

000 001 FAITHFULNESS UNDER THE DISTRIBUTION: A NEW 002 LOOK AT ATTRIBUTION EVALUATION 003 004

005 **Anonymous authors**
006 Paper under double-blind review

007 008 ABSTRACT 009

011 Evaluating the faithfulness of attribution methods remains an open challenge. Stan-
012 dard metrics such as Insertion and Deletion Scores rely on heuristic input perturba-
013 tions (e.g., zeroing pixels), which often push samples out of the data distribution
014 (OOD). This can distort model behavior and lead to unreliable evaluations. We
015 propose FUD, a novel evaluation framework that reconstructs masked regions us-
016 ing score-based diffusion models to produce in-distribution, semantically coherent
017 inputs. This distribution-aware approach avoids the common pitfalls of existing At-
018 tribution Evaluation Methods (AEMs) and yields assessments that more accurately
019 reflect attribution faithfulness. Experiments across models show that FUD produces
020 significantly different—and more reliable—judgments than prior approaches. Our
021 implementation is available at: <https://anonymous.4open.science/r/FUD-CCD5/>.

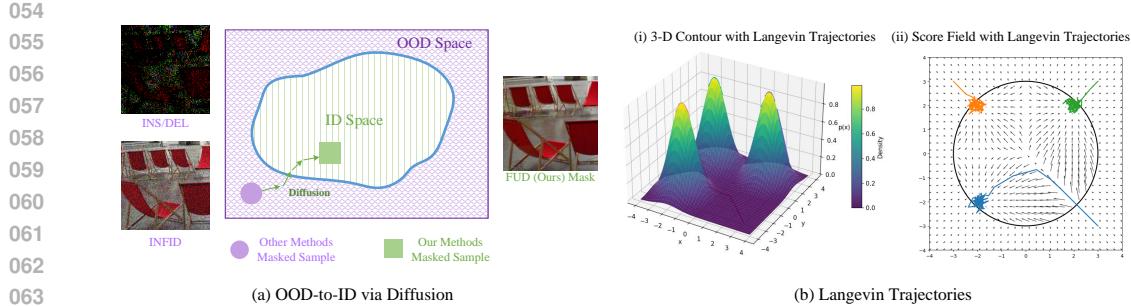
022 1 INTRODUCTION 023

024 With the widespread adoption of deep learning techniques in critical domains such as medical
025 diagnosis (Bakator & Radosav, 2018), financial risk control (Mashrur et al., 2020), autonomous
026 driving (Grigorescu et al., 2020), and security surveillance (Yu et al., 2021), the issue of model
027 interpretability has attracted increasing attention. Although deep neural networks have achieved
028 breakthrough performance across a range of tasks, their complex internal mechanisms are often
029 regarded as a “black box,” making it difficult to understand the rationale behind specific predictions.
030 In safety-critical or high-risk applications, a lack of reasonable explanation for model decisions may
031 lead to severe consequences (Van der Velden et al., 2022). Therefore, enhancing model interpretability
032 not only helps to foster user trust, but also facilitates error analysis, model debugging, and even
033 improves robustness and generalization performance.

034 Among the various explainability techniques, attribution methods have emerged as a crucial approach
035 for interpreting complex models by mapping prediction outcomes back to the input space (such as
036 image pixels or feature dimensions) to identify key regions or factors that the model focuses on.
037 These methods are widely employed in tasks like image classification (Rao et al., 2022) and sentiment
038 analysis (Pan et al., 2024), and have demonstrated significant value, particularly in scenarios that
039 demand high levels of security in model decision-making.

040 However, attribution methods themselves are not always reliable or consistent, as different techniques
041 may produce significantly divergent explanations for the same model prediction. Therefore, how
042 to objectively assess the quality of attribution results has emerged as a core challenge in current
043 research. Faithfulness (Petsiuk et al., 2018; Yeh et al., 2019) is widely regarded as a key criterion for
044 evaluating the effectiveness of attribution methods. Such criterion reflects the consistency between
045 the attribution results and the actual decision-making basis of the model: a highly faithful attribution
046 method indicates that the highlighted high-contribution regions genuinely play a critical role in the
047 model’s prediction. In other words, when these regions are removed or perturbed, the model’s output
048 changes significantly.

049 Building on this insight, the research community has proposed various quantitative metrics to assess
050 faithfulness. Among them, the most representative and widely adopted are the Insertion & Deletion
051 Scores (Petsiuk et al., 2018) and Infidelity (Yeh et al., 2019). The Insertion & Deletion Score is a pair
052 of complementary evaluation metrics, which start from the “substitutability of contribution areas” and
053 simulate the way humans understand the model’s dependent areas. Specifically, the Deletion Score
progressively removes the highest-scoring regions from the original input—i.e., the pixels or features



065 **Figure 1: Overview of the FUD framework.** (a) The left panel illustrates the core motivation of FUD:
066 compared to conventional attribution evaluation metrics such as *INS/DEL* and *INFID*, which generate
067 perturbed inputs drifting into the OOD space (purple area), FUD ensures that evaluation samples
068 remain within the ID manifold (green area) by reconstructing masked regions via a score-based
069 diffusion model. (b) The right panel shows how FUD leverages Langevin dynamics to guide inputs
070 back toward the data manifold. Subfigure (i) visualizes Langevin trajectories in a toy 3D density;
071 subfigure (ii) shows how the learned score field $\nabla_x \log p_\theta(x)$ steers samples from OOD to ID regions.
072 The derivation of this score function is discussed in Section 3.3.

073
074
075
076
077
078
079 with the largest attribution values—and records the corresponding changes in the model’s output at
080 each step. In contrast, the Insertion Score starts from a blank image (such as an all-zero input or a
081 blurred background) and gradually inserts the highest-scoring regions from the attribution map in
082 order of decreasing attribution value.

083 Infidelity is another faithfulness metric based on expected values, focusing on the explanatory
084 power of attribution scores with respect to prediction changes. It is defined as the mean squared
085 error between the attribution values and the actual changes in the model’s predictions under a set
086 of input perturbations, such as additive noise. Although existing Attribution Evaluation Methods
087 (AEMs) provide powerful tools for quantitatively analyzing attribution methods, they also suffer from
088 notable limitations. These methods fundamentally rely on the core operation of feature removal or
089 modification, a process that inherently introduces two key heuristic mistakes, **introducing additional**
090 **information** and **being affected by the instability of the out-of-distribution space of models**. We
091 will discuss the details later. As a result, mainstream attribution methods often fail to faithfully reflect
092 the true decision-making basis of the model, leading to explanations that lack faithfulness. To address
093 the shortcomings of current AEMs in accurately capturing the faithfulness of attribution algorithms,
094 inspired by Score-based Generative Modeling (SGM), we propose a new evaluation method called
095 FUD. FUD is capable of constructing attribution evaluation samples that remain within the data
096 distribution while preserving the essential information required for faithful evaluation. The core idea
097 of FUD lies in its ability to leverage the score function learned from the true data distribution to pull
098 out-of-distribution samples back into the data manifold, while simultaneously preserving the critical
099 information needed for faithful attribution evaluation. Building on this idea, we present a detailed
100 derivation of the distributional formulation underlying FUD. It is worth emphasizing that FUD can
101 be readily applied by incorporating the target model into an existing score function, without the need
102 for any additional training. An overview of the proposed pipeline is shown in Fig. 1.

102 **Contributions.** (1) we first identify that widely used Attribution Evaluation Methods (AEMs)
103 systematically exhibit significant heuristic issues, posing substantial risks to explainable AI, and we
104 analyse these issues from a distributional perspective using explicit OOD detection and image-quality
105 metrics; (2) we propose and formally derive the FUD evaluation method, explicitly designed to avoid
106 these heuristic pitfalls, and validate its effectiveness through extensive experiments across diverse use
107 cases; and (3) we release FUD as an open-source toolkit to promote transparency, reproducibility,
108 and community engagement.

108

2 RELATED WORK

109
 110 Attribution methods aim to explain model predictions by identifying input regions most responsible
 111 for the output, with approaches such as Integrated Gradients (IG) (Sundararajan et al., 2017), Guided
 112 IG (Kapishnikov et al., 2021), Boundary-based IG (Wang et al., 2021), and adversarial-path methods
 113 including AGI (Pan et al., 2021) and subsequent adversarial attribution variants (Zhu et al., 2024b;a;c).
 114 Evaluating attribution faithfulness typically relies on perturbation-based metrics such as Insertion &
 115 Deletion Scores (Petsiuk et al., 2018), Infidelity (Yeh et al., 2019), Sensitivity- n (Ancona et al., 2017),
 116 and optimized-mask approaches (Fong & Vedaldi, 2017; Fong et al., 2019), all of which introduce
 117 distribution shifts to varying degrees. In addition, generative in-filling approaches (Chang et al., 2019;
 118 Agarwal & Nguyen, 2020) use learned generative models to replace removed pixels with realistic
 119 content; however, they do not incorporate classifier–input gradients and may inadvertently introduce
 120 class-supporting evidence instead of faithfully removing it. These methods collectively highlight the
 121 trade-off between interpretability and distributional consistency, motivating more robust evaluation
 122 frameworks. A detailed and extended discussion of attribution methods and evaluation metrics is
 123 provided in Appendix A.

