

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TRANSPORTING TOKENS: OPTIMAL-TRANSPORT VIEW OF PARALLEL LLM DE- CODING

006
007 **Anonymous authors**
008 Paper under double-blind review

011 ABSTRACT

013 Autoregressive decoding is a primary bottleneck for large language models
014 (LLMs), as its inherent sequentiality severely limits inference speed. While spec-
015 ulative decoding methods mitigate this via a draft-and-verification pipeline their
016 effectiveness is severely constrained by dependency on draft model quality and
017 availability. We rethink the generation pattern and introduces a novel theoretical
018 perspective by reframing token generation as a predictable state transition pro-
019 cess in probability space, formalized through Optimal Transport (OT) theory. We
020 demonstrate that the temporal consistency of hidden states induces a stable trans-
021 port map, enabling theoretically grounded multi-step prediction. Building on this
022 insight, we develop SHAPE, an OT-based predictor that implements lightweight
023 Sinkhorn iterations. Extensive evaluations across diverse models (e.g., Qwen, Vi-
024 cuna, LLaMA, DeepSeek) and tasks (text, code, math) show that SHAPE achieves
025 up to 5.23 \times speedup with minimal quality loss ($\leq 1.2\%$ accuracy drop), empir-
026 ically validating our distributional transition hypothesis. This work establishes a
027 new theoretical foundation for understanding autoregressive decoding and a prac-
028 tical path toward high-speed generation beyond token-wise limitations.

029 1 INTRODUCTION

031 Large Language Models (LLMs) have become the cornerstone of modern artificial intelligence,
032 achieving remarkable success across tasks ranging from natural language understanding to text gen-
033 eration Mo et al. (2024); Wu (2024); Li et al. (2024a); Shu et al. (2024); Thakur et al. (2024).
034 LLMs of varying scales have been widely deployed in cloud server clusters (e.g., GPT-4 OpenAI
035 et al. (2024), Llama3 Grattafiori et al. (2024), and Grok1 xAI (2024)) and edge devices (e.g., the
036 6B-parameter GPT-3 and 7B-parameter LLaMA-2 variants as lightweight LLMs Lu et al. (2024);
037 Sun et al. (2020)). With their increasing adoption in search Wang et al. (2024) and conversational
038 AI Ouyang et al. (2022), there is a growing demand for low-latency long-sequence generation, mak-
039 ing the optimization of effective token generation rate under constrained computational resources a
040 critical research challenge.

041 Unfortunately, both cloud-based large models and edge-side small models rely on autoregressive
042 token-by-token generation, which requires sequential computation of each token without paralleliza-
043 tion. Additionally, the quadratic complexity of attention mechanisms with respect to context length
044 exacerbates the issue. The standard autoregressive decoding used in existing LLMs suffers from
045 inherent inefficiencies Touvron et al. (2023); Jiang et al. (2023)—generation time scales linearly
046 with both context length and model size, and its sequential nature leads to cumulative latency. Our
047 benchmarking experiments across diverse models reveal that larger model sizes and longer context
048 lengths lead to significantly higher per-token latency. This cost is compounded by the sequential
049 nature of decoding, highlighting the urgent need for optimization to achieve practical deployment
050 efficiency. Comprehensive results are presented in Appendix B.

051 Speculative decoding Cai et al. (2024) addresses this by introducing a fast draft model to predict
052 multiple tokens in advance, followed by verification from the target model. However this two-stage
053 draft-and-verification paradigm still incurs sequential latency and is highly sensitive to the quality of
draft models. Lookahead Fu (2023) and Medusa Cai et al. (2024) reduce decoding time using n-gram

heuristics or shallow predictors, but their limited accuracy (e.g., 0.6 for Medusa) results in suboptimal speedup. EAGLE Li et al. (2024b) improves draft accuracy by leveraging hidden-state features, achieving better acceleration, yet it remains draft-model-dependent, introducing overhead and limiting scalability across diverse model configurations. CLLMs Kou et al. (2024) accelerate decoding by directly predicting future token distributions via conditional probabilities, enabling parallel generation. However, they require fine-tuning parts of the original model, increasing training costs, and while particularly effective for mathematical reasoning, they exhibit limited stability in long-form generation. In contrast, our approach reconceptualizes decoding itself through a distributional lens. In this work, we propose a paradigm shift by reconceptualizing token generation as a *distributional transition process*. Our key insight stems from the empirical observation that hidden states exhibit strong temporal consistency during decoding—consecutive states maintain high semantic similarity with a predictable lower bound. This regularity suggests that token generation follows a structured evolution in probability space, a perspective we formalize through optimal transport (OT) theory.

By modeling the transition between successive token distributions as a mass transport problem, where the semantic similarity between hidden states induces a stable OT map. To empirically validate this theoretical framework, we develop **SHAPE** (Step-ahead Hidden-state Accelerated Prediction Engine) as a concrete instantiation of our OT-based perspective. SHAPE operationalizes the theoretical transport maps by learning lightweight operators between hidden states, enabling parallel token prediction without auxiliary draft models. The empirical success of SHAPE—achieving substantial speedups while maintaining quality—serves as strong evidence for the correctness of our underlying theoretical insight: that token generation can indeed be understood as a predictable transport process in probability space. We evaluated SHAPE on a range of models—including Qwen, Vicuna, LLaMA, and DeepSeek—across general language (WikiText, Alpaca, MT-Bench) and reasoning-heavy tasks (MATH500, AIME24, LiveCodeBench v5). The results show that SHAPE achieves speedups of up to 5.23 \times while maintaining output quality within a minimal margin of degradation ($\leq 1.2\%$ accuracy drop on reasoning tasks). In comparative experiments, SHAPE consistently outperforms existing acceleration methods: it surpasses EAGLE3 by 1.1 \times , Medusa-1 by 2.1 \times , and Medusa-2 by 1.6 \times across different models and datasets.

Beyond performance, this work makes the following key contributions:

- **A Novel Theoretical Foundation:** We introduce a paradigm shift by reconceptualizing token generation as a predictable transition of probability distributions. This perspective is rigorously formalized through Optimal Transport theory and validated empirically, establishing a new principled understanding of decoding dynamics.
- **A Practical, Plug-and-Play Predictor:** We develop SHAPE, a lightweight prediction engine that operationalizes this theory. Crucially, SHAPE requires no modifications to the base LLM’s parameters, offering a draft-free, plug-and-play solution for immediate deployment that significantly enhances decoding efficiency.
- **Scalability to Arbitrary Future Steps.** SHAPE generalizes to predict hidden states at arbitrary future time steps (e.g., $t + 1, t + 2, t + 3$), providing greater flexibility for long-sequence generation tasks. This scalability supports diverse applications with varying sequence lengths and complexity.

By fundamentally rethinking the decoding process rather than optimizing within its constraints, this work opens new directions for efficient LLM inference.

2 FROM STATE SIMILARITY TO DISTRIBUTIONAL TRANSITION

2.1 SEMANTIC SIMILARITY OF HIDDEN STATES

Building on recent work that recognizes the regularity of hidden-state sequences Li et al. (2024b) and their utility for parallel prediction Cai et al. (2024), we systematically analyze the temporal correlations between consecutive hidden states during autoregressive decoding. Let $\mathbf{h}_t \in \mathbb{R}^H$ denote the final-layer hidden state at decoding step t . We quantify the *semantic consistency* between states at steps t and $t+n$ using cosine similarity:

$$\text{sc}(\mathbf{h}_t, \mathbf{h}_{t+n}) = \frac{\mathbf{h}_t \cdot \mathbf{h}_{t+n}}{\|\mathbf{h}_t\|_2 \cdot \|\mathbf{h}_{t+n}\|_2} \quad (1)$$

108

109

Table 1: Hidden State Cosine Similarity Across Models and Domains

110

111

112

113

114

115

116

117

118

119

Experimental Settings We conduct experiments on two representative domains: conversational text using the ShareGPT dataset and code generation using The Stack dataset. For each domain, we use a context length of 2048 tokens and generate sequences of 512 tokens. All experiments are performed on NVIDIA A100 80GB GPUs, with models ranging from 7B to 72B parameters. For each model-dataset combination, we compute semantic consistency between hidden states at positions t and $t + n$ across 1000 randomly sampled sequences, reporting the 95th percentile values across all valid token positions to ensure statistical significance and capture the lower bound of similarity distribution.

