SHAPE delivers substantially larger gains, typically improving speed
by 1.5x-2x. Relative to Medusa-1 and Medusa-2, SHAPE provides clear improvements under ev-
ery model, with speedups exceeding both methods in all Alpaca, Wiki, and MT-Bench settings.
SHAPE also closely tracks or surpasses EAGLE3 across all model scales: on Qwen-7B/14B/72B,

Under review as a conference paper at ICLR 2026

Table 2: Speedup comparison among Lookahead, Medusa-1, Medusa-2, EAGLE3, and SHAPE
under Temperature = 0 and 1 across datasets.

Model Method Alpacag Alpaca; Wikip Wikiys MTo MT: Meany Mean;

Lookahead 2.71x 243x 250x 227x 3.05x 2.66x 275x 245X

Medusa-1 1.77x 1.59% 1.87x 1.68x 2.02x 1.82x 1.89x 1.70x

Qwen-7B Medusa-2 2.04x 1.80x 2.16x 1.90x 249x 2.19x 223x 196X
EAGLE3 4.13x 372x 4.05x 3.65x 434x 373x 417x 3.70x

SHAPE 4.12x 3.83x 410x 3.81x 4.53x 4.03x 425x 3.89x%

Lookahead 2.46x 2.18x 238x 211x 321x 278x 2.68x 236X

Medusa-1 2.01x 1.81x 2.03x 1.83x 211x 1.90x 2.05x 1.85x

Qwen-14B Medusa-2 2.29x% 2.02x 228x 2.01x 251x 221x 236x 2.08x
EAGLE3 4.01 % 353x 397x 357x 5.11x 434x 436x 381X

SHAPE 3.90x 3.55x 4.03x 3.71x 523x 4.60x 439x 3.95x

Lookahead 3.10x 2.82% 3.05x 277x 3.65x 321x 327x 293x

Medusa-1 2.18x 1.96 % 2.12x 1.91x 252x 227x 2.27x 2.05%

Qwen-72B Medusa-2 3.15% 2.77 % 3.07x 270x 3.64x 320x 3.29x 2.89x
EAGLE3 4.85x% 4.35x%x 472x 421x 5.60x 495x 5.06x 4.50x

SHAPE 4.92x 4.48 x 480x 433x 573x 518x 5.15x 4.66x

Lookahead 2.89x 2.55% 2.76x 243x 330x 2.88x 2.98x 2.62x

Medusa-1 1.88x 1.69 x 1.85x 1.67x 2.09x 1.88x 1.94 x 1.75x

Llama-7B Medusa-2 3.01x 2.65x 3.05x 2.68x 2.58x 227x 2.88x 2.53x
EAGLE3 4.20x 3.78 x 401x 3.61x 4.65x 4.00x 4.29x 3.80%

SHAPE 4.23x 3.93x 4.11x 3.82x 4.73x 421x 436x 3.99x

Lookahead 2.63x 2.38x% 258x 234x 341x 293x 2.87x 2.55x

Medusa-1 2.03x 1.83% 20Ix 1.81x 2.13x 192x 2.06x 1.85x

Llama-13B Medusa-2 3.15x% 2.77% 3.12x 275x 276x 243x 3.0Ix 2.65x
EAGLE3 4.12x 3.71x 4.12x 371x 478x 411x 434x 3.84x

SHAPE 4.13x 3.80x 415x 3.86x S5.01x 4.51x 443x 4.06x

Lookahead = 3.25x 295x 321x 292x 378x 336x 341x 3.08x

Medusa-1 2.26% 203x 221x 1.99x 2.62x 236x 236x 2.13x

Llama-70B Medusa-2 3.26 % 287x 3.19x 28Ix 3.78x 333x 341x 3.00x
EAGLE3 5.02x 455x 491x 448x 5.82x 5.14x 525x 472X

SHAPE 5.10% 4.70x 5.00x 4.62x 595x 538x 535x 4.90x

Lookahead 2.52x 229x 248x 225x 3.19x 280x 273x 245x

Medusa-1 1.79% 1.61x 1.84x 1.66x 2.18x 1.96x 194x 1.74x

Vicuna-7B Medusa-2 2.88x 253x 291x 256x 2.83x 249x 287x 2.53x
EAGLE3 3.95x% 352x 390x 35Ix 5.11x 434x 432x 379X

SHAPE 3.98 x 3.66x 3.95x 3.67x S513x 4.57x 435x 3.97x

Lookahead 2.60x 2.33% 2.56x 230x 3.26x 2.89x 2.81x 2.51x%

Medusa-1 2.05x 1.84 % 2.07x 1.86x 2.33x 2.10x 2.15x 1.93x

Vicuna-13B Medusa-2 2.86 % 2.52x% 2.89x 254x 2.85x 251x 287Tx 2.52x
EAGLE3 4.05x 3.65x 4.00x 3.60x 457x 393x 421x 3.73x

SHAPE 4.00x 3.72x 4.07x 3.79x 513x 4.62x 4.40x 4.04 x

Llama-7B/13B/70B, and Vicuna-7B/13B, SHAPE achieves the best overall mean speedup in both
temperature settings. Notably, SHAPE consistently improves over EAGLE3 at temperature 1, where
speculative methods generally become less stable. Overall, the results demonstrate that SHAPE pro-
vides the most stable and highest average speedup across all model families, datasets, and sampling
temperatures, outperforming prior speculative decoding and multi-head prediction baselines in a
uniform evaluation setup.

