

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FEDEM: A PRIVACY-PRESERVING FRAMEWORK FOR CONCURRENT UTILITY PRESERVATION IN FEDERATED LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Federated Learning (FL) enables collaborative model training across distributed clients without sharing local data, thus reducing privacy risks in decentralized systems. However, the exposure of gradients during training can lead to significant privacy leakage, particularly under gradient inversion attacks. To address this issue, we propose Federated Error Minimization (FedEM), an input-level defense framework that injects learnable perturbations into client data and jointly optimizes both the model and the perturbation generator. Unlike traditional Differential Privacy methods that modify gradients, FedEM achieves a stricter privacy-utility trade-off by perturbing inputs directly. We validate the effectiveness of FedEM through extensive experiments on benchmark datasets. For example, on MNIST, FedEM achieves only a 0.08% decrease in accuracy compared to FedSGD, while significantly improving privacy metrics, with MSE improved by 46.2% and SSIM reduced by 69.3%. These results demonstrate that FedEM effectively mitigates gradient leakage attacks with minimal utility loss, providing a robust and scalable solution for privacy-preserving federated learning.

1 INTRODUCTION

Federated learning has emerged as a promising paradigm for collaborative machine learning, enabling multiple clients to jointly train a global model without directly sharing their local data (McMahan et al., 2017; Li et al., 2024). By preserving data decentralization, FL addresses privacy concerns while leveraging the diverse data distributions across clients. However, despite its advantages, FL is still vulnerable to privacy threats. Adversaries can exploit weaknesses in gradient-sharing techniques, which makes it challenging to design reliable and privacy-preserving FL systems.

Existing attack techniques, such as membership inference (Shokri et al., 2017), property inference (Melis et al., 2019), and gradient leakage attacks (GLAs) (Zhu et al., 2019), can compromise client privacy in FL environments. Among these, GLAs have drawn significant attention because they exploit shared gradients to recover the original training data, potentially revealing sensitive information about clients. These threats highlight the urgent need for effective privacy protection mechanisms in FL.

Several methods have been proposed to mitigate privacy risks in FL. Encryption-based techniques (Xu et al., 2019) offer robust privacy guarantees but introduce substantial computational and communication overhead, limiting scalability in resource-constrained environments. Differential privacy (DP) approaches, such as Centralized DP (CDP)(Geyer et al., 2017) and Local DP (LDP)(Sun et al., 2020), provide alternative solutions. However, these methods often degrade model performance due to the noise they introduce, particularly in LDP settings where noise is directly added to gradients. Achieving an optimal balance between privacy and utility remains a persistent challenge in FL research.

In this work, we draw inspiration from data poisoning techniques and introduce a novel algorithm, FedEM, aimed at enhancing privacy while minimizing performance degradation. Unlike traditional DP methods, which inject noise into gradients, FedEM incorporates controlled perturbations directly into the client data. These perturbations are carefully crafted to reduce the risk of data reconstruc-

054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 158

108 strong privacy guarantees without requiring a trusted server. However, its considerable computational
 109 complexity hinders deployment in resource-constrained environments.
 110

111 DP-based techniques are more commonly adopted in federated learning and are typically categorized
 112 into CDP and LDP (Jiang et al., 2024a). CDP methods (Geyer et al., 2017; Miao et al., 2022)
 113 assume a trusted server and inject noise during aggregation to mitigate membership and property
 114 inference attacks. While effective in those contexts, CDP offers limited protection against gradient
 115 leakage. In contrast, LDP adds noise directly to gradients before they are uploaded (Sun et al., 2020;
 116 Liu et al., 2020; Kim et al., 2021; Wang et al., 2023), offering stronger protection against gradient
 117 inversion. However, this noise often severely impairs model utility. To alleviate this, shuffling-based
 118 enhancements (Girgis et al., 2021) have been proposed, which reduce the required noise magnitude
 119 and improve the trade-off between privacy and performance. We summarize the most relevant works
 here and defer a more extensive survey to Appendix B.
 120

121 3 THE FEDEM ALGORITHM FOR PRIVACY PROTECTION

123 3.1 FEDERATED LEARNING

125 We consider a federated learning system with K clients, each holding a private dataset \mathcal{D}_k . The joint
 126 objective is to train a global model without sharing raw data:
 127

$$128 \min_{\theta} \sum_{k=1}^K \frac{m_k}{m} \cdot \mathcal{L}_k(\theta), \quad (1)$$

131 where $m_k = |\mathcal{D}_k|$ and $m = \sum_{k=1}^K m_k$.
 132

133 In each communication round, the server distributes the global model to clients, who then update
 134 it locally using their private data. The server subsequently aggregates these updates (e.g., FedAvg
 135 (McMahan et al., 2017)) to form a new global model. This iterative process continues until conver-
 136 gence and constitutes the standard FL pipeline, which serves as the basis for our FedEM framework.
 137

138 3.2 THREAT MODEL

139 We assume all participants follow the prescribed federated training protocol. The server is modeled
 140 as honest-but-curious: it faithfully executes the protocol but may analyze received parameter updates
 141 to infer private client information. Consistent with standard assumptions, the server also knows the
 142 global model architecture and parameters.
 143

144 For classification tasks, the ground-truth label y can typically be inferred directly from the last-layer
 145 gradients (Zhao et al., 2020). Therefore, we assume y is known to the server, and the attack focuses
 on recovering the input x . Formally, the attacker solves:
 146

$$147 \min_x \|\nabla_{\theta} \mathcal{L}(x, y) - g\|, \quad (2)$$

148 where $\nabla_{\theta} \mathcal{L}(x, y)$ denotes the gradient with respect to model parameters computed on a candidate
 149 input x with label y , and g is the observed gradient from the client. By minimizing this discrepancy,
 150 the server can reconstruct inputs that closely approximate the original private data.
 151

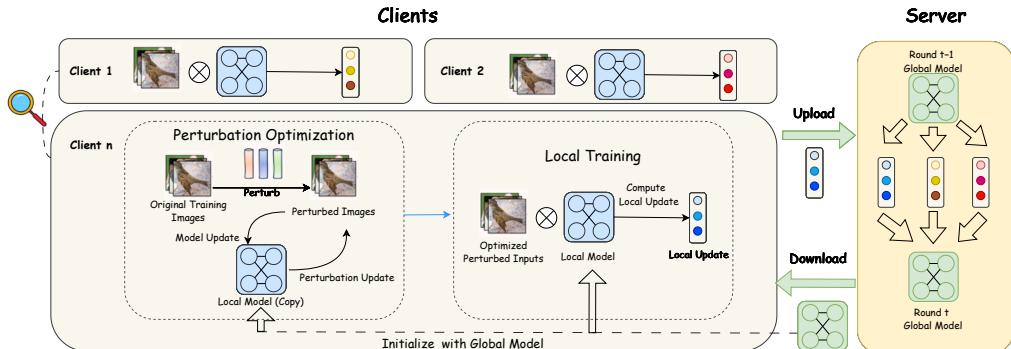
152 3.3 FEDEM

154 We propose a novel mechanism, FedEM, which introduces perturbations directly to clients' local
 155 data. By strategically injecting perturbations into the data, FedEM effectively defends against gra-
 156 dient leakage attacks while carefully controlling the magnitude of perturbations to minimize their
 157 impact on model performance.
 158

159 With the introduction of data perturbation, let θ represent the global model parameters, and let δ_k
 160 denote the local perturbation vector for the k -th client, constrained by norm ρ_u^{\min} and ρ_u^{\max} . The input
 161 features x_k and corresponding labels y_k are sampled from the local dataset \mathcal{D}_k , and the predictive
 model f_{θ} minimizes the loss function \mathcal{L} applied to the perturbed data. The optimization objective in
 federated learning is reformulated as follows:
 162

162 Algorithm 1 FedEM (Federated Error-Minimization)

163 Require: Training datasets \mathcal{D}_k (held by each client k); initial global model parameters θ ; local
164 perturbation model parameters θ_u ; number of global rounds T ; learning rate η ; perturbation
165 learning rate α_u ; number of perturbation steps N ; perturbation norm bounds $\rho_u^{\min}, \rho_u^{\max}$
166
167 Ensure: Final model θ
168 1: **Initialize:** θ
169 2: **for** each round $t = 1$ to T **do**
170 3: Server selects a subset of clients C_t
171 4: Server initializes perturbation δ_k for each $k \in C_t$ and sends θ to clients
172 5: Each client traverses its full local dataset \mathcal{D}_k in batches
173 6: **for** each batch index (shared across C_t) **do**
174 7: **for** each client $k \in C_t$ **in parallel do**
175 8: Sample batch $(x_k, y_k) \sim \mathcal{D}_k$, set $\theta_u \leftarrow \theta$
176 9: **for** step $n = 1$ to N **do**
177 10: $\delta_k \leftarrow \delta_k - \alpha_u \cdot \text{sign}(\nabla_{\delta_k} \mathcal{L}_k(f_{\theta_u}(x_k + \delta_k), y_k))$
178 11: Project δ_k to norm constraint: $\delta_k \leftarrow \text{Proj}_{\rho_u^{\min} \leq \|\delta_k\| \leq \rho_u^{\max}}(\delta_k)$
179 12: $\theta_u \leftarrow \theta_u - \eta \cdot \nabla_{\theta_u} \mathcal{L}_k(f_{\theta_u}(x_k + \delta_k), y_k)$
180 13: **end for**
181 14: Upload $g_k = \nabla_{\theta} \mathcal{L}_k(f_{\theta}(x_k + \delta_k), y_k)$
182 15: **end for**
183 16: $\theta \leftarrow \theta - \eta \cdot \frac{1}{|C_t|} \sum_{k \in C_t} g_k$
184 17: **end for**
185 18: **end for**
186 19: **return** Trained global model parameters θ



199 Figure 1: Overview of the FedEM framework. At the beginning of each round, the server distributes
200 the global model to selected clients. Each client performs *perturbation optimization*, where both the
201 local perturbation and local model are updated iteratively. The resulting perturbed inputs are then
202 used in *local training* to compute gradient updates, which are uploaded to the server. The server
203 aggregates all client updates to refresh the global model.

$$\min_{\theta} \min_{\delta_1, \delta_2, \dots, \delta_K} \sum_{k=1}^K \frac{m_k}{m} \mathbb{E}_{(x_k, y_k) \sim \mathcal{D}_k} [\mathcal{L}(f_{\theta}(x_k + \delta_k), y_k)] \quad (3)$$

$$\text{s.t., } \rho_u^{\min} \leq \|\delta_k\| \leq \rho_u^{\max}.$$

212 To solve the above optimization problem, FedEM employs an iterative client-server federated training
213 framework with integrated input-space perturbation. At the beginning of each global communica-
214 tion round, the server selects a subset of clients C_t and broadcasts the current global model
215 parameters θ along with an initial perturbation vector δ_k for each selected client $k \in C_t$. Each client
then partitions its local dataset \mathcal{D}_k into mini-batches and sequentially traverses all batches. For each

batch (x_k, y_k) , the client initializes a local perturbation model copy $\theta_u \leftarrow \theta$. Over N inner steps, the client updates the perturbation vector δ_k using projected gradient descent on the loss with respect to δ_k :

$$\delta_k \leftarrow \text{Proj}_{\rho_u^{\min} \leq \|\delta_k\| \leq \rho_u^{\max}} (\delta_k - \alpha_u \cdot \text{sign}(\nabla_{\delta_k} \mathcal{L}_k(f_{\theta_u}(x_k + \delta_k), y_k))), \quad (4)$$

ensuring that the perturbation remains within a bounded L_2 norm ball. In parallel, the local perturbation model θ_u is updated via gradient descent:

$$\theta_u \leftarrow \theta_u - \eta \cdot \nabla_{\theta_u} \mathcal{L}_k(f_{\theta_u}(x_k + \delta_k), y_k). \quad (5)$$

After completing N perturbation steps for the current batch, the client computes the gradient of the original global model θ using the perturbed input: $g_k = \nabla_{\theta} \mathcal{L}_k(f_{\theta}(x_k + \delta_k), y_k)$, and uploads g_k to the server. The server aggregates the gradients received from all selected clients for this batch, averages them, and immediately performs a model update:

$$\theta \leftarrow \theta - \eta \cdot g_{\text{global}}, \quad (6)$$

where $g_{\text{global}} = \frac{1}{|C_t|} \sum_{k \in C_t} g_k$. This procedure repeats over all local batches and across T global communication rounds. The complete algorithm is provided in Algorithm 1, and its structural overview is illustrated in Figure 1. A complete description of all the notations used throughout the paper is provided in Appendix A.

3.4 CONVERGENCE ANALYSIS

We provide a theoretical guarantee for FedEM under standard smoothness and bounded variance assumptions. The complete assumptions, lemmas, and detailed proofs are deferred to Appendix E.

Theorem 1 (Convergence of FedEM). *Let $f(\theta) = \sum_{k=1}^K \frac{m_k}{m} f_k(\theta)$ be the global objective, assume f is L -smooth and stochastic gradients have bounded variance. Suppose each client perturbation δ_k is bounded by $\|\delta_k\| \leq \rho_u^{\max}$ and client heterogeneity is bounded by ζ^2 . Then with step size $\eta \leq \frac{1}{6L}$, after T updates FedEM satisfies*

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla f(\theta^t)\|^2] = \mathcal{O}\left(\frac{1}{\sqrt{T}}\right) + \mathcal{O}(\rho_u^{\max 2}) + \mathcal{O}(\zeta^2).$$

Theorem 1 shows that FedEM converges to a neighborhood of stationary points, with the neighborhood size controlled by the perturbation radius ρ_u^{\max} . Smaller perturbations tighten convergence but offer weaker privacy, while larger perturbations enhance privacy at the cost of model accuracy.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Datasets, Baselines, and Evaluation Metrics. We conduct experiments on three widely used benchmark datasets in federated learning: MNIST (LeCun et al., 1998), FashionMNIST (Xiao et al., 2017), CIFAR-10, CIFAR-100 (Krizhevsky, 2009) and Tiny-imagenet, to evaluate the effectiveness of the proposed FedEM algorithm. For comparison, we select a variety of privacy-preserving methods as baselines, including standard local differential privacy (LDP) mechanisms Wei et al. (2021) with both Gaussian and Laplace noise, PPFA (Zhang et al., 2023), and LDPM (Jiang et al., 2024b). We evaluate model utility using validation and test accuracy. To assess privacy protection, we measure the quality of reconstructed images obtained by attackers using metrics such as Mean Squared Error (MSE), Structural Similarity Index Measure (SSIM) (Wang et al., 2004), Peak Signal-to-Noise Ratio (PSNR), Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018), and Kullback-Leibler (KL) divergence, which together quantify the difference between reconstructed and original samples.

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
Table 1: Main experimental results across five datasets (MNIST, FMNIST, CIFAR-10, CIFAR-100, and Tiny-ImageNet). Utility metrics are marked with **U**, and privacy metrics with **P**. Arrows indicate preferred direction: \uparrow = higher is better, \downarrow = lower is better.