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

As demonstrated in Table 1, during token generation, hidden states feature exhibit pronounced temporal smoothness and strong semantic consistency: our quantitative analysis **across all valid token positions** shows that for adjacent steps ($n=1, 2, 3$) at least 95% of positions satisfy $SC(\mathbf{h}_t, \mathbf{h}_{t+n}) \geq \tau$ with $\tau=0.5$, indicating high-probability local stability of the representation. We also observe a consistent pattern of text > code and larger > smaller models, reinforcing that token transitions are smooth and predictable rather than erratic.

The observed consistency persists even in challenging scenarios with potential semantic transitions between dialogue turns in ShareGPT and code blocks in The Stack—demonstrating the generalization of this property across domains with different structural characteristics. This empirical finding suggests that transitions between consecutive token distributions are both small and structured: the changes are concentrated along semantically meaningful directions rather than arbitrary noise, constrained by linguistic coherence in text and syntactic regularities in code. As a result, the generative process of large language models behaves like a smooth dynamical system in a latent state space, where each new token constitutes a predictable, low-dimensional adjustment to the current semantic state rather than a radical reconstruction—providing a stable foundation for predictive modeling and multi-step forecasting.

2.2 MODELING TOKEN GENERATION WITH OPTIMAL TRANSPORT

Building upon the empirical observation of strong temporal consistency in hidden states, we introduce a theoretical perspective that elevates token generation to a *structured probability flow* problem. This formulation recognizes that the evolution of hidden states imposes geometric constraints on how token distributions change over time.

Such constraints are not captured by conventional next-token prediction objectives. In contrast, optimal transport (OT) offers a mathematically grounded framework for modeling distributional evolution under minimal geometric distortion. By embedding token generation within the OT formalism, we uncover a deeper structure underlying autoregressive decoding: distribution transitions follow low-cost paths governed by hidden-state continuity. This perspective is not merely as a re-description, but as a foundation for building new path of token evolution, deriving stability guarantees, and enabling multi-step step ahead generation. In short, OT transforms our understanding of decoding from a static pointwise prediction problem to a dynamic, diffusion like, geometry-aware process.

To mathematically capture this structured diffusion evolution, we represent the token distribution as a discrete measure in the hidden state features space:

$$\mu_t = \sum_{i=1}^V \mathbf{p}_t(i) \delta_{\mathbf{E}_i}, \quad \text{where } \mathbf{p}_t = \text{softmax}(W\mathbf{h}_t/\tau_s).$$

162 The transition from μ_t to μ_{t+n} is then formulated as an *entropic-regularized optimal transport*
 163 problem:

$$\Pi_t^* = \arg \min_{\Pi \mathbf{1} = \mathbf{p}_t, \Pi^\top \mathbf{1} = \mathbf{p}_{t+n}} \langle \Pi, C \rangle + \varepsilon \text{KL}(\Pi \parallel \mathbf{p}_t \mathbf{p}_{t+n}^\top),$$

166 where the cost matrix $C \in \mathbb{R}^{V \times V}$ is defined by the squared Euclidean distance between token
 167 embeddings ($C_{ij} = \|\mathbf{E}_i - \mathbf{E}_j\|^2$), and $\varepsilon > 0$ is the regularization strength.

168 Crucially, the observed semantic consistency provides theoretical guarantees for this formulation.
 169 As proven in Lemma C.2 (Appendix), the Wasserstein distance between consecutive distributions is
 170 bounded by:

$$W_c(\mu_t, \mu_{t+n}) \leq \bar{L} \sqrt{1 - \text{SC}(\mathbf{h}_t, \mathbf{h}_{t+n})} \leq \bar{L} \sqrt{1 - \tau},$$

172 which ensures the existence and uniqueness of the optimal coupling Π_t^* (Proposition C.3, Appendix).

174 The row-normalized optimal coupling $K_t = \text{diag}(\Pi_t^*)^{-1} \Pi_t^*$ defines a principled stochastic transi-
 175 tion matrix that characterizes the distributional evolution:

$$\mathbf{p}_{t+n} = K_t^\top \mathbf{p}_t.$$

178 This formulation casts token generation as a path-following process in the probability simplex,
 179 where the temporal stability of hidden states ensures the stability of the transport map. This the-
 180 oretical insight forms the cornerstone of the SHAPE method, providing a mathematically sound
 181 framework for analyzing and intervening in the generation process. Complete proofs and detailed
 182 analysis are provided in Appendix C.

3 SHAPE: AN OT-GUIDED MULTI-TOKEN PREDICTOR

186 To validate and operationalize the OT-based transition view, we propose **SHAPE** (Step-ahead
 187 Hidden-state Accelerated Prediction Engine), a **draft-free**, plug-and-play framework for parallel
 188 decoding. As shown in Figure 1. SHAPE consists of two key components: **Step-ahead Hidden**
 189 **State Prediction** and **Tree Rejection Sampling**. The core design of the framework focuses on
 190 capturing the semantic correlation of hidden states by capturing temporal features and training a
 191 predictor to approximate future hidden states. With tree reject sampling select the longest accepted
 192 prefix in parallel dynamically, so we can get α accepted token in one LLM forward to achieve
 193 parallel acceleration.

206 Figure 1: Illustration of the SHAPE (Step-ahead Hidden-state Accelerated Prediction Engine)
 207 framework. SHAPE leverages strong temporal correlations in hidden states to predict multiple future
 208 tokens by modeling hidden state transitions. It includes temporal modeling and residual predictors
 209 for hidden state prediction, followed by edge-to-edge LM head training to generate multiple can-
 210 didates for each future step. SHAPE uses tree-based rejection sampling to select optimal token
 211 candidates at each time step, enabling efficient multi-token generation without a draft model.

3.1 HIDDEN STATE SEMANTIC CORRELATION MODELING

213 The main structure of step-ahead hidden state prediction is shown in Figure 2, with three main
 214 trainable components. To first extract features in hidden state temporal modeling, the hidden states

from the current and previous three-time steps are concatenated and passed through a series of transformations, including linear projections, layer normalization, activation functions, and dropout. These steps capture temporal dependencies and refine the features, resulting in a final representation that effectively encodes the relationships between the time steps.

3.2 STEP AHEAD HIDDEN STATE RESIDUAL PREDICTOR

3.2.1 PREDICTOR CONSTRUCTION

Predicting hidden states directly in the full transformer dimension is challenging. To improve stability, we adopt a residual-based transition model: instead of predicting the entire hidden state, the predictor learns the delta between consecutive states. An adaptive gating mechanism (a Linear-Sigmoid network) dynamically scales the predicted residual based on both the current hidden state and the predicted change, effectively controlling uncertainty and preventing error accumulation in multi-step prediction. Beyond residual modeling, we optionally introduce an Optimal Transport (OT) refinement module to further regularize the transition between H_t and H_{t+n} . When enabled, the refinement consists of three lightweight stages:

(1) Dimensionality Reduction. A learned projection $P_1 : \mathbb{R}^H \rightarrow \mathbb{R}^d$ compresses hidden states into a lower-dimensional space:

$$h_t^d = P_1(H_t), \quad h_{t+n}^d = P_1(H_{t+n}).$$

(2) OT-based Alignment. The reduced states are normalized into distributions:

$$p = \text{softmax}(h_t^d), \quad q = \text{softmax}(h_{t+n}^d),$$

and aligned via entropy-regularized optimal transport:

$$\min_T \langle T, C \rangle + \varepsilon H(T) \quad \text{s.t.} \quad T\mathbf{1} = p, \quad T^\top \mathbf{1} = q.$$

The cost matrix C reflects semantic discrepancy in the reduced space, and the entropy term prevents overly sparse or unstable transport plans. Since $d \ll H$, the transport computation is efficient.

(3) Dimension Recovery. The aligned representation is then projected back to the original space via $P_2 : \mathbb{R}^d \rightarrow \mathbb{R}^H$:

$$H_{t+n}^{\text{OT}} = P_2(T^\top \mathbf{1}).$$

Finally, the refined hidden state combines the raw residual predictor output and the OT-aligned result:

$$H_{t+n} = (1 - \alpha)H_{t+n}^{\text{raw}} + \alpha H_{t+n}^{\text{OT}},$$

where $\alpha \in [0, 1]$ controls the strength of OT refinement.

Figure 2: Step-ahead hidden state predictor: temporal modeling (blue), residual prediction (green), and LM-head projection (yellow).

