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ABSTRACT

Autoregressive decoding is a primary bottleneck for large language models
(LLMs), as its inherent sequentiality severely limits inference speed. While spec-
ulative decoding methods mitigate this via a draft-and-verification pipeline their
effectiveness is severely constrained by dependency on draft model quality and
availability. We rethink the generation pattern and introduces a novel theoretical
perspective by reframing token generation as a predictable state transition pro-
cess in probability space, formalized through Optimal Transport (OT) theory. We
demonstrate that the temporal consistency of hidden states induces a stable trans-
port map, enabling theoretically grounded multi-step prediction. Building on this
insight, we develop SHAPE, an OT-based predictor that implements lightweight
Sinkhorn iterations. Extensive evaluations across diverse models (e.g., Qwen, Vi-
cuna, LLaMA, DeepSeek) and tasks (text, code, math) show that SHAPE achieves
up to 5.23× speedup with minimal quality loss (≤ 1.2% accuracy drop), empir-
ically validating our distributional transition hypothesis. This work establishes a
new theoretical foundation for understanding autoregressive decoding and a prac-
tical path toward high-speed generation beyond token-wise limitations.

1 INTRODUCTION

Large Language Models (LLMs) have become the cornerstone of modern artificial intelligence,
achieving remarkable success across tasks ranging from natural language understanding to text gen-
eration (13; 23; 10; 17; 20). LLMs of varying scales have been widely deployed in cloud server
clusters (e.g., GPT-4 (14), Llama3 (5), and Grok1 (24)) and edge devices (e.g., the 6B-parameter
GPT-3 and 7B-parameter LLaMA-2 variants as lightweight LLMs (12; 19)). With their increasing
adoption in search (22) and conversational AI (15), there is a growing demand for low-latency long-
sequence generation, making the optimization of effective token generation rate under constrained
computational resources a critical research challenge.

Unfortunately, both cloud-based large models and edge-side small models rely on autoregressive
token-by-token generation, which requires sequential computation of each token without paralleliza-
tion. Additionally, the quadratic complexity of attention mechanisms with respect to context length
exacerbates the issue. The standard autoregressive decoding used in existing LLMs suffers from
inherent inefficiencies (21; 8)—generation time scales linearly with both context length and model
size, and its sequential nature leads to cumulative latency. Our benchmarking experiments across
diverse models reveal that larger model sizes and longer context lengths lead to significantly higher
per-token latency. This cost is compounded by the sequential nature of decoding, highlighting the
urgent need for optimization to achieve practical deployment efficiency. Comprehensive results are
presented in Appendix B.

Speculative decoding (2) addresses this by introducing a fast draft model to predict multiple to-
kens in advance, followed by verification from the target model. However this two-stage draft-and-
verification paradigm still incurs sequential latency and is highly sensitive to the quality of draft
models. Lookahead (3) and Medusa (2) reduce decoding time using n-gram heuristics or shallow
predictors, but their limited accuracy (e.g., 0.6 for Medusa) results in suboptimal speedup. EA-
GLE (11) improves draft accuracy by leveraging hidden-state features, achieving better acceleration,
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yet it remains draft-model-dependent, introducing overhead and limiting scalability across diverse
model configurations. CLLMs (9) accelerate decoding by directly predicting future token distribu-
tions via conditional probabilities, enabling parallel generation. However, they require fine-tuning
parts of the original model, increasing training costs, and while particularly effective for mathemat-
ical reasoning, they exhibit limited stability in long-form generation.

In contrast, our approach reconceptualizes decoding itself through a distributional lens. In this
work, we propose a paradigm shift by reconceptualizing token generation as a distributional transi-
tion process. Our key insight stems from the empirical observation that hidden states exhibit strong
temporal consistency during decoding—consecutive states maintain high semantic similarity with a
predictable lower bound. This regularity suggests that token generation follows a structured evolu-
tion in probability space, a perspective we formalize through optimal transport (OT) theory.

By modeling the transition between successive token distributions as a mass transport problem,
where the semantic similarity between hidden states induces a stable OT map. To empirically vali-
date this theoretical framework, we develop SHAPE (Step-ahead Hidden-state Accelerated Predic-
tion Engine) as a concrete instantiation of our OT-based perspective. SHAPE operationalizes the
theoretical transport maps by learning lightweight operators between hidden states, enabling paral-
lel token prediction without auxiliary draft models. The empirical success of SHAPE—achieving
substantial speedups while maintaining quality—serves as strong evidence for the correctness of our
underlying theoretical insight: that token generation can indeed be understood as a predictable trans-
port process in probability space. We evaluated SHAPE on a range of models—including Qwen,
Vicuna, LLaMA, and DeepSeek—across general language (WikiText, Alpaca, MT-Bench) and
reasoning-heavy tasks (MATH500, AIME24, LiveCodeBench v5). The results show that SHAPE
achieves speedups of up to 5.23× while maintaining output quality within a minimal margin of
degradation (≤ 1.2% accuracy drop on reasoning tasks). In comparative experiments, SHAPE con-
sistently outperforms existing acceleration methods: it surpasses EAGLE3 by 1.1x, Medusa-1 by
2.1×, and Medusa-2 by 1.6× across different models and datasets.

Beyond performance, this work makes the following key contributions:

• A Novel Theoretical Foundation: We introduce a paradigm shift by reconceptualizing
token generation as a predictable transition of probability distributions. This perspective is
rigorously formalized through Optimal Transport theory and validated empirically, estab-
lishing a new principled understanding of decoding dynamics.

• A Practical, Plug-and-Play Predictor: We develop SHAPE, a lightweight prediction en-
gine that operationalizes this theory. Crucially, SHAPE requires no modifications to the
base LLM’s parameters, offering a draft-free, plug-and-play solution for immediate de-
ployment that significantly enhances decoding efficiency.

