
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TRANSPORTING TOKENS:
OPTIMAL-TRANSPORT VIEW OF PARALLEL LLM DE-
CODING

Anonymous authors
Paper under double-blind review

ABSTRACT

Autoregressive decoding is a primary bottleneck for large language models
(LLMs), as its inherent sequentiality severely limits inference speed. While spec-
ulative decoding methods mitigate this via a draft-and-verification pipeline their
effectiveness is severely constrained by dependency on draft model quality and
availability. We rethink the generation pattern and introduces a novel theoretical
perspective by reframing token generation as a predictable state transition pro-
cess in probability space, formalized through Optimal Transport (OT) theory. We
demonstrate that the temporal consistency of hidden states induces a stable trans-
port map, enabling theoretically grounded multi-step prediction. Building on this
insight, we develop SHAPE, an OT-based predictor that implements lightweight
Sinkhorn iterations. Extensive evaluations across diverse models (e.g., Qwen, Vi-
cuna, LLaMA, DeepSeek) and tasks (text, code, math) show that SHAPE achieves
up to 5.23× speedup with minimal quality loss (≤ 1.2% accuracy drop), empir-
ically validating our distributional transition hypothesis. This work establishes a
new theoretical foundation for understanding autoregressive decoding and a prac-
tical path toward high-speed generation beyond token-wise limitations.

1 INTRODUCTION

Large Language Models (LLMs) have become the cornerstone of modern artificial intelligence,
achieving remarkable success across tasks ranging from natural language understanding to text gen-
eration Mo et al. (2024); Wu (2024); Li et al. (2024a); Shu et al. (2024); Thakur et al. (2024).
LLMs of varying scales have been widely deployed in cloud server clusters (e.g., GPT-4 OpenAI
et al. (2024), Llama3 Grattafiori et al. (2024), and Grok1 xAI (2024)) and edge devices (e.g., the
6B-parameter GPT-3 and 7B-parameter LLaMA-2 variants as lightweight LLMs Lu et al. (2024);
Sun et al. (2020)). With their increasing adoption in search Wang et al. (2024) and conversational
AI Ouyang et al. (2022), there is a growing demand for low-latency long-sequence generation, mak-
ing the optimization of effective token generation rate under constrained computational resources a
critical research challenge.

Unfortunately, both cloud-based large models and edge-side small models rely on autoregressive
token-by-token generation, which requires sequential computation of each token without paralleliza-
tion. Additionally, the quadratic complexity of attention mechanisms with respect to context length
exacerbates the issue. The standard autoregressive decoding used in existing LLMs suffers from
inherent inefficiencies Touvron et al. (2023); Jiang et al. (2023)—generation time scales linearly
with both context length and model size, and its sequential nature leads to cumulative latency. Our
benchmarking experiments across diverse models reveal that larger model sizes and longer context
lengths lead to significantly higher per-token latency. This cost is compounded by the sequential
nature of decoding, highlighting the urgent need for optimization to achieve practical deployment
efficiency. Comprehensive results are presented in Appendix B.

Speculative decoding Cai et al. (2024) addresses this by introducing a fast draft model to predict
multiple tokens in advance, followed by verification from the target model. However this two-stage
draft-and-verification paradigm still incurs sequential latency and is highly sensitive to the quality of
draft models. Lookahead Fu (2023) and Medusa Cai et al. (2024) reduce decoding time using n-gram

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

heuristics or shallow predictors, but their limited accuracy (e.g., 0.6 for Medusa) results in subopti-
mal speedup. EAGLE Li et al. (2024b) improves draft accuracy by leveraging hidden-state features,
achieving better acceleration, yet it remains draft-model-dependent, introducing overhead and lim-
iting scalability across diverse model configurations. CLLMs Kou et al. (2024) accelerate decoding
by directly predicting future token distributions via conditional probabilities, enabling parallel gen-
eration. However, they require fine-tuning parts of the original model, increasing training costs, and
while particularly effective for mathematical reasoning, they exhibit limited stability in long-form
generation. In contrast, our approach reconceptualizes decoding itself through a distributional lens.
In this work, we propose a paradigm shift by reconceptualizing token generation as a distributional
transition process. Our key insight stems from the empirical observation that hidden states exhibit
strong temporal consistency during decoding—consecutive states maintain high semantic similarity
with a predictable lower bound. This regularity suggests that token generation follows a structured
evolution in probability space, a perspective we formalize through optimal transport (OT) theory.

By modeling the transition between successive token distributions as a mass transport problem,
where the semantic similarity between hidden states induces a stable OT map. To empirically vali-
date this theoretical framework, we develop SHAPE (Step-ahead Hidden-state Accelerated Predic-
tion Engine) as a concrete instantiation of our OT-based perspective. SHAPE operationalizes the
theoretical transport maps by learning lightweight operators between hidden states, enabling paral-
lel token prediction without auxiliary draft models. The empirical success of SHAPE—achieving
substantial speedups while maintaining quality—serves as strong evidence for the correctness of our
underlying theoretical insight: that token generation can indeed be understood as a predictable trans-
port process in probability space. We evaluated SHAPE on a range of models—including Qwen,
Vicuna, LLaMA, and DeepSeek—across general language (WikiText, Alpaca, MT-Bench) and
reasoning-heavy tasks (MATH500, AIME24, LiveCodeBench v5). The results show that SHAPE
achieves speedups of up to 5.23× while maintaining output quality within a minimal margin of
degradation (≤ 1.2% accuracy drop on reasoning tasks). In comparative experiments, SHAPE con-
sistently outperforms existing acceleration methods: it surpasses EAGLE3 by 1.1x, Medusa-1 by
2.1×, and Medusa-2 by 1.6× across different models and datasets.

Beyond performance, this work makes the following key contributions:

• A Novel Theoretical Foundation: We introduce a paradigm shift by reconceptualizing
token generation as a predictable transition of probability distributions. This perspective is
rigorously formalized through Optimal Transport theory and validated empirically, estab-
lishing a new principled understanding of decoding dynamics.

• A Practical, Plug-and-Play Predictor: We develop SHAPE, a lightweight prediction en-
gine that operationalizes this theory. Crucially, SHAPE requires no modifications to the
base LLM’s parameters, offering a draft-free, plug-and-play solution for immediate de-
ployment that significantly enhances decoding efficiency.

• Scalability to Arbitrary Future Steps. SHAPE generalizes to predict hidden states at
arbitrary future time steps (e.g., t + 1, t + 2, t + 3), providing greater flexibility for long-
sequence generation tasks. This scalability supports diverse applications with varying se-
quence lengths and complexity.

By fundamentally rethinking the decoding process rather than optimizing within its constraints, this
work opens new directions for efficient LLM inference.