270 3.2.2 PREDICTOR TRAINING
271

272 The hidden state predictor architecture is designed to maintain dimensional consistency with the
273 source large language model, preserving the original hidden state dimensionality. The training pro-
274 cedure utilizes optimal transport learning ($\alpha = 0.5$, $\epsilon = 0.1$) to enhance multi-step prediction
275 accuracy. The training corpus consists of preprocessed hidden states extracted from both English
276 ShareGPT conversational data and Chinese THUC_News articles, enabling bilingual prediction ca-
277 pabilities. The training was conducted using AdamW optimization with mixed-precision computa-
278 tion, incorporating uniform noise augmentation ($\text{std} = 0.2$) to improve model robustness. Input
279 sequences were truncated at 2048 tokens to maintain computational efficiency with batch size = 16.
280 The training objective combined two loss terms:

281 **Hidden State Loss** This loss optimizes the consistency between predicted hidden states $\hat{h}_t + n$
282 and target hidden states $h_t + n$ using mean squared error:

$$284 \quad \mathcal{L}_{\text{hidden}} = \frac{1}{N} \sum_{i=1}^N \left\| \hat{h}_{t+n}^i - h_{t+n}^i \right\|_2^2 \quad (2)$$

287 where N is the sample size.

288 **Token Distribution Loss** This cross-entropy loss ensures alignment between predicted and target
289 token distributions:

$$291 \quad \mathcal{L}_{\text{token}} = -\frac{1}{N} \sum_{i=1}^N \sum_{j=1}^V p_{\text{target}}^i(j) \log p_{\text{output}}^i(j) \quad (3)$$

294 where $p_{\text{target}}(j)$ and $p_{\text{output}}(j)$ represent the target and predicted token distributions respectively, and
295 V is the vocabulary size.

296 3.3 TREE REJECT SAMPLING
297

298 **Tree Rejection Sampling** generates multiple candidate paths for the next N tokens at time step t ,
299 forming a tree structure of width k and depth N (thus producing k^N candidate paths). The model
300 then computes the joint probabilities of these paths in parallel. Low-probability paths are rejected
301 based on a predefined acceptance threshold, and the remaining paths are merged by selecting the
302 longest valid prefix. This design balances generation diversity and quality by exploring multiple
303 future branches in a single forward pass. Detailed algorithm implementation is shown in Appendix.

305 4 EXPERIMENTS
306

307 We evaluate SHAPE across major LLM families—including Vicuna(7B/13B), LLaMA2-
308 Chat(7B/13B/70B), Qwen (7B/14B/72B), and recent long-chain reasoning models such as Qwen3
309 and DeepSeek-R1 both efficiency and output quality. Our benchmarks span three categories: (1)
310 general text generation (Alpaca, WikiLingua; evaluated with PPL), (2) knowledge and reasoning
311 tasks (MMLU accuracy and MT-Bench scores), and (3) challenging long-context reasoning datasets
312 (MATH500, AIME24, LiveCodeBench v5). All experiments are conducted on NVIDIA A100 80GB
313 GPUs under consistent settings to ensure fair comparison.

315 4.1 EFFICIENCY
316

317 We present a comprehensive comparison of SHAPE against Lookahead, Medusa-1, Medusa-2, and
318 EAGLE3 under both temperature 0 and 1 across eight major model families. As shown in Table 2,
319 SHAPE consistently achieves the highest or near-highest speedups across all datasets and tempera-
320 tures.

321 Compared with Lookahead, SHAPE delivers substantially larger gains, typically improving speed
322 by **1.5x–2x**. Relative to Medusa-1 and Medusa-2, SHAPE provides clear improvements under ev-
323 ery model, with speedups exceeding both methods in all Alpaca, Wiki, and MT-Bench settings.
SHAPE also closely tracks or surpasses EAGLE3 across all model scales: on Qwen-7B/14B/72B,

324
 325 Table 2: Speedup comparison among Lookahead, Medusa-1, Medusa-2, EAGLE3, and SHAPE
 326 under Temperature = 0 and 1 across datasets.

Model	Method	Alpaca ₀	Alpaca ₁	Wiki ₀	Wiki ₁	MT ₀	MT ₁	Mean ₀	Mean ₁
Qwen-7B	Lookahead	2.71 \times	2.43 \times	2.50 \times	2.27 \times	3.05 \times	2.66 \times	2.75 \times	2.45 \times
	Medusa-1	1.77 \times	1.59 \times	1.87 \times	1.68 \times	2.02 \times	1.82 \times	1.89 \times	1.70 \times
	Medusa-2	2.04 \times	1.80 \times	2.16 \times	1.90 \times	2.49 \times	2.19 \times	2.23 \times	1.96 \times
	EAGLE3	4.13 \times	3.72 \times	4.05 \times	3.65 \times	4.34 \times	3.73 \times	4.17 \times	3.70 \times
	SHAPE	4.12 \times	3.83 \times	4.10 \times	3.81 \times	4.53 \times	4.03 \times	4.25 \times	3.89 \times
Qwen-14B	Lookahead	2.46 \times	2.18 \times	2.38 \times	2.11 \times	3.21 \times	2.78 \times	2.68 \times	2.36 \times
	Medusa-1	2.01 \times	1.81 \times	2.03 \times	1.83 \times	2.11 \times	1.90 \times	2.05 \times	1.85 \times
	Medusa-2	2.29 \times	2.02 \times	2.28 \times	2.01 \times	2.51 \times	2.21 \times	2.36 \times	2.08 \times
	EAGLE3	4.01 \times	3.53 \times	3.97 \times	3.57 \times	5.11 \times	4.34 \times	4.36 \times	3.81 \times
	SHAPE	3.90 \times	3.55 \times	4.03 \times	3.71 \times	5.23 \times	4.60 \times	4.39 \times	3.95 \times
Qwen-72B	Lookahead	3.10 \times	2.82 \times	3.05 \times	2.77 \times	3.65 \times	3.21 \times	3.27 \times	2.93 \times
	Medusa-1	2.18 \times	1.96 \times	2.12 \times	1.91 \times	2.52 \times	2.27 \times	2.27 \times	2.05 \times
	Medusa-2	3.15 \times	2.77 \times	3.07 \times	2.70 \times	3.64 \times	3.20 \times	3.29 \times	2.89 \times
	EAGLE3	4.85 \times	4.35 \times	4.72 \times	4.21 \times	5.60 \times	4.95 \times	5.06 \times	4.50 \times
	SHAPE	4.92 \times	4.48 \times	4.80 \times	4.33 \times	5.73 \times	5.18 \times	5.15 \times	4.66 \times
Llama-7B	Lookahead	2.89 \times	2.55 \times	2.76 \times	2.43 \times	3.30 \times	2.88 \times	2.98 \times	2.62 \times
	Medusa-1	1.88 \times	1.69 \times	1.85 \times	1.67 \times	2.09 \times	1.88 \times	1.94 \times	1.75 \times
	Medusa-2	3.01 \times	2.65 \times	3.05 \times	2.68 \times	2.58 \times	2.27 \times	2.88 \times	2.53 \times
	EAGLE3	4.20 \times	3.78 \times	4.01 \times	3.61 \times	4.65 \times	4.00 \times	4.29 \times	3.80 \times
	SHAPE	4.23 \times	3.93 \times	4.11 \times	3.82 \times	4.73 \times	4.21 \times	4.36 \times	3.99 \times
Llama-13B	Lookahead	2.63 \times	2.38 \times	2.58 \times	2.34 \times	3.41 \times	2.93 \times	2.87 \times	2.55 \times
	Medusa-1	2.03 \times	1.83 \times	2.01 \times	1.81 \times	2.13 \times	1.92 \times	2.06 \times	1.85 \times
	Medusa-2	3.15 \times	2.77 \times	3.12 \times	2.75 \times	2.76 \times	2.43 \times	3.01 \times	2.65 \times
	EAGLE3	4.12 \times	3.71 \times	4.12 \times	3.71 \times	4.78 \times	4.11 \times	4.34 \times	3.84 \times
	SHAPE	4.13 \times	3.80 \times	4.15 \times	3.86 \times	5.01 \times	4.51 \times	4.43 \times	4.06 \times
Llama-70B	Lookahead	3.25 \times	2.95 \times	3.21 \times	2.92 \times	3.78 \times	3.36 \times	3.41 \times	3.08 \times
	Medusa-1	2.26 \times	2.03 \times	2.21 \times	1.99 \times	2.62 \times	2.36 \times	2.36 \times	2.13 \times
	Medusa-2	3.26 \times	2.87 \times	3.19 \times	2.81 \times	3.78 \times	3.33 \times	3.41 \times	3.00 \times
	EAGLE3	5.02 \times	4.55 \times	4.91 \times	4.48 \times	5.82 \times	5.14 \times	5.25 \times	4.72 \times
	SHAPE	5.10 \times	4.70 \times	5.00 \times	4.62 \times	5.95 \times	5.38 \times	5.35 \times	4.90 \times
Vicuna-7B	Lookahead	2.52 \times	2.29 \times	2.48 \times	2.25 \times	3.19 \times	2.80 \times	2.73 \times	2.45 \times
	Medusa-1	1.79 \times	1.61 \times	1.84 \times	1.66 \times	2.18 \times	1.96 \times	1.94 \times	1.74 \times
	Medusa-2	2.88 \times	2.53 \times	2.91 \times	2.56 \times	2.83 \times	2.49 \times	2.87 \times	2.53 \times
	EAGLE3	3.95 \times	3.52 \times	3.90 \times	3.51 \times	5.11 \times	4.34 \times	4.32 \times	3.79 \times
	SHAPE	3.98 \times	3.66 \times	3.95 \times	3.67 \times	5.13 \times	4.57 \times	4.35 \times	3.97 \times
Vicuna-13B	Lookahead	2.60 \times	2.33 \times	2.56 \times	2.30 \times	3.26 \times	2.89 \times	2.81 \times	2.51 \times
	Medusa-1	2.05 \times	1.84 \times	2.07 \times	1.86 \times	2.33 \times	2.10 \times	2.15 \times	1.93 \times
	Medusa-2	2.86 \times	2.52 \times	2.89 \times	2.54 \times	2.85 \times	2.51 \times	2.87 \times	2.52 \times
	EAGLE3	4.05 \times	3.65 \times	4.00 \times	3.60 \times	4.57 \times	3.93 \times	4.21 \times	3.73 \times
	SHAPE	4.00 \times	3.72 \times	4.07 \times	3.79 \times	5.13 \times	4.62 \times	4.40 \times	4.04 \times