• Scalability to Arbitrary Future Steps. SHAPE generalizes to predict hidden states at
arbitrary future time steps (e.g., t + 1, t + 2, t + 3), providing greater flexibility for long-
sequence generation tasks. This scalability supports diverse applications with varying se-
quence lengths and complexity.

By fundamentally rethinking the decoding process rather than optimizing within its constraints, this
work opens new directions for efficient LLM inference.

2 FROM STATE SIMILARITY TO DISTRIBUTIONAL TRANSITION

2.1 SEMANTIC SIMILARITY OF HIDDEN STATES

Building on recent work that recognizes the regularity of hidden-state sequences (11) and their utility
for parallel prediction (2), we systematically analyze the temporal correlations between consecutive
hidden states during autoregressive decoding. Let ht ∈ RH denote the final-layer hidden state at
decoding step t. We quantify the semantic consistency between states at steps t and t+n using
cosine similarity:

sc(ht,ht+n) =
ht · ht+n

∥ht∥2 · ∥ht+n∥2
(1)
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As shown in Figure 1, our analysis reveals a consistent pattern across diverse models and datasets:
hidden states exhibit strong semantic consistency at offset n=1, with similarity gradually decaying
yet remaining substantial for n=2, 3. Crucially, we observe that there exists a task-agnostic lower
bound τ ∈ (0, 1) such that SC(ht,ht+1) ≥ τ for the vast majority of decoding steps. This em-
pirical finding demonstrates an inherent temporal smoothness in the hidden-state trajectory during
generation.

Figure 1: Semantic similarity between tokens at t and t+n across different datasets and models.
Color denotes offset: blue for n=1, orange for n=2, green for n=3. Subfigures: (a) Qwen–Chinese,
(b) Qwen–English, (c) Vicuna–English, (d) LLaMA–English.

The observed consistency suggests that transitions between consecutive token distributions are both
small and structured. Rather than treating token generation as a sequence of discrete sampling op-
erations, we therefore conceptualize it as a continuous evolution of probability distributions. This
distributional perspective, formalized next using Optimal Transport, provides the theoretical foun-
dation for predicting future decoding steps.

2.2 MODELING TOKEN GENERATION WITH OPTIMAL TRANSPORT

We introduce a novel perspective that reframes token generation as a structured probability dis-
tribution transition. Unlike the standard view of sampling discrete tokens, our approach analyzes
the continuous evolution of distributions pt within the model’s geometric landscape. At each step
t, the distribution pt = softmax(Wht/τs) is mapped to the token embedding space, forming a
discrete measure µt =

∑V
i=1 pt(i) δEi

to enable geometric comparison. The transition from µt

to µt+1 is then formulated as an entropic-regularized optimal transport (OT) problem, where we
seek the coupling Π⋆

t that minimizes transport cost—defined by the squared Euclidean distance be-
tween token embeddings—regularized by the KL divergence from the product distribution ptp

⊤
t+1.

The row-normalized optimal coupling Kt yields a principled stochastic transition matrix such that
pt+1 ≈ K⊤

t pt, casting generation as a path-following process in the probability simplex. Under
mild assumptions, the stability of the hidden states ensures the OT distance between consecutive
steps is bounded, guaranteeing the existence and uniqueness of this optimal path. This theoretical
insight forms the cornerstone of the SHAPE method, offering a powerful framework for analyzing
and intervening in the generation process. Complete proofs are provided in Appendix C.

3 SHAPE: AN OT-GUIDED MULTI-TOKEN PREDICTOR

To validate and operationalize the OT-based transition view, we propose SHAPE (Step-ahead
Hidden-state Accelerated Prediction Engine), a draft-free, plug-and-play framework for parallel
decoding. As shown in Figure 2. SHAPE consists of two key components: Step-ahead Hidden
State Prediction and Tree Rejection Sampling. The core design of the framework focuses on
capturing the semantic correlation of hidden states by capturing temporal features and training a
predictor to approximate future hidden states. With tree reject sampling select the longest accepted
prefix in parallel dynamically, so we can get α accepted token in one LLM forward to achieve
parallel acceleration.

3.1 HIDDEN STATE SEMANTIC CORRELATION MODELING

The main structure of step-ahead hidden state prediction is shown in Figure 3, with three main
trainable components. To first extract features in hidden state temporal modeling, the hidden states
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Figure 2: Illustration of the SHAPE (Step-ahead Hidden-state Accelerated Prediction Engine)
framework. SHAPE leverages strong temporal correlations in hidden states to predict multiple future
tokens by modeling hidden state transitions. It includes temporal modeling and residual predictors
for hidden state prediction, followed by edge-to-edge LM head training to generate multiple can-
didates for each future step. SHAPE uses tree-based rejection sampling to select optimal token
candidates at each time step, enabling efficient multi-token generation without a draft model.

from the current and previous three-time steps are concatenated and passed through a series of
transformations, including linear projections, layer normalization, activation functions, and dropout.
These steps capture temporal dependencies and refine the features, resulting in a final representation
that effectively encodes the relationships between the time steps.

3.2 STEP AHEAD HIDDEN STATE RESIDUAL PREDICTOR

3.2.1 PREDICTOR CONSTRUCTION

The high dimension of hidden states makes direct prediction challenging. To address this, we refor-
mulate the task as modeling residual changes between consecutive hidden states. This delta-based
approach incorporates an adaptive gating mechanism that dynamically scales the predicted changes
based on both the original state and predicted delta. The gate network, implemented as a Linear-
Sigmoid structure, controls how much of the predicted change is applied, effectively managing
uncertainty and maintaining stability across multiple prediction steps.