2 FROM STATE SIMILARITY TO DISTRIBUTIONAL TRANSITION

2.1 SEMANTIC SIMILARITY OF HIDDEN STATES

Building on recent work that recognizes the regularity of hidden-state sequences Li et al. (2024b)
and their utility for parallel prediction Cai et al. (2024), we systematically analyze the temporal
correlations between consecutive hidden states during autoregressive decoding. Let ht ∈ RH denote
the final-layer hidden state at decoding step t. We quantify the semantic consistency between states
at steps t and t+n using cosine similarity:

sc(ht,ht+n) =
ht · ht+n

∥ht∥2 · ∥ht+n∥2
(1)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Hidden State Cosine Similarity Across Models and Domains
Model ShareGPT (Text) The Stack (Code)

n=1 n=2 n=3 n=1 n=2 n=3

Qwen-7B 0.83 0.78 0.75 0.63 0.53 0.50
Qwen-32B 0.85 0.81 0.78 0.75 0.65 0.65
Qwen-72B 0.91 0.86 0.82 0.83 0.73 0.71
Llama-7B 0.64 0.57 0.54 0.52 0.46 0.44
Llama-33B 0.90 0.84 0.78 0.80 0.74 0.68
Llama-70B 0.91 0.86 0.81 0.82 0.76 0.70

Experimental Settings We conduct experiments on two representative domains: conversational
text using the ShareGPT dataset and code generation using The Stack dataset. For each domain,
we use a context length of 2048 tokens and generate sequences of 512 tokens. All experiments
are performed on NVIDIA A100 80GB GPUs, with models ranging from 7B to 72B parameters.
For each model-dataset combination, we compute semantic consistency between hidden states at
positions t and t+ n across 1000 randomly sampled sequences, reporting the 95th percentile values
across all valid token positions to ensure statistical significance and capture the lower bound of
similarity distribution.

As demonstrated in Table 1, during token generation, hidden states feature exhibit pronounced tem-
poral smoothness and strong semantic consistency: our quantitative analysis across all valid token
positions shows that for adjacent steps (n=1, 2, 3) at least 95% of positions satisfy SC(ht,ht+n) ≥
τ with τ=0.5, indicating high-probability local stability of the representation.We also observe a
consistent pattern of text > code and larger > smaller models, reinforcing that token transitions are
smooth and predictable rather than erratic.

The observed consistency persists even in challenging scenarios with potential semantic transitions
between dialogue turns in ShareGPT and code blocks in The Stack—demonstrating the generaliza-
tion of this property across domains with different structural characteristics. This empirical finding
suggests that transitions between consecutive token distributions are both small and structured: the
changes are concentrated along semantically meaningful directions rather than arbitrary noise, con-
strained by linguistic coherence in text and syntactic regularities in code. As a result, the generative
process of large language models behaves like a smooth dynamical system in a latent state space,
where each new token constitutes a predictable, low-dimensional adjustment to the current semantic
state rather than a radical reconstruction—providing a stable foundation for predictive modeling and
multi-step forecasting.

2.2 MODELING TOKEN GENERATION WITH OPTIMAL TRANSPORT

Building upon the empirical observation of strong temporal consistency in hidden states, we intro-
duce a theoretical perspective that elevates token generation to a structured probability flow prob-
lem. This formulation recognizes that the evolution of hidden states imposes geometric constraints
on how token distributions change over time.

Such constraints are not captured by conventional next-token prediction objectives. In contrast,
optimal transport (OT) offers a mathematically grounded framework for modeling distributional
evolution under minimal geometric distortion. By embedding token generation within the OT for-
malism, we uncover a deeper structure underlying autoregressive decoding: distribution transitions
follow low-cost paths governed by hidden-state continuity. This perspective is not merely as a
re-description, but as a foundation for building new path of token evolution, deriving stability guar-
antees, and enabling multi-step step ahead generation. In short, OT transforms our understanding of
decoding from a static pointwise prediction problem to a dynamic, diffusion like, geometry-aware
process.

To mathematically capture this structured diffusion evolution, we represent the token distribution as
a discrete measure in the hidden state features space:

µt =

V∑
i=1

pt(i) δEi
, where pt = softmax(Wht/τs).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

The transition from µt to µt+n is then formulated as an entropic-regularized optimal transport
problem:

Π⋆
t = arg min

Π1=pt,Π⊤1=pt+n

⟨Π, C⟩+ εKL(Π∥ptp
⊤
t+n),

where the cost matrix C ∈ RV×V is defined by the squared Euclidean distance between token
embeddings (Cij = ∥Ei −Ej∥2), and ε > 0 is the regularization strength.

Crucially, the observed semantic consistency provides theoretical guarantees for this formulation.
As proven in Lemma C.2 (Appendix), the Wasserstein distance between consecutive distributions is
bounded by:

Wc(µt, µt+n) ≤ L̄
√

1− SC(ht,ht+n) ≤ L̄
√
1− τ ,

which ensures the existence and uniqueness of the optimal coupling Π⋆
t (Proposition C.3, Appendix).

The row-normalized optimal coupling Kt = diag(Π⋆
t1)

−1Π⋆
t defines a principled stochastic transi-

tion matrix that characterizes the distributional evolution:

pt+n = K⊤
t pt.

This formulation casts token generation as a path-following process in the probability simplex,
where the temporal stability of hidden states ensures the stability of the transport map. This the-
oretical insight forms the cornerstone of the SHAPE method, providing a mathematically sound
framework for analyzing and intervening in the generation process. Complete proofs and detailed
analysis are provided in Appendix C.

3 SHAPE: AN OT-GUIDED MULTI-TOKEN PREDICTOR

To validate and operationalize the OT-based transition view, we propose SHAPE (Step-ahead
Hidden-state Accelerated Prediction Engine), a draft-free, plug-and-play framework for parallel
decoding. As shown in Figure 1. SHAPE consists of two key components: Step-ahead Hidden
State Prediction and Tree Rejection Sampling. The core design of the framework focuses on
capturing the semantic correlation of hidden states by capturing temporal features and training a
predictor to approximate future hidden states. With tree reject sampling select the longest accepted
prefix in parallel dynamically, so we can get α accepted token in one LLM forward to achieve
parallel acceleration.

Figure 1: Illustration of the SHAPE (Step-ahead Hidden-state Accelerated Prediction Engine)
framework. SHAPE leverages strong temporal correlations in hidden states to predict multiple future
tokens by modeling hidden state transitions. It includes temporal modeling and residual predictors
for hidden state prediction, followed by edge-to-edge LM head training to generate multiple can-
didates for each future step. SHAPE uses tree-based rejection sampling to select optimal token
candidates at each time step, enabling efficient multi-token generation without a draft model.

3.1 HIDDEN STATE SEMANTIC CORRELATION MODELING

The main structure of step-ahead hidden state prediction is shown in Figure 2, with three main
trainable components. To first extract features in hidden state temporal modeling, the hidden states

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

from the current and previous three-time steps are concatenated and passed through a series of
transformations, including linear projections, layer normalization, activation functions, and dropout.
These steps capture temporal dependencies and refine the features, resulting in a final representation
that effectively encodes the relationships between the time steps.

3.2 STEP AHEAD HIDDEN STATE RESIDUAL PREDICTOR

3.2.1 PREDICTOR CONSTRUCTION

Predicting hidden states directly in the full transformer dimension is challenging. To improve sta-
bility, we adopt a residual-based transition model: instead of predicting the entire hidden state, the
predictor learns the delta between consecutive states. An adaptive gating mechanism (a Linear–
Sigmoid network) dynamically scales the predicted residual based on both the current hidden state
and the predicted change, effectively controlling uncertainty and preventing error accumulation in
multi-step prediction. Beyond residual modeling, we optionally introduce an Optimal Transport
(OT) refinement module to further regularize the transition between Ht and Ht+n. When enabled,
the refinement consists of three lightweight stages:

(1) Dimensionality Reduction. A learned projection P1 : RH → Rd compresses hidden states
into a lower-dimensional space:

hd
t = P1(Ht), hd

t+n = P1(Ht+n).

(2) OT-based Alignment. The reduced states are normalized into distributions:

p = softmax(hd
t ), q = softmax(hd

t+n),

and aligned via entropy-regularized optimal transport:

min
T
⟨T,C⟩+ εH(T ) s.t. T1 = p, T⊤1 = q.