DATASET	METHOD	VAL ACC (U \uparrow)	TEST ACC (U \uparrow)	MSE (P \uparrow)	PSNR (P \downarrow)	SSIM (P \downarrow)	LPIPS (P \uparrow)	KL (P \uparrow)
MNIST	DP-GAS	0.9774	0.9741	1.3721	9.2340	0.1013	0.6321	3.3368
	DP-LAP	0.9733	0.9717	1.3970	8.8633	0.0455	0.6529	2.9662
	PPFA	0.9663	0.9573	1.2509	9.3820	0.0932	0.6109	3.5123
	LDPM	0.9756	0.9749	1.6201	8.2451	0.0527	0.6444	3.8519
	FEDEM (ours)	0.9809	0.9767	1.8251	7.6982	0.0378	0.6715	4.5235
FMNIST	DP-GAS	0.8664	0.8543	1.1693	8.6704	0.1910	0.5806	2.5319
	DP-LAP	0.8665	0.8497	1.3012	8.3033	0.1158	0.6052	1.6939
	PPFA	0.8473	0.8375	1.3615	8.1524	0.1297	0.5892	2.1581
	LDPM	0.8715	0.8527	1.4241	7.8580	0.0877	0.5809	2.3729
	FEDEM (ours)	0.8719	0.8592	1.4988	7.4209	0.0501	0.6140	2.8601
CIFAR-10	DP-GAS	0.2449	0.2504	1.8638	9.4538	0.0144	0.7549	2.6632
	DP-LAP	0.2195	0.2213	1.9974	9.2169	0.0153	0.7601	2.7273
	PPFA	0.2489	0.2505	1.8693	9.4146	0.0152	0.7548	2.0903
	LDPM	0.2277	0.2278	2.0565	9.0540	0.0170	0.7455	3.2811
	FEDEM (ours)	0.2502	0.2518	2.0685	9.0501	0.0140	0.7954	3.3572
CIFAR-100	DP-GAS	0.2911	0.2839	2.2745	8.0503	0.0344	0.6811	2.4578
	DP-LAP	0.2857	0.2865	1.9363	8.7527	0.0273	0.6644	3.1130
	PPFA	0.2815	0.2753	2.1107	8.2862	0.0421	0.6813	3.2916
	LDPM	0.2833	0.2753	2.2968	8.0068	0.0427	0.7072	2.9708
	FEDEM (ours)	0.2947	0.2870	2.3854	7.9706	0.0303	0.7321	3.5712
TINY-IMAGENET	DP-GAS	0.1495	0.1519	1.9134	8.6360	0.0361	0.7813	6.1659
	DP-LAP	0.1563	0.1587	1.9253	8.4487	0.0130	0.7317	4.6338
	PPFA	0.1525	0.1574	1.9025	8.8802	0.0150	0.7411	6.1615
	LDPM	0.1603	0.1618	1.9268	8.4821	0.0132	0.7746	5.6384
	FEDEM (ours)	0.1612	0.1633	1.9336	8.3714	0.0120	0.7726	6.2263

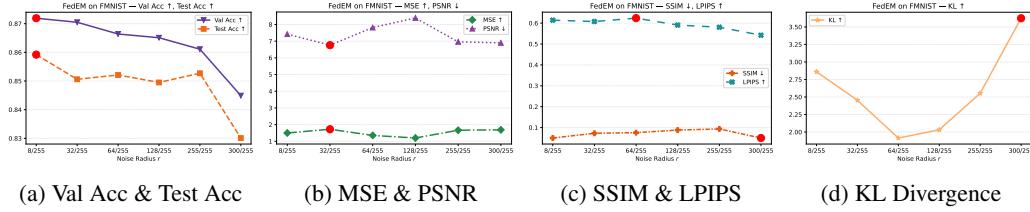


Figure 2: FedEM on FMNIST: Metric trends under varying L_2 -norm radii r in E1. Red dots indicate best-performing radii for each metric.

FL Settings. By default, the federated learning system consists of 4 clients. The global training process runs for 30 communication rounds, with each client performing 1 local training epoch per round. The default local batch size is set to 8. All datasets are split into 70% training, 15% validation, and 15% testing, with data equally partitioned among clients. For MNIST and FashionMNIST, we adopt the LeNet architecture, and for CIFAR-10 we use the ConvNet-64 model. Both local model updates and perturbation generation are optimized using SGD with a learning rate of 0.1 and no weight decay. We adopt the Invert-Grad method (Geiping et al., 2020)—one of the most widely used and representative gradient inversion attack paradigms in existing literature, as the attack model. By default, the perturbation is generated using PGD under L_2 norm. Further implementation details can be found in Appendix D.1.

4.2 MAIN RESULTS

To ensure a fair comparison under high-utility settings, we set the privacy budgets or noise scales of each baseline as follows: for LDP methods, the noise scales is fixed at 1/255; for PPFA, we set $\epsilon=0.995$; for LDPM, we use a noise scale of $\sigma=0.0005$; and for FedEM, the perturbation radius is set to 8/255. For the utility metrics, we report both the validation and test accuracy as the final performance indicators after the model has converged. For the privacy metrics, we select the results from the first global training round (E1) when the gradient leakage attack is launched.

As summarized in Table 1, FedEM consistently achieves state-of-the-art performance across five datasets with varying complexity, ranging from simple handwritten digits (MNIST) to more chal-

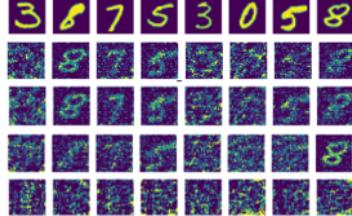


Figure 3: Reconstructed MNIST samples (top to bottom): Original, FedSGD, PPFA, DP-Gas, FedEM.

lenging large-scale benchmarks (CIFAR-100 and Tiny-ImageNet). On MNIST and FashionMNIST, FedEM yields the highest validation and test accuracy while offering the strongest resistance against gradient leakage. Figure 3 shows the reconstructed MNIST samples. On CIFAR-10, although all methods exhibit degraded performance due to the dataset’s complexity, FedEM still maintains the best trade-off. Notably, on CIFAR-100 and Tiny-ImageNet, which present significantly more challenging and diverse distributions, FedEM preserves its advantage, achieving both superior utility and stronger privacy protection compared to existing defenses. These results highlight FedEM’s robustness and scalability, demonstrating that it generalizes effectively across heterogeneous data domains and remains effective even under large-scale, high-dimensional federated learning tasks.

To further illustrate the evolution of the perturbations, we visualize them during FedEM training using a CIFAR-10 image as an example. As shown in Fig. 4: initially, they are nearly imperceptible random noise, but as training progresses, they evolve into structured patterns, highlighting the dynamic role of defensive noise in the learning process.

4.3 EXTENSION TO TEXT DATA UNDER GRADIENT LEAKAGE ATTACKS

To assess the generalizability of FedEM beyond image-based tasks, we conduct experiments on the CoLA dataset for text classification. We simulate federated training with a batch size of 1 and 10 communication rounds per client, and apply the LAMP gradient inversion attack (Balunovic et al., 2022). Utility is measured using Matthews Correlation Coefficient (MCC), while privacy leakage is quantified by ROUGE scores (Lin, 2004) on the reconstructed text.

To adapt FedEM to language models, we inject L_2 -bounded perturbations into the embedding space with a radius of 2.0. As shown in Table 2, FedEM exhibits minimal token-level leakage in qualitative results, with least recognizable tokens reconstructed—unlike other baselines. This demonstrates that our perturbation strategy can be successfully extended from continuous input spaces (e.g., images) to discrete input representations (e.g., word embeddings). Corresponding quantitative results are reported in Table 3. While FedSGD achieves slightly higher MCC due to its lack of defense, it suffers severe leakage across all ROUGE metrics. In contrast, FedEM achieves the lowest ROUGE-1/2/L scores, indicating significantly reduced reconstruction quality, while maintaining competitive utility. These results confirm that FedEM effectively limits gradient-based text recovery attacks in discrete domains without sacrificing task performance. Detailed experimental settings and additional results on other text datasets can be found in Appendix D.4.

Table 3: Performance on the CoLA dataset under gradient leakage attack. MCC indicates utility (\uparrow), while ROUGE-1/2/L (%) measure reconstruction quality of leaked text (\downarrow). Utility metrics are marked with **U**, and privacy metrics with **P**

Figure 4: Evolution of perturbations in FedEM at different perturbation steps (1, 5, 10, 15, 30, 50). Top: original image; middle: perturbed image; bottom: normalized perturbation map. Perturbations are rescaled for visibility, but remain imperceptible to the human eye in the perturbed images.

Table 2: Reconstructed sentences under gradient leakage on CoLA. Tokens matching the original input are highlighted to reflect privacy leakage.

Original	john tries to meet not mary.
FedSGD	john tries not to meet mary.
DP-SGD	john tries not meet maryumatic
Grad-Masked	alyssa not mary tries meet john.
FedEM (ours)	.tries to undergoaneanalysis.

Method	MCC (U \uparrow)	ROUGE-1 (P \downarrow)	ROUGE-2 (P \downarrow)	ROUGE-L (P \downarrow)
FedSGD (no defend)	0.557	88.3	59.6	81.2
DP-SGD	0.551	81.2	42.7	69.4
Gradient Masked	0.555	83.7	53.2	76.7
FedEM (ours)	0.553	79.6	26.1	63.1

378 Table 4: Performance comparison with different methods under large-scale scenarios (50 clients).
379 Utility metrics are marked with **U**, and privacy metrics with **P**. Arrows indicate preferred direction:
380 \uparrow = higher is better, \downarrow = lower is better.

381 DATASET	382 METHOD	383 VAL ACC (U \uparrow)	384 TEST ACC (U \uparrow)	385 MSE (P \uparrow)	386 PSNR (P \downarrow)	387 SSIM (P \downarrow)	388 LPIPS (P \uparrow)	389 KL (P \uparrow)
390 MNIST	DP-GAS	0.9671	0.9671	4.5111	3.7008	0.0192	0.7549	4.2343
	DP-LAP	0.9619	0.9622	4.7501	3.4704	0.0138	0.7682	4.2947
	PPFA	0.9651	0.9661	4.5924	3.6321	0.0171	0.7544	4.3046
	LDPM	0.9650	0.9647	3.1847	5.3353	0.1081	0.5794	4.2762
	FEDEM (OURS)	0.9691	0.9689	4.8032	3.4150	0.0168	0.7685	4.7410
391 FMNIST	DP-GAS	0.8899	0.8894	0.6693	10.990	0.3649	0.3758	1.8011
	DP-LAP	0.8880	0.8889	0.7691	10.320	0.2553	0.4664	2.8238
	PPFA	0.8908	0.8909	0.7088	10.908	0.2748	0.4322	3.7652
	LDPM	0.8882	0.8885	0.7700	10.309	0.2549	0.3926	2.2443
	FEDEM (OURS)	0.8920	0.8911	0.8343	10.034	0.2455	0.4224	2.8061
392 CIFAR-10	DP-GAS	0.4413	0.4420	1.9123	9.4159	0.0323	0.7210	2.8953
	DP-LAP	0.4800	0.4791	1.8817	9.5513	0.0316	0.7181	3.1515
	PPFA	0.4897	0.4918	1.7081	9.9190	0.0245	0.7167	2.0933
	LDPM	0.4933	0.4962	1.4511	10.487	0.0293	0.7102	2.5379
	FEDEM (OURS)	0.5267	0.5238	1.9436	9.2037	0.0235	0.7265	2.6642

393 4.4 SCALABILITY UNDER LARGE CLIENT PARTICIPATION

394 To further evaluate the scalability of our approach, we extend the experiments to a large-scale scenario involving 50 clients. The results on MNIST, FMNIST, and CIFAR-10 are reported in Table 4. 395 FedEM consistently achieves the strongest overall performance, maintaining both high accuracy 396 and robust privacy protection. On MNIST and FMNIST, it provides marginal gains in accuracy over 397 baselines, while delivering superior privacy robustness, reflected in higher MSE, lower PSNR, and 398 competitive LPIPS/KL scores. On CIFAR-10, which poses greater challenges due to high client 399 heterogeneity, FedEM achieves a substantial accuracy improvement (exceeding the best baseline by 400 over 3%) while simultaneously preserving stronger privacy guarantees. These results demonstrate 401 that FedEM scales effectively to settings with large client participation, confirming its robustness 402 under more realistic federated learning conditions.

403 4.5 EFFECT OF PERTURBATION MAGNITUDE ON PRIVACY-UTILITY TRADE-OFF

404 To mitigate the influence of randomness and evaluate the robustness of our approach, we further 405 investigate the performance of different privacy-preserving algorithms under varying perturbation 406 magnitudes. Using the same evaluation metrics introduced in Section 4.2, we plot line charts for 407 each metric. Metrics with similar functionality or value range are grouped within the same subplot. 408 The metric trends for FedEM under different L_2 -norm radii on the FMNIST, CIFAR-10 and MNIST 409 datasets are shown in Figures 2, 5 and 9 (see Appendix D.5.1), respectively.

410 Overall, across all datasets, we observe a consistent pattern: utility performance (e.g., test accuracy) 411 generally declines as the perturbation strength increases. However, the relationship between 412 privacy strength and noise magnitude is not strictly monotonic. In particular, for our proposed 413 method FedEM, a moderate increase in perturbation radius initially leads to stronger privacy 414 protection—as evidenced by improvements in privacy metrics such as LPIPS and MSE—but excessive 415 noise often results in diminishing or fluctuating privacy gains. In contrast, baseline methods (see 416 Appendix D.5.2) such as GasDP and PPFA exhibit a more straightforward pattern: stronger perturbation 417 yields better privacy at the cost of rapidly degraded utility. Remarkably, FedEM achieves 418 comparable or even stronger privacy protection at lower noise levels. This highlights that FedEM 419 strikes a more favorable privacy-utility trade-off, and indicates the advantage of learning-based 420 perturbation mechanisms in flexibly balancing objectives. Comprehensive experimental results for all 421 noise scales and datasets are deferred to Appendix D.5.