We propose modeling the hidden state transition as an optional optimal transport step. When en-
abled, the transition between hidden states Ht, Ht+n ∈ RH is processed through three key compo-
nents:

Dimensionality Reduction: A learned linear projection P1 : RH → Rd:

hd
t = P1(Ht), hd

t+n = P1(Ht+n) (2)

Optimal Transport: Converting low-dimensional representations to probability distributions through
softmax:

p = softmax(hd
t ), q = softmax(hd

t+n) (3)
followed by solving the transport problem:

min
T
⟨T,C⟩+ εH(T ) s.t. T1 = p, T⊤1 = q (4)

The cost matrix C quantifies semantic differences between source and target hidden states, ensur-
ing high-activation neurons align with high-probability regions when minimized with the transport
matrix. The entropy term H(T ) prevents overly sparse solutions by encouraging uniformity in the
transport matrix, enhancing robustness to noise. The marginal constraints (p, q) assume uniform
distribution across dimensions, treating each dimension equally. The regularization coefficient ϵ
balances alignment accuracy with computational efficiency, where mid-range values achieve low
perplexity while maintaining moderate sparsity.

Dimension Recovery: A learned inverse projection P2 : Rd → RH to recover aligned states:

HOT
t+n = P2(T

⊤1) (5)
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The final hidden state is obtained through a weighted combination of the raw prediction and the
OT-aligned state:

Ht+n = (1− α)H raw
t+n + αHOT

t+n (6)

where H raw
t+n is the direct residual prediction output without OT justification, α ∈ [0, 1] controls the

influence of the OT alignment.

Figure 3: Step-ahead hidden state predictor: a three-part architecture comprising hidden state tem-
poral modeling (blue), transmission residual predictor (green), and edge-to-edge LM head (yellow).

3.2.2 PREDICTOR TRAINING

The hidden state predictor architecture is designed to maintain dimensional consistency with the
source large language model, preserving the original hidden state dimensionality. The training pro-
cedure utilizes optimal transport learning (α = 0.5, ϵ = 0.1) to enhance multi-step prediction
accuracy. The training corpus consists of preprocessed hidden states extracted from both English
ShareGPT conversational data and Chinese THUC News articles, enabling bilingual prediction ca-
pabilities. The training was conducted using AdamW optimization with mixed-precision compu-
tation, incorporating uniform noise augmentation (std = 0.2) to improve model robustness. Input
sequences were truncated at 2048 tokens to maintain computational efficiency with batch size = 16.
The training objective combined two loss terms:

Hidden State Loss This loss optimizes the consistency between predicted hidden states ĥt+ n
and target hidden states ht+ n using mean squared error:

Lhidden =
1

N

N∑
i=1

∥∥∥ĥi
t+n − hi

t+n

∥∥∥2
2

(7)

where N is the sample size.

Token Distribution Loss This cross-entropy loss ensures alignment between predicted and target
token distributions:

Ltoken = − 1

N

N∑
i=1

V∑
j=1

pitarget(j) log p
i
output(j) (8)

where ptarget(j) and poutput(j) represent the target and predicted token distributions respectively, and
V is the vocabulary size.

3.3 TREE REJECT SAMPLING

Tree Rejection Sampling generates multiple candidate paths for the next N tokens at time step t,
forming a tree structure of width k and depth N (thus producing kN candidate paths). The model
then computes the joint probabilities of these paths in parallel. Low-probability paths are rejected
based on a predefined acceptance threshold, and the remaining paths are merged by selecting the
longest valid prefix. This design balances generation diversity and quality by exploring multiple
future branches in a single forward pass. Detailed algorithm implementation is shown in Appendix.
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4 EXPERIMENTS

We conduct comprehensive evaluations of SHAPE across multiple mainstream LLMs and diverse
benchmarks to assess both efficiency and generation quality. Our evaluation covers a range of model
families including traditional generation models: Vicuna (7B/13B), LLaMA2-Chat (7B/13B), Qwen
(7B/14B), and more recent long-COT such as Qwen3 and DeepSeek-R1. To thoroughly evaluate
SHAPE’s effectiveness, we employ multiple benchmark categories. For general text generation,
we use Alpaca, WikiLingua, measuring perplexity (PPL) to compare with vanilla decoding. For
knowledge and reasoning assessment, we report accuracy on MMLU and directly compute evalu-
ation scores on MT-Bench. Additionally, to specifically test long-context and reasoning-intensive
capabilities, we conduct experiments on three challenging benchmarks: MATH500, AIME24, and
LiveCodeBench v5. All experiments are conducted on NVIDIA 80GB A100 GPUs, ensuring con-
sistent hardware conditions for fair comparison.

Figure 4: Speedup ratio of Qwen, Vicuna and LLaMA2-Chat inference latency on datasets Al-
paca and Wiki lingua and MT-Bench across different methods (EAGLE3, Medusa-1, Medusa-2,
and SHAPE)

4.1 EFFICIENCY

We evaluate inference efficiency across diverse models and tasks, comparing SHAPE against state-
of-the-art acceleration methods including EAGLE3 and Medusa 1/2. As shown in Figure 4, SHAPE
achieves superior speedups ranging from 1.77× to 5.23× using original configurations from respec-
tive papers for fair comparison.

Further validation on contemporary architectures (Qwen3, DeepSeek-R1) in Table 1 shows consis-
tent 4×-5× speedups across MT-Bench, WikiText, and Alpaca, confirming SHAPE’s architectural
agnosticism and practical utility without quality degradation.