124

3 METHOD

125

3.1 PROBLEM DEFINITION

126
 127 In the Research of interpretability for deep learning models, attribution methods aim to measure
 128 the contribution of input features to the model’s decision. Given a trained predictive model $f(x)$,
 129 where $x \in \mathbb{R}^n$ represents an n -dimensional input sample, the model’s output is a c -dimensional
 130 vector $f(x) \in \mathbb{R}^c$, corresponding to the probability distribution or prediction scores over c classes.
 131 Attribution methods attempt to generate an interpretable representation $A(x) \in \mathbb{R}^n$ for the input
 132 sample x , indicating the importance of each input feature or feature region for the model output
 133 (usually for a specific class). For the i -th feature in the image, a larger value of $A(x)_i$ represents a
 134 greater contribution of that feature to the model’s decision. In the Appendix A, we also provide a
 135 detailed related work of the current state-of-the-art attribution methods and commonly used AEMs.
 136

137 **Model-centric out-of-distribution (OOD) definition.** Throughout this paper, OOD is defined
 138 with respect to the original model under evaluation. That is, a perturbed sample is considered
 139 in-distribution if it lies on (or near) the model’s learned data manifold, regardless of whether it
 140 appears visually “natural” to humans. This model-centric view is consistent with our goal—assessing
 141 attribution faithfulness for the original model—rather than for a re-trained or adaptively fine-tuned
 142 model. See Appx. F for objective OOD-detection evidence supporting this distinction.

143

3.2 THE HEURISTIC MISTAKES OF CURRENT AEMs

144
 145 Most of the currently designed AEMs (Petsiuk et al., 2018; Yeh et al., 2019; Ancona et al., 2017)
 146 are heuristic in nature. Although they are often supported by some mathematical interpretations
 147 and theoretical foundations (Yeh et al., 2019), they are essentially based on intuition-driven designs.
 148 Of course, we do not consider heuristic or intuition-driven evaluation method design to be a wrong
 149 choice. Just as using the probability output of a classification model as a measure of confidence is
 150 widely accepted—it effectively reflects the relative likelihoods of different class decisions made by
 151 the model. Since AEMs require an understanding of the model’s internal mechanisms, and such
 152 understanding still largely relies on heuristic reasoning and empirical analysis, we inevitably make
 153 reasonable assumptions about these internal processes during interpretation. However, because these
 154 assumptions are themselves heuristic, it is difficult to design AEMs based on first principles. But
 155 precisely because of this, we need to approach the potential heuristic mistakes with greater rigor.

156
 157 We find that mainstream AEMs commonly involve feature insertion and deletion during their design.
 158 For example, the insertion score is calculated by progressively inserting features based on their
 159 attribution-estimated contribution values in descending order, and observing the increase in the
 160 confidence score of the target class. A higher insertion score indicates that the attribution method has
 161 successfully identified important, high-contribution features. Similarly, the deletion score involves
 162 removing features in descending order of their estimated contribution values, where a lower score

162 indicates a better attribution method. During this process, a corresponding mask $M \in \{0, 1\}^n$ is
 163 generated, where the ratio of 0 and 1 depends on the number of features we want to retain. The
 164 dimensions with a value of 1 indicate the features that are intended to be kept. Furthermore, we
 165 directly construct an evaluation sample $\tilde{x} = M \odot x + (1 - M) \odot \mathbf{0}$, which lies outside the distribution
 166 that the model is responsible for. Intuitively, this is an appropriate evaluation method that can directly
 167 reflect the impact of feature importance.

168 However, in reality, this process is based on a fundamentally flawed assumption—**that removing**
 169 **a feature means setting it to zero** (the insertion score can be seen as the dual counterpart of the
 170 deletion score, which removes unimportant features). In images, zero often represents specific color
 171 information, such as black, so **setting values to zero does not equate to removing features**; instead,
 172 it may introduce new, semantically meaningful information into the image. For a straightforward
 173 example: in a classification task distinguishing **black cats** from **white cats**, the black regions are
 174 important features for recognizing the "black cat" class. If we set parts of the image to zero (i.e., turn
 175 them black), this does not actually remove the black information—in fact, it may even strengthen
 176 the representation of the "black cat." As a result, the model's confidence output might not decrease
 177 and could even increase, which directly contradicts our expectation that the model should fail when
 178 important features are removed.

179 Aside from the issue of introducing additional information, current AEMs also suffer from another
 180 obvious heuristic mistake: **it is difficult to ensure that samples with removed features remain**
 181 **valid and realistic samples**. We assume that we have removed 50% of the important features,
 182 resulting in images containing half blacked-out regions. However, such samples would never appear
 183 in reality. When training the model, we expect it to learn the distribution $P_{x \sim P(x)}(y|x)$, where
 184 $P(x)$ represents the true data distribution, and y denotes the class label information. In other words,
 185 since the true data distribution occupies only a very small portion of the high-dimensional space, the
 186 model only needs to—and can only—be responsible for the distribution of the training data, while a
 187 large amount of uncertainty exists outside this distribution. Using model behavior outside the data
 188 distribution to evaluate model behavior within the distribution is a highly counterintuitive approach.

189 In Section 4.3.1 and Section 4.3.2, we analyzed the intermediate images generated by current
 190 attribution evaluation methods using OOD detection techniques and image quality evaluation metrics,
 191 and found that these samples not only lie outside the true data distribution but also appear highly
 192 unrealistic. Since the samples with removed information often lie far from the true distribution
 193 $P(x)$, the shift in the model's output probability distribution during this process may stem not only
 194 from biases in the class decision itself but also from discrepancies between the sample and the
 195 true distribution $P(x)$. This issue cannot be distinguished during the attribution evaluation process,
 196 which undermines the credibility of AEMs. Moreover, because these evaluation results lie in an
 197 unstable OOD space, manifesting as very unsmooth insertion and deletion curves, including abnormal
 198 phenomena such as confidence increasing when important features are deleted.

199 Besides Insertion& Deletion Scores, evaluation methods such as Infidelity and Sensitivity- n , although
 200 attempting to circumvent the explicit insertion/deletion issues by focusing on consistency or sensitivity,
 201 still rely on intervening in the input features during their operations. Consequently, they inevitably
 202 introduce intermediate images that deviate from the original distribution, resulting in similar heuristic
 203 mistakes in the evaluation outcomes. The issues with the Sensitivity- n metric are similar. Although
 204 this metric observes changes in model predictions by randomly occluding a subset of important
 205 features selected based on attribution rankings, it fundamentally relies on the assumption that
 206 "occlusion is equivalent to feature deletion." . Meanwhile, these occlusion operations may still
 207 introduce unnatural semantic cues or create abnormal structures within the images, thereby affecting
 208 the stability of the model's output. In summary, when designing AEMs, we must rigorously avoid
 209 these heuristic mistakes.

210 3.3 FAITHFULNESS UNDER THE DISTRIBUTION (FUD)

211 3.3.1 INTUITION

212 The core idea of FUD is simple: given an attribution map, we construct perturbed samples that (i)
 213 remain on the data manifold and (ii) preserve all visible features that the attribution method identifies
 214 as important, without introducing new evidence that supports the predicted class y . Conceptually, this

216 corresponds to a diffusion-style inpainting process guided by a hard mask and by a “no new evidence
 217 for class y ” bias, so that the evaluation reflects only the contribution of the preserved features.
 218

219 For completeness, we note that such perturbations are expected to satisfy several desirable properties,
 220 including in-distribution realism, exact preservation of the retained features, absence of hallucinated
 221 class evidence, and perceptual coherence. These desiderata motivate the FUD update rule, and are
 222 discussed in more detail in Appendix B.

223 3.3.2 DERIVATION

225 We now summarise the FUD evaluation algorithm and formalise the above intuition. The derivation
 226 addresses two questions: how to keep the perturbed samples within the data distribution, and how to
 227 preserve the information we want to evaluate.

228 **Within the distribution** Inspired by the SGM algorithm (Song et al., 2020), we assume that the
 229 true data distribution is $P(x)$. We denote by x^t an intermediate sample at iteration $t \in \{1, 2, \dots, T\}$,
 230 where t counts the remaining update steps and each update transforms x^t into x^{t-1} . We initialise
 231

$$232 \quad x^T = M \odot x + (1 - M) \odot \epsilon, \quad \epsilon \sim \mathcal{N}(0, I), \quad (1)$$

233 so that the unmasked pixels follow the original image x , while the masked pixels are replaced by
 234 noise; in general, such an x^t lies off the data manifold.
 235

236 If we could obtain the gradient $\nabla_{x^t} P(x^t)$ of the true distribution at the current position, we could
 237 use gradient ascent to update x^t and guide it towards regions of higher density. In practice, gradients
 238 in the input space are very sparse and the optimisation must satisfy normalisation constraints, so we
 239 instead work with the score function and update according to

$$240 \quad x^{t-1} = x^t + c \nabla_{x^t} \log P(x^t) + \sqrt{2c} \epsilon, \quad \epsilon \sim \mathcal{N}(0, I), \quad (2)$$

241 where c denotes the Langevin step size and the noise term follows Song et al. (2020). We approximate
 242 the true score $\nabla_{x^t} \log P(x^t)$ using a learned score function $s_\theta(x^t)$, trained with the standard SGM
 243 objective

$$244 \quad \theta^* = \arg \min_{\theta} \sum_{t=1}^T \lambda(t) \mathbb{E}_{P_{\sigma^t}(x^t)} \left[\|s_\theta(x^t) - \nabla_{x^t} \log P_{\sigma^t}(x^t)\|_2^2 \right], \quad (3)$$

245 where $\lambda(t)$ and σ^t are pre-defined hyperparameters. The score s_θ can also be learned via diffusion
 246 models such as DDPM (Ho et al., 2020). Since this paper does not focus on the training details,
 247 we refer the reader to SGM (Song et al., 2020); here it is sufficient to note that, once we obtain the
 248 gradient information of the distribution, we can update samples using gradient steps to bring them
 249 back within the distribution.
 250

251 **Preservation of the evaluation information** During the evaluation of attribution methods, we
 252 progressively remove or modify features that the attribution method deems unimportant, thereby
 253 preserving the features that are crucial to the model’s decision-making. FUD aims to generate
 254 evaluation samples that both stay within the data distribution and preserve precisely these features. To
 255 achieve this, we require that the features to be evaluated are kept intact, and that no newly generated
 256 features bring the sample closer to a different class distribution. Otherwise, it becomes impossible to
 257 disentangle the effect of the original preserved features from that of newly created, class-supporting
 258 evidence.
 259