422 4.6 GENERALIZATION OF FEDEM TO STRONGER GRADIENT LEAKAGE ATTACKS

423 Table 5: Evaluation of FedEM under the GIAS(Yin et al., 2021) gradient-leakage attack on CIFAR- 424 100.

425 ATTACK	426 METHOD	427 VAL ACC (U \uparrow)	428 TEST ACC (U \uparrow)	429 MSE (P \uparrow)	430 PSNR (P \downarrow)	431 SSIM (P \downarrow)	432 LPIPS (P \uparrow)	433 KL (P \uparrow)
434 GIAS	DP-GAS	0.2911	0.2839	1.5864	10.123	0.0387	0.6237	3.0508
	DP-LAP	0.2857	0.2865	1.7448	9.6432	0.0356	0.6660	3.3219
	PPFA	0.2815	0.2753	1.7318	9.9885	0.0348	0.6552	3.1252
	LDPM	0.2833	0.2753	1.5480	10.192	0.0318	0.6456	3.2615
	FEDEM (OURS)	0.2947	0.2870	1.7513	9.4589	0.0286	0.6729	3.2531

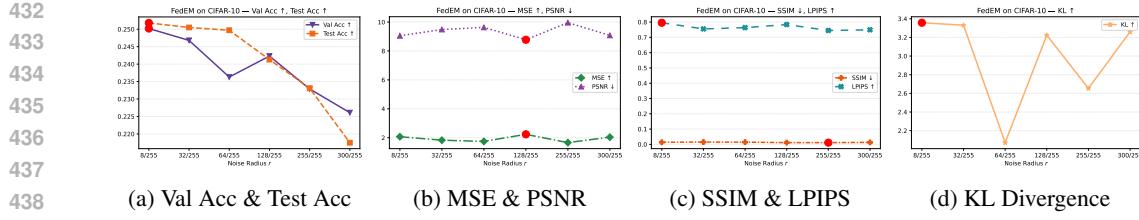


Figure 5: FedEM on CIFAR-10: E1-round performance on all metrics across different L_2 radii. Best performance points are highlighted.

To further evaluate the robustness of FedEM beyond the Inverting-Grad attack, we test its performance under the GIAS attack (Yin et al., 2021) on CIFAR-100. The results are summarized in Table 5. Compared with baselines, FedEM attains the best performance on most metrics. The utility metrics remain stable under different attacks. On the privacy side, FedEM yields the largest MSE and the highest LPIPS, and it achieves the lowest PSNR among the compared methods. While DP-Lap achieves a marginally higher KL divergence, FedEM provides a more consistent advantage across the suite of privacy metrics. These results demonstrate that FedEM generalizes to other reconstruction-based attacks and further validate its robustness and applicability under diverse federated-learning threat models.

4.7 IMPACT OF PERTURBATION LOWER BOUNDS ON FEDEM PERFORMANCE

To further justify the design of FedEM and its use of input perturbation constraints, we experimentally verify a key theoretical insight (lemma 2) proposed in (Zhang et al., 2024): when the applied perturbation has a non-zero lower bound, the resulting privacy leakage remains upper bounded (see Appendix C for detailed discussion). In this study, we vary the lower bound ρ_u^{\min} of the perturbation norm while keeping the upper bound ρ_u^{\max} fixed, and apply gradient leakage attacks in the first training round. For a detailed comparison of FedEM under different lower bound settings on CIFAR-10 (E1), see Table 6. FedSGD, which applies no perturbation, serves as the baseline. Results show that even small non-zero ρ_u^{\min} values already lead to substantial privacy improvements over FedSGD. Increasing ρ_u^{\min} further does not consistently yield better privacy, suggesting diminishing returns. Importantly, across all settings with non-zero perturbation, the privacy leakage remains bounded—confirming Lemma 2, which states that once the distortion exceeds a certain threshold, the privacy loss is upper bounded regardless of the exact lower bound. Comprehensive experimental results are provided in Appendix D.6. (Due to space limitations, we provide convergence analysis and error robustness experiments in Appendix D.2 and D.3.)

Table 6: FedEM performance under different perturbation lower bounds ρ_u^{\min} (with fixed upper bound ρ_u^{\max}) on CIFAR-10, evaluated at training epoch E1. Colors are used to show performance differences relative to the baseline: (light green) indicates increase in performance, and (light orange) indicates decrease in performance.

Method	Val Acc (U↑)	Test Acc (U↑)	MSE (P↑)	PSNR (P↓)	SSIM (P↓)	LPIPS (P↑)	KL (P↑)
FedSGD (baseline)	0.2803	0.2771	1.8219	9.5554	0.0178	0.7556	2.9228
$\rho_u^{\max} = 200/255, \rho_u^{\min} = 25/255$	0.2419 (-0.0384)	0.2479 (-0.0292)	1.8512 (+0.0293)	9.4701 (-0.0857)	0.0157 (-0.0021)	0.7564 (+0.0008)	3.0267 (+0.1039)
$\rho_u^{\max} = 200/255, \rho_u^{\min} = 50/255$	0.2377 (-0.0426)	0.2375 (-0.0396)	1.9897 (+0.1678)	9.1817 (-0.3737)	0.0149 (-0.0029)	0.7614 (+0.0058)	3.6679 (+0.7451)
$\rho_u^{\max} = 200/255, \rho_u^{\min} = 100/255$	0.2061 (-0.0742)	0.2225 (-0.0546)	0.2033 (+0.2114)	9.1708 (-0.3846)	0.0147 (-0.0031)	0.7686 (+0.0130)	2.9418 (+0.0190)
$\rho_u^{\max} = 400/255, \rho_u^{\min} = 50/255$	0.2167 (-0.0636)	0.2283 (+0.0488)	1.9006 (+0.0787)	9.2962 (-0.2592)	0.0147 (-0.0031)	0.7615 (+0.0059)	3.1473 (+0.2245)
$\rho_u^{\max} = 400/255, \rho_u^{\min} = 100/255$	0.1935 (-0.0868)	0.1957 (-0.0814)	1.9620 (+0.1401)	9.1756 (-0.3798)	0.0140 (-0.0038)	0.7630 (+0.0074)	3.0510 (+0.1282)
$\rho_u^{\max} = 400/255, \rho_u^{\min} = 200/255$	0.1827 (-0.0976)	0.2029 (-0.0742)	1.9163 (+0.0944)	9.2915 (-0.2639)	0.0132 (-0.0046)	0.7591 (+0.0035)	3.7197 (+0.7970)

5 CONCLUSION

In this paper, we propose FedEM, a data perturbation-based federated learning framework designed to defend against gradient leakage attacks. Unlike most existing defenses that operate on gradients, FedEM directly perturbs client inputs to preserve model utility while reducing the risk of inversion-based privacy leakage, and comprehensive evaluations across image and text tasks demonstrate that FedEM achieves a more favorable privacy-utility trade-off compared to prior methods. We believe the proposed perturbation-based formulation opens up new possibilities for scalable, privacy-aware learning, and we encourage future work to explore its applicability to other tasks such as robustness enhancement, fairness enforcement, and personalized federated learning.

486 ETHICS STATEMENT
487488 This work adheres to the ICLR Code of Ethics. All datasets used were sourced in compliance with
489 relevant usage guidelines, ensuring no violation of privacy. No personally identifiable information
490 was used, and no experiments were conducted that could raise privacy or security concerns.
491492 REPRODUCIBILITY STATEMENT
493494 We have made every effort to ensure that the results presented in this paper are reproducible. All
495 code and datasets are provided in the supplementary material to facilitate replication and verification.
496 The experimental setup, including training steps, model configurations, and hardware details, is
497 described in detail in the paper.
498499 LLM USAGE
500501 Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
502 Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
503 clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
504 grammar checking, and enhancing the overall flow of the text. It is important to note that the LLM
505 was not involved in the ideation, research methodology, or experimental design. All research con-
506 cepts, ideas, and analyses were developed and conducted by the authors. The contributions of the
507 LLM were solely focused on improving the linguistic quality of the paper, with no involvement in
508 the scientific content or data analysis.
509510 REFERENCES
511

512 Yoshinori Aono, Takuya Hayashi, Lihua Wang, Shihō Moriai, et al. Privacy-preserving deep learn-
513 ing via additively homomorphic encryption. *IEEE transactions on information forensics and*
514 *security*, 13(5):1333–1345, 2017.

515 Mislav Balunovic, Dimitar Dimitrov, Nikola Jovanović, and Martin Vechev. Lamp: Extracting text
516 from gradients with language model priors. *Advances in Neural Information Processing Systems*,
517 35:7641–7654, 2022.

518 Franziska Boenisch, Adam Dziedzic, Roei Schuster, Ali Shahin Shamsabadi, Ilia Shumailov, and
519 Nicolas Papernot. When the curious abandon honesty: Federated learning is not private. In *2023*
520 *IEEE 8th European Symposium on Security and Privacy (EuroS&P)*, pp. 175–199. IEEE, 2023.

521 Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar
522 Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-
523 preserving machine learning. In *proceedings of the 2017 ACM SIGSAC Conference on Computer*
524 *and Communications Security*, pp. 1175–1191, 2017.

525 Cangxiong Chen and Neill DF Campbell. Understanding training-data leakage from gradients in
526 neural networks for image classification. *arXiv preprint arXiv:2111.10178*, 2021.

527 Liam Fowl, Jonas Geiping, Wojtek Czaja, Micah Goldblum, and Tom Goldstein. Robbing the
528 fed: Directly obtaining private data in federated learning with modified models. *arXiv preprint*
529 *arXiv:2110.13057*, 2021.

530 Liam Fowl, Jonas Geiping, Steven Reich, Yuxin Wen, Wojtek Czaja, Micah Goldblum, and Tom
531 Goldstein. Decepticons: Corrupted transformers breach privacy in federated learning for language
532 models. *arXiv preprint arXiv:2201.12675*, 2022.

533 Karan Ganju, Qi Wang, Wei Yang, Carl A Gunter, and Nikita Borisov. Property inference attacks
534 on fully connected neural networks using permutation invariant representations. In *Proceedings*
535 *of the 2018 ACM SIGSAC conference on computer and communications security*, pp. 619–633,
536 2018.

540 Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients-
 541 how easy is it to break privacy in federated learning? *Advances in neural information processing*
 542 *systems*, 33:16937–16947, 2020.

543

544 Robin C Geyer, Tassilo Klein, and Moin Nabi. Differentially private federated learning: A client
 545 level perspective. *arXiv preprint arXiv:1712.07557*, 2017.

546

547 Antonious Girgis, Deepesh Data, Suhas Diggavi, Peter Kairouz, and Ananda Theertha Suresh. Shuf-
 548 fled model of differential privacy in federated learning. In *International Conference on Artificial*
 549 *Intelligence and Statistics*, pp. 2521–2529. PMLR, 2021.

550

551 Hanxun Huang, Xingjun Ma, Sarah Monazam Erfani, James Bailey, and Yisen Wang. Unlearnable
 552 examples: Making personal data unexploitable. *arXiv preprint arXiv:2101.04898*, 2021.

553

554 Shui Jiang, Xiaoding Wang, Youxiong Que, and Hui Lin. Fed-mps: Federated learning with local
 555 differential privacy using model parameter selection for resource-constrained cps. *Journal of*
 556 *Systems Architecture*, 150:103108, 2024a.

557

558 Yangfan Jiang, Xinjian Luo, Yuncheng Wu, Xiaokui Xiao, and Beng Chin Ooi. Protecting label
 559 distribution in cross-silo federated learning. In *2024 IEEE Symposium on Security and Privacy*
 560 (*SP*), pp. 4828–4847. IEEE, 2024b.

561

562 Muah Kim, Onur Günlü, and Rafael F Schaefer. Federated learning with local differential privacy:
 563 Trade-offs between privacy, utility, and communication. In *ICASSP 2021-2021 IEEE Interna-*
 564 *tional Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 2650–2654. IEEE,
 565 2021.

566

567 Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
 568 of Toronto, 2009. Technical Report.

569

570 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
 571 document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.

572

573 Jian Li, Tongbao Chen, and Shaohua Teng. A comprehensive survey on client selection strategies in
 574 federated learning. *Computer Networks*, pp. 110663, 2024.

575

576 Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In *Text summarization*
 577 *branches out*, pp. 74–81, 2004.

578

579 Ruixuan Liu, Yang Cao, Masatoshi Yoshikawa, and Hong Chen. Fedsel: Federated sgd under
 580 local differential privacy with top-k dimension selection. In *Database Systems for Advanced*
 581 *Applications: 25th International Conference, DASFAA 2020, Jeju, South Korea, September 24–*
 582 *27, 2020, Proceedings, Part I 25*, pp. 485–501. Springer, 2020.

583

584 Jiahao Lu, Xi Sheryl Zhang, Tianli Zhao, Xiangyu He, and Jian Cheng. April: Finding the achilles’
 585 heel on privacy for vision transformers. In *Proceedings of the IEEE/CVF Conference on Computer*
 586 *Vision and Pattern Recognition*, pp. 10051–10060, 2022.

587

588 Abbas Madi, Oana Stan, Aurélien Mayoue, Arnaud Grivet-Sébert, Cédric Gouy-Pailler, and Re-
 589 naud Sirdey. A secure federated learning framework using homomorphic encryption and verifi-
 590 able computing. In *2021 Reconciling Data Analytics, Automation, Privacy, and Security: A Big*
 591 *Data Challenge (RDAAPS)*, pp. 1–8. IEEE, 2021.

592

593 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 594 Communication-efficient learning of deep networks from decentralized data. In *Artificial intelli-*
 595 *gence and statistics*, pp. 1273–1282. PMLR, 2017.

596

597 Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. Exploiting unintended
 598 feature leakage in collaborative learning. In *2019 IEEE symposium on security and privacy (SP)*,
 599 pp. 691–706. IEEE, 2019.

600

601 Lu Miao, Wei Yang, Rong Hu, Lu Li, and Liusheng Huang. Against backdoor attacks in feder-
 602 ated learning with differential privacy. In *ICASSP 2022-2022 IEEE International Conference on*
 603 *Acoustics, Speech and Signal Processing (ICASSP)*, pp. 2999–3003. IEEE, 2022.

594 Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive privacy analysis of deep learning:
 595 Passive and active white-box inference attacks against centralized and federated learning. In *2019*
 596 *IEEE symposium on security and privacy (SP)*, pp. 739–753. IEEE, 2019.

597

598 Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang, Mario Fritz, and Michael Backes.
 599 ML-leaks: Model and data independent membership inference attacks and defenses on machine
 600 learning models. *arXiv preprint arXiv:1806.01246*, 2018.

601 Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference at-
 602 tacks against machine learning models. In *2017 IEEE symposium on security and privacy (SP)*,
 603 pp. 3–18. IEEE, 2017.

604

605 Liwei Song and Prateek Mittal. Systematic evaluation of privacy risks of machine learning models.
 606 In *30th USENIX Security Symposium (USENIX Security 21)*, pp. 2615–2632, 2021.

607

608 Lichao Sun, Jianwei Qian, and Xun Chen. Ldp-fl: Practical private aggregation in federated learning
 609 with local differential privacy. *arXiv preprint arXiv:2007.15789*, 2020.

610

611 Baocang Wang, Yange Chen, Hang Jiang, and Zhen Zhao. Ppefl: Privacy-preserving edge federated
 612 learning with local differential privacy. *IEEE Internet of Things Journal*, 10(17):15488–15500,
 613 2023.

614

615 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
 616 from error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–
 617 612, 2004.

618

619 Wenqi Wei, Ling Liu, Yanzhao Wu, Gong Su, and Arun Iyengar. Gradient-leakage resilient feder-
 620 ated learning. In *2021 IEEE 41st International Conference on Distributed Computing Systems*
 621 (*ICDCS*), pp. 797–807. IEEE, 2021.