The cost matrix C reflects semantic discrepancy in the reduced space, and the entropy term prevents
overly sparse or unstable transport plans. Since d≪ H , the transport computation is efficient.

(3) Dimension Recovery. The aligned representation is then projected back to the original space
via P2 : Rd → RH :

HOT
t+n = P2(T

⊤1).

Finally, the refined hidden state combines the raw residual predictor output and the OT-aligned
result:

Ht+n = (1− α)Hraw
t+n + αHOT

t+n,

where α ∈ [0, 1] controls the strength of OT refinement.

Figure 2: Step-ahead hidden state predictor: temporal modeling (blue), residual prediction (green),
and LM-head projection (yellow).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.2.2 PREDICTOR TRAINING

The hidden state predictor architecture is designed to maintain dimensional consistency with the
source large language model, preserving the original hidden state dimensionality. The training pro-
cedure utilizes optimal transport learning (α = 0.5, ϵ = 0.1) to enhance multi-step prediction
accuracy. The training corpus consists of preprocessed hidden states extracted from both English
ShareGPT conversational data and Chinese THUC News articles, enabling bilingual prediction ca-
pabilities. The training was conducted using AdamW optimization with mixed-precision compu-
tation, incorporating uniform noise augmentation (std = 0.2) to improve model robustness. Input
sequences were truncated at 2048 tokens to maintain computational efficiency with batch size = 16.
The training objective combined two loss terms:

Hidden State Loss This loss optimizes the consistency between predicted hidden states ĥt+ n
and target hidden states ht+ n using mean squared error:

Lhidden =
1

N

N∑
i=1

∥∥∥ĥi
t+n − hi

t+n

∥∥∥2
2

(2)

where N is the sample size.

Token Distribution Loss This cross-entropy loss ensures alignment between predicted and target
token distributions:

Ltoken = − 1

N

N∑
i=1

V∑
j=1

pitarget(j) log p
i
output(j) (3)

where ptarget(j) and poutput(j) represent the target and predicted token distributions respectively, and
V is the vocabulary size.

3.3 TREE REJECT SAMPLING

Tree Rejection Sampling generates multiple candidate paths for the next N tokens at time step t,
forming a tree structure of width k and depth N (thus producing kN candidate paths). The model
then computes the joint probabilities of these paths in parallel. Low-probability paths are rejected
based on a predefined acceptance threshold, and the remaining paths are merged by selecting the
longest valid prefix. This design balances generation diversity and quality by exploring multiple
future branches in a single forward pass. Detailed algorithm implementation is shown in Appendix.

4 EXPERIMENTS

We evaluate SHAPE across major LLM families—including Vicuna(7B/13B), LLaMA2-
Chat(7B/13B/70B), Qwen (7B/14B/72B), and recent long-chain reasoning models such as Qwen3
and DeepSeek-R1 both efficiency and output quality. Our benchmarks span three categories: (1)
general text generation (Alpaca, WikiLingua; evaluated with PPL), (2) knowledge and reasoning
tasks (MMLU accuracy and MT-Bench scores), and (3) challenging long-context reasoning datasets
(MATH500, AIME24, LiveCodeBench v5). All experiments are conducted on NVIDIA A100 80GB
GPUs under consistent settings to ensure fair comparison.

4.1 EFFICIENCY

We present a comprehensive comparison of SHAPE against Lookahead, Medusa-1, Medusa-2, and
EAGLE3 under both temperature 0 and 1 across eight major model families. As shown in Table 2,
SHAPE consistently achieves the highest or near-highest speedups across all datasets and tempera-
tures.

Compared with Lookahead, SHAPE delivers substantially larger gains, typically improving speed
by 1.5×–2×. Relative to Medusa-1 and Medusa-2, SHAPE provides clear improvements under ev-
ery model, with speedups exceeding both methods in all Alpaca, Wiki, and MT-Bench settings.
SHAPE also closely tracks or surpasses EAGLE3 across all model scales: on Qwen-7B/14B/72B,

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Speedup comparison among Lookahead, Medusa-1, Medusa-2, EAGLE3, and SHAPE
under Temperature = 0 and 1 across datasets.

Model Method Alpaca0 Alpaca1 Wiki0 Wiki1 MT0 MT1 Mean0 Mean1

Qwen-7B

Lookahead 2.71× 2.43× 2.50× 2.27× 3.05× 2.66× 2.75× 2.45×
Medusa-1 1.77× 1.59× 1.87× 1.68× 2.02× 1.82× 1.89× 1.70×
Medusa-2 2.04× 1.80× 2.16× 1.90× 2.49× 2.19× 2.23× 1.96×
EAGLE3 4.13× 3.72× 4.05× 3.65× 4.34× 3.73× 4.17× 3.70×
SHAPE 4.12× 3.83× 4.10× 3.81× 4.53× 4.03× 4.25× 3.89×

Qwen-14B

Lookahead 2.46× 2.18× 2.38× 2.11× 3.21× 2.78× 2.68× 2.36×
Medusa-1 2.01× 1.81× 2.03× 1.83× 2.11× 1.90× 2.05× 1.85×
Medusa-2 2.29× 2.02× 2.28× 2.01× 2.51× 2.21× 2.36× 2.08×
EAGLE3 4.01× 3.53× 3.97× 3.57× 5.11× 4.34× 4.36× 3.81×
SHAPE 3.90× 3.55× 4.03× 3.71× 5.23× 4.60× 4.39× 3.95×

Qwen-72B

Lookahead 3.10× 2.82× 3.05× 2.77× 3.65× 3.21× 3.27× 2.93×
Medusa-1 2.18× 1.96× 2.12× 1.91× 2.52× 2.27× 2.27× 2.05×
Medusa-2 3.15× 2.77× 3.07× 2.70× 3.64× 3.20× 3.29× 2.89×
EAGLE3 4.85× 4.35× 4.72× 4.21× 5.60× 4.95× 5.06× 4.50×
SHAPE 4.92× 4.48× 4.80× 4.33× 5.73× 5.18× 5.15× 4.66×

Llama-7B

Lookahead 2.89× 2.55× 2.76× 2.43× 3.30× 2.88× 2.98× 2.62×
Medusa-1 1.88× 1.69× 1.85× 1.67× 2.09× 1.88× 1.94× 1.75×
Medusa-2 3.01× 2.65× 3.05× 2.68× 2.58× 2.27× 2.88× 2.53×
EAGLE3 4.20× 3.78× 4.01× 3.61× 4.65× 4.00× 4.29× 3.80×
SHAPE 4.23× 3.93× 4.11× 3.82× 4.73× 4.21× 4.36× 3.99×

Llama-13B

Lookahead 2.63× 2.38× 2.58× 2.34× 3.41× 2.93× 2.87× 2.55×
Medusa-1 2.03× 1.83× 2.01× 1.81× 2.13× 1.92× 2.06× 1.85×
Medusa-2 3.15× 2.77× 3.12× 2.75× 2.76× 2.43× 3.01× 2.65×
EAGLE3 4.12× 3.71× 4.12× 3.71× 4.78× 4.11× 4.34× 3.84×
SHAPE 4.13× 3.80× 4.15× 3.86× 5.01× 4.51× 4.43× 4.06×

Llama-70B

Lookahead 3.25× 2.95× 3.21× 2.92× 3.78× 3.36× 3.41× 3.08×
Medusa-1 2.26× 2.03× 2.21× 1.99× 2.62× 2.36× 2.36× 2.13×
Medusa-2 3.26× 2.87× 3.19× 2.81× 3.78× 3.33× 3.41× 3.00×
EAGLE3 5.02× 4.55× 4.91× 4.48× 5.82× 5.14× 5.25× 4.72×
SHAPE 5.10× 4.70× 5.00× 4.62× 5.95× 5.38× 5.35× 4.90×