We evaluate SHAPE'’s inference efficiency under varying batch sizes to assess its practicality in real-
world deployment scenarios. Using the MT-Bench dataset on the Qwen2-7B model, we compare
SHAPE against EAGLE-3, with vLLM without speculative sampling as the baseline. As shown
in Table 3] SHAPE consistently outperforms EAGLE-3 across all batch sizes, demonstrating supe-
rior scalability and efficiency in practical batch processing environments. The results confirm that

Under review as a conference paper at ICLR 2026

while both methods exhibit reduced relative gains at larger batch sizes due to increased baseline
parallelism, SHAPE maintains a consistent performance advantage.

Table 3: Speedup ratios at different batch sizes
Method BS=2 BS=4 BS=8 BS=16 BS=24

EAGLE-3 1.73% 1.65% 1.52x 1.43x 1.39x
SHAPE 1.92x 1.75% 1.61x 1.52x% 1.41x

4.2 QUALITY EVALUATION

We evaluate generation quality from three perspectives: (1) general performance on standard
benchmarks, (2) token-level prediction accuracy and semantic consistency, and (3) performance
on reasoning-intensive and long-context tasks.

General Performance Evaluation. We evaluate generation quality using PPL on Alpaca and Wiki-
Text, MMLU accuracy for reasoning, and MT-Bench for conversational ability. As shown in Table[d]
SHAPE maintains output quality across all model families, with PPL remaining close to baseline
and MMLU/MT-Bench varying within 1-2%. These results indicate that SHAPE preserves model
utility while providing significant decoding acceleration.

Table 4: Performance comparison between Vanilla and SHAPE-accelerated models across bench-
marks.

Model Alpaca (PPL) WikiText (PPL) MMLU-5shot (Acc) MT-Bench (Score)
Qwen-7B 11.49/11.9 11.89/12.1 70.5/68.79 8.41/8.56
Qwen-14B 12.30/11.8 11.92/11.7 66.3/64.78 9.08 /8.85
Qwen-72B 10.95/11.2 10.88/11.0 75.6/74.9 9.62/9.55
Llama-7B 11.76 / 12.2 12.77/12.4 46.2/44.32 6.27/6.43
Llama-13B 12.67/12.3 11.94/12.5 55.0/56.38 7.05/6.89
Llama-70B 10.88 /11.1 10.72/11.0 67.5/66.8 8.92/8.85
Vicuna-7B 11.58/12.1 12.83/12.4 48.2/48.55 6.69/6.88
Vicuna-13B 12.06/11.7 11.63/12.0 55.28/58.42 6.81/6.97

Reasoning-Intensive Task Evaluation. As shown in Table [5} SHAPE maintains near-identical
accuracy compared to vanilla decoding across all models and tasks. On MATHS500, accuracy differ-
ences are within 0.3%, while AIME24 and LiveCodeBench v5 show maximum deviations of 1.3%
and 0.8% respectively. These results confirm SHAPE’s robustness on reasoning-heavy, long-chain
tasks while delivering 4-5x speedups.

Table 5: Accuracy comparison on reasoning-intensive tasks (Vanilla / SHAPE)

Model MATH500 AIME24 LiveCodeBench v5
Qwen3-32B 97.2/97.16 81.4/80.8 65.7/65.3
Qwen3-8B 97.4/97.1 76.0/74.7 57.5/56.9
DeepSeek-R1-Distill-Qwen-32B 94.3/93.2 72.6/72.2 54.5/54.1
DeepSeek-R1-Distill-Qwen-14B 93.9/92.1 69.7/68.9 45.5/44.7

Token-Level Analysis. Supplementary evaluations (Appendix Tables and show SHAPE
achieves token prediction accuracy of 0.85-0.92 for 1-3 token lookahead, with lower perplexity com-
pared to alternative acceleration methods. Semantic similarity metrics (BERTScore and embedding
cosine distance) confirm strong alignment with standard decoding outputs.

Under review as a conference paper at ICLR 2026

4.3 ABLATION STUDY

4.3.1 EFFECTIVENESS OF OPTIMAL TRANSPORT

SHAPE employs optimal transport (OT) to model hidden state transitions, motivated by our obser-
vation that transformer hidden states maintain a minimum level of similarity between tokens at ¢ and
t+n. This ’baseline similarity” indicates a theoretically valid pathway for transferring hidden states
through optimal transport. Unlike autoregressive models that predict step-by-step, our OT approach
captures global transition patterns by finding the optimal mapping to future states (t+n). To validate
the effectiveness of OT over simpler alternatives, we conducted comparative experiments replacing
the OT mapping with an affine transformation of the same dimensionality (d = 128). Table [f]
presents the results on Llama-7B using the Alpaca dataset with TRS configuration (N = 3, K = 3).