622

623 Ruihan Wu, Xiangyu Chen, Chuan Guo, and Kilian Q Weinberger. Learning to invert: Simple adap-
 624 tive attacks for gradient inversion in federated learning. In *Uncertainty in Artificial Intelligence*,
 625 pp. 2293–2303. PMLR, 2023.

626

627 Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
 628 ing machine learning algorithms. *arXiv preprint arXiv:1708.07747*, 2017.

629

630 Guowen Xu, Hongwei Li, Sen Liu, Kan Yang, and Xiaodong Lin. Verifynet: Secure and verifiable
 631 federated learning. *IEEE Transactions on Information Forensics and Security*, 15:911–926, 2019.

632

633 Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M Alvarez, Jan Kautz, and Pavlo Molchanov. See
 634 through gradients: Image batch recovery via gradinversion. In *Proceedings of the IEEE/CVF*
 635 conference on computer vision and pattern recognition, pp. 16337–16346, 2021.

636

637 Kai Yue, Richeng Jin, Chau-Wai Wong, Dror Baron, and Huaiyu Dai. Gradient obfuscation gives
 638 a false sense of security in federated learning. In *32nd USENIX Security Symposium (USENIX*
 639 *Security 23)*, pp. 6381–6398, 2023.

640

641 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 642 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on*
 643 *computer vision and pattern recognition*, pp. 586–595, 2018.

644

645 Xiaojin Zhang, Wenjie Li, Kai Chen, Shutao Xia, and Qiang Yang. Theoretically principled feder-
 646 ated learning for balancing privacy and utility. *arXiv preprint arXiv:2305.15148*, 2023.

647

648 Xiaojin Zhang, Mingcong Xu, and Wei Chen. A unified learn-to-distort-data framework for privacy-
 649 utility trade-off in trustworthy federated learning. *arXiv preprint arXiv:2407.04751*, 2024.

650

651 Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. idlg: Improved deep leakage from gradients.
 652 *arXiv preprint arXiv:2001.02610*, 2020.

653

654 Jiaqi Zhao, Hui Zhu, Fengwei Wang, Rongxing Lu, Zhe Liu, and Hui Li. Pvd-fl: A privacy-
 655 preserving and verifiable decentralized federated learning framework. *IEEE Transactions on*
 656 *Information Forensics and Security*, 17:2059–2073, 2022.

648 Xiaoqing Zheng, Jiehang Zeng, Yi Zhou, Cho-Jui Hsieh, Minhao Cheng, and Xuan-Jing Huang.
 649 Evaluating and enhancing the robustness of neural network-based dependency parsing models
 650 with adversarial examples. In *Proceedings of the 58th Annual Meeting of the Association for*
 651 *Computational Linguistics*, pp. 6600–6610, 2020.

652 Junyi Zhu and Matthew Blaschko. R-gap: Recursive gradient attack on privacy. *arXiv preprint*
 653 *arXiv:2010.07733*, 2020.

655 Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. *Advances in neural infor-*
 656 *mation processing systems*, 32, 2019.

659 A NOTATION SUMMARY

662 Symbol	663 Description
K	664 Number of clients in federated learning
\mathcal{D}_k	665 Local dataset of client k
m_k	666 Number of data points on client k , $m_k = \mathcal{D}_k $
m	667 Total number of data points, $m = \sum_k m_k$
θ	668 Global model parameters
θ_u	669 Local perturbation model used to update δ_k
C_t	670 Set of selected clients in global round t
(x_k, y_k)	671 Input features and labels from client k
$f_\theta(\cdot)$	672 Prediction model parameterized by θ
$\mathcal{L}_k(\cdot)$	673 Loss function of client k
g_k	674 Gradient from client k : $g_k = \nabla_\theta \mathcal{L}_k(f_\theta(x_k + \delta_k), y_k)$
g_{global}	675 Aggregated gradient across clients
δ_k	676 Perturbation vector added to client k 's input
$\rho_u^{\min}, \rho_u^{\max}$	677 Lower and upper bounds on $\ \delta_k\ $
α_u	678 Learning rate for perturbation updates
N	679 Number of local perturbation steps per batch
ϵ_p	680 Privacy leakage score (reconstruction-based)
$x^{(m)}$	681 Ground truth data sample
$x_i^{(m)}$	682 Reconstructed sample at attack iteration i
D	683 Maximum possible reconstruction distance
I	684 Number of attacker optimization iterations
Δ	685 Mean distortion between original and perturbed data

689 Table 7: Summary of notations used throughout the paper.
 690

692 B RELATED WORKS

694 B.1 ADVERSARIAL TRAINING

696 Adversarial training has emerged as a canonical defense mechanism against adversarial perturba-
 697 tions, aiming to reinforce the resilience of deep neural networks when confronted with deliberately
 698 manipulated inputs. Rather than relying solely on clean data, the model is exposed during train-
 699 ing to inputs that are perturbed within a constrained set, thereby encouraging it to learn decision
 700 boundaries that are less sensitive to small but malicious changes. This idea can be formalized as a
 701 minimax optimization problem in which the learner minimizes the predictive loss while simultane-
 702 ously considering the worst-case perturbation under a bounded norm. Specifically, for a classifier f

702 parameterized by θ , the objective is expressed as
 703

$$704 \min_{\theta} \max_{\delta} \mathbb{E}_{(x,y) \sim \mathcal{D}} [\mathcal{L}(f(x + \delta; \theta), y)], \quad \text{s.t., } \|\delta\| \leq \epsilon. \quad (7)$$

706 where δ denotes the perturbation constrained by a p -norm budget ϵ , $x + \delta$ represents the adversarial
 707 input, and \mathcal{L} is the loss relative to the true label y .

708 In practice, this training regime alternates between two phases. The inner maximization step generates
 709 perturbed samples that induce the largest possible loss within the allowable perturbation set,
 710 often constructed using gradient-based techniques such as PGD. The outer minimization step then
 711 updates the model parameters by minimizing the empirical risk on these perturbed samples.

713 B.2 ERROR MINIMIZATION ATTACK.

715 The error minimization attack (EMA), introduced by Zheng et al. (Zheng et al., 2020), aims to
 716 poison the training process by embedding subtle perturbations into training inputs. Unlike traditional
 717 adversarial methods that maximize the model’s loss to impair learning, EMA adopts a min-min
 718 formulation, where both model parameters and perturbations are optimized to minimize the loss:

$$720 \min_{\theta} \min_{\delta} \mathbb{E}_{(x,y) \sim \mathcal{D}} [\mathcal{L}(f(x + \delta; \theta), y)], \quad \text{s.t., } \|\delta\| \leq \epsilon. \quad (8)$$

723 This approach preserves model utility during training while introducing hard-to-detect biases into
 724 the learned representations. In contrast to unlearnable examples (Huang et al., 2021), which use a
 725 min-max structure to prevent unauthorized learning by degrading performance, EMA maintains high
 726 accuracy but compromises the integrity of training. In our work, we draw inspiration from EMA and
 727 reinterpret its optimization structure as a privacy defense strategy: carefully designed perturbations
 728 are leveraged to mitigate gradient leakage without harming utility.

730 C THEORETICAL DISCUSSION

732 Although our work does not propose new theoretical results, we include in this appendix two key
 733 lemmas from (Zhang et al., 2024) that help support the design rationale behind our algorithm. These
 734 results establish a theoretical relationship between the extent of data distortion and the upper bound
 735 of privacy leakage in federated learning.

736 Specifically, we revisit the formal privacy metric defined in Eq. 9, and present two lemmas that
 737 show how adversarial reconstruction capabilities are limited when sufficient perturbation is applied.
 738 We reproduce their derivations here for completeness and to provide theoretical intuition for the
 739 distortion constraints used in FedEM.

741 C.1 MEASUREMENT FOR DATA PRIVACY

743 We adopt the definition of privacy leakage proposed in (Zhang et al., 2024), which quantifies the
 744 amount of private information that can be inferred by an adversary during model inversion. Let
 745 $x^{(m)}$ denote the original m -th data sample, and $x_i^{(m)}$ the reconstruction of this sample inferred by
 746 the attacker at iteration i . Let D be a positive constant representing the maximum possible distance
 747 between original and reconstructed samples. The total number of attack iterations is denoted by I .
 748 The privacy leakage ϵ_p is then defined as:

$$750 \epsilon_p = \begin{cases} \frac{D - \frac{1}{I} \sum_{i=1}^I \frac{1}{|\mathcal{D}|} \sum_{m=1}^{|\mathcal{D}|} \|x_i^{(m)} - x^{(m)}\|}{D}, & I > 0 \\ 0, & I = 0 \end{cases} \quad (9)$$

754 This normalized score reflects the average reconstruction accuracy achieved by the attacker: higher
 755 values of ϵ_p correspond to more successful inference and therefore more severe privacy leakage.

756 C.2 THEORETICAL CONNECTION BETWEEN DISTORTION AND PRIVACY LEAKAGE
757

758 Building upon the privacy metric defined in Eq. 9, we now establish theoretical guarantees that
759 connect the degree of data distortion with the upper bound on privacy leakage. The following
760 lemma (Zhang et al., 2024) provides an upper threshold on ϵ_p as a function of the distortion ex-
761 tent and the attacker’s optimization capability.

762 **Lemma 1** (Upper Bound on Privacy Leakage (Zhang et al., 2024)). *Consider a semi-honest
763 adversary that reconstructs client data through an optimization-based inversion attack. Let
764 Δ denote the distortion extent between the original and perturbed data, defined as $\Delta =$
765 $\left\| \frac{1}{|\mathcal{D}|} \sum_{i=1}^{|\mathcal{D}|} (x_i + \delta_i - \frac{1}{|\mathcal{D}|} \sum_{i=1}^{|\mathcal{D}|} x_i) \right\|$, and assume the adversary’s optimization algorithm has regret
766 $\Theta(I^p)$ over I rounds. If $\Delta \geq 2c_2 c_b I^{p-1}$, then the privacy leakage ϵ_p satisfies:*

$$767 \epsilon_p \leq 1 - \frac{\Delta + c_2 c_b I^{p-1}}{4D}.$$

771 This result suggests that by controlling Δ , one can enforce an upper bound on ϵ_p , thus providing
772 a theoretical foundation for data-distortion defense mechanisms. Based on Lemma 1, we further
773 show that the privacy-utility trade-off problem can be reformulated as a constrained data distortion
774 problem, making it more amenable to optimization.

775 **Lemma 2** (Reduction to Distort-Data Problem (Zhang et al., 2024)). *Let $c = \frac{c_2 c_b I^{p-1}}{4D}$ and define
776 $\epsilon_1 = 4D \cdot (1 - c - \epsilon)$. Then the privacy-constrained optimization:*

$$777 \min_{\theta} \mathcal{L}(f(\theta; x + \delta), y) \\ 778 \text{s.t., } \epsilon_p \leq \epsilon$$

780 can be reduced to:

$$781 \min_{\theta} \min_{\delta} \mathcal{L}(f(\theta; x + \delta), y) \\ 782 \text{s.t., } \|\delta\| \geq \epsilon_1$$

784 This reduction bridges privacy guarantees with distortion-based optimization. It enables the de-
785 sign of privacy-preserving mechanisms by explicitly learning data perturbations that meet privacy
786 constraints. Moreover, by ensuring the distortion exceeds a theoretical threshold, our framework
787 guarantees a lower bound on privacy preservation, providing formal assurance against worst-case
788 leakage scenarios.

789 D ADDITIONAL EXPERIMENTAL RESULTS
790

792 D.1 DETAILED EXPERIMENTAL SETUP DESCRIPTION

794 **Privacy Metric Computation.** To quantitatively evaluate privacy leakage from gradient inver-
795 sion, we employ five commonly used similarity metrics between the reconstructed image \hat{x} and the
796 original image x : MSE, SSIM (Wang et al., 2004), PSNR, LPIPS (Zhang et al., 2018), and KL
797 divergence.

798 MSE measures the average pixel-wise squared error between two images and is computed as:

$$800 \text{MSE}(x, \hat{x}) = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{x}_i)^2,$$

802 where n is the total number of pixels.

804 SSIM compares two images in terms of luminance, contrast, and structure. It is computed using
805 local image statistics:

$$806 \text{SSIM}(x, \hat{x}) = \frac{(2\mu_x \mu_{\hat{x}} + C_1)(2\sigma_{x\hat{x}} + C_2)}{(\mu_x^2 + \mu_{\hat{x}}^2 + C_1)(\sigma_x^2 + \sigma_{\hat{x}}^2 + C_2)},$$

809 where μ and σ denote mean and standard deviation of local patches, and C_1, C_2 are small constants
to stabilize the division.

810 PSNR evaluates image reconstruction quality using the MSE and is defined as:
 811

$$812 \quad 813 \quad \text{PSNR}(x, \hat{x}) = 10 \cdot \log_{10} \left(\frac{L^2}{\text{MSE}(x, \hat{x})} \right),$$

814 where L is the maximum possible pixel value (e.g., 1.0 or 255 depending on normalization).
 815

816 LPIPS is a learned perceptual metric that compares feature activations from a deep neural network.
 817 We use a pretrained VGG-16 model to extract features from multiple layers and computes weighted
 ℓ_2 distances:
 818

$$819 \quad 820 \quad \text{LPIPS}(x, \hat{x}) = \sum_l \frac{1}{H_l W_l} \sum_{h,w} \|w_l \odot (\phi_l(x)_{hw} - \phi_l(\hat{x})_{hw})\|_2^2,$$

821 where $\phi_l(\cdot)$ denotes the l -th layer's feature map, w_l is a learned channel-wise weight, and (h, w)
 822 indexes spatial positions.

823 KL divergence is used to assess semantic-level leakage by comparing the predicted label distributions
 824 of x and \hat{x} . After passing both images through a pretrained VGG-16 classifier with softmax
 825 output, the divergence is computed as:
 826

$$827 \quad 828 \quad \text{KL}(P \parallel \hat{P}) = \sum_{i=1}^C P_i \log \left(\frac{P_i}{\hat{P}_i} \right),$$

829 where P and \hat{P} are the output probability distributions over C classes.
 830

831 **Other Settings.** For perturbation modeling and adversarial defense, we use ResNet-18 as the de-
 832 fault architecture. Perturbations are generated under the L_2 norm using PGD with random initial-
 833 ization enabled. For each global round, we perform 15 update steps for the perturbation model. The
 834 perturbation module is trained with a batch size of 8 with learning rate 0.1. The gradient leakage
 835 attack is implemented based on the Inverting Gradients method (Geiping et al., 2020). We optimize
 836 for 1600 steps using cosine similarity as the loss function, with a fixed learning rate of 0.1. The total
 837 variation regularization weight is set to 1×10^{-5} . Unless otherwise specified, all experiments are
 838 conducted on a single NVIDIA A6000 GPU (8 cards available).
 839

840 D.2 CONVERGENCE AND CONVERGENCE RATE ANALYSIS

841 Figure 6 shows the time per epoch for both the SGD algorithm (without perturbation) and the per-
 842 turbation algorithm (with a noise radius of 8/255) on the MNIST dataset. As shown, the time required
 843 for each epoch increases with the number of iterations N needed for perturbation generation. This is
 844 expected, as the introduction of perturbations adds complexity, resulting in additional computational
 845 cost at each epoch, which is reflected in the increase in execution time.
 846

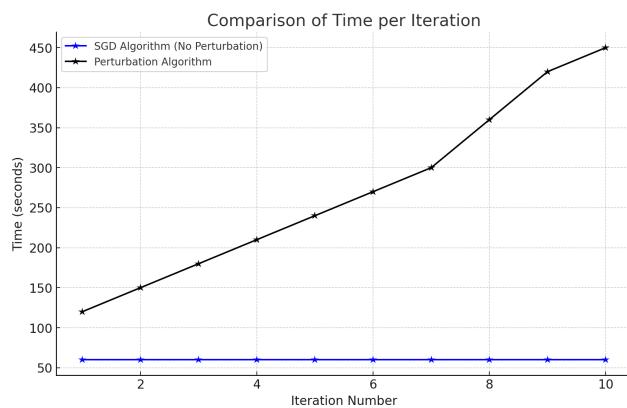


Figure 6: Time per epoch for different perturbation generation rounds on the MNIST dataset.