We evaluate SHAPE’s inference efficiency under varying batch sizes to assess its practicality in real-
world deployment scenarios. Using the MT-Bench dataset on the Qwen2-7B model, we compare
SHAPE against EAGLE-3, with vLLM without speculative sampling as the baseline. As shown
in Table 2, SHAPE consistently outperforms EAGLE-3 across all batch sizes, demonstrating supe-
rior scalability and efficiency in practical batch processing environments. The results confirm that
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Table 1: Acceleration ratios of SHAPE on recent LLMs
Model MT-Bench WikiText Alpaca

Qwen3-32B 5.12× 4.35× 4.23×
Qwen3-8B 5.23× 4.67× 4.12×
DeepSeek-R1-Distill-Qwen-32B 5.05× 4.91× 4.85×
DeepSeek-R1-Distill-Qwen-8B 5.15× 4.72× 4.26×

while both methods exhibit reduced relative gains at larger batch sizes due to increased baseline
parallelism, SHAPE maintains a consistent performance advantage.

Table 2: Speedup ratios at different batch sizes
Method BS = 2 BS = 4 BS = 8 BS = 16 BS = 24

EAGLE-3 1.73× 1.65× 1.52× 1.43× 1.39×
SHAPE 1.92× 1.75× 1.61× 1.52× 1.41×

4.2 QUALITY EVALUATION

We evaluate generation quality from three perspectives: (1) general performance on standard
benchmarks, (2) token-level prediction accuracy and semantic consistency, and (3) performance
on reasoning-intensive and long-context tasks.

General Performance Evaluation. We assess generation quality on Alpaca and WikiText using per-
plexity (PPL) to evaluate language modeling capability, along with accuracy on MMLU for knowl-
edge reasoning and MT-Bench scores for conversational ability. As shown in Table 3, SHAPE pre-
serves output quality while delivering substantial speedups. Larger models generally maintain PPL
comparable to baseline decoding, while smaller models exhibit minor variations. MMLU accuracy
shows fluctuations within 1-2%, and MT-Bench evaluations confirm conversational performance re-
mains stable. These results demonstrate SHAPE’s ability to maintain quality across diverse tasks
and model architectures.

Table 3: Performance comparison between original and SHAPE-accelerated models
Model Type Alpaca(PPL) WikiText(PPL) MMLU-5 shot(Acc) MT-Bench(Score)

Qwen-7B Vanilla 11.49 11.89 70.5 8.41
SHAPE 11.9 12.1 68.79 8.56

Qwen-14B Vanilla 12.30 11.92 66.3 9.08
SHAPE 11.8 11.7 64.78 8.85

Llama-7B Vanilla 11.76 12.77 46.2 6.27
SHAPE 12.2 12.4 44.32 6.43

Llama-13B Vanilla 12.67 11.94 55.0 7.05
SHAPE 12.3 12.5 56.38 6.89

Vicuna-7B Vanilla 11.58 12.83 48.2 6.69
SHAPE 12.1 12.4 48.55 6.88

Vicuna-13B Vanilla 12.06 11.63 55.28 6.81
SHAPE 11.7 12.0 58.42 6.97

Reasoning-Intensive Task Evaluation. To evaluate SHAPE’s effectiveness on challenging reason-
ing tasks, we conducted experiments on Qwen3 and DeepSeek-R1 using MATH500, AIME24, and
LiveCodeBench v5. These benchmarks involve multi-step reasoning, long dependency chains, and
domain-specific logic, providing rigorous tests for generation fidelity under complex conditions.

As shown in Table 4, SHAPE maintains near-identical accuracy compared to vanilla decoding across
all models and tasks. On MATH500, accuracy differences are within 0.3%, while AIME24 and
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LiveCodeBench v5 show maximum deviations of 1.3% and 0.8% respectively. These results confirm
SHAPE’s robustness on reasoning-heavy, long-chain tasks while delivering 4-5× speedups.

Table 4: Accuracy comparison on reasoning-intensive tasks (Vanilla / SHAPE)
Model MATH500 AIME24 LiveCodeBench v5

Qwen3-32B 97.2 / 97.16 81.4 / 80.8 65.7 / 65.3
Qwen3-8B 97.4 / 97.1 76.0 / 74.7 57.5 / 56.9
DeepSeek-R1-Distill-Qwen-32B 94.3 / 93.2 72.6 / 72.2 54.5 / 54.1
DeepSeek-R1-Distill-Qwen-14B 93.9 / 92.1 69.7 / 68.9 45.5 / 44.7

Token-Level Analysis. Supplementary evaluations (Appendix Tables 12 and 10) show SHAPE
achieves token prediction accuracy of 0.85-0.92 for 1-3 token lookahead, with lower perplexity com-
pared to alternative acceleration methods. Semantic similarity metrics (BERTScore and embedding
cosine distance) confirm strong alignment with standard decoding outputs.

4.3 ABLATION STUDY

4.3.1 EFFECTIVENESS OF OPTIMAL TRANSPORT

SHAPE employs optimal transport (OT) to model hidden state transitions, motivated by our obser-
vation that transformer hidden states maintain a minimum level of similarity between tokens at t and
t+n. This ”baseline similarity” indicates a theoretically valid pathway for transferring hidden states
through optimal transport. Unlike autoregressive models that predict step-by-step, our OT approach
captures global transition patterns by finding the optimal mapping to future states (t+n). To validate
the effectiveness of OT over simpler alternatives, we conducted comparative experiments replacing
the OT mapping with an affine transformation of the same dimensionality (d = 128). Table 5
presents the results on Llama-7B using the Alpaca dataset with TRS configuration (N = 3,K = 3).

Table 5: Comparison of OT with affine transformation and analysis of different dimensionalities on
Llama-7B (Alpaca). Baseline AR decoding achieves PPL=11.9.