365
 366
 367
 368 Llama-7B/13B/70B, and Vicuna-7B/13B, SHAPE achieves the best overall mean speedup in both
 369 temperature settings. Notably, SHAPE consistently improves over EAGLE3 at temperature 1, where
 370 speculative methods generally become less stable. Overall, the results demonstrate that SHAPE pro-
 371 vides the most stable and highest average speedup across all model families, datasets, and sampling
 372 temperatures, outperforming prior speculative decoding and multi-head prediction baselines in a
 373 uniform evaluation setup.

374 We evaluate SHAPE’s inference efficiency under varying batch sizes to assess its practicality in real-
 375 world deployment scenarios. Using the MT-Bench dataset on the Qwen2-7B model, we compare
 376 SHAPE against EAGLE-3, with vLLM without speculative sampling as the baseline. As shown
 377 in Table 3, SHAPE consistently outperforms EAGLE-3 across all batch sizes, demonstrating su-
 378 perior scalability and efficiency in practical batch processing environments. The results confirm that

378 while both methods exhibit reduced relative gains at larger batch sizes due to increased baseline
 379 parallelism, SHAPE maintains a consistent performance advantage.
 380

382 Table 3: Speedup ratios at different batch sizes
 383

Method	BS = 2	BS = 4	BS = 8	BS = 16	BS = 24
EAGLE-3	1.73×	1.65×	1.52×	1.43×	1.39×
SHAPE	1.92×	1.75×	1.61×	1.52×	1.41×

387
 388
 389 4.2 QUALITY EVALUATION
 390

391 We evaluate generation quality from three perspectives: (1) general performance on standard
 392 benchmarks, (2) token-level prediction accuracy and semantic consistency, and (3) performance
 393 on reasoning-intensive and long-context tasks.
 394

395 **General Performance Evaluation.** We evaluate generation quality using PPL on Alpaca and Wiki-
 396 Text, MMLU accuracy for reasoning, and MT-Bench for conversational ability. As shown in Table 4,
 397 SHAPE maintains output quality across all model families, with PPL remaining close to baseline
 398 and MMLU/MT-Bench varying within 1–2%. These results indicate that SHAPE preserves model
 399 utility while providing significant decoding acceleration.
 400

401 Table 4: Performance comparison between Vanilla and SHAPE-accelerated models across bench-
 402 marks.
 403

Model	Alpaca (PPL)	WikiText (PPL)	MMLU-5shot (Acc)	MT-Bench (Score)
Qwen-7B	11.49 / 11.9	11.89 / 12.1	70.5 / 68.79	8.41 / 8.56
Qwen-14B	12.30 / 11.8	11.92 / 11.7	66.3 / 64.78	9.08 / 8.85
Qwen-72B	10.95 / 11.2	10.88 / 11.0	75.6 / 74.9	9.62 / 9.55
Llama-7B	11.76 / 12.2	12.77 / 12.4	46.2 / 44.32	6.27 / 6.43
Llama-13B	12.67 / 12.3	11.94 / 12.5	55.0 / 56.38	7.05 / 6.89
Llama-70B	10.88 / 11.1	10.72 / 11.0	67.5 / 66.8	8.92 / 8.85
Vicuna-7B	11.58 / 12.1	12.83 / 12.4	48.2 / 48.55	6.69 / 6.88
Vicuna-13B	12.06 / 11.7	11.63 / 12.0	55.28 / 58.42	6.81 / 6.97

413
 414 **Reasoning-Intensive Task Evaluation.** As shown in Table 5, SHAPE maintains near-identical
 415 accuracy compared to vanilla decoding across all models and tasks. On MATH500, accuracy differ-
 416 ences are within 0.3%, while AIME24 and LiveCodeBench v5 show maximum deviations of 1.3%
 417 and 0.8% respectively. These results confirm SHAPE’s robustness on reasoning-heavy, long-chain
 418 tasks while delivering 4–5× speedups.
 419

420
 421 Table 5: Accuracy comparison on reasoning-intensive tasks (Vanilla / SHAPE)
 422

Model	MATH500	AIME24	LiveCodeBench v5
Qwen3-32B	97.2 / 97.16	81.4 / 80.8	65.7 / 65.3
Qwen3-8B	97.4 / 97.1	76.0 / 74.7	57.5 / 56.9
DeepSeek-R1-Distill-Qwen-32B	94.3 / 93.2	72.6 / 72.2	54.5 / 54.1
DeepSeek-R1-Distill-Qwen-14B	93.9 / 92.1	69.7 / 68.9	45.5 / 44.7

423
 424 **Token-Level Analysis.** Supplementary evaluations (Appendix Tables 12 and 10) show SHAPE
 425 achieves token prediction accuracy of 0.85–0.92 for 1–3 token lookahead, with lower perplexity com-
 426 pared to alternative acceleration methods. Semantic similarity metrics (BERTScore and embedding
 427 cosine distance) confirm strong alignment with standard decoding outputs.
 428

432 4.3 ABLATION STUDY
433434 4.3.1 EFFECTIVENESS OF OPTIMAL TRANSPORT
435

436 SHAPE employs optimal transport (OT) to model hidden state transitions, motivated by our obser-
437 vation that transformer hidden states maintain a minimum level of similarity between tokens at t and
438 $t+n$. This "baseline similarity" indicates a theoretically valid pathway for transferring hidden states
439 through optimal transport. Unlike autoregressive models that predict step-by-step, our OT approach
440 captures global transition patterns by finding the optimal mapping to future states ($t+n$). To validate
441 the effectiveness of OT over simpler alternatives, we conducted comparative experiments replacing
442 the OT mapping with an affine transformation of the same dimensionality ($d = 128$). Table 6
443 presents the results on Llama-7B using the Alpaca dataset with TRS configuration ($N = 3, K = 3$).
444
445

446 Table 6: Comparison of OT with affine transformation and analysis of different dimensionalities on
447 Llama-7B (Alpaca). Baseline AR decoding achieves PPL=11.9.