Figure 7 demonstrates the convergence properties of our algorithm. We present the test accuracy
 of FedSGD (without perturbation) and FedEM with different perturbation radii on the MNIST and

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
FMNIST datasets. In both figures, FedEM achieves convergence within 30 training rounds, with the convergence rate closely resembling that of FedSGD. This indicates that the perturbation process does not significantly hinder the convergence speed, with both methods reaching convergence around the same number of iterations (approximately 10 rounds). These results validate that our algorithm converges efficiently even with the introduction of perturbations.

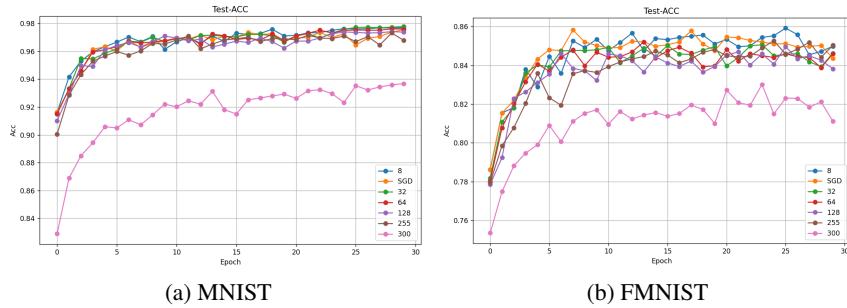


Figure 7: Test accuracy curves for FedEM and FedSGD on the MNIST and FMNIST datasets.

D.3 RANDOMNESS ANALYSIS

To confirm that the performance of FedEM is not an artifact of randomness, we conducted five independent runs on the MNIST dataset using different random seeds, each with a perturbation radius of 255/255 and a gradient leakage attack launched in the first training round. Across these trials, the algorithm demonstrated strong stability in both utility and privacy metrics. The validation accuracy was 0.9747 ± 0.0011 , and the test accuracy was 0.9750 ± 0.0036 , showing negligible fluctuation across seeds. For privacy-related metrics, we observed similarly consistent results: MSE was 1.5373 ± 0.0802 , PSNR was 8.4544 ± 0.2084 , SSIM was 0.0420 ± 0.0105 , LPIPS was 0.6618 ± 0.0260 , and KL divergence was 3.4706 ± 0.9623 . These results indicate that FedEM’s behavior is highly reproducible and not subject to high variance under different random initializations. As further evidence, Figure 8 presents error bar plots for four representative metrics, illustrating the low variance and consistent performance of FedEM across repeated experiments.

D.4 ADDITIONAL EXPERIMENTS OF FEDEM ON TEXT DATASETS

D.4.1 SETTINGS

For all experiments on text classification datasets (CoLA, SST-2), we use $\text{BERT}_{\text{base}}$ as the backbone model. The LAMP-based reconstruction attack is implemented with cosine loss (\mathcal{L}_{cos}) as the optimization objective, following the setup introduced in (Balunovic et al., 2022). We run the gradient inversion with $it = 30$ outer iterations, $n_c = 75$ and $n_d = 200$ inner steps, and apply early stopping once the number of total optimization steps reaches 2000. The optimizer is Adam with an initial learning rate of $1e-2$, and a decay factor γ is applied every 50 steps. To initialize the optimization, we first sample 500 embedding vectors from a standard Gaussian distribution and choose the one yielding the lowest reconstruction loss $\mathcal{L}_{\text{grad}}(x)$ as the starting point.

For defense baselines, the DP-SGD implementation uses a noise multiplier $\sigma = 0.001$ with clipping norm set to 1.0, and the Gradient Masking baseline masks 25% of randomly selected gradients during each update. FedEM uses L_2 -bounded perturbations with radius 2.0 added in the embedding space before each local update.

D.4.2 EXPERIMENTS ON SST2

To further evaluate the effectiveness of FedEM on textual data, we conduct experiments on the SST-2 sentiment classification dataset under the same gradient inversion attack setting. Table8 summarizes utility (MCC) and privacy leakage (ROUGE) metrics across various defense methods.

In addition to the quantitative results, we provide a representative qualitative example below. The input sentence is extracted from the SST-2 dataset. Tokens that match the original sentence are high-

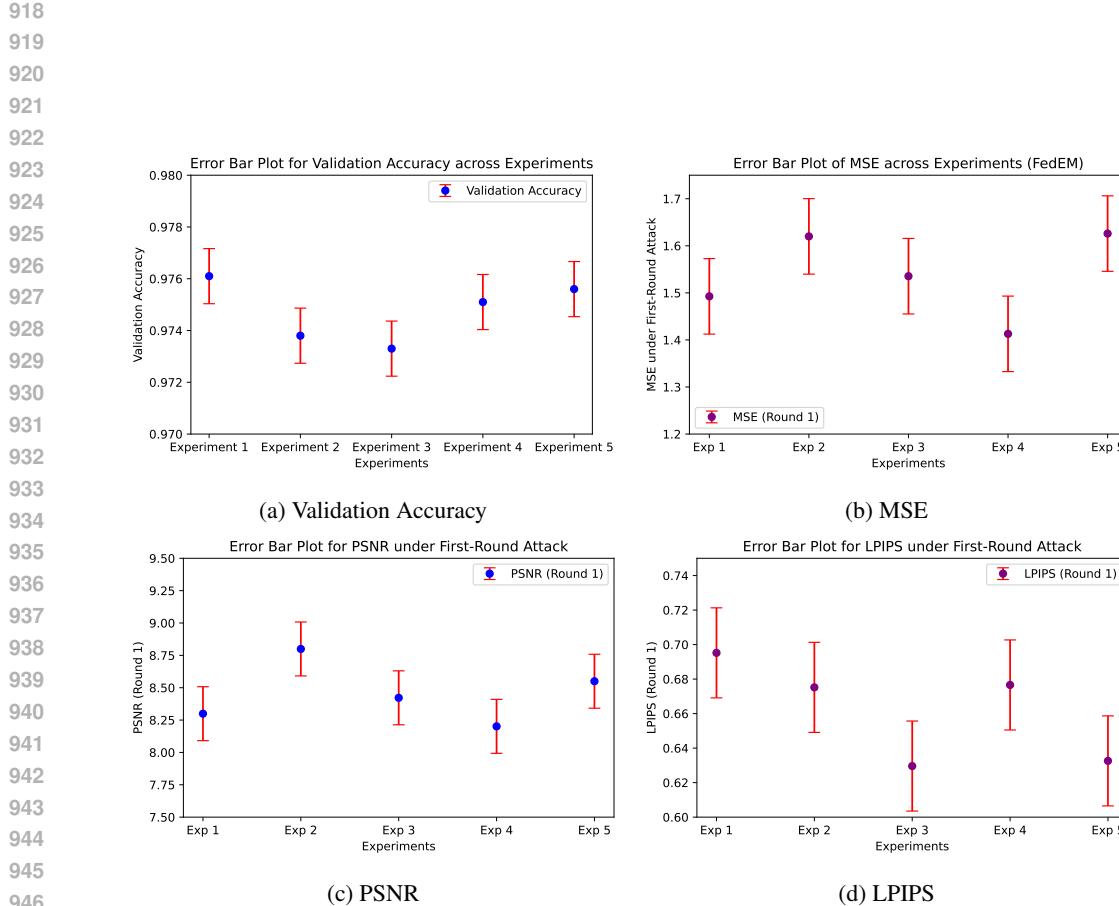


Figure 8: Error bar plots of FedEM across five random seeds on MNIST, showing stability in both utility and privacy metrics.

Table 8: Performance on the SST-2 dataset under gradient leakage attack. MCC indicates utility (\uparrow), while ROUGE-1/2/L (%) measure the reconstruction quality of leaked text (\downarrow). Utility metrics are marked with **U**, and privacy metrics with **P**.

Method	MCC (U \uparrow)	ROUGE-1 (P \downarrow)	ROUGE-2 (P \downarrow)	ROUGE-L (P \downarrow)
FedSGD (no defend)	0.885	87.7	74.6	83.8
DP-SGD	0.879	78.7	70.0	76.8
Gradient Masked	0.882	83.1	64.4	79.0
FedEM (ours)	0.882	78.6	51.0	73.6

972 lighted to indicate privacy leakage. Compared to baseline methods, FedEM significantly obscures
 973 key tokens, preventing accurate recovery of sensitive information.
 974

975 These results further validate that FedEM effectively suppresses gradient leakage in discrete lan-
 976 guage domains, even under strong reconstruction attacks, while maintaining task performance on
 977 par with standard training.

978 Table 9: Reconstructed sentences under gradient leakage attacks on SST-2. Tokens matching the
 979 original input are highlighted to reflect privacy leakage. FedEM (ours) achieves the strongest pro-
 980 tection with no direct recovery of original phrases.
 981

Original	of softheaded metaphysical claptrap
FedSGD	of soft metaphysical of claptrap
DP-SGD	metaphysical cockyhort of soft clapp clapped
Grad-Mask	of metaphysical claptrap softheaded
FedEM (ours)	soft metaphysical [CLS] ofhead clapped

989 D.4.3 EXPERIMENTS ON WIKITEXT-2

990 To further investigate the generalization ability of FedEM on discrete input tasks, we conduct ad-
 991 ditional experiments on causal language modeling with the WikiText-2 dataset. This benchmark
 992 involves discrete token-based inputs, providing a distinct evaluation scenario compared to text clas-
 993 sification. Following the setup in (Wu et al., 2023), we adopt perplexity (PPL) as the utility metric
 994 and ROUGE-1/2/L as privacy leakage metrics.
 995

996 As shown in Table 10, FedEM consistently improves privacy protection over the undefended base-
 997 line, substantially lowering ROUGE scores while keeping task utility competitive. Compared with
 998 Gaussian perturbation, FedEM achieves stronger privacy preservation (lower ROUGE-1/2/L) at a
 999 similar perplexity level. These results validate that FedEM generalizes effectively to causal lan-
 1000 guage modeling, further demonstrating its robustness across both classification and generation tasks
 1001 with discrete input representations.

1002 Table 10: Causal language model training on WikiText-2 under gradient leakage attack. Perplexity
 1003 indicates utility (\downarrow), while ROUGE-1/2/L (%) measure the reconstruction quality of leaked text (\downarrow).
 1004 Utility metrics are marked with **U**, and privacy metrics with **P**.
 1005

Method	ROUGE-1 (P \downarrow)	ROUGE-2 (P \downarrow)	ROUGE-L (P \downarrow)	Perplexity (U \downarrow)
None (no defend)	86.91	80.68	86.90	33.24
Sign Compression	64.35	45.40	64.29	100.32
Gradient Pruning ($\alpha = 0.99$)	64.24	45.79	64.15	102.56
Gaussian Perturbation ($\sigma = 0.01$)	78.75	67.06	78.71	50.23
FedEM (ours) ($radius = 5$)	68.50	58.00	68.25	51.12

1012 D.5 IMPACT OF PERTURBATION MAGNITUDE ON PRIVACY PROTECTION PERFORMANCE

1013 In this section, we present all the experimental results not discussed in the main text, evaluating the
 1014 performance of the proposed FedEM algorithm and comparing it against several baseline methods.
 1015 The results are shown for three benchmark datasets: MNIST, FMNIST, and CIFAR-10. We analyze
 1016 the privacy-utility trade-off across various perturbation magnitudes and privacy budgets.
 1017

1018 D.5.1 FEDEM PERFORMANCE ANALYSIS

1019 FedEM shows a clear advantage in both privacy and utility across all datasets. On MNIST (Ta-
 1020 ble 11), with a perturbation radius of \$8/255\$, FedEM achieves the highest test accuracy (0.9767)
 1021 while also providing strong privacy protection, as indicated by the low SSIM and PSNR scores. As
 1022 the perturbation magnitude increases (e.g., to \$32/255\$), utility slightly declines, but privacy protec-
 1023 tion improves. Similar trends are observed in FMNIST (Table 12) and CIFAR-10 (Table 13), where
 1024 FedEM consistently maintains competitive accuracy and robust privacy defense. Notably, even with
 1025

1026 the complex CIFAR-10 dataset, FedEM outperforms other methods in terms of test accuracy while
 1027 providing strong privacy metrics.
 1028

1029 In general, we observe that moderate increases in perturbation radius improve privacy protection, but
 1030 further increases lead to diminishing returns in both utility and privacy. FedEM strikes an optimal
 1031 balance, achieving high privacy with minimal accuracy degradation.
 1032

1033 Table 11: Performance of FedEM under different L_2 -norm radius r on the MNIST dataset. **E1** and
 1034 **E3** denote the training round when gradient leakage attacks are launched. Utility metrics are marked
 1035 with **U**, privacy metrics with **P**. Arrows indicate preferred direction: \uparrow = higher is better, \downarrow = lower
 1036 is better.
 1037

r	Val Acc (U \uparrow)	Test Acc (U \uparrow)	Stage	Test MSE (P \uparrow)	PSNR (P \downarrow)	SSIM (P \downarrow)	LPIPS (P \uparrow)	KL (P \uparrow)
8/255	0.9809	0.9767	E1	1.8251	7.6982	0.0378	0.6715	4.5235
–	–	–	E3	2.2369	7.0747	0.0445	0.6585	3.3447
32/255	0.9807	0.9777	E1	1.6827	8.2634	0.0973	0.5768	4.6078
–	–	–	E3	2.2504	6.7443	0.0326	0.6707	3.3052
64/255	0.9803	0.9761	E1	1.8470	7.5936	0.0346	0.6712	3.4940
–	–	–	E3	1.5830	8.2680	0.0485	0.6646	5.1168
128/255	0.9795	0.9741	E1	1.7577	7.9013	0.0426	0.6872	2.9841
–	–	–	E3	2.1180	7.0392	0.0372	0.6183	5.0297
255/255	0.9769	0.9731	E1	1.6208	8.1983	0.0617	0.6435	3.2251
–	–	–	E3	1.8209	7.7377	0.0266	0.6621	3.2907
300/255	0.9383	0.9368	E1	1.5291	8.4398	0.0481	0.6550	3.3192
–	–	–	E3	1.4841	8.5576	0.0372	0.6809	6.5101