Method PPL Speedup

Affine (d=128) 18.4 3.87×
OT (d=128) 12.2 3.21×

d Value PPL Speedup

32 17.3 3.87×
64 16.1 3.66×

128 12.2 3.21×
4096 (full) 12.1 2.67×

The results demonstrate that OT significantly outperforms simple affine transformations, reducing
perplexity from 18.4 to 12.2 - approaching the baseline AR performance of 11.9. This validates
our hypothesis that OT’s ability to find optimal global mappings is crucial for accurate multi-step
prediction. Furthermore, we analyzed the impact of dimensionality d on OT performance. As
shown in Table 5 (right), increasing d from 32 to 128 consistently improves perplexity, with the
most significant gains occurring at d = 128. Interestingly, using the full dimensionality (d =
4096) provides minimal perplexity improvement (12.1 vs 12.2) while reducing speedup by 17%,
confirming that our low-dimensional OT approach effectively captures essential transition patterns.

4.3.2 EFFECTIVENESS OF TREE REJECTION SAMPLING

We evaluate the proposed Tree Rejection Sampling (TRS) mechanism by analyzing the speed-
accuracy trade-off across various configurations with K,N ∈ [1, 5]. As shown in Table 6, increasing
N improves speedup but raises perplexity due to multi-step prediction errors, while increasing K
reduces perplexity by providing more candidate choices at the cost of verification overhead. The
configuration (K = 3, N = 3) achieves the optimal balance with 3.21× speedup and 12.2 PPL, rep-
resenting the best efficiency-quality trade-off for practical deployment. Comparative analysis with
conventional decoding methods (Table 7) confirms TRS’s superiority. While beam search marginally
improves perplexity (11.7 vs. 11.9), it incurs a 10% slowdown. In contrast, TRS delivers substantial
acceleration while maintaining competitive generation quality, successfully addressing efficiency
challenges in decoder-only LLM inference.
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Table 6: TRS performance under different tree configurations (Speedup/PPL)

K
Depth (N )

1 2 3 4 5

1 1.91/17.3 2.71/16.7 3.40/16.1 3.80/16.5 4.10/17.0
2 1.90/16.9 2.65/16.5 3.30/14.0 3.50/14.5 3.70/15.0
3 1.88/16.5 2.59/16.3 3.21/12.2 3.40/13.0 3.55/14.0
4 1.83/16.3 2.46/15.8 3.15/12.15 3.28/12.8 3.40/13.2
5 1.75/16.1 2.33/15.2 3.09/12.1 3.25/12.5 3.35/12.9

Table 7: Comparison of TRS with standard decoding methods
Method Speedup PPL

AR (Baseline) 1.0× 11.9
Greedy 1.0× 11.9
Beam Search 0.9× 11.7

TRS (3, 3) 3.21× 12.2

5 RELATED WORK

Recent studies have highlighted the significant inference latency of Large Language Models (LLMs),
prompting various acceleration strategies that can be categorized by their underlying methodologies.
on-autoregressive approaches represent initial attempts at acceleration. Non-autoregressive transla-
tion (NAT) techniques have been investigated in translation tasks (6; 18), it performs suboptimally
in general LLM scenarios. To address this, Huang et al. (7) proposed a layer-wise iterative method-
ology that each layer leverages decoding results from preceding layers. Similarly, Santilli et al. (16)
formalized autoregressive decoding through parallel Jacobi and Gauss-Seidel fixed-point iteration.
However, such methods often degrade accuracy due to their deviation from standard autoregressive
architectures. Accuracy-preserving approaches based on model modifications have since emerged.
Block-wise parallel decoding (18) leverages an auxiliary transformer with multi-output capabilities
for parallel token prediction but suffers from frequent verification failures. Medusa (2) improves
robustness with multiple prediction heads, while FREE (1) uses shallow layers for draft generation.
However, these techniques require substantial training of additional components. peculative decod-
ing offers an alternative by using smaller models as draft predictors. For example, Bloom 7.1B has
served as a draft model for a 176B model (25). Yet, this method faces challenges: suitable smaller
models are not always available across model series, and helper models require parallel tuning, in-
creasing deployment complexity. o address these issues, model-free strategies aim to accelerate
decoding without auxiliary models. Ge et al. (4) proposed an input-guided method based on prefix
matching, extended by LLMA (26) through content retrieval from inputs and external documents.
Recently, LookaheadDecoding (7) fused Jacobi iteration with speculative decoding in a multi-branch
framework, though its draft generation incurs non-negligible overhead.

6 CONCLUSION

In this paper, we introduced a novel perspective that reframes autoregressive decoding as a prob-
ability distribution transition process governed by optimal transport principles. We validate this
theoretical framework through SHAPE, which demonstrates predictable hidden state evolution via
transport maps. Experiments across diverse LLMs show speedups of 1.77×-5.23× with maintained
quality, confirming token generation can be understood as structured transport in probability space.
This work establishes a new paradigm for efficient LLM inference beyond draft-based approaches.

9
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A TOKEN-LEVEL AUTOREGRESSIVE GENERATION

A.1 SINGLE-STEP GENERATION PROCESS

In autoregressive language models, token generation follows a step-by-step process. At each time
step t, given the sequence of previous tokens (x1, x2, . . . , xt), the probability of generating the next
token xt+1 is:

P (xt+1|x1, . . . , xt) (1)

A.2 OUTPUT HIDDEN STATE BASED GENERATION

The generation process involves the final layer’s hidden states:

ht = Transformer(x1, . . . , xt) (2)

P (xt+1|x1, . . . , xt) = LLM head(ht) (3)

where ht ∈ Rd represents the final layer’s hidden state at time step t, and LLM head is a linear
transformation that maps the hidden state to token probabilities over the vocabulary.