Table 6: Comparison of OT with affine transformation and analysis of different dimensionalities on
Llama-7B (Alpaca). Baseline AR decoding achieves PPL=11.9.

d Value PPL Speedup

Method PPL Speedup % 173 3 87x
Affine (d=128) 184 3.87% 64 16.1 3.66%
OT (d=128) 12.2 3.21x 128 12.2 3.21x

4096 (full) 12.1 2.67x

The results demonstrate that OT significantly outperforms simple affine transformations, reducing
perplexity from 18.4 to 12.2 - approaching the baseline AR performance of 11.9. This validates
our hypothesis that OT’s ability to find optimal global mappings is crucial for accurate multi-step
prediction. Furthermore, we analyzed the impact of dimensionality d on OT performance. As
shown in Table [6] (right), increasing d from 32 to 128 consistently improves perplexity, with the
most significant gains occurring at d = 128. Interestingly, using the full dimensionality (d =
4096) provides minimal perplexity improvement (12.1 vs 12.2) while reducing speedup by 17%,
confirming that our low-dimensional OT approach effectively captures essential transition patterns.

4.3.2 EFFECTIVENESS OF TREE REJECTION SAMPLING

We provide a unified analysis of SHAPE decoding behavior and the proposed Tree Rejection Sam-
pling (TRS) mechanism in Table [7] The top block reports the one-time N steps ahead decod-
ing latency breakdown of SHAPE, While the candidate-generation cost remains almost constant
(1.00-1.02 ms), the TRS verification time grows steadily with NV, reflecting the fact that deeper [NV
leads to lower hidden-state similarity and hence a higher TRS cost. This breakdown explicitly re-
veals the speed—verification trade-off: larger N provides more aggressive multi-step prediction but
also increases the fraction of time spent in TRS. The bottom block evaluates TRS across the full grid
of K, N € [1,5]. Increasing the depth N produces higher speed gains because more future tokens
can be accepted in a single TRS step, whereas larger branch factors K reduce perplexity by offering
a richer set of candidate paths at the price of additional verification. The interaction of these two
effects yields a clear efficiency—quality frontier, with the configuration (K = 3,, N = 3) achieving
the best overall balance (3.21x speedup and 12.2 PPL). Together with the latency breakdown in the
top block, these results provide a complete picture of how candidate generation and tree-based veri-
fication contribute to the final decoding cost, and why deeper lookahead necessarily increases TRS
time due to reduced inter-token similarity.

To contextualize the effectiveness of TRS relative to conventional decoding strategies, Table [I3]
compares the best-performing TRS configuration with standard methods. While greedy decoding
and beam search maintain perplexity close to the autoregressive (AR) baseline, they do not provide
any acceleration, and beam search is even slower due to multi-path expansion. In contrast, TRS with
(K=3, N=3) achieves a 3.21x decoding speedup while keeping perplexity at 12.2, only slightly
above the AR baseline (11.9). This demonstrates that TRS offers substantial real-world acceleration
with minimal impact on generation quality, outperforming classical search-based decoding in both
efficiency and controllability.

Under review as a conference paper at ICLR 2026

Table 7: Unified analysis of SHAPE decoding latency (top) and TRS performance (bottom).
(A) SHAPE Decoding Latency Breakdown (Qwen-7B)
N Cand. (ms) TRS (ms) Total (ms) TRS ratio (%)

1 1.00 0.40 1.40 28.6%
2 1.01 0.78 1.79 43.6%
3 1.00 1.25 2.25 55.6%
4 1.02 1.70 2.72 62.5%
5 1.01 2.20 3.21 68.5%

(B) TRS Performance under Different (K, N) Configurations
Depth (N): Speedup / PPL

K

1 2 3 4 5
1 1917173 271/16.7 3.40/16.1 3.80/16.5 4.10/17.0
2 190/16.9 2.65/16.5 3.30/14.0 3.50/14.5 3.70/15.0
3 1.88/16.5 2.59/16.3 3.21/12.2 3.40/13.0 3.55/14.0
4 1.83/16.3 2.46/15.8 3.15/12.15 3.28/12.8 3.40/13.2
5 1751161 233/152 3.09/12.1 3.25/12.5 3.35/12.9