1048
 1049 Table 12: Performance of FedEM under different L_2 -norm radius r on the FMNIST dataset. Metrics
 1050 are grouped into utility (**U**) and privacy (**P**) categories. Arrows indicate desired direction: \uparrow = higher
 1051 is better, \downarrow = lower is better.
 1052

r	Val Acc (U \uparrow)	Test Acc (U \uparrow)	Stage	Test MSE (P \uparrow)	PSNR (P \downarrow)	SSIM (P \downarrow)	LPIPS (P \uparrow)	KL (P \uparrow)
8/255	0.8719	0.8592	E1	1.4988	7.4209	0.0501	0.6140	2.8601
–	–	–	E3	1.5268	7.2897	0.0650	0.6216	2.2135
32/255	0.8705	0.8506	E1	1.7215	6.7587	0.0727	0.6077	2.4532
–	–	–	E3	1.5908	7.3026	0.1068	0.5781	1.3120
64/255	0.8664	0.8521	E1	1.3522	7.8130	0.0755	0.6238	1.9140
–	–	–	E3	1.3803	7.7522	0.0498	0.6160	2.0367
128/255	0.8651	0.8495	E1	1.1972	8.3873	0.0881	0.5907	2.0317
–	–	–	E3	1.4879	7.5090	0.0654	0.6052	2.2168
255/255	0.8611	0.8527	E1	1.6642	6.9579	0.0934	0.5804	2.5536
–	–	–	E3	1.6794	6.8456	0.0527	0.6150	2.2256
300/255	0.8449	0.8301	E1	1.6853	6.8966	0.0499	0.5422	3.6242
–	–	–	E3	1.4639	7.4637	0.0770	0.5714	2.3981

1064
 1065 Table 13: Performance of FedEM under different L_2 -norm radius r on the CIFAR-10 dataset. Met-
 1066 rics are grouped into utility (**U**) and privacy (**P**) categories. Arrows indicate desired direction: \uparrow =
 1067 higher is better, \downarrow = lower is better.
 1068

r	Val Acc (U \uparrow)	Test Acc (U \uparrow)	Stage	Test MSE (P \uparrow)	PSNR (P \downarrow)	SSIM (P \downarrow)	LPIPS (P \uparrow)	KL (P \uparrow)
8/255	0.2502	0.2518	E1	2.0685	9.0501	0.0140	0.7954	3.3572
–	–	–	E3	1.6844	9.7758	0.0120	0.7395	2.2737
32/255	0.2468	0.2505	E1	1.8281	9.4830	0.0151	0.7551	3.3310
–	–	–	E3	1.6826	9.8468	0.0126	0.7605	3.1947
64/255	0.2363	0.2497	E1	1.7452	9.6302	0.0146	0.7634	2.0716
–	–	–	E3	1.6684	9.8898	0.0128	0.7574	3.1979
128/255	0.2423	0.2413	E1	2.2336	8.7767	0.0115	0.7836	3.2235
–	–	–	E3	1.7880	9.6805	0.0123	0.7651	2.2044
255/255	0.2329	0.2331	E1	1.6598	9.9550	0.0114	0.7448	2.6541
–	–	–	E3	1.9861	9.1988	0.0127	0.7609	3.8891
300/255	0.2261	0.2175	E1	2.0402	9.0783	0.0131	0.7492	3.2598
–	–	–	E3	1.8592	9.4779	0.0124	0.7460	3.1268

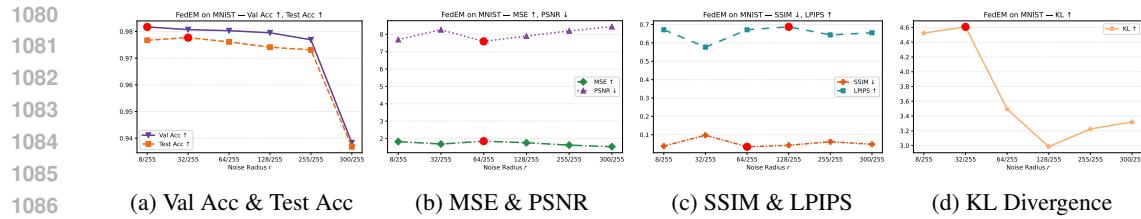


Figure 9: FedEM on MNIST: Performance across 7 metrics under different L_2 -norm radius r (E1 round). Best points are highlighted in red.

D.5.2 BASELINE COMPARISON

For comparison, we test several baseline methods: DP-Gas, DP-Lap, PPFA, and LDPM. These are evaluated under different noise scales or privacy budgets (Tables 14 to 25). On MNIST, DP-based methods (Tables 14 and 15) show a clear trade-off between privacy and utility. For example, DP-Gas achieves strong privacy protection with a noise scale of 16/255 but suffers from a significant accuracy drop.

Across all datasets, while DP-based methods and LDPM offer good privacy protection at higher noise scales, they incur significant utility losses. FedEM, on the other hand, maintains high utility while still providing effective privacy protection. This demonstrates that FedEM provides a superior trade-off between privacy and utility compared to other baseline methods.

Tables 14–17 report the detailed results of four representative differential privacy mechanisms on the MNIST dataset under gradient leakage attacks. Gas-DP and Laplace-DP inject Gaussian and Laplace noise at varying scales r , respectively; PPFA adjusts the perturbation strength through different privacy budgets ϵ ; and LDPM controls noise via the standard deviation σ . Overall, these results illustrate the trade-off between privacy and utility: smaller noise (larger ϵ) tends to preserve higher model accuracy but weaker privacy protection, whereas larger noise enhances resistance to reconstruction attacks at the cost of degraded utility. By comparing the four methods, we observe that Gaussian- and Laplace-based mechanisms achieve stable accuracy with gradually increasing privacy metrics, while PPFA and LDPM provide more flexible control over the privacy–utility balance.

Table 14: Performance of Gas-DP under different noise scales r on the MNIST dataset. **E1** and **E3** indicate the round of federated training when the gradient leakage attack is launched (e.g., Round 1 and Round 3, respectively). Utility metrics are marked with **U**, and privacy metrics with **P**. Arrows indicate preferred direction: \uparrow = higher is better, \downarrow = lower is better.

r	Val Acc (U \uparrow)	Test Acc (U \uparrow)	Stage	Test MSE (P \uparrow)	PSNR (P \downarrow)	SSIM (P \downarrow)	LPIPS (P \uparrow)	KL (P \uparrow)
1/255	0.9774	0.9741	E1	1.3721	9.2340	0.1013	0.6321	3.3368
–	–	–	E3	1.5448	8.4097	0.0564	0.6706	3.2283
2/255	0.9759	0.9697	E1	1.4767	8.6875	0.0401	0.7005	4.2056
–	–	–	E3	1.5465	8.6005	0.0618	0.6991	4.1331
4/255	0.9675	0.9677	E1	1.5364	8.4700	0.0353	0.6985	4.2550
–	–	–	E3	1.4950	8.6669	0.0515	0.6992	2.9574
8/255	0.9603	0.9623	E1	1.7068	7.9955	0.0347	0.7429	2.8834
–	–	–	E3	1.9061	7.4442	0.0253	0.7215	2.7859
16/255	0.9539	0.9537	E1	1.7014	7.9962	0.0316	0.7391	3.5620
–	–	–	E3	1.8729	7.5252	0.0247	0.7291	4.5235

Tables 18–21 present the detailed evaluation of four representative DP mechanisms on the FMNIST dataset under gradient leakage attacks. Compared with MNIST, the overall accuracy on FMNIST is lower, reflecting the higher complexity of the dataset. Nevertheless, the same privacy–utility trade-off is observed: smaller noise or larger ϵ yields better accuracy but weaker resistance to reconstruction attacks, while larger noise enhances privacy protection at the cost of reduced model utility. Among the mechanisms, Gaussian- and Laplace-based approaches exhibit stable performance across different noise scales, while PPFA and LDPM provide flexible tuning of the balance between utility and privacy.

1134

1135

1136 Table 15: Performance of Laplace-DP under different noise scales r on the MNIST dataset. **E1** and
 1137 **E3** indicate the round of federated training when the gradient leakage attack is launched. Utility
 1138 metrics are marked with **U**, and privacy metrics with **P**. Arrows indicate preferred direction: \uparrow =
 1139 higher is better, \downarrow = lower is better.

1140

r	Val Acc (U \uparrow)	Test Acc (U \uparrow)	Stage	Test MSE (P \uparrow)	PSNR (P \downarrow)	SSIM (P \downarrow)	LPIPS (P \uparrow)	KL (P \uparrow)
1/255	0.9733	0.9717	E1	1.3721	9.2340	0.1013	0.6321	3.3368
—	—	—	E3	1.6264	8.3009	0.0575	0.6848	3.2296
2/255	0.9691	0.9641	E1	1.5543	8.3723	0.0464	0.6658	3.2334
—	—	—	E3	1.7452	7.8932	0.0413	0.7070	4.9510
4/255	0.9591	0.9607	E1	1.5592	8.3509	0.0346	0.6993	3.1322
—	—	—	E3	1.7557	7.8757	0.0366	0.7052	3.5539
8/255	0.9598	0.9565	E1	1.8120	7.6918	0.0378	0.7057	3.1571
—	—	—	E3	1.6472	8.2946	0.0368	0.7127	4.1443
16/255	0.9490	0.9451	E1	1.7120	7.9328	0.0278	0.7142	3.5620
—	—	—	E3	1.6930	7.9767	0.0288	0.7368	5.5580

1149

1150

1151

1152

1153

1154

1155 Table 16: Performance of PPFA under different privacy budgets ϵ on the MNIST dataset. **E1** and **E3**
 1156 indicate the round of federated training when the gradient leakage attack is launched. Utility metrics
 1157 are marked with **U**, and privacy metrics with **P**. Arrows indicate preferred direction: \uparrow = higher is
 1158 better, \downarrow = lower is better.

1159

ϵ	Val Acc (U \uparrow)	Test Acc (U \uparrow)	Stage	Test MSE (P \uparrow)	PSNR (P \downarrow)	SSIM (P \downarrow)	LPIPS (P \uparrow)	KL (P \uparrow)
0.995	0.9663	0.9573	E1	1.2509	9.3820	0.0932	0.6109	3.5123
—	—	—	E3	1.6359	8.2784	0.0518	0.6878	3.1741
0.99	0.9265	0.9253	E1	1.2674	9.3565	0.0834	0.6197	3.4233
—	—	—	E3	1.4712	8.7408	0.0421	0.7102	2.6431
0.98	0.8201	0.8123	E1	1.2686	9.3460	0.0879	0.6268	3.4270
—	—	—	E3	1.6543	8.0785	0.0274	0.7465	5.1111
0.97	0.6159	0.5902	E1	1.3068	9.1965	0.0904	0.6357	3.4219
—	—	—	E3	1.6528	8.0711	0.0270	0.7356	5.2627
0.8	0.1315	0.1275	E1	2.0037	7.2492	0.0350	0.6529	3.6230
—	—	—	E3	1.4323	8.7409	0.0562	0.7085	5.1851

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173 Table 17: Performance of LDPM under different noise scales σ on the MNIST dataset. **E1** and **E3**
 1174 indicate the round of federated training when the gradient leakage attack is launched. Utility metrics
 1175 are marked with **U**, and privacy metrics with **P**. Arrows indicate preferred direction: \uparrow = higher is
 1176 better, \downarrow = lower is better.

1177

σ	Val Acc (U \uparrow)	Test Acc (U \uparrow)	Stage	Test MSE (P \uparrow)	PSNR (P \downarrow)	SSIM (P \downarrow)	LPIPS (P \uparrow)	KL (P \uparrow)
0.0005	0.9756	0.9749	E1	1.6201	8.2451	0.0527	0.6444	3.8519
—	—	—	E3	1.6063	8.2799	0.0544	0.6347	3.0615
0.001	0.9733	0.9715	E1	1.7337	7.8755	0.0598	0.6178	4.7663
—	—	—	E3	1.6625	8.0371	0.0483	0.6853	3.0846
0.005	0.9727	0.9720	E1	1.4142	8.8931	0.0440	0.6962	4.9803
—	—	—	E3	1.8473	7.5874	0.0322	0.7302	3.7796
0.01	0.9605	0.9637	E1	1.6461	8.1623	0.0445	0.6896	3.3667
—	—	—	E3	1.8611	7.6997	0.0403	0.6919	5.1559
0.1	0.9103	0.9053	E1	1.9581	7.3293	0.0294	0.7303	4.6700
—	—	—	E3	1.8874	7.5364	0.0307	0.7291	2.9539

1186

1187

1188
 1189 Table 18: Performance of Gas-DP under different noise scales r on the FMNIST dataset. Metrics
 1190 are grouped into utility (**U**) and privacy (**P**) categories. Arrows indicate the desired direction: \uparrow =
 1191 higher is better, \downarrow = lower is better.

r	Val Acc (U \uparrow)	Test Acc (U \uparrow)	Stage	Test MSE (P \uparrow)	PSNR (P \downarrow)	SSIM (P \downarrow)	LPIPS (P \uparrow)	KL (P \uparrow)
1/255	0.8664	0.8543	E1	1.1693	8.6704	0.1910	0.5806	2.5319
—	—	—	E3	1.2727	8.7860	0.1414	0.6067	2.1536
2/255	0.8643	0.8553	E1	1.3268	7.9035	0.1108	0.6037	1.8837
—	—	—	E3	1.1114	9.0520	0.1720	0.5728	2.0446
4/255	0.8574	0.8491	E1	1.2918	8.0659	0.0979	0.5829	2.2742
—	—	—	E3	1.6051	7.3009	0.0638	0.6619	2.2025
8/255	0.8563	0.8497	E1	1.3753	7.8752	0.0548	0.6267	3.5238
—	—	—	E3	1.4787	7.4265	0.0365	0.6634	1.9491
16/255	0.8445	0.8285	E1	1.8619	6.3855	0.0373	0.6666	2.1791
—	—	—	E3	1.8222	6.5752	0.0217	0.6677	3.0268

1202
 1203 Table 19: Performance of Laplace-DP under different noise scales r on the FMNIST dataset. Metrics
 1204 are grouped into utility (**U**) and privacy (**P**) categories. Arrows indicate the desired direction: \uparrow =
 1205 higher is better, \downarrow = lower is better.

r	Val Acc (U \uparrow)	Test Acc (U \uparrow)	Stage	Test MSE (P \uparrow)	PSNR (P \downarrow)	SSIM (P \downarrow)	LPIPS (P \uparrow)	KL (P \uparrow)
1/255	0.8665	0.8497	E1	1.3012	8.3033	0.1158	0.6052	1.6939
—	—	—	E3	1.1923	8.6158	0.1381	0.5387	2.5884
2/255	0.8615	0.8535	E1	1.3564	8.1193	0.1387	0.5923	1.9781
—	—	—	E3	1.5294	7.3064	0.0568	0.6630	2.3500
4/255	0.8581	0.8488	E1	1.6715	6.8914	0.0433	0.6496	3.1046
—	—	—	E3	1.3065	8.0794	0.0628	0.5947	2.1133
8/255	0.8461	0.8361	E1	1.6021	7.0745	0.0517	0.6283	3.2513
—	—	—	E3	1.5419	7.4025	0.0410	0.6279	2.3184
16/255	0.8479	0.8331	E1	1.6913	6.8731	0.0367	0.6759	1.6331
—	—	—	E3	1.6328	6.9759	0.0272	0.6830	1.6955

1216 Table 20: Performance of PPFA under different privacy budgets ϵ on the FMNIST dataset. Metrics
 1217 are grouped into utility (**U**) and privacy (**P**) categories. Arrows indicate desired direction: \uparrow =
 1218 higher is better, \downarrow = lower is better.