260 To enforce this constraint, we introduce a hypothetical distribution $\tilde{P}(y | x^t)$ whose gradient is
 261 opposite to that of $P(y | x^t)$,

$$263 \quad \nabla_{x^t} \tilde{P}(y | x^t) = - \nabla_{x^t} P(y | x^t), \quad (4)$$

264 and we denote this “no new class evidence” bias as an event z . The target distribution that FUD aims
 265 to sample from is then
 266

$$267 \quad P(x^t | z, \tilde{x}, M) = \frac{P(z, \tilde{x} | x^t, M) P(x^t | M)}{P(z, \tilde{x} | M)} \\ 268 \quad = \frac{P(z | x^t) P(\tilde{x} | x^t, M) P(x^t)}{P(z, \tilde{x} | M)} \propto P(x^t) P(z | x^t) P(\tilde{x} | x^t, M), \quad (5)$$

270 where $P(z, \tilde{x} | M)$ is a normalising constant and $P(x^t | M) = P(x^t)$ if the prior is independent of
271 M . Taking gradients yields

$$272 \quad \nabla_{x^t} \log P(x^t | z, \tilde{x}, M) = \nabla_{x^t} \log P(x^t) - \nabla_{x^t} \log P(y | x^t) + \nabla_{x^t} \log P(\tilde{x} | x^t, M), \quad (6)$$

274 with all gradients taken with respect to x^t .

275 In this expression, the first term $\nabla_{x^t} \log P(x^t)$ is the image prior $P(x)$ (not a label vector) and is
276 provided by the learned score network $s_\theta(x^t)$. The second term $\nabla_{x^t} \log P(y | x^t)$ is the classifier’s
277 input gradient with respect to x^t , supplied by the model whose behaviour we evaluate; in later steps,
278 we only activate this term after x^t has moved sufficiently close to the data manifold. The third term
279 $\nabla_{x^t} \log P(\tilde{x} | x^t, M)$ enforces consistency on the unmasked pixels. Choosing

$$280 \quad P(\tilde{x} | x^t, M) = \prod_{M_i=1} \delta(x_i^t - \tilde{x}_i) \quad (7)$$

283 ensures that these coordinates remain fixed, effectively combining the score-model prior, the classifier-
284 gradient correction, and the hard masking constraint into a single update rule in Eq. (2). In implemen-
285 tation, we directly replace the entries of x^t with \tilde{x} whenever $M_i = 1$; further properties are provided
286 in Appendix C.

287 The construction of $\nabla_{x^t} \log P(y | x^t)$ can be seen as taking the gradient of the input with respect to
288 the negative cross-entropy loss. However, the model behaviour is reliable only for samples that lie
289 within the data distribution. The initial sample x^T is far from the manifold, and the corresponding
290 $\nabla_{x^t} \log P(y | x^t)$ is therefore not meaningful. In SGM-like approaches, similar gradients require
291 additional training that sacrifices classification performance in order to obtain useful gradients on
292 noisy samples, which is incompatible with evaluating arbitrary pretrained models. To avoid this, we
293 initially ignore the z -term and use

$$294 \quad P(x^t | \tilde{x}, M) = \frac{P(\tilde{x} | x^t, M) P(x^t)}{P(\tilde{x} | M)} \propto P(x^t) P(\tilde{x} | x^t, M) \quad (8)$$

297 instead of $P(x^t | z, \tilde{x}, M)$, using only the score prior and mask constraint to move samples closer to
298 the manifold. In Appendix D, we show empirically, using the score function to generate evaluation
299 samples, that after updating $P(x^t | \tilde{x}, M)$ for about 5% of the remaining sampling steps, the samples
300 begin to enter the in-distribution region. At that point, features close to the original class distribution
301 have not yet been newly generated, so we switch to the original target distribution $P(x^t | z, \tilde{x}, M)$
302 and continue sampling to obtain high-quality evaluation samples.

303 Finally, we summarise how FUD is used as an evaluation metric. FUD generates attribution-
304 evaluation samples that stay within the distribution while preserving the features that need
305 to be evaluated. We follow a deletion-style protocol: we progressively remove features deemed
306 unimportant by the attribution method, use FUD (with fixed hyperparameters) to generate the cor-
307 responding evaluation samples at each removal level, and track the model’s confidence on these
308 samples. If an attribution algorithm can accurately identify important features, then evaluation
309 samples retaining the same proportion of features will exhibit higher confidence. We only consider
310 this “retain-important-features” direction, rather than defining separate insertion and deletion scores,
311 because evaluating samples where only unimportant features are kept is often not informative (for
312 example, keeping a few background patches of grass in a black-cat vs. white-cat task). From an
313 optimisation perspective, the presence of the $-\nabla_{x^t} \log P(y | x^t)$ term also means that explicitly
314 evaluating “unimportant” features would tend to amplify adversarial effects and destabilise the metric,
315 making it difficult to distinguish truly unimportant features from artefacts introduced by this term.
316 The pseudocode of our FUD algorithm is provided in Appendix E.

317 4 EXPERIMENT

319 4.1 EXPERIMENTAL SETUP

321 **Models & Data.** To demonstrate that the proposed evaluation scheme generalises across network
322 families, we test one convolutional and one transformer backbone: RESNET-50 (He et al., 2016)—the
323 canonical ImageNet convolutional network—and ViT-B/16 (Dosovitskiy, 2020), a vision transformer
of comparable capacity. Both checkpoints are the publicly released ImageNet-1k weights and are

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 1: Mainstream attribution evaluation metrics compared with FUD.

Metric	Description
Insertion & Deletion (INS/DEL)	Measures change in model output after iteratively inserting / deleting high-score regions.
Infidelity (INFID)	Expected squared error between attribution-weighted perturbations and output change.
Sensitivity- N (Sen- N)	Correlation between output change and random masking of the top- N salient features.

kept *frozen* during every attribution run, thereby eliminating confounding factors that fine-tuning could introduce. Following Pan et al. (2021) and Long et al. (2022), we draw 1,000 validation images uniformly at random from ImageNet (Deng et al., 2009). No further curation is performed, so the subset retains the long-tailed distribution of object categories and recording conditions; each attribution method is therefore evaluated on exactly the same, unbiased sample.

Attribution Baselines. We benchmark eleven representative explainability techniques that collectively cover gradient-, perturbation-, and attack-based families: FIG (Hesse et al., 2021), GIG (Kapishnikov et al., 2021), IG (Sundararajan et al., 2017), BIG (Wang et al., 2021), SM (Simonyan et al., 2013), MFABA (Zhu et al., 2024c), ATTEXPLORE (Zhu et al., 2024b), ISA (Zhu et al., 2024a), EG (Erion et al., 2021), AGI (Pan et al., 2021), and LA (Zhu et al., 2024d). All algorithms are executed with the hyper-parameters recommended by their authors.

Competing Evaluation Criteria. To test whether the **proposed metric (FUD)** in Section 3 yields a more faithful signal of explanation quality, we compare it against three widely used quantitative criteria, summarised in Table 1.

Implementation Details. All experiments run on two NVIDIA L40S GPUs (48 GB) with PyTorch 2.4.1. Mixed-precision inference (FP16) is enabled wherever supported, yielding a $\sim 1.7 \times$ speed-up without compromising numerical stability. Following standard practice in generative-model evaluation, we adopt deterministic image-quality metrics (PSNR, SSIM, MS-SSIM, FSIM, GMSD, HaarPSI, VSI) that return fixed scores for each image pair, computed via the PyTorch Image Quality library with default configurations. We set the random seed to 3407 for reproducibility, following Picard (2021). Results are reported as averages over all test samples, consistent with diffusion-model evaluation protocols (Ho et al., 2020).

FUD Diffusion Configuration. FUD employs an unconditional diffusion generator `256x256_diffusion_uncond.pt`. The underlying U-Net has 256 base channels, two residual blocks per resolution, and multi-head self-attention at 32, 16, and 8 pixels (head dim. 64). All residual blocks include up/down sampling with scale-shift normalisation. We adopt FP16 arithmetic and a 1 000-step linear noise schedule while learning both mean and variance (`learn_sigma=True`). Although the generator is class-agnostic, we steer the reverse process with a pretrained classifier (`256x256_classifier.pt`); a guidance scale of 4.0 plus classifier-free guidance weight 2.0 balances diversity and fidelity. Each of the 1 000 ImageNet images is explained at 256×256 resolution with batch size 2.

4.2 COMPUTATIONAL CONSIDERATIONS

While FUD provides more reliable attribution evaluations by ensuring in-distribution samples, it introduces additional computational overhead compared to standard deletion/insertion methods. Generating diffusion-based samples for each masking step requires approximately a few seconds per image on modern GPUs, whereas traditional zero-masking is virtually instantaneous. This trade-off between evaluation fidelity and computational efficiency is inherent to our approach. In practice, the generative model needs to be trained only once per dataset and can be reused across all evaluations, amortizing the initial cost. We view this overhead as a worthwhile investment for obtaining more faithful attribution assessments. Appendix I.3 (Table 10) reports wall-clock times on ViT-B/16 for different numbers of diffusion steps.