Vicuna-7B

Lookahead 2.52× 2.29× 2.48× 2.25× 3.19× 2.80× 2.73× 2.45×
Medusa-1 1.79× 1.61× 1.84× 1.66× 2.18× 1.96× 1.94× 1.74×
Medusa-2 2.88× 2.53× 2.91× 2.56× 2.83× 2.49× 2.87× 2.53×
EAGLE3 3.95× 3.52× 3.90× 3.51× 5.11× 4.34× 4.32× 3.79×
SHAPE 3.98× 3.66× 3.95× 3.67× 5.13× 4.57× 4.35× 3.97×

Vicuna-13B

Lookahead 2.60× 2.33× 2.56× 2.30× 3.26× 2.89× 2.81× 2.51×
Medusa-1 2.05× 1.84× 2.07× 1.86× 2.33× 2.10× 2.15× 1.93×
Medusa-2 2.86× 2.52× 2.89× 2.54× 2.85× 2.51× 2.87× 2.52×
EAGLE3 4.05× 3.65× 4.00× 3.60× 4.57× 3.93× 4.21× 3.73×
SHAPE 4.00× 3.72× 4.07× 3.79× 5.13× 4.62× 4.40× 4.04×

Llama-7B/13B/70B, and Vicuna-7B/13B, SHAPE achieves the best overall mean speedup in both
temperature settings. Notably, SHAPE consistently improves over EAGLE3 at temperature 1, where
speculative methods generally become less stable. Overall, the results demonstrate that SHAPE pro-
vides the most stable and highest average speedup across all model families, datasets, and sampling
temperatures, outperforming prior speculative decoding and multi-head prediction baselines in a
uniform evaluation setup.

We evaluate SHAPE’s inference efficiency under varying batch sizes to assess its practicality in real-
world deployment scenarios. Using the MT-Bench dataset on the Qwen2-7B model, we compare
SHAPE against EAGLE-3, with vLLM without speculative sampling as the baseline. As shown
in Table 3, SHAPE consistently outperforms EAGLE-3 across all batch sizes, demonstrating supe-
rior scalability and efficiency in practical batch processing environments. The results confirm that

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

while both methods exhibit reduced relative gains at larger batch sizes due to increased baseline
parallelism, SHAPE maintains a consistent performance advantage.

Table 3: Speedup ratios at different batch sizes
Method BS = 2 BS = 4 BS = 8 BS = 16 BS = 24

EAGLE-3 1.73× 1.65× 1.52× 1.43× 1.39×
SHAPE 1.92× 1.75× 1.61× 1.52× 1.41×

4.2 QUALITY EVALUATION

We evaluate generation quality from three perspectives: (1) general performance on standard
benchmarks, (2) token-level prediction accuracy and semantic consistency, and (3) performance
on reasoning-intensive and long-context tasks.

General Performance Evaluation. We evaluate generation quality using PPL on Alpaca and Wiki-
Text, MMLU accuracy for reasoning, and MT-Bench for conversational ability. As shown in Table 4,
SHAPE maintains output quality across all model families, with PPL remaining close to baseline
and MMLU/MT-Bench varying within 1–2%. These results indicate that SHAPE preserves model
utility while providing significant decoding acceleration.

Table 4: Performance comparison between Vanilla and SHAPE-accelerated models across bench-
marks.

Model Alpaca (PPL) WikiText (PPL) MMLU-5shot (Acc) MT-Bench (Score)

Qwen-7B 11.49 / 11.9 11.89 / 12.1 70.5 / 68.79 8.41 / 8.56
Qwen-14B 12.30 / 11.8 11.92 / 11.7 66.3 / 64.78 9.08 / 8.85
Qwen-72B 10.95 / 11.2 10.88 / 11.0 75.6 / 74.9 9.62 / 9.55

Llama-7B 11.76 / 12.2 12.77 / 12.4 46.2 / 44.32 6.27 / 6.43
Llama-13B 12.67 / 12.3 11.94 / 12.5 55.0 / 56.38 7.05 / 6.89
Llama-70B 10.88 / 11.1 10.72 / 11.0 67.5 / 66.8 8.92 / 8.85

Vicuna-7B 11.58 / 12.1 12.83 / 12.4 48.2 / 48.55 6.69 / 6.88
Vicuna-13B 12.06 / 11.7 11.63 / 12.0 55.28 / 58.42 6.81 / 6.97

Reasoning-Intensive Task Evaluation. As shown in Table 5, SHAPE maintains near-identical
accuracy compared to vanilla decoding across all models and tasks. On MATH500, accuracy differ-
ences are within 0.3%, while AIME24 and LiveCodeBench v5 show maximum deviations of 1.3%
and 0.8% respectively. These results confirm SHAPE’s robustness on reasoning-heavy, long-chain
tasks while delivering 4-5× speedups.

Table 5: Accuracy comparison on reasoning-intensive tasks (Vanilla / SHAPE)
Model MATH500 AIME24 LiveCodeBench v5

Qwen3-32B 97.2 / 97.16 81.4 / 80.8 65.7 / 65.3
Qwen3-8B 97.4 / 97.1 76.0 / 74.7 57.5 / 56.9
DeepSeek-R1-Distill-Qwen-32B 94.3 / 93.2 72.6 / 72.2 54.5 / 54.1
DeepSeek-R1-Distill-Qwen-14B 93.9 / 92.1 69.7 / 68.9 45.5 / 44.7

Token-Level Analysis. Supplementary evaluations (Appendix Tables 12 and 10) show SHAPE
achieves token prediction accuracy of 0.85-0.92 for 1-3 token lookahead, with lower perplexity com-
pared to alternative acceleration methods. Semantic similarity metrics (BERTScore and embedding
cosine distance) confirm strong alignment with standard decoding outputs.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.3 ABLATION STUDY

4.3.1 EFFECTIVENESS OF OPTIMAL TRANSPORT

SHAPE employs optimal transport (OT) to model hidden state transitions, motivated by our obser-
vation that transformer hidden states maintain a minimum level of similarity between tokens at t and
t+n. This ”baseline similarity” indicates a theoretically valid pathway for transferring hidden states
through optimal transport. Unlike autoregressive models that predict step-by-step, our OT approach
captures global transition patterns by finding the optimal mapping to future states (t+n). To validate
the effectiveness of OT over simpler alternatives, we conducted comparative experiments replacing
the OT mapping with an affine transformation of the same dimensionality (d = 128). Table 6
presents the results on Llama-7B using the Alpaca dataset with TRS configuration (N = 3,K = 3).

Table 6: Comparison of OT with affine transformation and analysis of different dimensionalities on
Llama-7B (Alpaca). Baseline AR decoding achieves PPL=11.9.

Method PPL Speedup

Affine (d=128) 18.4 3.87×
OT (d=128) 12.2 3.21×

d Value PPL Speedup

32 17.3 3.87×
64 16.1 3.66×

128 12.2 3.21×
4096 (full) 12.1 2.67×

The results demonstrate that OT significantly outperforms simple affine transformations, reducing
perplexity from 18.4 to 12.2 - approaching the baseline AR performance of 11.9. This validates
our hypothesis that OT’s ability to find optimal global mappings is crucial for accurate multi-step
prediction. Furthermore, we analyzed the impact of dimensionality d on OT performance. As
shown in Table 6 (right), increasing d from 32 to 128 consistently improves perplexity, with the
most significant gains occurring at d = 128. Interestingly, using the full dimensionality (d =
4096) provides minimal perplexity improvement (12.1 vs 12.2) while reducing speedup by 17%,
confirming that our low-dimensional OT approach effectively captures essential transition patterns.