Method	PPL	Speedup	<i>d</i> Value	PPL	Speedup
Affine ($d=128$)	18.4	3.87x	32	17.3	3.87x
OT ($d=128$)	12.2	3.21x	64	16.1	3.66x
			128	12.2	3.21x
			4096 (full)	12.1	2.67x

448 The results demonstrate that OT significantly outperforms simple affine transformations, reducing
449 perplexity from 18.4 to 12.2 - approaching the baseline AR performance of 11.9. This validates
450 our hypothesis that OT's ability to find optimal global mappings is crucial for accurate multi-step
451 prediction. Furthermore, we analyzed the impact of dimensionality d on OT performance. As
452 shown in Table 6 (right), increasing d from 32 to 128 consistently improves perplexity, with the
453 most significant gains occurring at $d = 128$. Interestingly, using the full dimensionality ($d =$
454 4096) provides minimal perplexity improvement (12.1 vs 12.2) while reducing speedup by 17%,
455 confirming that our low-dimensional OT approach effectively captures essential transition patterns.
456
457

462 4.3.2 EFFECTIVENESS OF TREE REJECTION SAMPLING

463 We provide a unified analysis of SHAPE decoding behavior and the proposed Tree Rejection Sam-
464 pling (TRS) mechanism in Table 7. The top block reports the one-time N steps ahead decod-
465 ing latency breakdown of SHAPE, While the candidate-generation cost remains almost constant
466 (1.00–1.02 ms), the TRS verification time grows steadily with N , reflecting the fact that deeper N
467 leads to lower hidden-state similarity and hence a higher TRS cost. This breakdown explicitly re-
468 veals the speed–verification trade-off: larger N provides more aggressive multi-step prediction but
469 also increases the fraction of time spent in TRS. The bottom block evaluates TRS across the full grid
470 of $K, N \in [1, 5]$. Increasing the depth N produces higher speed gains because more future tokens
471 can be accepted in a single TRS step, whereas larger branch factors K reduce perplexity by offering
472 a richer set of candidate paths at the price of additional verification. The interaction of these two
473 effects yields a clear efficiency–quality frontier, with the configuration ($K = 3, N = 3$) achieving
474 the best overall balance (3.21x speedup and 12.2 PPL). Together with the latency breakdown in the
475 top block, these results provide a complete picture of how candidate generation and tree-based veri-
476 fication contribute to the final decoding cost, and why deeper lookahead necessarily increases TRS
477 time due to reduced inter-token similarity.
478

479 To contextualize the effectiveness of TRS relative to conventional decoding strategies, Table 13
480 compares the best-performing TRS configuration with standard methods. While greedy decoding
481 and beam search maintain perplexity close to the autoregressive (AR) baseline, they do not provide
482 any acceleration, and beam search is even slower due to multi-path expansion. In contrast, TRS with
483 ($K=3, N=3$) achieves a 3.21x decoding speedup while keeping perplexity at 12.2, only slightly
484 above the AR baseline (11.9). This demonstrates that TRS offers substantial real-world acceleration
485 with minimal impact on generation quality, outperforming classical search-based decoding in both
efficiency and controllability.

486

487 Table 7: Unified analysis of SHAPE decoding latency (top) and TRS performance (bottom).

488

489 **(A) SHAPE Decoding Latency Breakdown (Qwen-7B)**

490

<i>N</i>	Cand. (ms)	TRS (ms)	Total (ms)	TRS ratio (%)
1	1.00	0.40	1.40	28.6%
2	1.01	0.78	1.79	43.6%
3	1.00	1.25	2.25	55.6%
4	1.02	1.70	2.72	62.5%
5	1.01	2.20	3.21	68.5%

495

496 **(B) TRS Performance under Different (*K, N*) Configurations**

497

<i>K</i>	Depth (<i>N</i>): Speedup / PPL				
	1	2	3	4	5
1	1.91/17.3	2.71/16.7	3.40/16.1	3.80/16.5	4.10/17.0
2	1.90/16.9	2.65/16.5	3.30/14.0	3.50/14.5	3.70/15.0
3	1.88/16.5	2.59/16.3	3.21/12.2	3.40/13.0	3.55/14.0
4	1.83/16.3	2.46/15.8	3.15/12.15	3.28/12.8	3.40/13.2
5	1.75/16.1	2.33/15.2	3.09/12.1	3.25/12.5	3.35/12.9

504

505

506

5 RELATED WORK

507

508 Recent studies have highlighted the significant inference latency of Large Language Models (LLMs),
 509 prompting various acceleration strategies that can be categorized by their underlying methodolo-
 510 gies. on-autoregressive approaches represent initial attempts at acceleration. Non-autoregressive
 511 translation (NAT) techniques have been investigated in translation tasks Gu & Kong (2020); Stern
 512 et al. (2018), it performs suboptimally in general LLM scenarios. To address this, Huang et al.
 513 Huang et al. (2023) proposed a layer-wise iterative methodology that each layer leverages decoding
 514 results from preceding layers. Similarly, Santilli et al. Santilli et al. (2023) formalized autore-
 515 gressive decoding through parallel Jacobi and Gauss-Seidel fixed-point iteration. However, such
 516 methods often degrade accuracy due to their deviation from standard autoregressive architectures.
 517 Accuracy-preserving approaches based on model modifications have since emerged. Block-wise
 518 parallel decoding Stern et al. (2018) leverages an auxiliary transformer with multi-output capabili-
 519 ties for parallel token prediction but suffers from frequent verification failures. Medusa Cai et al.
 520 (2024) improves robustness with multiple prediction heads, while FREE Bae et al. (2023) uses shal-
 521 low layers for draft generation. However, these techniques require substantial training of additional
 522 components. speculative decoding offers an alternative by using smaller models as draft predictors.
 523 For example, Bloom 7.1B has served as a draft model for a 176B model Xia et al. (2023). Yet, this
 524 method faces challenges: suitable smaller models are not always available across model series, and
 525 helper models require parallel tuning, increasing deployment complexity. o address these issues,
 526 model-free strategies aim to accelerate decoding without auxiliary models. Ge et al. Ge et al. (2022)
 527 proposed an input-guided method based on prefix matching, extended by LLMA Yang et al. (2023)
 528 through content retrieval from inputs and external documents. Recently, LookaheadDecoding Huang
 529 et al. (2023) fused Jacobi iteration with speculative decoding in a multi-branch framework, though
 530 its draft generation incurs non-negligible overhead.

531

532

6 CONCLUSION

533

534 In this paper, we introduced a novel perspective that reframes autoregressive decoding as a prob-
 535 ability distribution transition process governed by optimal transport principles. We validate this
 536 theoretical framework through SHAPE, which demonstrates predictable hidden state evolution via
 537 transport maps. Experiments across diverse LLMs show speedups of $1.77\times$ - $5.23\times$ with maintained
 538 quality, confirming token generation can be understood as structured transport in probability space.
 539 This work establishes a new paradigm for efficient LLM inference beyond draft-based approaches.

540 REFERENCES

542 Sangmin Bae, Jongwoo Ko, Hwanjun Song, and Se-Young Yun. Fast and robust early-exiting
 543 framework for autoregressive language models with synchronized parallel decoding, 2023. URL
 544 <https://arxiv.org/abs/2310.05424>.

545 Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri Dao.
 546 Medusa: Simple llm inference acceleration framework with multiple decoding heads, 2024. URL
 547 <https://arxiv.org/abs/2401.10774>.

548 et al. Fu. Lookahead: An inference acceleration framework for large language model with lossless
 549 generation accuracy. *arXiv preprint arXiv:2312.12728*, 2023.

550 Yihan Ge et al. Input-guided non-autoregressive machine translation. In *Proceedings of the 60th*
 551 *Annual Meeting of the Association for Computational Linguistics*, pp. 7300–7312, 2022.

552 Aaron Grattafiori, Abhimanyu Dubey, and et al Abhinav Jauhri. The llama 3 herd of models, 2024.
 553 URL <https://arxiv.org/abs/2407.21783>.

554 Jiatao Gu and Xiang Kong. Fully non-autoregressive neural machine translation: Tricks of the trade.
 555 *arXiv preprint arXiv:2012.15833*, 2020.

556 Chenyang Huang, Hao Zhou, Osmar R Zaiane, Lili Mou, and Lei Li. Lookahead: An inference
 557 acceleration framework for large language models. *arXiv preprint arXiv:2312.12728*, 2023.

558 Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili
 559 Qiu. Longllmningua: Accelerating and enhancing llms in long context scenarios via prompt com-
 560 pression. *arXiv preprint arXiv:2310.06839*, 2023.

561 Siqi Kou, Lanxiang Hu, Zhezhi He, Zhijie Deng, and Hao Zhang. Cllms: Consistency large language
 562 models, 2024. URL <https://arxiv.org/abs/2403.00835>.

563 Junyi Li, Tianyi Tang, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. Pre-trained language
 564 models for text generation: A survey. *ACM Computing Surveys*, 56(9):1–39, 2024a.

565 Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
 566 rethinking feature uncertainty. *arXiv preprint arXiv:2401.15077*, 2024b.

567 Zhenyan Lu, Xiang Li, Dongqi Cai, Rongjie Yi, Fangming Liu, Xiwen Zhang, Nicholas D Lane,
 568 and Mengwei Xu. Small language models: Survey, measurements, and insights. *arXiv preprint*
 569 *arXiv:2409.15790*, 2024.