4.3 EXPERIMENTAL RESULTS

We conduct extensive experiments to validate the proposed FUD evaluation scheme against existing attribution evaluation metrics. Unless otherwise specified, all reported results are averaged over 198 runs for fairness (complete raw results are available in the supplementary repository). We compare

378 FUD with three widely-used evaluation methods – Insertion/Deletion (INS/DEL), Sensitivity-N
 379 (Sen-N), and Infidelity (INFID) – using two representative models (RESNET-50 and ViT-B/16)
 380 and eleven attribution methods spanning gradient- and perturbation-based explainer families. In the
 381 following, we analyze the authenticity of intermediate samples and the stability of the evaluation
 382 process, and we examine an ablation on our hard vs. soft mask constraints.
 383

384 4.3.1 COMPARISON WITH EXISTING EVALUATION METRICS

385 Our first experiment demonstrates that conventional evaluation metrics produce intermediate samples
 386 that significantly deviate from the training distribution, whereas FUD generates intermediate samples
 387 that remain largely *in-distribution*. We verify this claim by employing Energy (Liu et al., 2020) as our
 388 out-of-distribution (OOD) detector to distinguish intermediate samples from genuine in-distribution
 389 (ID) data. The results in Table 2 show that intermediate inputs produced by INS/DEL, Sen-N, and
 390 INFID are easily recognized as OOD, while those produced by FUD are much harder to distinguish
 391 from normal inputs. For instance, under RESNET-50, the OOD detector achieves a high AUROC
 392 of 0.8974 on INS/DEL samples, but only 0.6863 on FUD’s samples (closer to 0.5, which indicates
 393 random guessing). For completeness, additional perceptual and structural fidelity comparisons are
 394 provided in Table 9 (Appendix I.1), showing that FUD yields substantially higher PSNR/SSIM/FSIM
 395 scores than existing metrics.

396 Similarly, the detector’s false positive rate at 95%
 397 TPR (FPR₉₅) jumps from 0.36 (INS/DEL) to 0.83 for
 398 FUD, and FUD yields markedly lower AUPR-In/Out
 399 values than others. In other words, FUD’s transitional
 400 examples are so realistic that the detector struggles to
 401 tell them apart from ID data, whereas other methods
 402 produce “artificial” inputs with obvious OOD char-
 403 acteristics that are readily identified. The reason is
 404 that traditional metrics rely on naive feature removal
 405 or perturbation (e.g. replacing content with zeros or
 406 blurred backgrounds), which introduces semantic bi-
 407 ases (such as large black or noisy regions) not seen
 408 in the training distribution. This distribution shift can
 409 spuriously alter the model’s behavior, undermining
 410 the fidelity evaluation. By contrast, FUD leverages a
 411 learned score function to gradually nudge perturbed
 412 inputs back towards the data manifold while preserv-
 413 ing the important features, thereby yielding much
 414 more authentic intermediate samples. As a qualitative
 415 illustration, we provide examples of the progressive
 416 masking process under INS/DEL versus FUD in the
 417 Appendix F; as noted in prior work (Jacovi & Goldberg, 2020), faithful explanations should be
 418 grounded in the model’s representation space rather than human visual preferences, so even when
 419 extreme deletion ratios make some FUD samples appear less visually intuitive, they nevertheless
 420 remain on the model’s in-distribution manifold. Under FUD, the model’s confidence decays much
 421 more smoothly without abrupt jumps. Additional comparisons with recent OOD-aware attribution
 422 evaluation protocols are reported in Appendix I, further confirming FUD’s advantage in maintaining
 423 in-distribution intermediate samples. A detailed analysis of the L_2 distance between the perturbed
 424 images and the original inputs is provided in Appendix J.

424 4.3.2 AUTHENTICITY OF TRANSITIONAL SAMPLES

425 While the OOD detector in Section 4.3.1 confirms *distributional* realism, we further quantify the
 426 *perceptual* and *structural* fidelity of transitional images with seven standard quality metrics; a concise
 427 summary is given in Table 6, and detailed definitions can be found in Appendix F.

428 **Protocol.** Eleven attribution methods are evaluated on RESNET-50 and ViT-B/16. Following
 429 standard practice, we progressively mask the top-ranked pixels from 10% to 90% (step 10%), yielding
 430 $11 \times 2 \times 9 = 198$ runs per metric. We average each metric across all runs, obtaining Table 3, and
 431 visualise the normalised values in Figure 2.

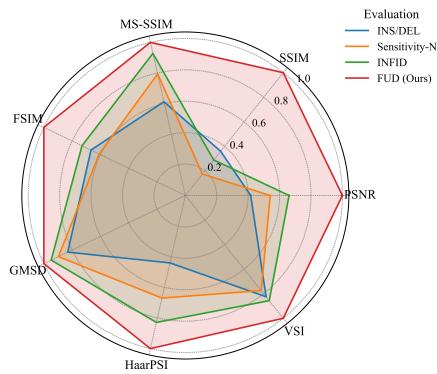


Figure 2: Radar plot of normalised image-quality metrics (GMSD inverted). FUD encloses the largest area, indicating the highest overall fidelity.

432
 433 Table 2: OOD detection performance for intermediate evaluation samples (higher values indicate
 434 easier detection as OOD). We report AUROC (higher means better OOD discrimination), FPR_{95}
 435 (false positive rate at 95% true positive rate), AUPR-In, and AUPR-Out for a standard OOD detector
 436 distinguishing intermediate samples (OOD) from normal validation images (ID). **Bold** highlights
 437 the values indicating the **most ID-like (hardest to detect)** samples in each case. *Note:* In this
 438 context, AUROC, AUPR-In, and AUPR-Out values approaching 0.5 indicate maximal uncertainty in
 439 distinguishing between ID and OOD samples, thus reflecting increased in-distribution similarity and
 440 greater detection difficulty.

Evaluation	RESNET-50				ViT-B/16			
	AUROC ↓	FPR_{95} ↑	AUPR-In ↓	AUPR-Out ↓	AUROC ↓	FPR_{95} ↑	AUPR-In ↓	AUPR-Out ↓
INS/DEL	0.8974	0.3603	0.8948	0.8893	0.8784	0.4761	0.8529	0.8894
Sen-N	0.8773	0.5450	0.8579	0.8864	0.8781	0.5660	0.8568	0.8734
INFID	0.7801	0.7720	0.7526	0.7876	0.8181	0.7390	0.7904	0.8119
FUD (Ours)	0.6863	0.8317	0.6660	0.6922	0.6450	0.9404	0.5827	0.6812

441
 442
 443
 444
 445
 446
 447
 448 Table 3: Average image-quality scores of transitional samples produced by four evaluation metrics.
 449 Best values are **bold**.

Evaluation	PSNR ↑	SSIM ↑	MS-SSIM ↑	FSIM ↑	GMSD ↓	HaarPSI ↑	VSI ↑
INS/DEL	10.49	0.27	0.48	0.58	0.271	0.292	0.780
Sensitivity-N	13.63	0.13	0.62	0.53	0.214	0.444	0.732
INFID	16.64	0.22	0.72	0.63	0.169	0.550	0.810
FUD (Ours)	25.20	0.75	0.78	0.86	0.124	0.663	0.946

450
 451
 452
 453
 454
 455
 456
 457 **Discussion.** Across *all seven* metrics FUD outperforms prior evaluations by a substantial margin. Its
 458 PSNR is +8.6 dB higher than the next best (INFID), SSIM improves by ~ 0.53 , and the distortion-
 459 oriented GMSD drops by $> 25\%$. Qualitatively, FUD’s intermediate images preserve fine texture
 460 and colour consistency, whereas INS/DEL and Sensitivity-N introduce large black or noisy regions,
 461 and INFID yields blur artefacts. Combined with the OOD analysis, these results show that FUD
 462 produces transitional samples that are not only statistically in-distribution but also perceptually
 463 faithful, providing a solid foundation for reliable attribution evaluation.

464
 465 4.3.3 SMOOTHNESS OF THE EVALUATION PROCESS

466 We quantitatively assess the *stability* and *monotonicity* of attribution evaluation under different metrics.
 467 Ideally, as more important features are removed, the model’s confidence should decrease smoothly
 468 and monotonically; irregular rises or plateaus indicate unreliability. We measure smoothness with
 469 Kendall’s τ , which captures a sequence’s monotonic trend via pairwise-order concordance. A value
 470 of $\tau = 1$ denotes perfectly monotonic decreasing confidence (each removal step strictly reduces
 471 the score), whereas values near 0 indicate no clear trend (many out-of-order fluctuations). Table 4
 472 reports τ for deletion sequences from eleven attribution methods evaluated with INS/DEL versus
 473 with FUD. FUD makes the process substantially more orderly and smooth: on RESNET-50, FUD
 474 gives $\tau > 0.8$ for most explainers, while INS/DEL often yields $\tau < 0.6$ (and as low as 0.21 for
 475 gradient-based methods). Notably, IG and GIG, which score very low under INS/DEL ($\tau \approx 0.22$),
 476 reach much higher monotonicity with FUD ($\tau \approx 0.69$). A similar trend appears on ViT-B/16; e.g.,
 477 IG improves from 0.46 to 0.78 under FUD. The higher τ values indicate that confidence decreases
 478 more consistently as important features are removed, without the erratic jumps or counter-intuitive
 479 increases seen with traditional masking. This monotonic behavior suggests that FUD’s in-distribution
 480 samples provide more stable, interpretable signals for attribution evaluation and produce a smoother
 481 confidence decay. We also report additional OOD-detection results for intermediate samples in
 482 Table 11 (Appendix I.2), which further confirm that FUD produces ID-like transitions that support
 483 smoother and more stable confidence decay. By keeping intermediate samples realistic, FUD ensures
 484 that each incremental removal yields a proportional, stable change in output, aligning with the ideal
 485 of a faithful attribution metric. A more detailed discussion of what FUD measures, together with a
 486 quantitative comparison of FUD scores across 11 representative attribution methods, is provided in
 487 Appendix G (Table 7).

486
 487 Table 4: Smoothness of the evaluation process, measured by Kendall’s τ (higher values indicate
 488 a more monotonic, smoother confidence decrease during feature removal). We compare eleven
 489 attribution methods evaluated under INS/DEL vs. under FUD. **Bold** numbers indicate the higher
 490 (smoother) value for each attribution method.