5 RELATED WORK

Recent studies have highlighted the significant inference latency of Large Language Models (LLMs),
prompting various acceleration strategies that can be categorized by their underlying methodolo-
gies. on-autoregressive approaches represent initial attempts at acceleration. Non-autoregressive
translation (NAT) techniques have been investigated in translation tasks |Gu & Kong| (2020); |Stern
et al| (2018)), it performs suboptimally in general LLM scenarios. To address this, Huang et al.
Huang et al.| (2023)) proposed a layer-wise iterative methodology that each layer leverages decoding
results from preceding layers. Similarly, Santilli et al. |Santilli et al.| (2023) formalized autore-
gressive decoding through parallel Jacobi and Gauss-Seidel fixed-point iteration. However, such
methods often degrade accuracy due to their deviation from standard autoregressive architectures.
Accuracy-preserving approaches based on model modifications have since emerged. Block-wise
parallel decoding [Stern et al.| (2018)) leverages an auxiliary transformer with multi-output capabil-
ities for parallel token prediction but suffers from frequent verification failures. Medusa |Cai et al.
(2024) improves robustness with multiple prediction heads, while FREE Bae et al.|(2023)) uses shal-
low layers for draft generation. However, these techniques require substantial training of additional
components. peculative decoding offers an alternative by using smaller models as draft predictors.
For example, Bloom 7.1B has served as a draft model for a 176B model Xia et al.[|(2023). Yet, this
method faces challenges: suitable smaller models are not always available across model series, and
helper models require parallel tuning, increasing deployment complexity. o address these issues,
model-free strategies aim to accelerate decoding without auxiliary models. Ge et al. |Ge et al.|(2022)
proposed an input-guided method based on prefix matching, extended by LLMA |Yang et al.| (2023)
through content retrieval from inputs and external documents. Recently, LookaheadDecoding Huang
et al.| (2023) fused Jacobi iteration with speculative decoding in a multi-branch framework, though
its draft generation incurs non-negligible overhead.

6 CONCLUSION

In this paper, we introduced a novel perspective that reframes autoregressive decoding as a prob-
ability distribution transition process governed by optimal transport principles. We validate this
theoretical framework through SHAPE, which demonstrates predictable hidden state evolution via
transport maps. Experiments across diverse LLMs show speedups of 1.77x-5.23x with maintained
quality, confirming token generation can be understood as structured transport in probability space.
This work establishes a new paradigm for efficient LLM inference beyond draft-based approaches.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Sangmin Bae, Jongwoo Ko, Hwanjun Song, and Se-Young Yun. Fast and robust early-exiting
framework for autoregressive language models with synchronized parallel decoding, 2023. URL
https://arxiv.org/abs/2310.05424.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads, 2024. URL
https://arxiv.org/abs/2401.10774.

et al. Fu. Lookahead: An inference acceleration framework for large language model with lossless
generation accuracy. arXiv preprint arXiv:2312.12728, 2023.

Yihan Ge et al. Input-guided non-autoregressive machine translation. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics, pp. 7300-7312, 2022.

Aaron Grattafiori, Abhimanyu Dubey, and et al Abhinav Jauhri. The llama 3 herd of models, 2024.
URLhttps://arxiv.org/abs/2407.21783.

Jiatao Gu and Xiang Kong. Fully non-autoregressive neural machine translation: Tricks of the trade.
arXiv preprint arXiv:2012.15833, 2020.

Chenyang Huang, Hao Zhou, Osmar R Zaiane, Lili Mou, and Lei Li. Lookahead: An inference
acceleration framework for large language models. arXiv preprint arXiv:2312.12728, 2023.

Huiqgiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili
Qiu. Longllmlingua: Accelerating and enhancing llms in long context scenarios via prompt com-
pression. arXiv preprint arXiv:2310.06839, 2023.

Siqi Kou, Lanxiang Hu, Zhezhi He, Zhijie Deng, and Hao Zhang. Cllms: Consistency large language
models, 2024. URL https://arxiv.org/abs/2403.00835.

Junyi Li, Tianyi Tang, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. Pre-trained language
models for text generation: A survey. ACM Computing Surveys, 56(9):1-39, 2024a.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
rethinking feature uncertainty. arXiv preprint arXiv:2401.15077, 2024b.

Zhenyan Lu, Xiang Li, Dongqi Cai, Rongjie Yi, Fangming Liu, Xiwen Zhang, Nicholas D Lane,
and Mengwei Xu. Small language models: Survey, measurements, and insights. arXiv preprint
arXiv:2409.15790, 2024.

Yuhong Mo, Hao Qin, Yushan Dong, Ziyi Zhu, and Zhenglin Li. Large language model (Ilm) ai
text generation detection based on transformer deep learning algorithm, 2024. URL https:
//arxiv.org/abs/2405.06652.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, and et al Shyamal Anadkat.
Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, and Carroll L. Wainwrightet al. Training language
models to follow instructions with human feedback, 2022. URL https://arxiv.org/abs/
2203.02155.

Andrea Santilli et al. Parallel fixed-point methods for autoregressive decoding. arXiv preprint
arXiv:2301.13379, 2023.

Lei Shu, Liangchen Luo, Jayakumar Hoskere, Yun Zhu, Yinxiao Liu, Simon Tong, Jindong Chen,
and Lei Meng. Rewritelm: An instruction-tuned large language model for text rewriting. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 18970-18980,
2024.

Mitchell Stern, William Chan, Jamie Kiros, and Jakob Uszkoreit. Blockwise parallel decoding for
deep autoregressive models. In Advances in Neural Information Processing Systems, pp. 10107—
10116, 2018.