570 Yuhong Mo, Hao Qin, Yushan Dong, Ziyi Zhu, and Zhenglin Li. Large language model (llm) ai
 571 text generation detection based on transformer deep learning algorithm, 2024. URL <https://arxiv.org/abs/2405.06652>.

572 OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
 573 cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, and et al Shyamal Anadkat.
 574 Gpt-4 technical report, 2024. URL <https://arxiv.org/abs/2303.08774>.

575 Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, and Carroll L. Wainwright et al. Training language
 576 models to follow instructions with human feedback, 2022. URL <https://arxiv.org/abs/2203.02155>.

577 Andrea Santilli et al. Parallel fixed-point methods for autoregressive decoding. *arXiv preprint*
 578 *arXiv:2301.13379*, 2023.

579 Lei Shu, Liangchen Luo, Jayakumar Hoskere, Yun Zhu, Yinxiao Liu, Simon Tong, Jindong Chen,
 580 and Lei Meng. Rewritelm: An instruction-tuned large language model for text rewriting. In
 581 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 18970–18980,
 582 2024.

583 Mitchell Stern, William Chan, Jamie Kiros, and Jakob Uszkoreit. Blockwise parallel decoding for
 584 deep autoregressive models. In *Advances in Neural Information Processing Systems*, pp. 10107–
 585 10116, 2018.

594 Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. Mobilebert:
 595 a compact task-agnostic bert for resource-limited devices, 2020. URL <https://arxiv.org/abs/2004.02984>.
 596

597 Shailja Thakur, Baleegh Ahmad, Hammond Pearce, Benjamin Tan, Brendan Dolan-Gavitt, Ramesh
 598 Karri, and Siddharth Garg. Verigen: A large language model for verilog code generation. *ACM
 599 Transactions on Design Automation of Electronic Systems (TODAES)*, 29(3):1–31, 2024.
 600

601 Hugo Touvron, Thibaut Lavigil, Gautier Izacard, and et al Xavier Martinet. Llama: Open and efficient
 602 foundation language models, 2023. URL <https://arxiv.org/abs/2302.13971>.
 603

604 Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Large
 605 search model: Redefining search stack in the era of llms, 2024. URL <https://arxiv.org/abs/2310.14587>.
 606

607 Yonghui Wu. *Large Language Model and Text Generation*, pp. 265–297. Springer International
 608 Publishing, Cham, 2024. ISBN 978-3-031-55865-8. doi: 10.1007/978-3-031-55865-8_10. URL
 609 https://doi.org/10.1007/978-3-031-55865-8_10.
 610

611 xAI. Grok os: The future of ai assistants, 2024. URL <https://x.ai/blog/grok-os>. Ac-
 612 cessed: 2025-01-31.
 613

614 Qinyuan Xia et al. Speculative decoding for large language models. *arXiv preprint
 arXiv:2302.01318*, 2023.
 615

616 Fan Yang et al. Llma: Language model acceleration via content retrieval. *arXiv preprint
 arXiv:2303.16827*, 2023.
 617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A TOKEN-LEVEL AUTOREGRESSIVE GENERATION
649650 A.1 SINGLE-STEP GENERATION PROCESS
651652 In autoregressive language models, token generation follows a step-by-step process. At each time
653 step t , given the sequence of previous tokens (x_1, x_2, \dots, x_t) , the probability of generating the next
654 token x_{t+1} is:

655
$$P(x_{t+1}|x_1, \dots, x_t) \quad (1)$$

656

657 A.2 OUTPUT HIDDEN STATE BASED GENERATION
658659 The generation process involves the final layer's hidden states:
660

661
$$\mathbf{h}_t = \text{Transformer}(x_1, \dots, x_t) \quad (2)$$

662

663
$$P(x_{t+1}|x_1, \dots, x_t) = \text{LLM_head}(\mathbf{h}_t) \quad (3)$$

664

665 where $\mathbf{h}_t \in \mathbb{R}^d$ represents the final layer's hidden state at time step t , and LLM_head is a linear
666 transformation that maps the hidden state to token probabilities over the vocabulary.
667668 B MODEL AR DECODING PERFORMANCE METRICS
669670 Table 8 presents the average token generation time across different model sizes and context lengths.
671 The results clearly demonstrate that larger models and longer contexts significantly increase per-
672 token latency, which accumulates due to the sequential nature of autoregressive decoding. These
673 findings highlight the importance of optimizing the decoding process to ensure practical deployment
674 efficiency.
675676
677 Table 8: Autoregressive Decoding Latency across Different Input Lengths and Model Scales

678 Model (B)	679 Input Length	680 ITL (ms)	681 TTFT (ms)	682 Duration (s/req)
683 1.5	256	3.83	24.58	0.56
	512	3.85	33.91	0.80
	1024	3.83	55.05	1.52
	2048	3.98	118.47	1.38
684 7	256	7.16	42.93	1.06
	512	7.12	73.25	1.67
	1024	7.15	118.62	2.88
	2048	7.17	274.23	2.65
685 14	256	11.90	76.58	1.78
	512	11.92	134.24	2.57
	1024	11.98	253.11	4.92
	2048	12.12	603.10	4.64
686 32	256	22.26	116.42	3.31
	512	22.28	211.08	4.76
	1024	22.44	392.29	9.13
	2048	22.55	924.34	8.64

695
696 C THEORETICAL ANALYSIS OF OPTIMAL TRANSPORT
697698 **Lemma C.1** (Lipschitz map from hidden state to distribution). *Let $\ell = W\mathbf{h}$ and $\mathbf{p} =$
699 $\text{softmax}(\ell/\tau_s)$. If $\|W\|_2 \leq L_W$ and \mathbf{h} is confined to a bounded set, then there exists $L_S > 0$
700 such that
701*

702
$$\|\mathbf{p}(\mathbf{h}_1) - \mathbf{p}(\mathbf{h}_2)\|_1 \leq \frac{L_S L_W}{\tau_s} \|\mathbf{h}_1 - \mathbf{h}_2\|_2.$$

702 Sketch. Softmax on bounded domains is Lipschitz in ℓ_2 (or ℓ_∞); composing with the linear map W
 703 yields the claim. \square

704 **Lemma C.2** (Similarity \Rightarrow small OT move). *Let $\mu_t = \sum_i \mathbf{p}_t(i) \delta_{E_i}$ and μ_{t+1} be defined analogously. Under Lemma A, there exists $L' > 0$ (depending on W, τ_s, E) such that*

$$707 \quad W_c(\mu_t, \mu_{t+1}) \leq L' \|\mathbf{h}_{t+1} - \mathbf{h}_t\|_2.$$

709 If we normalize $\bar{\mathbf{h}}_t = \mathbf{h}_t / \|\mathbf{h}_t\|_2$, then $\|\bar{\mathbf{h}}_{t+1} - \bar{\mathbf{h}}_t\|_2 \leq \sqrt{2(1 - \cos(\mathbf{h}_t, \mathbf{h}_{t+1}))}$, hence

$$710 \quad W_c(\mu_t, \mu_{t+1}) \leq \tilde{L} \sqrt{1 - \text{SC}(\mathbf{h}_t, \mathbf{h}_{t+1})}.$$

712 Sketch. Use the Kantorovich–Rubinstein dual bound with ℓ_1 variation of \mathbf{p} and the diameter of the
 713 embedding support, plus the cosine– ℓ_2 relation. \square

715 **Proposition C.3** (Existence, stability, and uniqueness of Π_t^*).

$$717 \quad \Pi_t^* = \arg \min_{\Pi \mathbf{1} = \mathbf{p}_t, \Pi^\top \mathbf{1} = \mathbf{p}_{t+1}} \langle \Pi, C \rangle + \varepsilon \text{KL}(\Pi \|\mathbf{p}_t \mathbf{p}_{t+1}^\top), \quad \varepsilon > 0, \quad (4)$$

719 For any $\varepsilon > 0$, the entropic OT problem in equation 4 admits a unique solution Π_t^* ; moreover, when
 720 $W_c(\mu_t, \mu_{t+1})$ is small, Π_t^* depends smoothly on $(\mathbf{p}_t, \mathbf{p}_{t+1})$ and can be well-approximated by a few
 721 Sinkhorn iterations.