Model	Eval.	AGI	LA	AttExp	BIG	EG	FIG	GIG	IG	ISA	MFABA	SM
RESNET-50	INS/DEL	0.6496	0.5771	0.7944	0.6379	0.5730	0.2006	0.2128	0.2176	0.6983	0.6774	0.2833
	FUD (Ours)	0.8443	0.8515	0.8771	0.9129	0.8292	0.8529	0.6845	0.6905	0.8312	0.9259	0.6728
ViT-B/16	INS/DEL	0.7374	0.5501	0.7407	0.7354	0.6495	0.3767	0.4523	0.4615	0.6629	0.7406	0.6015
	FUD (Ours)	0.9174	0.9060	0.9241	0.9046	0.8203	0.8654	0.7741	0.7803	0.8763	0.9206	0.7472

491
 492
 493
 494 Table 5: Comparison of generated image fidelity under **hard** vs. **soft** mask constraints in FUD
 495 (using IG at 50% masking). Higher values indicate better quality for PSNR, SSIM, MS-SSIM, FSIM,
 496 HaarPSI, VSI, while lower is better for the distortion metric GMSD. **Bold** denotes the better result
 497 for each metric.

Constraint	PSNR \uparrow	SSIM \uparrow	MS-SSIM \uparrow	FSIM \uparrow	GMSD \downarrow	HaarPSI \uparrow	VSI \uparrow
Hard (Ours)	34.0335	0.947984	0.985258	0.970190	0.035163	0.921655	0.991347
Soft	27.6317	0.830200	0.951012	0.916191	0.081117	0.794670	0.971782

500 4.3.4 EFFECT OF SOFT VS. HARD CONSTRAINTS ON IMAGE QUALITY

501 We ablate *soft* versus *hard* mask constraints in FUD. By default (hard), masked features are fixed
 502 to a baseline, i.e., a binary gate that fully removes selected features. As a soft alternative, inspired
 503 by Song et al. (2020) and related work, we fill masked regions with Gaussian noise centered at the
 504 original values. Formally, instead of $\prod_{i=1}^m \delta(x_i^t - \tilde{x}_i)$ to enforce $\tilde{x}_i = x_i^t$ for unmasked features, we
 505 sample $\tilde{x} \sim \mathcal{N}(M \odot x^t, \sigma^2 I)$ where M is a binary mask (1=preserve, 0=remove), yielding the score
 506 $\nabla_{x^t} \log P(\tilde{x} | x^t, M) = \frac{M \odot (\tilde{x} - x^t)}{\sigma^2}$. This soft constraint adds noise in preserved regions, potentially
 507 smoothing transitions. However, it significantly *degrades* image fidelity. Pixel-level masks often
 508 induce incoherent noise, lowering quality. We evaluate fidelity under both settings by applying
 509 Integrated Gradients (IG) on 50% masked inputs and computing standard image-quality metrics.
 510 Table 5 shows that hard masking yields higher PSNR/SSIM/MS-SSIM/FSIM and lower GMSD;
 511 specifically, PSNR/SSIM of **34.03/0.948** vs. 27.63/0.830 for soft. These results confirm that the
 512 hard constraint produces more realistic, coherent transitional images, which is critical for reliable
 513 evaluation. Therefore, we adopt the hard constraint in FUD by default to maintain high image fidelity
 514 and stable performance.

521 5 CONCLUSION AND FUTURE WORK

522 FUD evaluates attribution maps in a distribution-aware way by reconstructing masked regions via
 523 a score-based diffusion process, keeping transitional samples on the data manifold. This yields
 524 more realistic, perceptually faithful, and smoother evaluation dynamics than heuristic baselines.
 525 Given compute limits (and to avoid perfectionism), we leave several optimizations for future work:
 526 (i) task-specific score functions $s_\theta(x^t)$ tailored to attribution evaluation—the current $s_\theta(x^t)$ is an
 527 unconditional guided-diffusion model trained on ImageNet and requires resolution alignment¹; and
 528 (ii) more efficient samplers (e.g., DPM-Solver, DDIM) to mitigate the sample-generation bottleneck.
 529 At extreme deletion ratios, fills may look unnatural to humans due to limited context yet remain
 530 *model-in-distribution* under objective detectors; our evaluation adheres to this model-centric criterion.
 531 Future improvements in estimating the data-distribution score $\nabla_x \log P(x)$ may further reduce these
 532 limitations, as our framework can seamlessly incorporate stronger generative priors.

533 ETHICS STATEMENT

534 We have read and will adhere to the ICLR Code of Ethics. This work uses only public data, involves
 535 no human subjects or personally identifiable information, and therefore does not require IRB review.

536
 537
 538
 539 ¹<https://github.com/openai/guided-diffusion>

540 Results are reported for research purposes only; we release anonymized code/configurations to
 541 support verification, and will disclose any funding sources and potential conflicts of interest upon
 542 acceptance.

544 **REPRODUCIBILITY STATEMENT**

546 To support reproducibility, we release an anonymized repository with all experiment details including
 547 training/evaluation scripts, default hyperparameters, configuration files, and software/hardware
 548 environment.

550 **REFERENCES**

552 Chirag Agarwal and Anh Nguyen. Explaining image classifiers by removing input features using
 553 generative models. In *Proceedings of the Asian Conference on Computer Vision*, 2020.

555 Marco Ancona, Enea Ceolini, Cengiz Öztïreli, and Markus Gross. Towards better understanding of
 556 gradient-based attribution methods for deep neural networks. *arXiv preprint arXiv:1711.06104*,
 557 2017.

558 Mihalj Bakator and Dragica Radosav. Deep learning and medical diagnosis: A review of literature.
 559 *Multimodal Technologies and Interaction*, 2(3):47, 2018.

561 Chun-Hao Chang, Elliot Creager, Anna Goldenberg, and David Duvenaud. Explaining image
 562 classifiers by counterfactual generation. In *International Conference on Learning Representations*,
 563 2019.

564 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
 565 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
 566 pp. 248–255. Ieee, 2009.

568 Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
 569 *arXiv preprint arXiv:2010.11929*, 2020.

570 Gabriel Erion, Joseph D Janizek, Pascal Sturmels, Scott M Lundberg, and Su-In Lee. Improving
 571 performance of deep learning models with axiomatic attribution priors and expected gradients.
 572 *Nature machine intelligence*, 3(7):620–631, 2021.

574 Ruth Fong, Mandela Patrick, and Andrea Vedaldi. Understanding deep networks via extremal
 575 perturbations and smooth masks. In *Proceedings of the IEEE/CVF international conference on*
 576 *computer vision*, pp. 2950–2958, 2019.

577 Ruth C Fong and Andrea Vedaldi. Interpretable explanations of black boxes by meaningful perturba-
 578 tion. In *Proceedings of the IEEE international conference on computer vision*, pp. 3429–3437,
 579 2017.

581 Arne Gevaert, Axel-Jan Rousseau, Thijs Becker, Dirk Valkenborg, Tijl De Bie, and Yvan Saeys.
 582 Evaluating feature attribution methods in the image domain. *Machine Learning*, 113(9):6019–6064,
 583 2024.

584 Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and Gigel Macesanu. A survey of deep learning
 585 techniques for autonomous driving. *Journal of field robotics*, 37(3):362–386, 2020.

587 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 588 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 589 pp. 770–778, 2016.

590 Robin Hesse, Simone Schaub-Meyer, and Stefan Roth. Fast axiomatic attribution for neural networks.
 591 *Advances in Neural Information Processing Systems*, 34:19513–19524, 2021.

593 Robin Hesse, Simone Schaub-Meyer, and Stefan Roth. Benchmarking the attribution quality of vision
 594 models. *Advances in Neural Information Processing Systems*, 37:97928–97947, 2024.

594 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 595 *neural information processing systems*, 33:6840–6851, 2020.
 596

597 Alon Jacovi and Yoav Goldberg. Towards faithfully interpretable nlp systems: How should we define
 598 and evaluate faithfulness? In *Proceedings of the 58th Annual Meeting of the Association for*
 599 *Computational Linguistics*, pp. 4198–4205, 2020.

600 Andrei Kapishnikov, Subhashini Venugopalan, Besim Avci, Ben Wedin, Michael Terry, and Tolga
 601 Bolukbasi. Guided integrated gradients: An adaptive path method for removing noise. In
 602 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 5050–
 603 5058, 2021.

604 Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detection.
 605 *Advances in neural information processing systems*, 33:21464–21475, 2020.
 606

607 Yuyang Long, Qilong Zhang, Boheng Zeng, Lianli Gao, Xianglong Liu, Jian Zhang, and Jingkuan
 608 Song. Frequency domain model augmentation for adversarial attack. In *European conference on*
 609 *computer vision*, pp. 549–566. Springer, 2022.

610 Akib Mashrur, Wei Luo, Nayyar A Zaidi, and Antonio Robles-Kelly. Machine learning for financial
 611 risk management: a survey. *Ieee Access*, 8:203203–203223, 2020.

612 Lars Nieradzik, Henrike Stephan, and Janis Keuper. Reliable evaluation of attribution maps in cnns:
 613 A perturbation-based approach. *International Journal of Computer Vision*, pp. 1–18, 2024.

614 Deng Pan, Xin Li, and Dongxiao Zhu. Explaining deep neural network models with adversarial
 615 gradient integration. In *Thirtieth International Joint Conference on Artificial Intelligence (IJCAI)*,
 616 2021.

617 Jeng-Shyang Pan, Gui-Ling Wang, Shu-Chuan Chu, Dongqiang Yang, and Václav Snášel. New
 618 feature attribution method for explainable aspect-based sentiment classification. *Knowledge-Based
 619 Systems*, 304:112550, 2024.

620 Vitali Petsiuk, Abir Das, and Kate Saenko. Rise: Randomized input sampling for explanation of
 621 black-box models. *arXiv preprint arXiv:1806.07421*, 2018.