B MODEL AR DECODING PERFORMANCE METRICS

Table 8 presents the average token generation time across different model sizes and context lengths.
The results clearly demonstrate that larger models and longer contexts significantly increase per-
token latency, which accumulates due to the sequential nature of autoregressive decoding. These
findings highlight the importance of optimizing the decoding process to ensure practical deployment
efficiency.

Table 8: Autoregressive Decoding Latency across Different Input Lengths and Model Scales
Model (B) Input Length ITL (ms) TTFT (ms) Duration (s/req)

1.5

256 3.83 24.58 0.56
512 3.85 33.91 0.80

1024 3.83 55.05 1.52
2048 3.98 118.47 1.38

7

256 7.16 42.93 1.06
512 7.12 73.25 1.67

1024 7.15 118.62 2.88
2048 7.17 274.23 2.65

14

256 11.90 76.58 1.78
512 11.92 134.24 2.57

1024 11.98 253.11 4.92
2048 12.12 603.10 4.64

32

256 22.26 116.42 3.31
512 22.28 211.08 4.76

1024 22.44 392.29 9.13
2048 22.55 924.34 8.64

C THEORETICAL ANALYSIS OF OPTIMAL TRANSPORT

Lemma A (Lipschitz map from hidden state to distribution). Let ℓ = Wh and p =
softmax(ℓ/τs). If ∥W∥2 ≤ LW and h is confined to a bounded set, then there exists LS > 0
such that

∥p(h1)− p(h2)∥1 ≤ LSLW

τs
∥h1 − h2∥2.

12
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Sketch. Softmax on bounded domains is Lipschitz in ℓ2 (or ℓ∞); composing with the linear map W
yields the claim.

Lemma B (Similarity ⇒ small OT move). Let µt =
∑

i pt(i)δEi and µt+1 be defined analo-
gously. Under Lemma A, there exists L′ > 0 (depending on W, τs, E) such that

Wc(µt, µt+1) ≤ L′ ∥ht+1 − ht∥2.

If we normalize h̄t = ht/∥ht∥2, then ∥h̄t+1 − h̄t∥2 ≤
√

2(1− cos(ht,ht+1)), hence

Wc(µt, µt+1) ≤ L̃
√

1− SC(ht,ht+1).

Sketch. Use the Kantorovich–Rubinstein dual bound with ℓ1 variation of p and the diameter of the
embedding support, plus the cosine–ℓ2 relation.

Proposition C (Existence, stability, and uniqueness of Π⋆
t ).

Π⋆
t = arg min

Π1=pt, Π⊤1=pt+1

〈
Π, C

〉
+ εKL

(
Π
∥∥ptp

⊤
t+1

)
, ε > 0, (4)

For any ε > 0, the entropic OT problem in equation 4 admits a unique solution Π⋆
t ; moreover,

when Wc(µt, µt+1) is small, Π⋆
t depends smoothly on (pt,pt+1) and can be well-approximated by

a few Sinkhorn iterations. Sketch. Entropic regularization makes the objective strictly convex over
the transport polytope; standard Sinkhorn–Knopp scaling solves the KKT system, and continuity
follows from the implicit function theorem on the strictly convex objective.

Corollary D (OT-optimal path between successive distributions). By Proposition C, the cou-
pling Π⋆

t induces a row-stochastic operator Kt such that pt+1 = K⊤
t pt holds exactly at optimality

and approximately under finite Sinkhorn iterations, thereby defining the OT-optimal path for the
one-step distributional transition. Sketch. Row normalization rewrites the marginal constraints; the
equality follows from Π⋆

t
⊤1 = pt+1.

D THEORETICAL ANALYSIS OF HIDDEN STATE PREDICTION VIA OPTIMAL
TRANSPORT

We establish a theoretical framework for predicting future hidden states in transformer models
through optimal transport theory. Let (Ω,F , P ) be a probability space and H ⊆ Rd be the hid-
den state space. For any time step t, we define Ht : Ω→ H as the random variable representing the
hidden state at time t, with µt as its probability measure. Let P(H) denote the space of probability
measures onH.

Given the temporal nature of hidden states in transformer models, we first establish their similarity
properties. The similarity between hidden states is measured by cosine similarity:

sim(x, y) =
⟨x, y⟩
∥x∥∥y∥

(5)

Based on empirical observations in transformer models, as shown in Table 9, we make the following
assumption:

For any adjacent time steps t and t+ 1, the hidden states maintain a minimum similarity threshold:

∀x, y ∈ H : sim(x, y) > T (6)

where x and y are hidden states with positive probability under µt and µt+1 respectively.

This assumption leads to our first key result regarding the bounded evolution of hidden states:

Under Assumption 1, there exists a constant M > 0 such that the 2-Wasserstein distance between
consecutive hidden state distributions is bounded:

W2(µt, µt+1) ≤M (7)
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Consider any hidden states x, y ∈ H with positive probability under µt and µt+1 respectively. From
Assumption 1:

1− ⟨x, y⟩
∥x∥∥y∥

≤ T (8)

This implies:
⟨x, y⟩ ≥ T∥x∥∥y∥ (9)

Define the Euclidean metric d(x, y) = ∥x− y∥2. We can expand:
d2(x, y) = ∥x∥2 + ∥y∥2 − 2⟨x, y⟩ (10)

≤ ∥x∥2 + ∥y∥2 − ∥x∥∥y∥ (11)

= (∥x∥ − ∥y∥)2 (12)

SinceH is bounded in Rd, there exists R > 0 such that ∥x∥ ≤ R for all x ∈ H. Therefore:
d2(x, y) ≤ 4R2 (13)

Taking M = 2R completes the proof.