11

https://arxiv.org/abs/2310.05424
https://arxiv.org/abs/2401.10774
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2403.00835
https://arxiv.org/abs/2405.06652
https://arxiv.org/abs/2405.06652
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155

Under review as a conference paper at ICLR 2026

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. Mobilebert:
a compact task-agnostic bert for resource-limited devices, 2020. URL https://arxiv.org/
abs/2004.02984.

Shailja Thakur, Baleegh Ahmad, Hammond Pearce, Benjamin Tan, Brendan Dolan-Gavitt, Ramesh
Karri, and Siddharth Garg. Verigen: A large language model for verilog code generation. ACM
Transactions on Design Automation of Electronic Systems (TODAES), 29(3):1-31, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, and et al Xavier Martinet. Llama: Open and efficient
foundation language models, 2023. URL https://arxiv.org/abs/2302.13971,

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Large
search model: Redefining search stack in the era of llms, 2024. URL |https://arxiv.org/
abs/2310.14587.

Yonghui Wu. Large Language Model and Text Generation, pp. 265-297. Springer International
Publishing, Cham, 2024. ISBN 978-3-031-55865-8. doi: 10.1007/978-3-031-55865-8_10. URL
https://doi.org/10.1007/978-3-031-55865-8_10.

xAl. Grok os: The future of ai assistants, 2024. URL https://x.ai/blog/grok-os. Ac-
cessed: 2025-01-31.

Qinyuan Xia et al. Speculative decoding for large language models. arXiv preprint
arXiv:2302.01318, 2023.

Fan Yang et al. Llma: Language model acceleration via content retrieval. arXiv preprint
arXiv:2303.16827, 2023.

12

https://arxiv.org/abs/2004.02984
https://arxiv.org/abs/2004.02984
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2310.14587
https://arxiv.org/abs/2310.14587
https://doi.org/10.1007/978-3-031-55865-8_10
https://x.ai/blog/grok-os

Under review as a conference paper at ICLR 2026

A TOKEN-LEVEL AUTOREGRESSIVE GENERATION

A.1 SINGLE-STEP GENERATION PROCESS

In autoregressive language models, token generation follows a step-by-step process. At each time
step ¢, given the sequence of previous tokens (z1, 2, . ..,), the probability of generating the next
token x4y is:

P(zip1|ze, .- xt) (D

A.2 OUTPUT HIDDEN STATE BASED GENERATION

The generation process involves the final layer’s hidden states:

h, = Transformer(x1, ..., x;))

P(.Tt+1|.’171, ey (Et) = LLM,head(ht) (3)

where h; € R? represents the final layer’s hidden state at time step , and LLM_head is a linear
transformation that maps the hidden state to token probabilities over the vocabulary.

B MODEL AR DECODING PERFORMANCE METRICS

Table [§] presents the average token generation time across different model sizes and context lengths.
The results clearly demonstrate that larger models and longer contexts significantly increase per-
token latency, which accumulates due to the sequential nature of autoregressive decoding. These
findings highlight the importance of optimizing the decoding process to ensure practical deployment
efficiency.

Table 8: Autoregressive Decoding Latency across Different Input Lengths and Model Scales
Model (B) Input Length ITL (ms) TTFT (ms) Duration (s/req)

256 3.83 24.58 0.56

15 512 3.85 3391 0.80
’ 1024 3.83 55.05 1.52

2048 3.98 118.47 1.38

256 7.16 42.93 1.06

7 512 7.12 73.25 1.67

1024 7.15 118.62 2.88

2048 7.17 274.23 2.65

256 11.90 76.58 1.78

14 512 11.92 134.24 2.57
1024 11.98 253.11 4.92

2048 12.12 603.10 4.64

256 22.26 116.42 3.31

3 512 22.28 211.08 4.76
1024 22.44 392.29 9.13

2048 22.55 924.34 8.64

C THEORETICAL ANALYSIS OF OPTIMAL TRANSPORT

Lemma C.1 (Lipschitz map from hidden state to distribution). Let £ = Wh and p =
softmax(€/7s). If |[Wll2 < Lw and h is confined to a bounded set, then there exists Lg > 0
such that

[p(hy) —p(ho)|: < Liﬂ [y — hols.

13

Under review as a conference paper at ICLR 2026

Sketch. Softmax on bounded domains is Lipschitz in {5 (or £,); composing with the linear map W
yields the claim. O

Lemma C.2 (Similarity = small OT move). Let i, =), p:(i)0p, and p1 be defined analo-
gously. Under Lemma A, there exists L' > 0 (depending on W, 75, E) such that

Wc(,”ta,“/t+1) < L ||ht+1 - htH2-
9, then ||Flt+1 — l_lt”Q < \/2(1 — COS(ht,ht+1)), hence

We(pe, 1) < L/T—=SC(ly,hypq).

If we normalize hy = h;/||/h;

Sketch. Use the Kantorovich—Rubinstein dual bound with ¢; variation of p and the diameter of the
embedding support, plus the cosine—{5 relation. O

Proposition C.3 (Existence, stability, and uniqueness of II7).