622 David Picard. Torch. manual_seed (3407) is all you need: On the influence of random seeds in deep
 623 learning architectures for computer vision. *CoRR*, 2021.

624 Sukrut Rao, Moritz Böhle, and Bernt Schiele. Towards better understanding attribution methods. In
 625 *Proceedings of the ieee/cvf conference on computer vision and pattern recognition*, pp. 10223–
 626 10232, 2022.

627 Yao Rong, Tobias Leemann, Vadim Borisov, Gjergji Kasneci, and Enkelejda Kasneci. A consistent
 628 and efficient evaluation strategy for attribution methods. In *International Conference on Machine
 629 Learning*, pp. 18770–18795. PMLR, 2022.

630 Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
 631 Visualising image classification models and saliency maps. *arXiv preprint arXiv:1312.6034*, 2013.

632 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 633 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint
 634 arXiv:2011.13456*, 2020.

635 Pascal Sturmfels, Scott Lundberg, and Su-In Lee. Visualizing the impact of feature attribution
 636 baselines. *Distill*, 5(1):e22, 2020.

637 Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
 638 *International conference on machine learning*, pp. 3319–3328. PMLR, 2017.

639 Bas HM Van der Velden, Hugo J Kuijf, Kenneth GA Gilhuijs, and Max A Viergever. Explainable
 640 artificial intelligence (xai) in deep learning-based medical image analysis. *Medical Image Analysis*,
 641 79:102470, 2022.

648 Zifan Wang, Matt Fredrikson, and Anupam Datta. Robust models are more interpretable because
649 attributions look normal. *arXiv preprint arXiv:2103.11257*, 2021.
650

651 Chih-Kuan Yeh, Cheng-Yu Hsieh, Arun Suggala, David I Inouye, and Pradeep K Ravikumar. On the
652 (in) fidelity and sensitivity of explanations. *Advances in neural information processing systems*,
653 32, 2019.

654 Tianxi Yu, Xiaoyao Yin, Menglin Yao, and Tong Liu. Network security monitoring method based on
655 deep learning. In *Journal of Physics: Conference Series*, volume 1955, pp. 012040. IOP Publishing,
656 2021.

657 Zhiyu Zhu, Huaming Chen, Xinyi Wang, Jiayu Zhang, Zhibo Jin, Jason Xue, and Jun Shen. Iterative
658 search attribution for deep neural networks. In *Forty-first International Conference on Machine
659 Learning*, 2024a.

660 Zhiyu Zhu, Huaming Chen, Jiayu Zhang, Xinyi Wang, Zhibo Jin, Jason Xue, and Flora D Salim.
661 Attexplore: Attribution for explanation with model parameters exploration. In *The Twelfth
662 International Conference on Learning Representations*, 2024b.

663 Zhiyu Zhu, Huaming Chen, Jiayu Zhang, Xinyi Wang, Zhibo Jin, Minhui Xue, Dongxiao Zhu, and
664 Kim-Kwang Raymond Choo. Mfaba: a more faithful and accelerated boundary-based attribution
665 method for deep neural networks. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
666 volume 38, pp. 17228–17236, 2024c.

667 Zhiyu Zhu, Zhibo Jin, Jiayu Zhang, and Huaming Chen. Enhancing model interpretability with local
668 attribution over global exploration. In *Proceedings of the 32nd ACM International Conference on
669 Multimedia*, pp. 5347–5355, 2024d.

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702
703 LLM USAGE DISCLOSURE704
705 We used large language models (OpenAI GPT-4o and GTP-5) as auxiliary tools for grammar checking
706 and language polishing of the manuscript. These models were not involved in research ideation,
707 experimental design, implementation, or analysis. The authors take full responsibility for all content.
708709 A RELATED WORK
710711 A.1 STATE-OF-THE-ART ATTRIBUTION METHODS
712713 Attribution methods have emerged as one of the mainstream approaches for interpreting Deep Neural
714 Networks (DNNs), owing to their ability to provide fine-grained, pixel-level explanations. We begin
715 by introducing several commonly used attribution methods developed in recent years. The Integrated
716 Gradients (IG) method (Sundararajan et al., 2017) addresses the issue of vanishing gradients in
717 Saliency Map (SM) (Simonyan et al., 2013) algorithm by proposing two axioms that attribution
718 should satisfy. IG computes attribution scores for each input feature by integrating the gradients along
719 a straight-line path from a chosen baseline to the input. To mitigate the noise interference along the
720 integration path, the Guided Integrated Gradients (GIG) method (Kapishnikov et al., 2021) introduces
721 constraints on the network input and backpropagates neuron gradients to suppress irrelevant pixel
722 attributions, retaining only those features pertinent to the predicted class. While GIG effectively
723 reduces noise, it is primarily tailored to image-based tasks, is highly sensitive to the quality of input
724 features, and suffers from significant computational complexity. To further improve the rationality of
725 anchor point selection, the Boundary-based Integrated Gradients (BIG) method (Wang et al., 2021)
726 introduces a boundary-search mechanism to achieve more accurate attribution results. BIG attempts
727 to use adversarial examples as anchors but still relies on linear integration paths. Additionally, BIG
728 requires gradient computations for each feature point individually, which substantially increases
729 computational costs. In contrast, the Adversarial Gradient Integration (AGI) method (Pan et al., 2021)
730 seeks the steepest non-linear ascent path starting from adversarial examples, thus avoiding the need
731 for a predefined baseline as required in IG. However, AGI’s effectiveness heavily depends on the
732 quality of adversarial sample generation, and its robustness remains under debate. In addition, other
733 adversarial attribution methods (Zhu et al., 2024b;a;c) that employ adversarial examples as attribution
734 baselines have also been widely adopted.
735736 A.2 COMMONLY USED ATTRIBUTION EVALUATION METRICS
737738 Current attribution evaluation metrics, such as the Insertion & Deletion Scores (Petsiuk et al., 2018),
739 offer an intuitive curve-based evaluation approach. By progressively adding or removing regions
740 with high attribution scores and observing the corresponding changes in prediction probability, these
741 metrics aim to reflect the faithfulness of the attribution. The Deletion Score progressively occludes the
742 pixels with the highest attribution scores (e.g., by setting them to zero or to the mean value), and plots
743 a curve showing how the model’s prediction probability decreases as the proportion of occluded pixels
744 increases. A smaller Area under the Curve (AUC) indicates a more faithful attribution. In contrast, the
745 Insertion Score begins with a blank or blurred baseline and progressively inserts the most important
746 pixels based on attribution scores, observing the rate at which the model’s prediction probability
747 increases. As the Insertion and Deletion Scores often rely on filling removed regions with constant
748 values (e.g., black or mean pixels), they are highly sensitive to distributional shifts. The resulting
749 perturbed inputs—characterized by large artificial occlusions—can diverge substantially from the
750 original data distribution, potentially introducing instability or bias into the evaluation outcomes.
751 Recent research (Nieradzik et al., 2024) have sought to improve the smoothness of attribution maps
752 by introducing adversarial perturbations or enforcing smoothness regularization during the evaluation
753 phase. Nonetheless, such methods fall short in mitigating the distributional shift induced by masking
754 operations, as the modified inputs often remain at the periphery of the training data distribution.
755756 The Infidelity metric (Yeh et al., 2019) attempts to quantify attribution consistency by computing
757 the expected mean squared error between attribution scores and the corresponding changes in model
758 predictions under input perturbations, theoretically providing a more robust estimate. The metric
759 selects a meaningful perturbation distribution (e.g., adding random noise to pixels or occluding a
760 patch), and computes the expected mean squared error between the change in the model’s output

756 and the inner product of the perturbation with the attribution. A lower Infidelity score indicates
 757 higher attribution faithfulness. It is worth noting that the experiments compute the Infidelity metric
 758 using perturbations such as ‘noise baselines’ and ‘patch removal’. However, commonly used global
 759 patch occlusion methods often result in unrealistic images, which may compromise the reliability
 760 of the metric. Although local random noise perturbations tend to cause smaller deviations from the
 761 original data distribution, this assumption still does not fully guarantee alignment with the training
 762 distribution.

763 Another metric for evaluating attribution faithfulness is Sensitivity- n (Ancona et al., 2017), which
 764 emphasizes the consistency between attribution scores and the model’s output response. The core idea
 765 is that if certain pixels (or features) are identified as important in the attribution map, then randomly
 766 occluding these regions should lead to significant changes in the model’s prediction. Specifically,
 767 Sensitivity- n evaluates whether the change in the model’s output is consistent with the attribution
 768 importance by randomly selecting and occluding the top- n features with the highest attribution scores
 769 and measuring the resulting output variation. Unlike the Insertion & Deletion Scores, Sensitivity- n
 770 does not rely on explicitly constructing a perturbation sequence or response curve, making it more
 771 computationally efficient. Moreover, it mitigates the distributional shift issue caused by unnatural
 772 occluded images. However, this metric remains sensitive to the choice of occlusion strategy—for
 773 instance, the selection of occlusion values (e.g., zero or mean replacement) can significantly influence
 774 the results. Moreover, Sensitivity- n does not directly assess the causal explanatory relationship
 775 between the attribution and the model’s prediction, but rather reflects local perturbation consistency.
 776 As a result, it is limited in its ability to serve as a comprehensive evaluation metric.

777 To mitigate the aforementioned issues, some studies have introduced blurring operations as alternatives
 778 to direct occlusion. For instance, the Meaningful Perturbation (Fong & Vedaldi, 2017) and Extremal
 779 Perturbation (Fong et al., 2019) methods optimize masks to maximize the model’s output within
 780 the preserved regions. These methods produce visually more natural perturbations and reduce
 781 abrupt distributional shifts; however, the inherent blurring still preserves low-frequency features
 782 of the original image, which may lead to semantic distortions in the attribution maps. Moreover,
 783 the generated inputs are rarely encountered in the training set, thus still posing a certain risk of
 784 out-of-distribution (OOD) inputs.