This lemma establishes that the evolution of hidden states is well-behaved, allowing us to formulate
our main theorem:

There exists a cost function c : H × H → R+ such that the hidden state evolution from time t to
t+ k can be represented as an optimal transport problem:

min
π∈Π(µt,µt+k)

∫
H×H

c(x, y)dπ(x, y) (14)

where Π(µt, µt+k) denotes the set of joint distributions with marginals µt and µt+k. Moreover, this
problem admits an optimal solution π∗.

We construct the proof in three steps. First, we define the cost function c(x, y) = d2(x, y), where d
is the Euclidean metric. This choice is natural as it preserves the geometric structure of the hidden
state space.

Second, from Lemma 1, we know that for adjacent time steps:

W 2
2 (µt, µt+1) = inf

π∈Π(µt,µt+1)

∫
H×H

d2(x, y)dπ(x, y) ≤M2 (15)

For multi-step evolution (k > 1), we can apply the Chapman-Kolmogorov equation. There exist
intermediate measures π1, ..., πk−1 such that:

W 2
2 (µt, µt+k) ≤ (

k−1∑
i=0

W2(µt+i, µt+i+1))
2 ≤ k2M2 (16)

Finally, the existence of an optimal solution follows from three key properties: 1) P(H) is com-
pact in the weak topology 2) The cost function c(x, y) is lower semi-continuous 3) The objective
functional is bounded below

By the Kantorovich duality theorem, there exists an optimal solution π∗ ∈ Π(µt, µt+k) achieving:∫
H×H

c(x, y)dπ∗(x, y) = inf
π∈Π(µt,µt+k)

∫
H×H

c(x, y)dπ(x, y) (17)

This theoretical framework provides a rigorous foundation for predicting hidden states through op-
timal transport. Given a hidden state ht at time t, we can predict ht+k by:

ht+k =

∫
H
ydπ∗(y|ht) (18)

Moreover, we can establish an error bound for this prediction:
∥ht+k − h∗

t+k∥2 ≤ kM (19)
where h∗

t+k denotes the true hidden state at time t+ k.
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Table 9: Token similarity between the token at time t and t+n across various contexts.
qwen-zh qwen-en vicuna llama

t+1 t+2 t+3 t+1 t+2 t+3 t+1 t+2 t+3 t+1 t+2 t+3
0.8744 0.8447 0.8383 0.6304 0.5273 0.4976 0.5392 0.4647 0.4358 0.645 0.5729 0.5443
0.8677 0.8235 0.814 0.6272 0.5703 0.5503 0.5282 0.4287 0.4062 0.6411 0.5829 0.552
0.8666 0.8213 0.8027 0.6217 0.5334 0.5027 0.526 0.436 0.4174 0.6351 0.5647 0.5422
0.8607 0.8171 0.7849 0.6189 0.5478 0.5316 0.5248 0.4285 0.4121 0.6329 0.5598 0.5322
0.8599 0.8314 0.8195 0.6157 0.5459 0.5435 0.5165 0.4208 0.4023 0.6261 0.5456 0.523
0.8587 0.821 0.8079 0.6122 0.5373 0.5199 0.5165 0.4185 0.3951 0.6236 0.5503 0.5309
0.8574 0.829 0.809 0.6118 0.5426 0.5239 0.516 0.422 0.4008 0.622 0.5407 0.5141
0.8544 0.8209 0.8052 0.6107 0.5384 0.5291 0.5149 0.416 0.3971 0.6214 0.5391 0.5151
0.8536 0.823 0.8071 0.6098 0.5303 0.5144 0.5121 0.4031 0.3832 0.6197 0.531 0.5091
0.8535 0.8141 0.7921 0.6093 0.5295 0.5046 0.5113 0.4153 0.3913 0.6197 0.531 0.5091

E QUALITY EVALUATION

Table 10: Comparison of perplexity (ppl) across different decoding methods (EAGLE, M-1:
Medusa-1, M-2: Medusa-2, and SHAPE) on various DS: datasets (A: Alpaca, T: THUC news,
W: wiki lingua).

Model Dataset EAGLE M-1 M-2 SHAPE

Qwen-7B
A 13.2 15.1 14.6 11.9
T – – – 12.3
W 13.5 15.3 14.8 12.1

Qwen-14B
A 12.9 14.1 13.7 11.8
T – – – 11.5
W 13.2 14.2 13.6 11.7

Llama-7B A 13.1 15.0 14.4 12.2
W 13.4 15.2 14.6 12.4

Llama-13B A 12.8 14.0 13.5 12.3
W 13.1 14.1 13.7 12.5

Vicuna-7B A 13.0 15.2 14.3 12.1
W 13.3 15.3 14.4 12.4

Vicuna-13B A 12.9 14.2 14.0 11.7
W 13.0 14.3 14.1 12.0
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Table 11: SHAPE’s Average speed-up ratio compared with vanilla generation on different datasets

Model
(Size) Datasets Task

Speed Up

N step forward

1 2 3

Qwen-7B
Alpaca Intruction Following 1.90 2.47 4.12

THUC News Text Continuation 1.96 2.51 4.09
wiki lingua Text Generation 1.93 2.55 4.07

Qwen-14B
Alpaca Intruction Following 1.87 2.55 3.89

THUC News Text Continuation 1.99 2.65 4.02
wiki lingua Text Generation 1.89 2.77 4.05

Llama-7B Alpaca Intruction Following 1.88 2.59 3.21
wiki lingua Text Generation 1.91 2.69 3.34

Llama-13B Alpaca Intruction Following 1.89 2.51 3.22
wiki lingua Text Generation 1.90 2.53 3.20

Vicuna-7B Alpaca Intruction Following 1.83 2.57 3.24
wiki lingua Text Generation 1.87 2.56 3.29

Vicuna-13B Alpaca Intruction Following 1.89 2.68 3.38
wiki lingua Text Generation 1.91 2.77 3.21

Table 12: Comparison of performance metrics between vanilla decoding (baseline) and SHAPE
across different N-step forward prediction configurations.