4.3.2 EFFECTIVENESS OF TREE REJECTION SAMPLING

We provide a unified analysis of SHAPE decoding behavior and the proposed Tree Rejection Sam-
pling (TRS) mechanism in Table 7. The top block reports the one-time N steps ahead decod-
ing latency breakdown of SHAPE, While the candidate-generation cost remains almost constant
(1.00–1.02 ms), the TRS verification time grows steadily with N , reflecting the fact that deeper N
leads to lower hidden-state similarity and hence a higher TRS cost. This breakdown explicitly re-
veals the speed–verification trade-off: larger N provides more aggressive multi-step prediction but
also increases the fraction of time spent in TRS. The bottom block evaluates TRS across the full grid
of K,N ∈ [1, 5]. Increasing the depth N produces higher speed gains because more future tokens
can be accepted in a single TRS step, whereas larger branch factors K reduce perplexity by offering
a richer set of candidate paths at the price of additional verification. The interaction of these two
effects yields a clear efficiency–quality frontier, with the configuration (K = 3, , N = 3) achieving
the best overall balance (3.21× speedup and 12.2 PPL). Together with the latency breakdown in the
top block, these results provide a complete picture of how candidate generation and tree-based veri-
fication contribute to the final decoding cost, and why deeper lookahead necessarily increases TRS
time due to reduced inter-token similarity.

To contextualize the effectiveness of TRS relative to conventional decoding strategies, Table 13
compares the best-performing TRS configuration with standard methods. While greedy decoding
and beam search maintain perplexity close to the autoregressive (AR) baseline, they do not provide
any acceleration, and beam search is even slower due to multi-path expansion. In contrast, TRS with
(K=3, N=3) achieves a 3.21× decoding speedup while keeping perplexity at 12.2, only slightly
above the AR baseline (11.9). This demonstrates that TRS offers substantial real-world acceleration
with minimal impact on generation quality, outperforming classical search-based decoding in both
efficiency and controllability.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 7: Unified analysis of SHAPE decoding latency (top) and TRS performance (bottom).
(A) SHAPE Decoding Latency Breakdown (Qwen-7B)

N Cand. (ms) TRS (ms) Total (ms) TRS ratio (%)

1 1.00 0.40 1.40 28.6%
2 1.01 0.78 1.79 43.6%
3 1.00 1.25 2.25 55.6%
4 1.02 1.70 2.72 62.5%
5 1.01 2.20 3.21 68.5%

(B) TRS Performance under Different (K,N) Configurations

K
Depth (N ): Speedup / PPL

1 2 3 4 5

1 1.91/17.3 2.71/16.7 3.40/16.1 3.80/16.5 4.10/17.0
2 1.90/16.9 2.65/16.5 3.30/14.0 3.50/14.5 3.70/15.0
3 1.88/16.5 2.59/16.3 3.21/12.2 3.40/13.0 3.55/14.0
4 1.83/16.3 2.46/15.8 3.15/12.15 3.28/12.8 3.40/13.2
5 1.75/16.1 2.33/15.2 3.09/12.1 3.25/12.5 3.35/12.9

5 RELATED WORK

Recent studies have highlighted the significant inference latency of Large Language Models (LLMs),
prompting various acceleration strategies that can be categorized by their underlying methodolo-
gies. on-autoregressive approaches represent initial attempts at acceleration. Non-autoregressive
translation (NAT) techniques have been investigated in translation tasks Gu & Kong (2020); Stern
et al. (2018), it performs suboptimally in general LLM scenarios. To address this, Huang et al.
Huang et al. (2023) proposed a layer-wise iterative methodology that each layer leverages decoding
results from preceding layers. Similarly, Santilli et al. Santilli et al. (2023) formalized autore-
gressive decoding through parallel Jacobi and Gauss-Seidel fixed-point iteration. However, such
methods often degrade accuracy due to their deviation from standard autoregressive architectures.
Accuracy-preserving approaches based on model modifications have since emerged. Block-wise
parallel decoding Stern et al. (2018) leverages an auxiliary transformer with multi-output capabil-
ities for parallel token prediction but suffers from frequent verification failures. Medusa Cai et al.
(2024) improves robustness with multiple prediction heads, while FREE Bae et al. (2023) uses shal-
low layers for draft generation. However, these techniques require substantial training of additional
components. peculative decoding offers an alternative by using smaller models as draft predictors.
For example, Bloom 7.1B has served as a draft model for a 176B model Xia et al. (2023). Yet, this
method faces challenges: suitable smaller models are not always available across model series, and
helper models require parallel tuning, increasing deployment complexity. o address these issues,
model-free strategies aim to accelerate decoding without auxiliary models. Ge et al. Ge et al. (2022)
proposed an input-guided method based on prefix matching, extended by LLMA Yang et al. (2023)
through content retrieval from inputs and external documents. Recently, LookaheadDecoding Huang
et al. (2023) fused Jacobi iteration with speculative decoding in a multi-branch framework, though
its draft generation incurs non-negligible overhead.

6 CONCLUSION

In this paper, we introduced a novel perspective that reframes autoregressive decoding as a prob-
ability distribution transition process governed by optimal transport principles. We validate this
theoretical framework through SHAPE, which demonstrates predictable hidden state evolution via
transport maps. Experiments across diverse LLMs show speedups of 1.77×-5.23× with maintained
quality, confirming token generation can be understood as structured transport in probability space.
This work establishes a new paradigm for efficient LLM inference beyond draft-based approaches.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Sangmin Bae, Jongwoo Ko, Hwanjun Song, and Se-Young Yun. Fast and robust early-exiting
framework for autoregressive language models with synchronized parallel decoding, 2023. URL
https://arxiv.org/abs/2310.05424.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads, 2024. URL
https://arxiv.org/abs/2401.10774.

et al. Fu. Lookahead: An inference acceleration framework for large language model with lossless
generation accuracy. arXiv preprint arXiv:2312.12728, 2023.

Yihan Ge et al. Input-guided non-autoregressive machine translation. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics, pp. 7300–7312, 2022.

Aaron Grattafiori, Abhimanyu Dubey, and et al Abhinav Jauhri. The llama 3 herd of models, 2024.
URL https://arxiv.org/abs/2407.21783.

Jiatao Gu and Xiang Kong. Fully non-autoregressive neural machine translation: Tricks of the trade.
arXiv preprint arXiv:2012.15833, 2020.

Chenyang Huang, Hao Zhou, Osmar R Zaiane, Lili Mou, and Lei Li. Lookahead: An inference
acceleration framework for large language models. arXiv preprint arXiv:2312.12728, 2023.

Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili
Qiu. Longllmlingua: Accelerating and enhancing llms in long context scenarios via prompt com-
pression. arXiv preprint arXiv:2310.06839, 2023.

Siqi Kou, Lanxiang Hu, Zhezhi He, Zhijie Deng, and Hao Zhang. Cllms: Consistency large language
models, 2024. URL https://arxiv.org/abs/2403.00835.

Junyi Li, Tianyi Tang, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. Pre-trained language
models for text generation: A survey. ACM Computing Surveys, 56(9):1–39, 2024a.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
rethinking feature uncertainty. arXiv preprint arXiv:2401.15077, 2024b.