785 Beyond blurring-based perturbations, several works have explored the use of generative models
 786 to reconstruct or in-paint the regions removed during attribution. Chang et al. (2019) generate
 787 counterfactual images by replacing selected features with samples from a conditional generative
 788 model, thereby exposing how classifiers depend on specific structures. Similarly, Agarwal & Nguyen
 789 (2020) propose filling removed pixels using a generative model to maintain perceptual realism while
 790 probing feature importance. While these approaches significantly reduce the visual artifacts of
 791 masking, the generative prior may inadvertently introduce class-supporting evidence rather than
 792 faithfully removing it, complicating deletion-based evaluation. Our FUD framework inherits the
 793 insight that perturbations should remain on the data manifold, but applies it at the level of the
 794 *evaluation metric*: any attribution method can be assessed under a unified score-based generative
 795 prior without modifying the explainer itself. Therefore, the design of attribution metrics must balance
 796 ‘distributional consistency’ and ‘interpretability,’ avoiding conclusions about attribution quality based
 797 solely on any single metric.

798 B DESIRABLE PROPERTIES OF EVALUATION PERTURBATIONS

800 To clarify what constitutes a reasonable modified image for attribution evaluation, we list the ideal
 801 properties that any perturbation x' should satisfy:

- 802 **1. In-distribution realism.** Perturbed samples should remain on (or close to) the data manifold rather
 803 than becoming OOD artifacts. FUD enforces this via the prior term $\nabla_x \log P(x)$ and validates it
 804 through OOD-detection metrics.
- 805 **2. Preservation of retained features.** Pixels marked as “kept” must match the original input exactly.
 806 This is implemented through the hard constraint $P(\tilde{x} \mid x, M)$ and stepwise overwriting.
- 807 **3. No hallucinated class evidence.** Perturbations should not introduce features that artificially
 808 increase confidence in class y . FUD controls this via the corrective term $-\nabla_x \log P(y \mid x)$.

810 **4. Perceptual coherence.** Intermediate samples should remain structurally consistent (edges, colors, 811 textures). This is quantified using standard perceptual metrics such as PSNR, SSIM, FSIM, and 812 GMSD.

813 These desiderata generalize the assumptions underlying baseline-replacement methods. FUD 814 operationalizes them explicitly through the posterior 815

$$816 \quad P(x_t | z, \tilde{x}, M) \propto P(x_t) P(z | x_t) P(\tilde{x} | x_t, M), \quad (9)$$

818 whose gradient decomposition in Eq. 6 directly corresponds to properties (1)–(3), while (4) is 819 validated empirically. 820

821 C PROOF OF THE δ -LIKELIHOOD FOR OBSERVED PIXELS

823 For each pixel index i we denote by $M_i = 1$ that the pixel is *observed* (i.e. must be preserved exactly 824 in every evaluation sample) and by $M_i = 0$ that the pixel is *free* (no constraint). Hence the conditional 825 likelihood factorises as 826

$$827 \quad P(\tilde{x} | x^t, M) = \prod_{M_i=1} \delta(x_i^t - \tilde{x}_i), \quad (10)$$

828 where the Dirac distribution $\delta(\cdot)$ assigns non-zero density *only* when $x_i^t = \tilde{x}_i$, while the factor 829 1 leaves unobserved pixels unconstrained. The support of x^t is therefore restricted to the *linear* 830 831 *sub-manifold* $\{x^t \in \mathbb{R}^d : x_i^t = \tilde{x}_i \text{ for all } M_i = 1\}$.

832 **Dirac as the zero-variance limit of a Gaussian** To justify the δ -likelihood formally, consider the 833 single-pixel Gaussian proxy 834

$$835 \quad \mathcal{N}(x_i^t; \tilde{x}_i, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{(x_i^t - \tilde{x}_i)^2}{2\sigma^2}\right]. \quad (11)$$

836 Taking the limit $\sigma^2 \rightarrow 0$ yields $\mathcal{N}(x_i^t; \tilde{x}_i, \sigma^2) \xrightarrow[\sigma \rightarrow 0]{} \delta(x_i^t - \tilde{x}_i)$. Multiplying the Gaussian factors 837 over all i with $M_i = 1$ and letting $\sigma^2 \rightarrow 0$ produces precisely the product of Dirac distributions used 838 above. 839

840 **Intuition** This formulation can be understood as an extreme case of a “zero-variance Gaussian,” 841 where non-zero probability mass exists *only* when $x_{(i)}^t = \tilde{x}_{(i)}$ for observed pixels. That is, the distri- 842 bution has support strictly limited to the set of values that exactly match the ground truth on known 843 entries. For unobserved pixels where $M_i = 0$, the likelihood imposes no constraints—effectively 844 acting as a multiplicative factor of one. As a result, the support of x^t becomes a linear sub-manifold 845 in which all observed pixels must precisely align with their true values. This induces a hard constraint 846 in the generative process: *any valid sample must match the observed data exactly*. 847

848 **Log-likelihood and gradient** Because $\delta(\cdot)$ is not a conventional density, its logarithm is undefined; 849 nevertheless the *gradient* of the log-likelihood can be obtained safely via the Gaussian limit. For the 850 vector $x^t \in \mathbb{R}^d$ we have

$$851 \quad \log P(\tilde{x} | x^t, M) = \sum_{M_i=1} \log \delta(x_i^t - \tilde{x}_i), \quad (12)$$

$$854 \quad \nabla_{x^t} \log P = \frac{M \odot (\tilde{x} - x^t)}{\sigma^2} \xrightarrow[\sigma \rightarrow 0]{} \text{a vector pointing towards infinity} \quad (13)$$

855 where \odot denotes the element-wise product and $M \in \{0, 1\}^d$ is the mask vector. As $\sigma \rightarrow 0$, the 856 magnitude of the gradient diverges while its direction always points from x^t back to the true pixel 857 values \tilde{x} : the optimisation is therefore forced *instantaneously* onto the constraint manifold. 858

859 **Practical implementation** In practice we do not apply the infinite gradient. Instead, after each 860 diffusion update we simply overwrite the observed pixels:

$$862 \quad x^t \leftarrow M \odot \tilde{x} + (1 - M) \odot x^t, \quad (14)$$

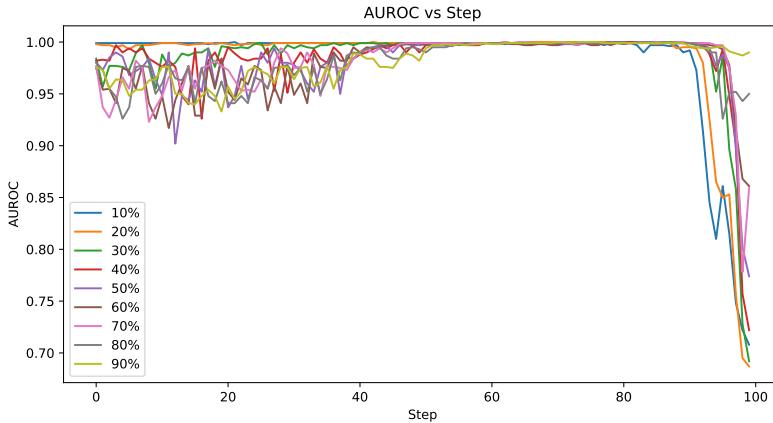
863 which is exactly equivalent to following the δ -likelihood’s gradient in the $\sigma^2 \rightarrow 0$ limit but avoids 864 numerical instabilities.

864 D ADDITIONAL ANALYSIS OF THE SCORE FUNCTION
865
866

867 **Why delay the classifier gradient?** As argued in Section 3.3.2, adding the classifier term
868 $-\nabla_{x^t} \log P(y \mid x^t)$ too early can push off-manifold samples further away; guidance is benefi-
869 cial only after the diffusion trajectory has moved close to the data manifold under the prior score
870 $s_\theta(x^t)$.

871 This is because at early steps, the sample x^t is still far from the classifier’s data distribution, making
872 the gradient signal from the classifier unreliable or even misleading. Delaying the classifier guidance
873 ensures that meaningful and stable gradients are provided only when the sample is sufficiently close
874 to the data manifold.

875
876
877 **Experimental protocol** We fix the total diffusion steps at $T = 1000$ and **always** turn on classifier
878 guidance for the last 5% of those steps ($t < 50$). To study the effect across different deletion levels,
879 we vary the mask ratio $\rho \in \{10\%, 20\%, \dots, 90\%\}$, where ρ denotes the percentage of *unimportant*
880 features removed by the attribution method before FUD starts sampling. For each ρ we generate 500
881 evaluation samples and measure the AUROC between the retained-feature ratio and the classifier
882 confidence.



901 Figure 3: AUROC versus diffusion step for different **mask ratios** ρ (10%–90%). Classifier guidance
902 is enabled for the last 5% of steps (grey vertical line). All curves stabilise quickly after guidance
903 kicks in, and the final AUROC is highest under this 5% schedule.

904
905
906 **Results** Figure 3 plots AUROC versus diffusion step for six representative mask ratios. A consistent
907 pattern emerges: AUROC remains flat while only the prior $s_\theta(x^t)$ is applied, then climbs sharply once
908 classifier guidance begins at the $t/T = 0.05$ mark, finally saturating within 30–40 steps. Although
909 higher mask ratios (e.g. 70–90) converge to stable curves once guidance is applied, confirming that
910 the “5% switch” is robust across deletion levels.

911
912 E PSEUDOCODE FOR FUD EVALUATION
913
914

915 **Note:** In practice, we use DDIM to accelerate the sampling process. This procedure in Algorithm 1
916 can be viewed as a discretized version of DDPM sampling.