Model Size Datasets Task

Average
Token Accuracy

Average
BERTScore

Average
Sentence Similarity

N step forward

1 2 3 / 1 2 3 / 1 2 3
V S S S V S S S

Qwen

7B
Alpaca IF 0.91 0.89 0.86 0.74 0.71 0.68 0.65 0.94 0.92 0.88 0.84

THUC News TC 0.92 0.87 0.85 0.75 0.70 0.67 0.66 0.93 0.90 0.89 0.82
wiki lingua TG 0.91 0.88 0.86 0.72 0.69 0.65 0.63 0.92 0.87 0.85 0.81

14B
Alpaca IF 0.91 0.89 0.86 0.76 0.73 0.70 0.68 0.95 0.92 0.91 0.85

THUC News TC 0.90 0.88 0.85 0.74 0.71 0.68 0.67 0.94 0.89 0.87 0.84
wiki lingua TG 0.91 0.87 0.85 0.75 0.70 0.66 0.64 0.93 0.88 0.85 0.80

Llama
7B Alpaca IF 0.90 0.89 0.86 0.60 0.59 0.55 0.52 0.82 0.78 0.75 0.70

wiki lingua TG 0.89 0.87 0.85 0.63 0.60 0.58 0.54 0.80 0.76 0.73 0.69

13B Alpaca IF 0.90 0.88 0.87 0.54 0.53 0.51 0.49 0.76 0.73 0.70 0.67
wiki lingua TG 0.89 0.87 0.86 0.56 0.54 0.50 0.47 0.78 0.74 0.71 0.68

Vicuna
7B Alpaca IF 0.91 0.88 0.86 0.56 0.55 0.52 0.50 0.76 0.74 0.71 0.68

wiki lingua TG 0.89 0.87 0.85 0.58 0.56 0.54 0.52 0.78 0.75 0.72 0.69

13B Alpaca IF 0.90 0.88 0.85 0.58 0.57 0.54 0.52 0.79 0.76 0.73 0.70
wiki lingua TG 0.90 0.87 0.87 0.59 0.57 0.53 0.51 0.80 0.77 0.74 0.71

F TRAIN DETAILS AND TRAINING COST

F.1 DATA ACQUISITION AND GENERATION

For the English dataset used to train models such as Qwen, Vicuna, and Llama on 7B, 13B, and 14B,
we use ShareGPT as the dataset, which contains 96,000 dialogue data samples. For the Chinese
dataset, we use the THUCNews training set, consisting of 50,000 news samples, split into two parts:
”prompt” and ”completion”. The target model processes pre-processed data to generate outputs
from the transformer layers for each token. The training data includes fields such as input token IDs,
hidden states, hidden states from the previous three tokens, target values, attention masks, and loss
masks. These components are combined to construct the final training dataset.
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F.2 TRAIN CONFIGURATION

The training configuration includes the following settings: Learning rate (lr) and batch size (bs) are
dynamically adjusted, with gradient accumulation steps set to ensure stable training. The number of
epochs is set to 40, and a warm-up phase of 2,000 steps is applied, targeting a total of 800,000 steps.
The configuration employs a maximum sequence length of 2,048 tokens, balancing performance
and memory efficiency. To improve robustness, data noise is introduced using a uniform distribution
with a mean of 0 and a standard deviation of 0.2. Additional settings include weight decay, gradient
clipping, and periodic model saving every epoch. Finally, the optimizer uses momentum parameters
(b1 = 0.9, b2 = 0.95) to facilitate effective training convergence.

F.3 TRAINING COST

We compare SHAPE with Medusa (+2 heads) in terms of parameter count and computational ef-
ficiency. SHAPE contains approximately 450.98M parameters (6.4% of LLaMA-7B), achieved
through parameter sharing and lightweight modules such as OT projection and a gating network.
In contrast, Medusa adds 300M parameters per head, reaching 610M (9% of LLaMA-7B) with
two heads. Thus, SHAPE uses only 71.5% of the parameters of Medusa+2 heads and requires no
per-head adaptation. In training, SHAPE is 3–5× faster than full model fine-tuning and requires
only 5 hours for 40 epochs on a single A100 GPU, compared to 8 hours for Medusa. Peak training
memory usage is also lower: 41.89GB for SHAPE versus 51.47GB for Medusa. During inference,
SHAPE achieves maxium 5.23x speedup through one hidden state correction step (OT module) and
tree rejection sampling. In contrast, Medusa incurs higher overhead due to additional multi-head
attention and memory usage, limiting its speedup to 1.8–3.1×.

G TREE-BASED REJECT SAMPLING ALGORITHM IMPLEMENTATION

Algorithm 1 Tree Rejection Sampling
Require: model: target language model

1: context: current context or hidden state at time step t
2: N : number of future steps (depth)
3: k: number of candidates per step (branch factor)

Ensure: selected prefix: the longest valid prefix among accepted paths

4: candidate paths ← generate candidates(model, context,N, k) // Generate kN candi-
date sequences

5: path probs ← model.get path probabilities(candidate paths) // Compute joint proba-
bilities in parallel

6: max prob← max(path probs)
7: threshold ← 0.8 × max prob // Define acceptance threshold (e.g. 80% of the maximum

probability)
8: accepted paths← []
9: for each (path, prob) in (candidate paths, path probs) do

10: if prob ≥ threshold then
11: accepted paths.append(path) // Retain paths with sufficiently high probability
12: end if
13: end for
14: selected prefix ← select longest valid prefix(accepted paths) // Extract the longest

prefix common to accepted paths
return selected prefix
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