ϵ	Val Acc (U \uparrow)	Test Acc (U \uparrow)	Stage	Test MSE (P \uparrow)	PSNR (P \downarrow)	SSIM (P \downarrow)	LPIPS (P \uparrow)	KL (P \uparrow)
0.995	0.8473	0.8375	E1	1.3615	8.1524	0.1297	0.5892	2.1581
—	—	—	E3	1.6145	7.0956	0.0219	0.6581	2.6099
0.99	0.7960	0.7942	E1	1.3522	8.1603	0.1360	0.5643	2.2359
—	—	—	E3	1.0629	9.6489	0.6330	0.5743	2.4444
0.98	0.6823	0.6541	E1	1.4535	7.6962	0.1015	0.5805	2.2431
—	—	—	E3	1.4777	7.4711	0.0313	0.6357	2.1222
0.97	0.5311	0.5198	E1	1.5789	7.3576	0.1090	0.5836	2.2918
—	—	—	E3	1.4709	7.4883	0.0219	0.6534	2.1347
0.8	0.1141	0.1180	E1	2.4718	5.1227	0.0400	0.6278	2.5256
—	—	—	E3	1.0873	8.9958	0.0327	0.5994	1.9626

1229 Table 21: Performance of LDPM under different noise scales σ on the FMNIST dataset. Metrics are
 1230 grouped into utility (**U**) and privacy (**P**) categories. Arrows indicate desired direction: \uparrow =
 1231 higher is better, \downarrow = lower is better.

σ	Val Acc (U \uparrow)	Test Acc (U \uparrow)	Stage	Test MSE (P \uparrow)	PSNR (P \downarrow)	SSIM (P \downarrow)	LPIPS (P \uparrow)	KL (P \uparrow)
0.0005	0.8715	0.8527	E1	1.4241	7.8580	0.0877	0.5809	2.3729
—	—	—	E3	1.5211	7.3467	0.0466	0.6076	2.0253
0.001	0.8693	0.8605	E1	1.5760	7.4541	0.0959	0.5550	2.6788
—	—	—	E3	2.0302	6.0581	0.0516	0.6410	2.0036
0.005	0.8653	0.8533	E1	1.3652	7.9245	0.0625	0.6146	2.2144
—	—	—	E3	1.5108	7.4389	0.0894	0.5788	1.6568
0.01	0.8610	0.8506	E1	1.8202	6.5213	0.0583	0.5517	1.8034
—	—	—	E3	1.7730	6.7465	0.0456	0.6399	2.6758
0.1	0.8043	0.8015	E1	1.9475	6.2370	0.0314	0.6699	2.0397
—	—	—	E3	1.8639	6.4218	0.0308	0.6893	1.6404

Tables 22–25 report the evaluation of four DP mechanisms on the CIFAR-10 dataset under gradient leakage attacks. Compared with MNIST and FMNIST, the overall accuracy on CIFAR-10 is substantially lower, reflecting the higher difficulty of this dataset. Nonetheless, the privacy–utility trade-off remains consistent: smaller noise or larger ϵ preserves accuracy but weakens privacy protection, whereas larger noise enhances robustness to reconstruction attacks at the expense of model utility. Among the methods, Gaussian and Laplace mechanisms show relatively stable utility as noise increases, while PPFA and LDPM provide flexible parameterization for fine-grained control over the balance between privacy and utility.

Table 22: DP-Gaussian method under varying noise scales r on CIFAR10. Utility metrics are marked with **U**, and privacy metrics with **P**. Arrows indicate preferred direction: \uparrow = higher is better, \downarrow = lower is better.

r	Val Acc (U \uparrow)	Test Acc (U \uparrow)	Stage	Test MSE (P \uparrow)	PSNR (P \downarrow)	SSIM (P \downarrow)	LPIPS (P \uparrow)	KL (P \uparrow)
1/255	0.2449	0.2504	E1	1.8638	9.4538	0.0144	0.7549	2.6632
–	–	–	E3	1.8629	9.4465	0.0131	0.7698	2.4017
2/255	0.2433	0.2581	E1	1.9020	9.3054	0.0159	0.7351	3.0622
–	–	–	E3	1.8304	9.4638	0.0165	0.7510	2.2565
4/255	0.2413	0.2381	E1	1.7807	9.5791	0.0142	0.7606	2.4322
–	–	–	E3	2.2063	8.7483	0.0159	0.7423	2.7509
8/255	0.2215	0.2159	E1	2.1820	8.7504	0.0132	0.7615	4.4437
–	–	–	E3	1.8270	9.4516	0.0125	0.7476	2.8044
16/255	0.2035	0.1973	E1	2.1711	8.7743	0.0115	0.7649	4.3879
–	–	–	E3	1.9816	9.1582	0.0140	0.7346	3.5163

Table 23: DP-Laplace method under varying noise scales r on CIFAR10. Utility metrics are marked with **U**, and privacy metrics with **P**. Arrows indicate preferred direction: \uparrow = higher is better, \downarrow = lower is better.

r	Val Acc (U \uparrow)	Test Acc (U \uparrow)	Stage	Test MSE (P \uparrow)	PSNR (P \downarrow)	SSIM (P \downarrow)	LPIPS (P \uparrow)	KL (P \uparrow)
1/255	0.2195	0.2213	E1	1.9974	9.2169	0.0153	0.7601	2.7273
–	–	–	E3	1.6324	9.9839	0.1117	0.7723	3.4865
2/255	0.2181	0.2210	E1	1.9872	9.1820	0.0173	0.7576	4.0077
–	–	–	E3	2.2380	8.8258	0.0145	0.7353	2.8094
4/255	0.2089	0.2123	E1	1.9772	9.1491	0.0121	0.7657	2.9470
–	–	–	E3	1.9548	9.1964	0.0145	0.7354	4.6743
8/255	0.1903	0.2045	E1	2.1472	9.0036	0.0138	0.7903	4.4562
–	–	–	E3	2.0266	9.1099	0.0114	0.7566	3.4805
16/255	0.1840	0.1817	E1	2.0990	9.0307	0.0114	0.7841	3.1043
–	–	–	E3	1.9671	9.1689	0.0135	0.7384	4.5516

Table 24: Performance of PPFA under varying privacy budgets ϵ on the CIFAR10 dataset. Utility metrics are marked with **U**, and privacy metrics with **P**. Arrows indicate preferred direction: \uparrow = higher is better, \downarrow = lower is better.

ϵ	Val Acc (U \uparrow)	Test Acc (U \uparrow)	Stage	Test MSE (P \uparrow)	PSNR (P \downarrow)	SSIM (P \downarrow)	LPIPS (P \uparrow)	KL (P \uparrow)
0.995	0.2489	0.2505	E1	1.8693	9.4146	0.0152	0.7548	2.0903
–	–	–	E3	1.8825	9.3554	0.0130	0.7683	3.3770
0.99	0.2527	0.2491	E1	1.8336	9.4971	0.0152	0.7525	4.0993
–	–	–	E3	1.7289	9.7083	0.0114	0.7184	1.8947
0.98	0.2437	0.2363	E1	1.8712	9.4082	0.0180	0.7565	3.7417
–	–	–	E3	1.6996	9.7810	0.0140	0.7193	1.9229
0.97	0.2393	0.2283	E1	1.8578	9.4328	0.0172	0.7632	3.9240
–	–	–	E3	1.8115	9.4606	0.0172	0.7577	3.3717
0.8	0.2047	0.1964	E1	1.8789	9.3813	0.0162	0.7602	4.1743
–	–	–	E3	1.9061	9.2433	0.0158	0.7562	3.5041

D.6 IMPACT OF PERTURBATION LOWER BOUNDS ON FEDEM PERFORMANCE

In this section, we provide the complete set of results related to the impact of perturbation lower bounds on FedEM’s performance, which were not fully presented in the main text. These results include all the metrics evaluated at both the first (E1) and third (E3) rounds of global training, when

1296 Table 25: LDPM performance under different noise scales σ on the CIFAR10 dataset. Utility metrics
 1297 are marked with **U**, and privacy metrics with **P**. Arrows indicate preferred direction: \uparrow = higher is
 1298 better, \downarrow = lower is better.

σ	Val Acc (U \uparrow)	Test Acc (U \uparrow)	Stage	Test MSE (P \uparrow)	PSNR (P \downarrow)	SSIM (P \downarrow)	LPIPS (P \uparrow)	KL (P \uparrow)
0.0005	0.2277	0.2278	E1	2.0565	9.0540	0.0170	0.7455	3.2811
0.001	—	—	E3	1.9764	9.2572	0.0116	0.7369	3.4957
0.005	0.2135	0.2173	E1	1.9238	9.3007	0.0139	0.7632	2.7608
0.01	—	—	E3	1.5831	10.116	0.0145	0.7575	3.1668
0.05	0.1437	0.1361	E1	2.0639	9.0526	0.0125	0.7683	3.0425
0.1	—	—	E3	1.9599	9.1658	0.0109	0.7522	3.1413
0.1	0.1192	0.1191	E1	2.0318	9.0968	0.0109	0.7518	4.8414
0.1	—	—	E3	1.6512	9.9284	0.0105	0.7539	3.1585
0.1	0.0938	0.0898	E1	1.9966	9.0993	0.0101	0.7462	3.3059
0.1	—	—	E3	2.1834	8.7377	0.0116	0.7402	2.9869

1309
 1310 gradient leakage attacks were launched. Specifically, we present utility and privacy metrics, including
 1311 test and validation accuracy, MSE, SSIM, PSNR, LPIPS, and Kullback-Leibler divergence for
 1312 the CIFAR-10, FMNIST, and MNIST datasets(Tables26 to 28). The tables show how varying the
 1313 lower bound (ρ_u^{\min}) and upper bound (ρ_u^{\max}) on perturbation radius influences both privacy protec-
 1314 tion and model utility. These additional results further illustrate the trade-offs between privacy and
 1315 accuracy under different perturbation constraints.

1316
 1317 Table 26: Evaluation of FedEM’s privacy protection under different lower bound (ρ_u^{\min}) and upper
 1318 bound (ρ_u^{\max}) constraints on perturbation radius, tested on the CIFAR-10 dataset. Gradient leakage
 1319 attacks are launched at epochs E1 and E3. Utility metrics are marked with (**U**) and privacy metrics
 1320 with (**P**). \uparrow = higher is better, \downarrow = lower is better.

Method	Val Acc (U \uparrow)	Test Acc (U \uparrow)	Stage	MSE (P \uparrow)	PSNR (P \downarrow)	SSIM (P \downarrow)	LPIPS (P \uparrow)	KL (P \uparrow)
FedSGD (baseline)	0.2803	0.2771	E1	1.8219	9.5554	0.0178	0.7556	2.9228
—	—	—	E3	1.9227	9.3590	0.0131	0.7557	2.4802
$\rho_u^{\max} = 200/255$, $\rho_u^{\min} = 25/255$	0.2419	0.2479	E1	1.8512	9.4701	0.0157	0.7564	3.0267
—	—	—	E3	1.9618	9.1954	0.0129	0.7694	1.9158
$\rho_u^{\max} = 200/255$, $\rho_u^{\min} = 50/255$	0.2377	0.2375	E1	1.9897	9.1817	0.0149	0.7614	3.6679
—	—	—	E3	1.9968	9.2261	0.0128	0.7288	2.3004
$\rho_u^{\max} = 200/255$, $\rho_u^{\min} = 100/255$	0.2061	0.2225	E1	2.0333	9.1708	0.0147	0.7686	2.9418
—	—	—	E3	1.9683	9.2466	0.0147	0.7487	3.1794
$\rho_u^{\max} = 400/255$, $\rho_u^{\min} = 100/255$	0.2167	0.2283	E1	1.9006	9.2962	0.0147	0.7615	3.1473
—	—	—	E3	1.9715	9.2233	0.0148	0.7619	3.7558
$\rho_u^{\max} = 400/255$, $\rho_u^{\min} = 100/255$	0.1935	0.1957	E1	1.9620	9.1756	0.0140	0.7630	3.0510
—	—	—	E3	2.0781	8.9232	0.0111	0.7281	1.7774
$\rho_u^{\max} = 400/255$, $\rho_u^{\min} = 200/255$	0.1827	0.2029	E1	1.9163	9.2915	0.0132	0.7591	3.7197
—	—	—	E3	1.9256	9.3715	0.0140	0.7434	2.7577

1333
 1334 Table 27: Evaluation of FedEM’s privacy protection under different lower bound (ρ_u^{\min}) and upper
 1335 bound (ρ_u^{\max}) constraints on perturbation radius, tested on the FMNIST dataset. Gradient leakage
 1336 attacks are launched at epochs E1 and E3. Utility metrics are marked with (**U**) and privacy metrics
 1337 with (**P**). \uparrow = higher is better, \downarrow = lower is better.