I = ar min <H,C’> + eKL(I || pipl,), &>0, 4
t gnlzp’u T 1=p¢41 (|| ptpt+1) @
For any € > 0, the entropic OT problem in equationd|admits a unique solution 11} ; moreover, when
We(pe, pres1) is small, ITy depends smoothly on (py, Pe+1) and can be well-approximated by a few
Sinkhorn iterations.

Sketch. Entropic regularization makes the objective strictly convex over the transport polytope; stan-
dard Sinkhorn—Knopp scaling solves the KKT system, and continuity follows from the implicit
function theorem on the strictly convex objective. O

Corollary C.4 (OT-optimal path between successive distributions). By Proposition C, the coupling
11} induces a row-stochastic operator K such that

pei1 = K, pe

holds exactly at optimality and approximately under finite Sinkhorn iterations, thereby defining the
OT-optimal path for the one-step distributional transition.

Sketch. Row normalization rewrites the marginal constraints; the equality follows from II} "1 =
Pt+1- O

D THEORETICAL ANALYSIS OF HIDDEN STATE PREDICTION VIA OPTIMAL
TRANSPORT

We establish a theoretical framework for predicting future hidden states in transformer models
through optimal transport theory. Let (€2, F, P) be a probability space and % C R? be the hid-
den state space. For any time step ¢, we define H; : () — H as the random variable representing the
hidden state at time ¢, with i, as its probability measure. Let P(#H) denote the space of probability
measures on H.

Given the temporal nature of hidden states in transformer models, we first establish their similarity
properties. The similarity between hidden states is measured by cosine similarity:

(z,y)

sim(z =
) = Talllyl

(&)

Based on empirical observations in transformer models, as shown in Table[0] we make the following
assumption:

Assumption D.1. For any adjacent time steps ¢ and ¢ + 1, the hidden states maintain a minimum
similarity threshold:
Va,y € H :sim(z,y) > T (6)

where z and y are hidden states with positive probability under j; and p44; respectively.

14

Under review as a conference paper at ICLR 2026

This assumption leads to our first key result regarding the bounded evolution of hidden states:

Lemma D.2. Under Assumption 1, there exists a constant M > 0 such that the 2-Wasserstein
distance between consecutive hidden state distributions is bounded:

Wa(pe, pes1) < M (N

Proof. Consider any hidden states z,y € H with positive probability under p; and p;41 respec-
tively. From Assumption 1:

z,
Tl < ®
This implies:
(z,y) = T=[lllyl ©)
Define the Euclidean metric d(z,y) = ||« — yl||2. We can expand:
&*(w,y) = [l + lyll* - 2(z, y) (10)
< Jll® + lyll* = =yl (11)
= (llll = llyI)* (12)
Since H is bounded in R, there exists R > 0 such that ||z|| < R for all # € H. Therefore:
d*(z,y) < AR? (13)
Taking M = 2R completes the proof. O

This lemma establishes that the evolution of hidden states is well-behaved, allowing us to formulate
our main theorem:

Theorem D.3. There exists a cost function ¢ : H x H — R such that the hidden state evolution
from time t to t + k can be represented as an optimal transport problem:

min / c(z,y)dr(z,y) (14)
TEI(pe p+x) JHxH

where T1(pu, pie+1) denotes the set of joint distributions with marginals py and 4. Moreover, this
problem admits an optimal solution 7*.

Proof. We construct the proof in three steps. First, we define the cost function c(z,y) = d*(x,y),
where d is the Euclidean metric. This choice is natural as it preserves the geometric structure of the
hidden state space.

Second, from Lemma 1, we know that for adjacent time steps:

W) = _inf [Plagin(ey) < M ()
HXH

mEII(pae pe41)

For multi-step evolution (k¢ > 1), we can apply the Chapman-Kolmogorov equation. There exist
intermediate measures 71, ..., T,_1 such that:

k—1

W3 (1) < O Walpayi, peyig))® < kM (16)
i=0

Finally, the existence of an optimal solution follows from three key properties: 1) P(H) is com-
pact in the weak topology 2) The cost function ¢(x, y) is lower semi-continuous 3) The objective
functional is bounded below

By the Kantorovich duality theorem, there exists an optimal solution 7* € II(u;, p4) achieving:

/ c(x,y)dn*(z,y) = inf / c(z,y)dr(z,y) (17
HXH mell(pespietn) JHXH
O

15

Under review as a conference paper at ICLR 2026

Table 9: Token similarity between the token at time t and t+n across various contexts.

qwen-zh

qwen-en

vicuna

llama

t+1

t+2

t+3

t+1

t+2

t+3 t+1

t+2

t+3

t+1

t+2

t+3

0.8744
0.8677
0.8666
0.8607
0.8599
0.8587
0.8574
0.8544
0.8536
0.8535

0.8447
0.8235
0.8213
0.8171
0.8314
0.821
0.829
0.8209
0.823
0.8141

0.8383
0.814

0.8027
0.7849
0.8195
0.8079
0.809

0.8052
0.8071
0.7921

0.6304
0.6272
0.6217
0.6189
0.6157
0.6122
0.6118
0.6107
0.6098
0.6093

0.5273
0.5703
0.5334
0.5478
0.5459
0.5373
0.5426
0.5384
0.5303
0.5295

0.4976 0.5392
0.5503 0.5282
0.5027 0.526
0.5316 0.5248
0.5435 0.5165
0.5199 0.5165
0.5239 0.516
0.5291 0.5149
0.5144 0.5121
0.5046 0.5113