722 Sketch. Entropic regularization makes the objective strictly convex over the transport polytope; stan-
 723 dard Sinkhorn–Knopp scaling solves the KKT system, and continuity follows from the implicit
 724 function theorem on the strictly convex objective. \square

726 **Corollary C.4** (OT-optimal path between successive distributions). *By Proposition C, the coupling
 727 Π_t^* induces a row-stochastic operator K_t such that*

$$728 \quad \mathbf{p}_{t+1} = K_t^\top \mathbf{p}_t$$

730 holds exactly at optimality and approximately under finite Sinkhorn iterations, thereby defining the
 731 OT-optimal path for the one-step distributional transition.

733 Sketch. Row normalization rewrites the marginal constraints; the equality follows from $\Pi_t^{*\top} \mathbf{1} =$
 734 \mathbf{p}_{t+1} . \square

736 D THEORETICAL ANALYSIS OF HIDDEN STATE PREDICTION VIA OPTIMAL 737 TRANSPORT

739 We establish a theoretical framework for predicting future hidden states in transformer models
 740 through optimal transport theory. Let (Ω, \mathcal{F}, P) be a probability space and $\mathcal{H} \subseteq \mathbb{R}^d$ be the hid-
 741 den state space. For any time step t , we define $H_t : \Omega \rightarrow \mathcal{H}$ as the random variable representing the
 742 hidden state at time t , with μ_t as its probability measure. Let $\mathcal{P}(\mathcal{H})$ denote the space of probability
 743 measures on \mathcal{H} .

744 Given the temporal nature of hidden states in transformer models, we first establish their similarity
 745 properties. The similarity between hidden states is measured by cosine similarity:

$$748 \quad \text{sim}(x, y) = \frac{\langle x, y \rangle}{\|x\| \|y\|} \quad (5)$$

750 Based on empirical observations in transformer models, as shown in Table 9, we make the following
 751 assumption:

753 **Assumption D.1.** For any adjacent time steps t and $t + 1$, the hidden states maintain a minimum
 754 similarity threshold:

$$755 \quad \forall x, y \in \mathcal{H} : \text{sim}(x, y) > T \quad (6)$$

where x and y are hidden states with positive probability under μ_t and μ_{t+1} respectively.

756 This assumption leads to our first key result regarding the bounded evolution of hidden states:
 757

758 **Lemma D.2.** *Under Assumption 1, there exists a constant $M > 0$ such that the 2-Wasserstein
 759 distance between consecutive hidden state distributions is bounded:*

760
$$W_2(\mu_t, \mu_{t+1}) \leq M \quad (7)$$

761 *Proof.* Consider any hidden states $x, y \in \mathcal{H}$ with positive probability under μ_t and μ_{t+1} respec-
 762 tively. From Assumption 1:

763
$$1 - \frac{\langle x, y \rangle}{\|x\| \|y\|} \leq T \quad (8)$$

764 This implies:

765
$$\langle x, y \rangle \geq T \|x\| \|y\| \quad (9)$$

766 Define the Euclidean metric $d(x, y) = \|x - y\|_2$. We can expand:

767
$$d^2(x, y) = \|x\|^2 + \|y\|^2 - 2\langle x, y \rangle \quad (10)$$

768
$$\leq \|x\|^2 + \|y\|^2 - \|x\| \|y\| \quad (11)$$

769
$$= (\|x\| - \|y\|)^2 \quad (12)$$

770 Since \mathcal{H} is bounded in \mathbb{R}^d , there exists $R > 0$ such that $\|x\| \leq R$ for all $x \in \mathcal{H}$. Therefore:

771
$$d^2(x, y) \leq 4R^2 \quad (13)$$

772 Taking $M = 2R$ completes the proof. \square

773 This lemma establishes that the evolution of hidden states is well-behaved, allowing us to formulate
 774 our main theorem:

775 **Theorem D.3.** *There exists a cost function $c : \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}_+$ such that the hidden state evolution
 776 from time t to $t+k$ can be represented as an optimal transport problem:*

777
$$\min_{\pi \in \Pi(\mu_t, \mu_{t+k})} \int_{\mathcal{H} \times \mathcal{H}} c(x, y) d\pi(x, y) \quad (14)$$

778 where $\Pi(\mu_t, \mu_{t+k})$ denotes the set of joint distributions with marginals μ_t and μ_{t+k} . Moreover, this
 779 problem admits an optimal solution π^* .

780 *Proof.* We construct the proof in three steps. First, we define the cost function $c(x, y) = d^2(x, y)$,
 781 where d is the Euclidean metric. This choice is natural as it preserves the geometric structure of the
 782 hidden state space.

783 Second, from Lemma 1, we know that for adjacent time steps:

784
$$W_2^2(\mu_t, \mu_{t+1}) = \inf_{\pi \in \Pi(\mu_t, \mu_{t+1})} \int_{\mathcal{H} \times \mathcal{H}} d^2(x, y) d\pi(x, y) \leq M^2 \quad (15)$$

785 For multi-step evolution ($k > 1$), we can apply the Chapman-Kolmogorov equation. There exist
 786 intermediate measures π_1, \dots, π_{k-1} such that:

787
$$W_2^2(\mu_t, \mu_{t+k}) \leq \left(\sum_{i=0}^{k-1} W_2(\mu_{t+i}, \mu_{t+i+1}) \right)^2 \leq k^2 M^2 \quad (16)$$

788 Finally, the existence of an optimal solution follows from three key properties: 1) $\mathcal{P}(\mathcal{H})$ is com-
 789 pact in the weak topology 2) The cost function $c(x, y)$ is lower semi-continuous 3) The objective
 790 functional is bounded below

791 By the Kantorovich duality theorem, there exists an optimal solution $\pi^* \in \Pi(\mu_t, \mu_{t+k})$ achieving:

792
$$\int_{\mathcal{H} \times \mathcal{H}} c(x, y) d\pi^*(x, y) = \inf_{\pi \in \Pi(\mu_t, \mu_{t+k})} \int_{\mathcal{H} \times \mathcal{H}} c(x, y) d\pi(x, y) \quad (17)$$

793 \square

810

811 Table 9: Token similarity between the token at time t and $t+n$ across various contexts.

qwen-zh			qwen-en			vicuna			llama		
t+1	t+2	t+3	t+1	t+2	t+3	t+1	t+2	t+3	t+1	t+2	t+3
0.8744	0.8447	0.8383	0.6304	0.5273	0.4976	0.5392	0.4647	0.4358	0.645	0.5729	0.5443
0.8677	0.8235	0.814	0.6272	0.5703	0.5503	0.5282	0.4287	0.4062	0.6411	0.5829	0.552
0.8666	0.8213	0.8027	0.6217	0.5334	0.5027	0.526	0.436	0.4174	0.6351	0.5647	0.5422
0.8607	0.8171	0.7849	0.6189	0.5478	0.5316	0.5248	0.4285	0.4121	0.6329	0.5598	0.5322
0.8599	0.8314	0.8195	0.6157	0.5459	0.5435	0.5165	0.4208	0.4023	0.6261	0.5456	0.523
0.8587	0.821	0.8079	0.6122	0.5373	0.5199	0.5165	0.4185	0.3951	0.6236	0.5503	0.5309
0.8574	0.829	0.809	0.6118	0.5426	0.5239	0.516	0.422	0.4008	0.622	0.5407	0.5141
0.8544	0.8209	0.8052	0.6107	0.5384	0.5291	0.5149	0.416	0.3971	0.6214	0.5391	0.5151
0.8536	0.823	0.8071	0.6098	0.5303	0.5144	0.5121	0.4031	0.3832	0.6197	0.531	0.5091
0.8535	0.8141	0.7921	0.6093	0.5295	0.5046	0.5113	0.4153	0.3913	0.6197	0.531	0.5091

821

822

823

824 This theoretical framework provides a rigorous foundation for predicting hidden states through op-
825 timal transport. Given a hidden state h_t at time t , we can predict h_{t+k} by:

826

827

828
$$h_{t+k} = \int_{\mathcal{H}} y d\pi^*(y|h_t) \quad (18)$$

829

830

831

832 Moreover, we can establish an error bound for this prediction:

833

834

835
$$\|h_{t+k} - h_{t+k}^*\|_2 \leq kM \quad (19)$$

836

837

838 where h_{t+k}^* denotes the true hidden state at time $t+k$.

839

840

841

E QUALITY EVALUATION

842

843

844

845

846 Table 10: Comparison of perplexity (ppl) across different decoding methods (EAGLE, M-1:
847 Medusa-1, M-2: Medusa-2, and SHAPE) on various DS: datasets (A: Alpaca, T: THUC news,
848 W: wiki lingua).