Method	Val Acc (U \uparrow)	Test Acc (U \uparrow)	Stage	MSE (P \uparrow)	PSNR (P \downarrow)	SSIM (P \downarrow)	LPIPS (P \uparrow)	KL (P \uparrow)
FedSGD (baseline)	0.8725	0.8645	E1	1.3711	8.1836	0.1437	0.5595	2.0664
—	—	—	E3	1.1829	9.4279	0.1741	0.6032	1.8966
$\rho_u^{\max} = 200/255$, $\rho_u^{\min} = 25/255$	0.8649	0.8543	E1	1.4090	7.6354	0.0758	0.6073	2.4429
—	—	—	E3	1.5089	7.3751	0.0402	0.6566	2.1409
$\rho_u^{\max} = 200/255$, $\rho_u^{\min} = 50/255$	0.8643	0.8524	E1	1.5766	7.1963	0.0617	0.6326	2.3450
—	—	—	E3	1.6340	7.0506	0.0540	0.6321	1.8361
$\rho_u^{\max} = 200/255$, $\rho_u^{\min} = 100/255$	0.8641	0.8517	E1	1.5972	7.2699	0.0566	0.6452	2.1789
—	—	—	E3	1.8405	6.5013	0.0453	0.6385	1.9514
$\rho_u^{\max} = 400/255$, $\rho_u^{\min} = 50/255$	0.8611	0.8529	E1	1.4470	7.5051	0.0424	0.6188	3.1473
—	—	—	E3	1.5867	7.0958	0.0789	0.5784	2.0724
$\rho_u^{\max} = 400/255$, $\rho_u^{\min} = 100/255$	0.8603	0.8501	E1	1.5906	7.1067	0.0964	0.5922	2.3557
—	—	—	E3	1.6297	7.1386	0.0517	0.6291	2.2926
$\rho_u^{\max} = 400/255$, $\rho_u^{\min} = 200/255$	0.8599	0.8491	E1	1.4463	7.5095	0.0489	0.6820	5.3285
—	—	—	E3	1.5249	7.2956	0.0667	0.6521	2.0968

Table 28: Evaluation of FedEM’s privacy protection under different lower bound (ρ_u^{\min}) and upper bound (ρ_u^{\max}) constraints on perturbation radius, tested on the MNIST dataset. Gradient leakage attacks are launched at epochs E1 and E3. Utility metrics are marked with **(U)** and privacy metrics with **(P)**. \uparrow = higher is better, \downarrow = lower is better.

Method	Val Acc (U \uparrow)	Test Acc (U \uparrow)	Stage	MSE (P \uparrow)	PSNR (P \downarrow)	SSIM (P \downarrow)	LPIPS (P \uparrow)	KL (P \uparrow)
FedSGD (baseline)	0.9817	0.9753	E1	1.2483	9.4434	0.1230	0.6192	2.8710
–	–	–	E3	1.3168	9.1517	0.0917	0.6096	3.3839
$\rho_u^{\max} = 200/255, \rho_u^{\min} = 25/255$	0.9771	0.9759	E1	1.4718	8.7485	0.0452	0.6561	3.0776
–	–	–	E3	1.7650	7.8324	0.0363	0.6771	3.7129
$\rho_u^{\max} = 200/255, \rho_u^{\min} = 50/255$	0.9745	0.9735	E1	1.7456	7.8552	0.0277	0.7169	4.6996
–	–	–	E3	1.7740	7.7798	0.0297	0.6937	4.5944
$\rho_u^{\max} = 200/255, \rho_u^{\min} = 100/255$	0.9733	0.9695	E1	1.6965	7.9479	0.0362	0.6715	3.6726
–	–	–	E3	1.5899	8.4807	0.0705	0.6451	3.4587
$\rho_u^{\max} = 400/255, \rho_u^{\min} = 50/255$	0.9759	0.9749	E1	1.4344	8.8162	0.0531	0.6589	5.4373
–	–	–	E3	1.7194	7.9133	0.0364	0.6691	3.3634
$\rho_u^{\max} = 400/255, \rho_u^{\min} = 100/255$	0.9747	0.9723	E1	1.5004	8.6315	0.0596	0.6283	3.9083
–	–	–	E3	1.8641	7.7520	0.0529	0.6350	4.4288
$\rho_u^{\max} = 400/255, \rho_u^{\min} = 200/255$	0.9720	0.9729	E1	1.6677	8.0892	0.0468	0.6878	3.2531
–	–	–	E3	1.8285	7.6805	0.0274	0.6799	3.8380

Figure 10 and 11 report the normalized test accuracy and three privacy metrics (MSE, SSIM, KL) on MNIST, FMNIST and CIFAR-10. For consistency, SSIM values are reversed during normalization so that higher values uniformly indicate stronger privacy protection.

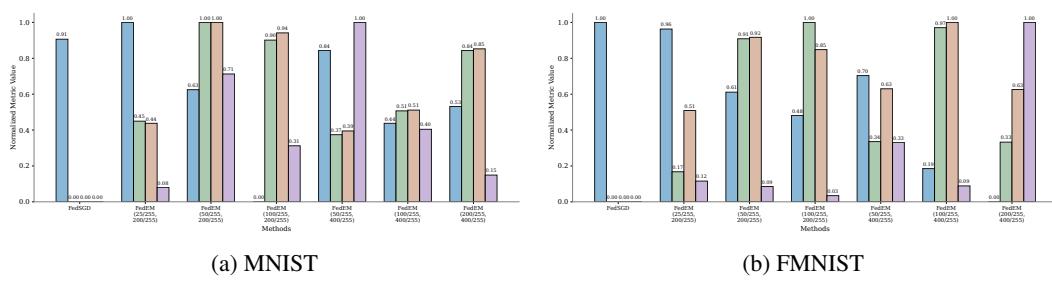


Figure 10: Normalized comparison of utility and privacy metrics under different perturbation lower bounds on MNIST and FMNIST datasets. When the perturbation is constrained by a non-zero lower bound, FedEM provides a bounded privacy leakage. (The left and right endpoints of each bar denote the lower and upper bounds of the perturbation, respectively.)

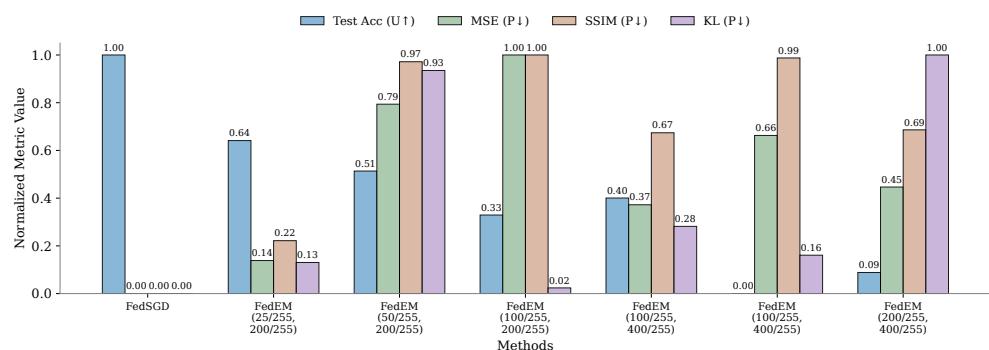


Figure 11: Normalized comparison of utility and privacy metrics under different perturbation lower bounds on CIFAR-10.

1404 E PROOFS OF CONVERGENCE ANALYSIS
14051406 We provide the full assumptions, lemmas, and proof of Theorem 1.
14071408 E.1 ASSUMPTIONS
14091410 **Assumption 1** (Smoothness). *The global objective $f(\theta)$ is L -smooth: $\|\nabla f(\theta) - \nabla f(\theta')\| \leq L\|\theta - \theta'\|$.*
14111412 **Assumption 2** (Bounded stochastic variance). *For any client k , $\mathbb{E}[\|g_k(\theta; x, y) - \nabla f_k(\theta)\|^2] \leq \sigma^2$,
1413 where $g_k(\theta; x, y) = \nabla_\theta \ell(f_\theta(x), y)$.*
14141415 **Assumption 3** (Heterogeneity). *Client dissimilarity is bounded: $\frac{1}{K} \sum_{k=1}^K \|\nabla f_k(\theta) - \nabla f(\theta)\|^2 \leq \zeta^2$.*
14161417 **Assumption 4** (Bounded perturbation). *Each perturbation satisfies $\|\delta_k^t\| \leq \rho_u^{\max}$. Moreover, there
1418 exists $G_x > 0$ such that $\|\nabla_\theta \ell(f_\theta(x + \delta), y) - \nabla_\theta \ell(f_\theta(x), y)\| \leq G_x \|\delta\|$ for $\|\delta\| \leq \rho_u^{\max}$.*
14191420 **Assumption 5** (Client sampling). *At each update, a subset C_t of size S is sampled uniformly, and
1421 the server aggregates $\tilde{g}^t = \frac{1}{S} \sum_{k \in C_t} \tilde{g}_k^t$. Let $\xi^t := \tilde{g}^t - \mathbb{E}[\tilde{g}^t \mid \theta^t]$ denote the sampling noise; we
1422 assume it is conditionally zero-mean, i.e., $\mathbb{E}[\xi^t \mid \theta^t] = 0$.*
1423

1424 E.2 PERTURBATION BIAS LEMMA

1425 **Lemma 3** (Bias induced by perturbation). *Let $\tilde{g}_k(\theta; x, y, \delta) = \nabla_\theta \ell(f_\theta(x + \delta), y)$ and $g_k(\theta; x, y) =$
1426 $\nabla_\theta \ell(f_\theta(x), y)$. Under Assumption 4,*

1427
$$\|\mathbb{E}[\tilde{g}_k] - \nabla f_k(\theta)\| \leq G_x \rho_u^{\max}, \quad \mathbb{E}\|\tilde{g}_k - \nabla f_k(\theta)\|^2 \leq 2\sigma^2 + 2G_x^2 \rho_u^{\max 2}.$$

1429 *Proof.* By Lipschitz continuity,

1430
$$\|\mathbb{E}[\tilde{g}_k] - \nabla f_k(\theta)\| = \|\mathbb{E}[\tilde{g}_k - g_k]\| \leq \mathbb{E}\|\tilde{g}_k - g_k\| \leq G_x \rho_u^{\max}.$$

1431 For the variance, observe $\|\tilde{g}_k - \nabla f_k(\theta)\|^2 \leq 2\|\tilde{g}_k - g_k\|^2 + 2\|g_k - \nabla f_k(\theta)\|^2$. Taking expectations
1432 and invoking Assumptions 2 and 4 yields the claim. \square
1433

1434 E.3 PROOF OF THEOREM 1

1435 *Proof.* The server update is $\theta^{t+1} = \theta^t - \eta \tilde{g}^t$ with $\tilde{g}^t = \frac{1}{S} \sum_{k \in C_t} \tilde{g}_k^t$. By L -smoothness of f we
1436 have

1437
$$f(\theta^{t+1}) \leq f(\theta^t) - \eta \langle \nabla f(\theta^t), \tilde{g}^t \rangle + \frac{L\eta^2}{2} \|\tilde{g}^t\|^2.$$

1438 We decompose the aggregated update as $\tilde{g}^t = \nabla f(\theta^t) + b^t + \xi^t$, where $b^t := \mathbb{E}[\tilde{g}^t \mid \theta^t] - \nabla f(\theta^t)$
1439 is the perturbation bias. By Lemma 3, $\|b^t\| \leq G_x \rho_u^{\max}$.
14401441 Taking conditional expectation and using $\mathbb{E}[\xi^t \mid \theta^t] = 0$,

1442
$$\mathbb{E}[\langle \nabla f(\theta^t), \tilde{g}^t \rangle \mid \theta^t] = \|\nabla f(\theta^t)\|^2 + \langle \nabla f(\theta^t), b^t \rangle \geq \frac{1}{2} \|\nabla f(\theta^t)\|^2 - \frac{1}{2} \|b^t\|^2,$$

1443 where the last step applies Young's inequality $2\langle a, b \rangle \geq -\|a\|^2 - \|b\|^2$.
14441445 Using $\|u + v + w\|^2 \leq 3(\|u\|^2 + \|v\|^2 + \|w\|^2)$,

1446
$$\mathbb{E}[\|\tilde{g}^t\|^2 \mid \theta^t] \leq 3\|\nabla f(\theta^t)\|^2 + 3\|b^t\|^2 + 3\mathbb{E}[\|\xi^t\|^2 \mid \theta^t].$$

1447 Moreover, by Lemma 3 and uniform sampling of size S ,

1448
$$\mathbb{E}[\|\xi^t\|^2 \mid \theta^t] \leq \frac{2\sigma^2 + 2G_x^2 \rho_u^{\max 2}}{S} + \frac{\zeta^2}{S}.$$

1449 Combining with $\|b^t\| \leq G_x \rho_u^{\max}$ gives

1450
$$\mathbb{E}[\|\tilde{g}^t\|^2 \mid \theta^t] \leq 3\|\nabla f(\theta^t)\|^2 + 3G_x^2 \rho_u^{\max 2} + \frac{3}{S} (2\sigma^2 + 2G_x^2 \rho_u^{\max 2} + \zeta^2).$$

1458 Taking expectations and substituting the two estimates,
 1459

$$\begin{aligned}
 1460 \mathbb{E}[f(\theta^{t+1})] &\leq \mathbb{E}[f(\theta^t)] - \eta \left(\frac{1}{2} \mathbb{E} \|\nabla f(\theta^t)\|^2 - \frac{1}{2} \mathbb{E} \|b^t\|^2 \right) \\
 1461 &\quad + \frac{L\eta^2}{2} \left(3 \mathbb{E} \|\nabla f(\theta^t)\|^2 + 3G_x^2 \rho_u^{\max 2} + \frac{3}{S} (2\sigma^2 + 2G_x^2 \rho_u^{\max 2} + \zeta^2) \right) \\
 1462 &\leq \mathbb{E}[f(\theta^t)] + \left(-\frac{\eta}{2} + \frac{3L\eta^2}{2} \right) \mathbb{E} \|\nabla f(\theta^t)\|^2 + \frac{\eta}{2} G_x^2 \rho_u^{\max 2} \\
 1463 &\quad + \frac{3L\eta^2}{2} \left(G_x^2 \rho_u^{\max 2} + \frac{2\sigma^2 + 2G_x^2 \rho_u^{\max 2} + \zeta^2}{S} \right).
 \end{aligned}$$

1467 Choose $\eta \leq \frac{1}{6L}$ so that $-\frac{\eta}{2} + \frac{3L\eta^2}{2} \leq -\frac{\eta}{4}$. Then
 1468

$$\mathbb{E}[f(\theta^{t+1})] \leq \mathbb{E}[f(\theta^t)] - \frac{\eta}{4} \mathbb{E} \|\nabla f(\theta^t)\|^2 + C_1 \eta G_x^2 \rho_u^{\max 2} + C_2 \eta^2 \left(G_x^2 \rho_u^{\max 2} + \frac{2\sigma^2 + 2G_x^2 \rho_u^{\max 2} + \zeta^2}{S} \right),$$

1471 for absolute constants $C_1 = \frac{1}{2}$ and $C_2 = \frac{3L}{2}$.
 1472

1473 Summing over $t = 0, \dots, T-1$ and rearranging gives

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \|\nabla f(\theta^t)\|^2 \leq \frac{4(f(\theta^0) - f^*)}{\eta T} + \mathcal{O}(\eta G_x^2 \rho_u^{\max 2}) + \mathcal{O}\left(\eta \frac{2\sigma^2 + 2G_x^2 \rho_u^{\max 2} + \zeta^2}{S}\right).$$

1477 Finally, choosing $\eta = \Theta(T^{-1/2})$ implies
 1478

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \|\nabla f(\theta^t)\|^2 = \tilde{\mathcal{O}}(T^{-1/2}) + \mathcal{O}(\rho_u^{\max 2}) + \mathcal{O}\left(\frac{\sigma^2 + G_x^2 \rho_u^{\max 2} + \zeta^2}{S\sqrt{T}}\right).$$

1482 \square
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511