0.4647
0.4287
0.436
0.4285
0.4208
0.4185
0.422
0.416
0.4031
0.4153

0.4358
0.4062
0.4174
0.4121
0.4023
0.3951
0.4008
0.3971
0.3832
0.3913

0.645
0.6411
0.6351
0.6329
0.6261
0.6236

0.622
0.6214
0.6197
0.6197

0.5729
0.5829
0.5647
0.5598
0.5456
0.5503
0.5407
0.5391
0.531

0.531

0.5443
0.552
0.5422
0.5322
0.523
0.5309
0.5141
0.5151
0.5091
0.5091

This theoretical framework provides a rigorous foundation for predicting hidden states through op-

timal transport. Given a hidden state h, at time ¢, we can predict hy by:

ht-i—k:/ ydr* (y|hs)
Y

Moreover, we can establish an error bound for this prediction:

htsk — hiygll2 <

where A, denotes the true hidden state at time ¢ + k.

E QUALITY EVALUATION

kM

(18)

19)

Table 10: Comparison of perplexity (ppl) across different decoding methods (EAGLE, M-1:
Medusa-1, M-2: Medusa-2, and SHAPE) on various DS: datasets (A: Alpaca, T: THUC news,

W: wiki lingua).

Model Dataset EAGLE M-1 M-2 SHAPE
A 132 151 146 119
Qwen-7B T _ L 12.3
W 135 153 148 121
A 120 141 137 118
Qwen-14B T _ o 11.5
W 132 142 136 117
A 131 150 144 122
Llama-7B W 134 152 146 124
A 128 140 135 123
Llama-13B 131 141 137 125
. A 130 152 143 121
Vicuna-7B 133 153 144 124
. A 120 142 140 117
Vieuna-13B - o 130 143 141 120

16

Under review as a conference paper at ICLR 2026

Table 11: SHAPE’s Average speed-up ratio compared with vanilla generation on different datasets

Speed Up
Model ‘
(Size) Datasets Task | N step forward
\ 1 2 3

Alpaca Intruction Following | 1.90 247 4.12
Qwen-7B THUC News Text Continuation 1.96 251 4.09
wiki_lingua Text Generation 1.93 255 4.07
Alpaca Intruction Following | 1.87 2.55 3.89
Qwen-14B THUC_News Text Continuation 1.99 2.65 4.02
wiki_lingua Text Generation 1.89 277 4.05
Alpaca Intruction Following | 1.88 2.59 3.21
Llama-7B - o lingua Text Generation | 191 2.69 334
Alpaca Intruction Following | 1.89 2.51 3.22
Llama-13B - o lineua Text Generation | 190 2,53 3.20
Vicuna-7B Alpaca Intruction Following | 1.83 2.57 3.24
wiki_lingua Text Generation 1.87 256 3.29
. Alpaca Intruction Following | 1.89 2.68 3.38
Vicuna-13B wiki_lingua Text Generation 191 277 321

Table 12: Comparison of performance metrics between vanilla decoding (baseline) and SHAPE
across different N-step forward prediction configurations.

Average Average Average
Token Accuracy BERTScore Sentence Similarity
Model Size Datasets Task N step forward
/ 1 2 3 / 1 2 3
b2 3 v s s s v s s s
Alpaca IF 091 089 0.86 074 0.71 0.68 065 094 092 088 0.84
7B THUCNews TC 092 087 0.85 075 0.70 0.67 0.66 093 090 089 0.82
Qwen wiki_lingua TG 091 088 0.86 0.72 0.69 0.65 063 092 087 085 0.81
Alpaca IF 091 089 086 076 073 0.70 068 095 092 091 0.85
14B THUCNews TC 090 0.88 085 074 0.71 068 0.67 094 0.89 0.87 0.84
wiki_lingua TG 091 087 0.85 0.75 070 0.66 0.64 093 0.88 0.85 0.80
7B Alpaca IF 09 08 086 060 059 055 052 082 078 0.75 0.70
Llama wiki_lingpa TG 0.89 087 0.85 0.63 060 058 054 080 0.76 0.73 0.69
13B Alpaca IF 09 088 0.87 054 053 051 049 0.76 0.73 0.70 0.67
wiki_lingua TG 0.89 087 0.86 0.56 054 050 047 078 0.74 0.71 0.68
7B Alpaca IF 091 088 086 056 055 052 050 0.76 074 0.71 0.68
Vicuna wiki_lingpa TG 0.89 0.87 0.85 058 056 054 052 078 075 0.72 0.69
13B Alpaca IF 09 088 0.85 058 057 054 052 0.79 076 0.73 0.70
wiki_lingua TG 090 087 0.87 059 057 053 051 080 077 074 0.71