849

Model	Dataset	EAGLE	M-1	M-2	SHAPE
Qwen-7B	A	13.2	15.1	14.6	11.9
	T	—	—	—	12.3
	W	13.5	15.3	14.8	12.1
Qwen-14B	A	12.9	14.1	13.7	11.8
	T	—	—	—	11.5
	W	13.2	14.2	13.6	11.7
Llama-7B	A	13.1	15.0	14.4	12.2
	W	13.4	15.2	14.6	12.4
Llama-13B	A	12.8	14.0	13.5	12.3
	W	13.1	14.1	13.7	12.5
Vicuna-7B	A	13.0	15.2	14.3	12.1
	W	13.3	15.3	14.4	12.4
Vicuna-13B	A	12.9	14.2	14.0	11.7
	W	13.0	14.3	14.1	12.0

860

861

862

863

864
865 Table 11: SHAPE’s Average speed-up ratio compared with vanilla generation on different datasets
866
867
868
869

Model (Size)	Datasets	Task	Speed Up		
			N step forward		
			1	2	3
Qwen-7B	Alpaca	Instruction Following	1.90	2.47	4.12
	THUC_News	Text Continuation	1.96	2.51	4.09
	wiki_lingua	Text Generation	1.93	2.55	4.07
Qwen-14B	Alpaca	Instruction Following	1.87	2.55	3.89
	THUC_News	Text Continuation	1.99	2.65	4.02
	wiki_lingua	Text Generation	1.89	2.77	4.05
Llama-7B	Alpaca	Instruction Following	1.88	2.59	3.21
	wiki_lingua	Text Generation	1.91	2.69	3.34
Llama-13B	Alpaca	Instruction Following	1.89	2.51	3.22
	wiki_lingua	Text Generation	1.90	2.53	3.20
Vicuna-7B	Alpaca	Instruction Following	1.83	2.57	3.24
	wiki_lingua	Text Generation	1.87	2.56	3.29
Vicuna-13B	Alpaca	Instruction Following	1.89	2.68	3.38
	wiki_lingua	Text Generation	1.91	2.77	3.21

884
885
886 Table 12: Comparison of performance metrics between vanilla decoding (baseline) and SHAPE
887 across different N-step forward prediction configurations.
888

Model	Size	Datasets	Task	Average			Average			Average			
				Token Accuracy			BERTScore			Sentence Similarity			
				N step forward			1	2	3	/	S	S	S
Qwen	7B	Alpaca	IF	0.91	0.89	0.86	0.74	0.71	0.68	0.65	0.94	0.92	0.88
		THUC_News	TC	0.92	0.87	0.85	0.75	0.70	0.67	0.66	0.93	0.90	0.89
		wiki_lingua	TG	0.91	0.88	0.86	0.72	0.69	0.65	0.63	0.92	0.87	0.85
	14B	Alpaca	IF	0.91	0.89	0.86	0.76	0.73	0.70	0.68	0.95	0.92	0.91
		THUC_News	TC	0.90	0.88	0.85	0.74	0.71	0.68	0.67	0.94	0.89	0.87
		wiki_lingua	TG	0.91	0.87	0.85	0.75	0.70	0.66	0.64	0.93	0.88	0.85
Llama	7B	Alpaca	IF	0.90	0.89	0.86	0.60	0.59	0.55	0.52	0.82	0.78	0.75
		wiki_lingua	TG	0.89	0.87	0.85	0.63	0.60	0.58	0.54	0.80	0.76	0.73
	13B	Alpaca	IF	0.90	0.88	0.87	0.54	0.53	0.51	0.49	0.76	0.73	0.70
		wiki_lingua	TG	0.89	0.87	0.86	0.56	0.54	0.50	0.47	0.78	0.74	0.71
Vicuna	7B	Alpaca	IF	0.91	0.88	0.86	0.56	0.55	0.52	0.50	0.76	0.74	0.71
		wiki_lingua	TG	0.89	0.87	0.85	0.58	0.56	0.54	0.52	0.78	0.75	0.72
	13B	Alpaca	IF	0.90	0.88	0.85	0.58	0.57	0.54	0.52	0.79	0.76	0.73
		wiki_lingua	TG	0.90	0.87	0.87	0.59	0.57	0.53	0.51	0.80	0.77	0.74

907
908 F TRS SUPPLEMENT EXPERIMENTS
909910
911 Table 13: Comparison of TRS with standard decoding methods
912

Method	Speedup	PPL
AR (Baseline)	1.0×	11.9
Greedy	1.0×	11.9
Beam Search	0.9×	11.7
TRS (3, 3)	3.21×	12.2

918 **G TRAIN DETAILS AND TRAINING COST**919 **G.1 DATA ACQUISITION AND GENERATION**

920 For the English dataset used to train models such as Qwen, Vicuna, and Llama on 7B, 13B, and 14B,
 921 we use ShareGPT as the dataset, which contains 96,000 dialogue data samples. For the Chinese
 922 dataset, we use the THUCNews training set, consisting of 50,000 news samples, split into two parts:
 923 "prompt" and "completion". The target model processes pre-processed data to generate outputs
 924 from the transformer layers for each token. The training data includes fields such as input token IDs,
 925 hidden states, hidden states from the previous three tokens, target values, attention masks, and loss
 926 masks. These components are combined to construct the final training dataset.
 927

928 **G.2 TRAIN CONFIGURATION**

929 The training configuration includes the following settings: Learning rate (lr) and batch size (bs) are
 930 dynamically adjusted, with gradient accumulation steps set to ensure stable training. The number of
 931 epochs is set to 40, and a warm-up phase of 2,000 steps is applied, targeting a total of 800,000 steps.
 932 The configuration employs a maximum sequence length of 2,048 tokens, balancing performance
 933 and memory efficiency. To improve robustness, data noise is introduced using a uniform distribution
 934 with a mean of 0 and a standard deviation of 0.2. Additional settings include weight decay, gradient
 935 clipping, and periodic model saving every epoch. Finally, the optimizer uses momentum parameters
 936 ($b1 = 0.9$, $b2 = 0.95$) to facilitate effective training convergence.
 937

938 **G.3 TRAINING COST**

939 We compare SHAPE with Medusa (+2 heads) in terms of parameter count and computational ef-
 940 ficiency. SHAPE contains approximately 450.98M parameters (6.4% of LLaMA-7B), achieved
 941 through parameter sharing and lightweight modules such as OT projection and a gating network.
 942 In contrast, Medusa adds 300M parameters per head, reaching 610M (9% of LLaMA-7B) with
 943 two heads. Thus, SHAPE uses only 71.5% of the parameters of Medusa+2 heads and requires no
 944 per-head adaptation. In training, SHAPE is 3–5 \times faster than full model fine-tuning and requires
 945 only 5 hours for 40 epochs on a single A100 GPU, compared to 8 hours for Medusa. Peak training
 946 memory usage is also lower: 41.89GB for SHAPE versus 51.47GB for Medusa. During inference,
 947 SHAPE achieves a 3.21–4.12 \times speedup through one hidden state correction step (OT module) and
 948 tree rejection sampling. In contrast, Medusa incurs higher overhead due to additional multi-head
 949 attention and memory usage, limiting its speedup to 1.8–3.1 \times .
 950

951 **H TREE-BASED REJECT SAMPLING ALGORITHM IMPLEMENTATION**

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988

Algorithm 1 Tree Rejection Sampling

Require: *model*: target language model

1: *context*: current context or hidden state at time step *t*
 2: *N*: number of future steps (depth)
 3: *k*: number of candidates per step (branch factor)
Ensure: *selected_prefix*: the longest valid prefix among accepted paths

4: *candidate_paths* \leftarrow *generate_candidates*(*model*, *context*, *N*, *k*) // Generate k^N candidate sequences
 5: *path_probs* \leftarrow *model.get_path_probabilities*(*candidate_paths*) // Compute joint probabilities in parallel
 6: *max_prob* \leftarrow *max*(*path_probs*)
 7: *threshold* \leftarrow $0.8 \times \text{max_prob}$ // Define acceptance threshold (e.g. 80% of the maximum probability)
 8: *accepted_paths* \leftarrow []
 9: **for** each (*path*, *prob*) in (*candidate_paths*, *path_probs*) **do**
 10: **if** *prob* \geq *threshold* **then**
 11: *accepted_paths.append*(*path*) // Retain paths with sufficiently high probability
 12: **end if**
 13: **end for**
 14: *selected_prefix* \leftarrow *select_longest_valid_prefix*(*accepted_paths*) // Extract the longest prefix common to accepted paths
 15: **return** *selected_prefix*

1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025