Zhenyan Lu, Xiang Li, Dongqi Cai, Rongjie Yi, Fangming Liu, Xiwen Zhang, Nicholas D Lane,
and Mengwei Xu. Small language models: Survey, measurements, and insights. arXiv preprint
arXiv:2409.15790, 2024.

Yuhong Mo, Hao Qin, Yushan Dong, Ziyi Zhu, and Zhenglin Li. Large language model (llm) ai
text generation detection based on transformer deep learning algorithm, 2024. URL https:
//arxiv.org/abs/2405.06652.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, and et al Shyamal Anadkat.
Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, and Carroll L. Wainwrightet al. Training language
models to follow instructions with human feedback, 2022. URL https://arxiv.org/abs/
2203.02155.

Andrea Santilli et al. Parallel fixed-point methods for autoregressive decoding. arXiv preprint
arXiv:2301.13379, 2023.

Lei Shu, Liangchen Luo, Jayakumar Hoskere, Yun Zhu, Yinxiao Liu, Simon Tong, Jindong Chen,
and Lei Meng. Rewritelm: An instruction-tuned large language model for text rewriting. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 18970–18980,
2024.

Mitchell Stern, William Chan, Jamie Kiros, and Jakob Uszkoreit. Blockwise parallel decoding for
deep autoregressive models. In Advances in Neural Information Processing Systems, pp. 10107–
10116, 2018.

11

https://arxiv.org/abs/2310.05424
https://arxiv.org/abs/2401.10774
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2403.00835
https://arxiv.org/abs/2405.06652
https://arxiv.org/abs/2405.06652
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. Mobilebert:
a compact task-agnostic bert for resource-limited devices, 2020. URL https://arxiv.org/
abs/2004.02984.

Shailja Thakur, Baleegh Ahmad, Hammond Pearce, Benjamin Tan, Brendan Dolan-Gavitt, Ramesh
Karri, and Siddharth Garg. Verigen: A large language model for verilog code generation. ACM
Transactions on Design Automation of Electronic Systems (TODAES), 29(3):1–31, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, and et al Xavier Martinet. Llama: Open and efficient
foundation language models, 2023. URL https://arxiv.org/abs/2302.13971.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Large
search model: Redefining search stack in the era of llms, 2024. URL https://arxiv.org/
abs/2310.14587.

Yonghui Wu. Large Language Model and Text Generation, pp. 265–297. Springer International
Publishing, Cham, 2024. ISBN 978-3-031-55865-8. doi: 10.1007/978-3-031-55865-8 10. URL
https://doi.org/10.1007/978-3-031-55865-8_10.

xAI. Grok os: The future of ai assistants, 2024. URL https://x.ai/blog/grok-os. Ac-
cessed: 2025-01-31.

Qinyuan Xia et al. Speculative decoding for large language models. arXiv preprint
arXiv:2302.01318, 2023.

Fan Yang et al. Llma: Language model acceleration via content retrieval. arXiv preprint
arXiv:2303.16827, 2023.

12

https://arxiv.org/abs/2004.02984
https://arxiv.org/abs/2004.02984
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2310.14587
https://arxiv.org/abs/2310.14587
https://doi.org/10.1007/978-3-031-55865-8_10
https://x.ai/blog/grok-os


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A TOKEN-LEVEL AUTOREGRESSIVE GENERATION

A.1 SINGLE-STEP GENERATION PROCESS

In autoregressive language models, token generation follows a step-by-step process. At each time
step t, given the sequence of previous tokens (x1, x2, . . . , xt), the probability of generating the next
token xt+1 is:

P (xt+1|x1, . . . , xt) (1)

A.2 OUTPUT HIDDEN STATE BASED GENERATION

The generation process involves the final layer’s hidden states:

ht = Transformer(x1, . . . , xt) (2)

P (xt+1|x1, . . . , xt) = LLM head(ht) (3)

where ht ∈ Rd represents the final layer’s hidden state at time step t, and LLM head is a linear
transformation that maps the hidden state to token probabilities over the vocabulary.

B MODEL AR DECODING PERFORMANCE METRICS

Table 8 presents the average token generation time across different model sizes and context lengths.
The results clearly demonstrate that larger models and longer contexts significantly increase per-
token latency, which accumulates due to the sequential nature of autoregressive decoding. These
findings highlight the importance of optimizing the decoding process to ensure practical deployment
efficiency.

Table 8: Autoregressive Decoding Latency across Different Input Lengths and Model Scales
Model (B) Input Length ITL (ms) TTFT (ms) Duration (s/req)

1.5

256 3.83 24.58 0.56
512 3.85 33.91 0.80

1024 3.83 55.05 1.52
2048 3.98 118.47 1.38

7

256 7.16 42.93 1.06
512 7.12 73.25 1.67

1024 7.15 118.62 2.88
2048 7.17 274.23 2.65

14

256 11.90 76.58 1.78
512 11.92 134.24 2.57

1024 11.98 253.11 4.92
2048 12.12 603.10 4.64

32

256 22.26 116.42 3.31
512 22.28 211.08 4.76

1024 22.44 392.29 9.13
2048 22.55 924.34 8.64

C THEORETICAL ANALYSIS OF OPTIMAL TRANSPORT

Lemma C.1 (Lipschitz map from hidden state to distribution). Let ℓ = Wh and p =
softmax(ℓ/τs). If ∥W∥2 ≤ LW and h is confined to a bounded set, then there exists LS > 0
such that

∥p(h1)− p(h2)∥1 ≤ LSLW

τs
∥h1 − h2∥2.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Sketch. Softmax on bounded domains is Lipschitz in ℓ2 (or ℓ∞); composing with the linear map W
yields the claim.

Lemma C.2 (Similarity ⇒ small OT move). Let µt =
∑

i pt(i)δEi
and µt+1 be defined analo-

gously. Under Lemma A, there exists L′ > 0 (depending on W, τs, E) such that

Wc(µt, µt+1) ≤ L′ ∥ht+1 − ht∥2.

If we normalize h̄t = ht/∥ht∥2, then ∥h̄t+1 − h̄t∥2 ≤
√

2(1− cos(ht,ht+1)), hence

Wc(µt, µt+1) ≤ L̃
√

1− SC(ht,ht+1).

Sketch. Use the Kantorovich–Rubinstein dual bound with ℓ1 variation of p and the diameter of the
embedding support, plus the cosine–ℓ2 relation.

Proposition C.3 (Existence, stability, and uniqueness of Π⋆
t ).

Π⋆
t = arg min

Π1=pt, Π⊤1=pt+1

〈
Π, C

〉
+ εKL

(
Π
∥∥ptp

⊤
t+1

)
, ε > 0, (4)

For any ε > 0, the entropic OT problem in equation 4 admits a unique solution Π⋆
t ; moreover, when

Wc(µt, µt+1) is small, Π⋆
t depends smoothly on (pt,pt+1) and can be well-approximated by a few

Sinkhorn iterations.

Sketch. Entropic regularization makes the objective strictly convex over the transport polytope; stan-
dard Sinkhorn–Knopp scaling solves the KKT system, and continuity follows from the implicit
function theorem on the strictly convex objective.

Corollary C.4 (OT-optimal path between successive distributions). By Proposition C, the coupling
Π⋆

t induces a row-stochastic operator Kt such that

pt+1 = K⊤
t pt

holds exactly at optimality and approximately under finite Sinkhorn iterations, thereby defining the
OT-optimal path for the one-step distributional transition.