F TRS SUPPLEMENT EXPERIMENTS

Table 13: Comparison of TRS with standard decoding methods

Method Speedup PPL
AR (Baseline) 1.0x 119
Greedy 1.0x 11.9
Beam Search 0.9x 11.7
TRS 3, 3) 3.21x 12.2

17

Under review as a conference paper at ICLR 2026

G TRAIN DETAILS AND TRAINING COST

G.1 DATA ACQUISITION AND GENERATION

For the English dataset used to train models such as Qwen, Vicuna, and Llama on 7B, 13B, and 14B,
we use ShareGPT as the dataset, which contains 96,000 dialogue data samples. For the Chinese
dataset, we use the THUCNews training set, consisting of 50,000 news samples, split into two parts:
“prompt” and “completion”. The target model processes pre-processed data to generate outputs
from the transformer layers for each token. The training data includes fields such as input token IDs,
hidden states, hidden states from the previous three tokens, target values, attention masks, and loss
masks. These components are combined to construct the final training dataset.

G.2 TRAIN CONFIGURATION

The training configuration includes the following settings: Learning rate (1r) and batch size (bs) are
dynamically adjusted, with gradient accumulation steps set to ensure stable training. The number of
epochs is set to 40, and a warm-up phase of 2,000 steps is applied, targeting a total of 800,000 steps.
The configuration employs a maximum sequence length of 2,048 tokens, balancing performance
and memory efficiency. To improve robustness, data noise is introduced using a uniform distribution
with a mean of 0 and a standard deviation of 0.2. Additional settings include weight decay, gradient
clipping, and periodic model saving every epoch. Finally, the optimizer uses momentum parameters
(b1 =0.9, b2 =0.95) to facilitate effective training convergence.

G.3 TRAINING COST

We compare SHAPE with Medusa (+2 heads) in terms of parameter count and computational ef-
ficiency. SHAPE contains approximately 450.98M parameters (6.4% of LLaMA-7B), achieved
through parameter sharing and lightweight modules such as OT projection and a gating network.
In contrast, Medusa adds 300M parameters per head, reaching 610M (9% of LLaMA-7B) with
two heads. Thus, SHAPE uses only 71.5% of the parameters of Medusa+2 heads and requires no
per-head adaptation. In training, SHAPE is 3-5x faster than full model fine-tuning and requires
only 5 hours for 40 epochs on a single A100 GPU, compared to 8 hours for Medusa. Peak training
memory usage is also lower: 41.89GB for SHAPE versus 51.47GB for Medusa. During inference,
SHAPE achieves a 3.21-4.12x speedup through one hidden state correction step (OT module) and
tree rejection sampling. In contrast, Medusa incurs higher overhead due to additional multi-head
attention and memory usage, limiting its speedup to 1.8-3.1x.

H TREE-BASED REJECT SAMPLING ALGORITHM IMPLEMENTATION

18

Under review as a conference paper at ICLR 2026

Algorithm 1 Tree Rejection Sampling

Require: model: target language model

1:
2:
3:

context: current context or hidden state at time step ¢
N': number of future steps (depth)
k: number of candidates per step (branch factor)

Ensure: selected_prefiz: the longest valid prefix among accepted paths

4:

5:

candidate_paths < generate_candidates(model,context, N, k) 1/ Generate k¥ candi-
date sequences

path_probs < model.get_path_probabilities(candidate_paths) // Compute joint proba-
bilities in parallel

max_prob < max(path_probs)

threshold < 0.8 x maz_prob // Define acceptance threshold (e.g. 80% of the maximum
probability)

. accepted_paths < ||

for each (path, probd) in (candidate_paths, path_probs) do
if prob > threshold then
accepted_paths.append(path) // Retain paths with sufficiently high probability
end if

: end for
. selected_prefix < select_longest_valid_prefiz(accepted_paths) // Extract the longest

prefix common to accepted paths
return selected_prefix

19

	Introduction
	From State Similarity to Distributional Transition
	Semantic Similarity of Hidden States
	Modeling Token Generation with Optimal Transport

	SHAPE: An OT-Guided Multi-Token Predictor
	Hidden State Semantic Correlation Modeling
	Step ahead Hidden State Residual Predictor
	Predictor Construction
	Predictor Training

	Tree Reject Sampling

	Experiments
	Efficiency
	Quality Evaluation
	Ablation Study
	Effectiveness of Optimal Transport
	Effectiveness of Tree Rejection Sampling

	Related Work
	Conclusion
	Token-level Autoregressive Generation
	Single-step Generation Process
	Output Hidden State Based Generation

	Model AR decoding performance metrics
	Theoretical Analysis of Optimal Transport
	Theoretical Analysis of Hidden State Prediction via Optimal Transport
	Quality evaluation
	TRS supplement experiments
	Train Details and training cost
	Data Acquisition and Generation
	Train Configuration
	Training Cost

	Tree-based reject sampling algorithm implementation