Sketch. Row normalization rewrites the marginal constraints; the equality follows from Π⋆
t
⊤1 =

pt+1.

D THEORETICAL ANALYSIS OF HIDDEN STATE PREDICTION VIA OPTIMAL
TRANSPORT

We establish a theoretical framework for predicting future hidden states in transformer models
through optimal transport theory. Let (Ω,F , P ) be a probability space and H ⊆ Rd be the hid-
den state space. For any time step t, we define Ht : Ω→ H as the random variable representing the
hidden state at time t, with µt as its probability measure. Let P(H) denote the space of probability
measures onH.

Given the temporal nature of hidden states in transformer models, we first establish their similarity
properties. The similarity between hidden states is measured by cosine similarity:

sim(x, y) =
⟨x, y⟩
∥x∥∥y∥

(5)

Based on empirical observations in transformer models, as shown in Table 9, we make the following
assumption:
Assumption D.1. For any adjacent time steps t and t + 1, the hidden states maintain a minimum
similarity threshold:

∀x, y ∈ H : sim(x, y) > T (6)
where x and y are hidden states with positive probability under µt and µt+1 respectively.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

This assumption leads to our first key result regarding the bounded evolution of hidden states:
Lemma D.2. Under Assumption 1, there exists a constant M > 0 such that the 2-Wasserstein
distance between consecutive hidden state distributions is bounded:

W2(µt, µt+1) ≤M (7)

Proof. Consider any hidden states x, y ∈ H with positive probability under µt and µt+1 respec-
tively. From Assumption 1:

1− ⟨x, y⟩
∥x∥∥y∥

≤ T (8)

This implies:
⟨x, y⟩ ≥ T∥x∥∥y∥ (9)

Define the Euclidean metric d(x, y) = ∥x− y∥2. We can expand:

d2(x, y) = ∥x∥2 + ∥y∥2 − 2⟨x, y⟩ (10)

≤ ∥x∥2 + ∥y∥2 − ∥x∥∥y∥ (11)

= (∥x∥ − ∥y∥)2 (12)

SinceH is bounded in Rd, there exists R > 0 such that ∥x∥ ≤ R for all x ∈ H. Therefore:

d2(x, y) ≤ 4R2 (13)

Taking M = 2R completes the proof.

This lemma establishes that the evolution of hidden states is well-behaved, allowing us to formulate
our main theorem:
Theorem D.3. There exists a cost function c : H ×H → R+ such that the hidden state evolution
from time t to t+ k can be represented as an optimal transport problem:

min
π∈Π(µt,µt+k)

∫
H×H

c(x, y)dπ(x, y) (14)

where Π(µt, µt+k) denotes the set of joint distributions with marginals µt and µt+k. Moreover, this
problem admits an optimal solution π∗.

Proof. We construct the proof in three steps. First, we define the cost function c(x, y) = d2(x, y),
where d is the Euclidean metric. This choice is natural as it preserves the geometric structure of the
hidden state space.

Second, from Lemma 1, we know that for adjacent time steps:

W 2
2 (µt, µt+1) = inf

π∈Π(µt,µt+1)

∫
H×H

d2(x, y)dπ(x, y) ≤M2 (15)

For multi-step evolution (k > 1), we can apply the Chapman-Kolmogorov equation. There exist
intermediate measures π1, ..., πk−1 such that:

W 2
2 (µt, µt+k) ≤ (

k−1∑
i=0

W2(µt+i, µt+i+1))
2 ≤ k2M2 (16)

Finally, the existence of an optimal solution follows from three key properties: 1) P(H) is com-
pact in the weak topology 2) The cost function c(x, y) is lower semi-continuous 3) The objective
functional is bounded below

By the Kantorovich duality theorem, there exists an optimal solution π∗ ∈ Π(µt, µt+k) achieving:∫
H×H

c(x, y)dπ∗(x, y) = inf
π∈Π(µt,µt+k)

∫
H×H

c(x, y)dπ(x, y) (17)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 9: Token similarity between the token at time t and t+n across various contexts.
qwen-zh qwen-en vicuna llama

t+1 t+2 t+3 t+1 t+2 t+3 t+1 t+2 t+3 t+1 t+2 t+3
0.8744 0.8447 0.8383 0.6304 0.5273 0.4976 0.5392 0.4647 0.4358 0.645 0.5729 0.5443
0.8677 0.8235 0.814 0.6272 0.5703 0.5503 0.5282 0.4287 0.4062 0.6411 0.5829 0.552
0.8666 0.8213 0.8027 0.6217 0.5334 0.5027 0.526 0.436 0.4174 0.6351 0.5647 0.5422
0.8607 0.8171 0.7849 0.6189 0.5478 0.5316 0.5248 0.4285 0.4121 0.6329 0.5598 0.5322
0.8599 0.8314 0.8195 0.6157 0.5459 0.5435 0.5165 0.4208 0.4023 0.6261 0.5456 0.523
0.8587 0.821 0.8079 0.6122 0.5373 0.5199 0.5165 0.4185 0.3951 0.6236 0.5503 0.5309
0.8574 0.829 0.809 0.6118 0.5426 0.5239 0.516 0.422 0.4008 0.622 0.5407 0.5141
0.8544 0.8209 0.8052 0.6107 0.5384 0.5291 0.5149 0.416 0.3971 0.6214 0.5391 0.5151
0.8536 0.823 0.8071 0.6098 0.5303 0.5144 0.5121 0.4031 0.3832 0.6197 0.531 0.5091
0.8535 0.8141 0.7921 0.6093 0.5295 0.5046 0.5113 0.4153 0.3913 0.6197 0.531 0.5091

This theoretical framework provides a rigorous foundation for predicting hidden states through op-
timal transport. Given a hidden state ht at time t, we can predict ht+k by:

ht+k =

∫
H
ydπ∗(y|ht) (18)

Moreover, we can establish an error bound for this prediction:

∥ht+k − h∗
t+k∥2 ≤ kM (19)

where h∗
t+k denotes the true hidden state at time t+ k.

E QUALITY EVALUATION

Table 10: Comparison of perplexity (ppl) across different decoding methods (EAGLE, M-1:
Medusa-1, M-2: Medusa-2, and SHAPE) on various DS: datasets (A: Alpaca, T: THUC news,
W: wiki lingua).

Model Dataset EAGLE M-1 M-2 SHAPE

Qwen-7B
A 13.2 15.1 14.6 11.9
T – – – 12.3
W 13.5 15.3 14.8 12.1

Qwen-14B
A 12.9 14.1 13.7 11.8
T – – – 11.5
W 13.2 14.2 13.6 11.7

Llama-7B A 13.1 15.0 14.4 12.2
W 13.4 15.2 14.6 12.4

Llama-13B A 12.8 14.0 13.5 12.3
W 13.1 14.1 13.7 12.5

Vicuna-7B A 13.0 15.2 14.3 12.1
W 13.3 15.3 14.4 12.4

Vicuna-13B A 12.9 14.2 14.0 11.7
W 13.0 14.3 14.1 12.0

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 11: SHAPE’s Average speed-up ratio compared with vanilla generation on different datasets

Model
(Size) Datasets Task

Speed Up

N step forward

1 2 3

Qwen-7B
Alpaca Intruction Following 1.90 2.47 4.12

THUC News Text Continuation 1.96 2.51 4.09
wiki lingua Text Generation 1.93 2.55 4.07

Qwen-14B
Alpaca Intruction Following 1.87 2.55 3.89

THUC News Text Continuation 1.99 2.65 4.02
wiki lingua Text Generation 1.89 2.77 4.05

Llama-7B Alpaca Intruction Following 1.88 2.59 3.21
wiki lingua Text Generation 1.91 2.69 3.34

Llama-13B Alpaca Intruction Following 1.89 2.51 3.22
wiki lingua Text Generation 1.90 2.53 3.20

Vicuna-7B Alpaca Intruction Following 1.83 2.57 3.24
wiki lingua Text Generation 1.87 2.56 3.29

Vicuna-13B Alpaca Intruction Following 1.89 2.68 3.38
wiki lingua Text Generation 1.91 2.77 3.21

Table 12: Comparison of performance metrics between vanilla decoding (baseline) and SHAPE
across different N-step forward prediction configurations.

Model Size Datasets Task

Average
Token Accuracy

Average
BERTScore

Average
Sentence Similarity

N step forward

1 2 3 / 1 2 3 / 1 2 3
V S S S V S S S

Qwen

7B
Alpaca IF 0.91 0.89 0.86 0.74 0.71 0.68 0.65 0.94 0.92 0.88 0.84

THUC News TC 0.92 0.87 0.85 0.75 0.70 0.67 0.66 0.93 0.90 0.89 0.82
wiki lingua TG 0.91 0.88 0.86 0.72 0.69 0.65 0.63 0.92 0.87 0.85 0.81

14B
Alpaca IF 0.91 0.89 0.86 0.76 0.73 0.70 0.68 0.95 0.92 0.91 0.85

THUC News TC 0.90 0.88 0.85 0.74 0.71 0.68 0.67 0.94 0.89 0.87 0.84
wiki lingua TG 0.91 0.87 0.85 0.75 0.70 0.66 0.64 0.93 0.88 0.85 0.80

Llama
7B Alpaca IF 0.90 0.89 0.86 0.60 0.59 0.55 0.52 0.82 0.78 0.75 0.70

wiki lingua TG 0.89 0.87 0.85 0.63 0.60 0.58 0.54 0.80 0.76 0.73 0.69

13B Alpaca IF 0.90 0.88 0.87 0.54 0.53 0.51 0.49 0.76 0.73 0.70 0.67
wiki lingua TG 0.89 0.87 0.86 0.56 0.54 0.50 0.47 0.78 0.74 0.71 0.68

Vicuna
7B Alpaca IF 0.91 0.88 0.86 0.56 0.55 0.52 0.50 0.76 0.74 0.71 0.68

wiki lingua TG 0.89 0.87 0.85 0.58 0.56 0.54 0.52 0.78 0.75 0.72 0.69

13B Alpaca IF 0.90 0.88 0.85 0.58 0.57 0.54 0.52 0.79 0.76 0.73 0.70
wiki lingua TG 0.90 0.87 0.87 0.59 0.57 0.53 0.51 0.80 0.77 0.74 0.71

F TRS SUPPLEMENT EXPERIMENTS

Table 13: Comparison of TRS with standard decoding methods
Method Speedup PPL

AR (Baseline) 1.0× 11.9
Greedy 1.0× 11.9
Beam Search 0.9× 11.7

TRS (3, 3) 3.21× 12.2

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

G TRAIN DETAILS AND TRAINING COST

G.1 DATA ACQUISITION AND GENERATION

For the English dataset used to train models such as Qwen, Vicuna, and Llama on 7B, 13B, and 14B,
we use ShareGPT as the dataset, which contains 96,000 dialogue data samples. For the Chinese
dataset, we use the THUCNews training set, consisting of 50,000 news samples, split into two parts:
”prompt” and ”completion”. The target model processes pre-processed data to generate outputs
from the transformer layers for each token. The training data includes fields such as input token IDs,
hidden states, hidden states from the previous three tokens, target values, attention masks, and loss
masks. These components are combined to construct the final training dataset.

G.2 TRAIN CONFIGURATION

The training configuration includes the following settings: Learning rate (lr) and batch size (bs) are
dynamically adjusted, with gradient accumulation steps set to ensure stable training. The number of
epochs is set to 40, and a warm-up phase of 2,000 steps is applied, targeting a total of 800,000 steps.
The configuration employs a maximum sequence length of 2,048 tokens, balancing performance
and memory efficiency. To improve robustness, data noise is introduced using a uniform distribution
with a mean of 0 and a standard deviation of 0.2. Additional settings include weight decay, gradient
clipping, and periodic model saving every epoch. Finally, the optimizer uses momentum parameters
(b1 = 0.9, b2 = 0.95) to facilitate effective training convergence.

G.3 TRAINING COST

We compare SHAPE with Medusa (+2 heads) in terms of parameter count and computational ef-
ficiency. SHAPE contains approximately 450.98M parameters (6.4% of LLaMA-7B), achieved
through parameter sharing and lightweight modules such as OT projection and a gating network.
In contrast, Medusa adds 300M parameters per head, reaching 610M (9% of LLaMA-7B) with
two heads. Thus, SHAPE uses only 71.5% of the parameters of Medusa+2 heads and requires no
per-head adaptation. In training, SHAPE is 3–5× faster than full model fine-tuning and requires
only 5 hours for 40 epochs on a single A100 GPU, compared to 8 hours for Medusa. Peak training
memory usage is also lower: 41.89GB for SHAPE versus 51.47GB for Medusa. During inference,
SHAPE achieves a 3.21–4.12× speedup through one hidden state correction step (OT module) and
tree rejection sampling. In contrast, Medusa incurs higher overhead due to additional multi-head
attention and memory usage, limiting its speedup to 1.8–3.1×.

H TREE-BASED REJECT SAMPLING ALGORITHM IMPLEMENTATION

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 1 Tree Rejection Sampling
Require: model: target language model

1: context: current context or hidden state at time step t
2: N : number of future steps (depth)
3: k: number of candidates per step (branch factor)

Ensure: selected prefix: the longest valid prefix among accepted paths

4: candidate paths ← generate candidates(model, context,N, k) // Generate kN candi-
date sequences

5: path probs ← model.get path probabilities(candidate paths) // Compute joint proba-
bilities in parallel

6: max prob← max(path probs)
7: threshold ← 0.8 × max prob // Define acceptance threshold (e.g. 80% of the maximum

probability)
8: accepted paths← []
9: for each (path, prob) in (candidate paths, path probs) do

10: if prob ≥ threshold then
11: accepted paths.append(path) // Retain paths with sufficiently high probability
12: end if
13: end for
14: selected prefix ← select longest valid prefix(accepted paths) // Extract the longest

prefix common to accepted paths
return selected prefix

19


	Introduction
	From State Similarity to Distributional Transition
	Semantic Similarity of Hidden States
	Modeling Token Generation with Optimal Transport

	SHAPE: An OT-Guided Multi-Token Predictor
	Hidden State Semantic Correlation Modeling
	Step ahead Hidden State Residual Predictor
	Predictor Construction
	Predictor Training

	Tree Reject Sampling

	Experiments
	Efficiency
	Quality Evaluation
	Ablation Study
	Effectiveness of Optimal Transport
	Effectiveness of Tree Rejection Sampling


	Related Work
	Conclusion
	Token-level Autoregressive Generation
	Single-step Generation Process
	Output Hidden State Based Generation

	Model AR decoding performance metrics
	Theoretical Analysis of Optimal Transport
	Theoretical Analysis of Hidden State Prediction via Optimal Transport
	Quality evaluation
	TRS supplement experiments
	Train Details and training cost
	Data Acquisition and Generation
	Train Configuration
	Training Cost

	Tree-based reject sampling algorithm implementation