918
919 **Algorithm 1: FUD Evaluation**
920 **Input:** original image \tilde{x} ;
921 $mask M$;
922 out-of-distribution threshold O ;
923 Score Function $S_\theta(x, \varepsilon, t)$;
924 classifier $P(y | x)$;
925 total steps T , DDIM noise schedule $\{\bar{\alpha}_t\}_{t=0}^T$
926 **Output:** in-distribution evaluation sample x^0
927 $\varepsilon \sim \mathcal{N}(0, I)$ $x^T \leftarrow \tilde{x} \odot M + \varepsilon \odot (1 - M)$
928 **for** $t = T, \dots, 1$ **do**
929 **if** $t < O$ **then**
930 $\hat{\varepsilon} \leftarrow S_\theta(x^t, t)$
931 **else**
932 $\hat{\varepsilon} \leftarrow S_\theta(x^t, t) + \sqrt{1 - \bar{\alpha}_t} \nabla_{x^t} \log P(y | x^t)$
933 $x^{t-1} \leftarrow \sqrt{\bar{\alpha}_{t-1}} \left(\frac{x^t - \sqrt{1 - \bar{\alpha}_t} \hat{\varepsilon}}{\sqrt{\bar{\alpha}_t}} \right) + \sqrt{1 - \bar{\alpha}_{t-1}} \hat{\varepsilon}$
934 $x^{t-1} \leftarrow \tilde{x} \odot M + x^{t-1} \odot (1 - M)$
935 **return** x^0
936

F METRIC DEFINITIONS

937
938 Each metric in Table 6 is briefly defined below:
939

940
941 • **PSNR** – Peak Signal-to-Noise Ratio; measures average pixel fidelity.
942 • **SSIM** – Structural Similarity Index; compares luminance, contrast, and structure.
943 • **MS-SSIM** – Multi-Scale SSIM; aggregates SSIM over multiple resolutions.
944 • **FSIM** – Feature Similarity; integrates phase congruency and gradient magnitude.
945 • **GMSD** – Gradient Magnitude Similarity Deviation; lower values indicate fewer edge
946 distortions.
947 • **HaarPSI** – Haar Wavelet-based Perceptual Similarity; focuses on multiscale edge recall.
948 • **VSI** – Visual Saliency-based Index; emphasises fidelity in salient regions.
949
950

951
952
953 Table 6: Image-quality metrics used to assess transitional samples. For GMSD we invert the score
954 (1 – GMSD) when plotting the radar chart to align “higher-is-better” semantics.
955

Metric	High Value Means	Low Value Means	Trend
PSNR	Low pixel distortion	Large pixel error	↑
SSIM	High structural similarity	Blurring / structure loss	↑
MS-SSIM	Multi-scale consistency	Local distortion	↑
FSIM	Sharp edges / textures	Edge and detail loss	↑
GMSD	Small gradient deviation	Edge blur, contour loss	↓
HaarPSI	Good multi-scale detail	Global blur	↑
VSI	Clear salient regions	Salient region blur / loss	↑

956
957 **Comparing FUD to existing deletion baselines.** The upper sub-row of each example in Fig. 4
958 (*Original* \rightarrow *Heat-map* \rightarrow *INFD* \rightarrow *INS/DEL* \rightarrow *Sen-N*) visualises three widely-used deletion metrics.
959 Despite their popularity, all three baselines exhibit conspicuous off-manifold artefacts even before
960 half of the pixels are masked:
961

962 • **INFD** (third column) applies a saliency-guided Gaussian blur. At moderate deletion ratios
963 the foreground object dissolves into low-frequency smear, but background textures remain
964 untouched—contradicting the intended focus on “unimportant” regions.
965

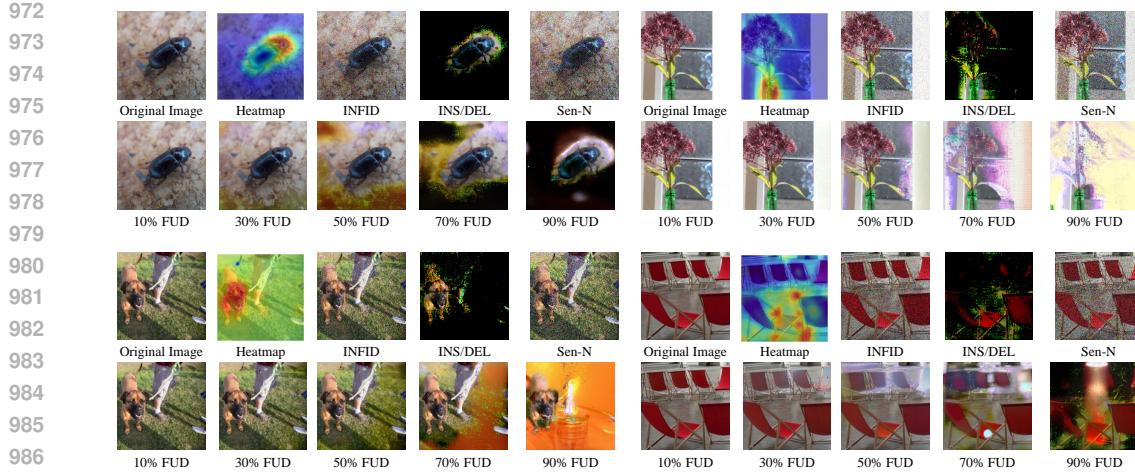


Figure 4: **Qualitative evolution of FUD.** From left to right: original image, LA (Zhu et al., 2024d) heat-map, and FUD samples after deleting $(100 - \rho)\%$ *unimportant* pixels and reconstructing the removed regions via score-based diffusion under the learned data distribution, rather than using any constant black/white filling. The apparent contrast changes therefore come from generative inpainting on the image manifold, not from hard occlusions as in INS/DEL or Sen-N. Rows correspond to four randomly-chosen validation images.

- **INS/DEL** (fourth column) literally *zeros* the unimportant features, producing unnatural black cavities that trigger premature confidence drops and confound any perceptual judgement.
- **Sen-N** (fifth column) injects pixel-wise Gaussian noise; as deletion grows the image devolves into high-frequency snow, masking true object boundaries and violating the data-manifold assumption behind the classifier.

FUD yields natural transitional samples. The lower sub-row shows FUD results for five retained-feature ratios $\rho = 10\%, 30\%, 50\%, 70\%, 90\%$. Three qualitative patterns stand out:

1. **Perceptual realism up to 50 %.** When $\rho \geq 50\%$ the generated evaluation images are almost indistinguishable from the originals in *both* structure and colour palette. Crucially, no “floating” fragments or unnatural voids appear, confirming that FUD keeps the trajectory on the image manifold.
2. **Smooth degradation beyond 50 %.** As the mask ratio increases to 70 – 90 %, FUD removes the object in a coarse-to-fine fashion: salient boundaries blur first, then disappear into context-aware textures. The resulting images are still globally coherent—e.g. the beetle body in Example A melts into surrounding earth tones, and the red deck-chair pattern in Example D fades without breaking symmetry.
3. **No class-switch artefacts.** Even in the extreme 90 % deletion case, FUD never hallucinates features suggestive of a different ImageNet class. This visually supports the theoretical constraint in Eq. (7) that prevents samples from crossing class manifolds.

Implications for metric fidelity. Because FUD maintains high perceptual quality *until* more than half of the high-attribution pixels are removed, the resulting deletion curve (cf. Fig. 6, main paper) reflects *true* model reliance on the preserved features rather than spurious artefacts. Conversely, the rapid confidence collapse observed with INS/DEL or Sen-N can be attributed to their off-manifold distortions rather than to the attribution map itself. Hence FUD provides a more faithful and interpretable evaluation of saliency methods.

1026
 1027 Table 7: FUD, Insertion, Deletion, Sensitivity- n , and INFID scores for 11 representative attribution
 1028 methods. Higher is better for FUD, Insertion, and Sensitivity- n ; lower is better for Deletion and
 1029 INFID.

Method	FUD	Insertion	Deletion	Sensitivity- n	INFID
SM	0.282534	0.314616	0.068716	0.141470	0.287042
IG	0.313328	0.344998	0.052537	0.126894	0.129003
FIG	0.208447	0.245956	0.069740	-0.130477	0.277800
BIG	0.354196	0.435646	0.084743	0.027358	0.019717
MFABA	0.276959	0.374439	0.118989	0.034741	0.019622
AttEXPlore	0.276253	0.468133	0.056584	0.010449	0.019581
GIG	0.309788	0.332303	0.047974	0.123184	0.113368
AGI	0.318770	0.443992	0.057337	0.013355	0.020138
ISA	0.232271	0.567845	0.101100	0.023021	0.019569
EG	0.274612	0.319021	0.076970	-0.007913	0.219567
LA	0.268251	0.520222	0.054138	0.019070	0.019574

G ADDITIONAL ANALYSIS OF WHAT FUD MEASURES

1042
 1043 In this section we provide a more detailed discussion of what FUD actually measures and how it
 1044 affects the ranking of attribution methods.

1045 By design, a higher FUD score indicates that, when we progressively remove the features ranked as
 1046 “low importance” by an attribution method, the model confidence decreases more slowly and more
 1047 smoothly along the deletion path. Intuitively: (i) if an attribution method can accurately identify the
 1048 truly important regions, then removing the features it considers unimportant should keep the model
 1049 performance relatively high for a longer portion of the deletion trajectory, and the corresponding
 1050 FUD curve should exhibit a smoother and slower decay; (ii) therefore, a higher FUD score can
 1051 be interpreted, *under the constraint of staying in-distribution*, as evidence that the method is more
 1052 accurate at identifying genuinely important regions.

1053 To make the effect of FUD on the ranking more transparent, we report in Table 7 the scores of 11
 1054 representative attribution methods under five evaluation metrics: FUD, Insertion, Deletion, Sensitivity-
 1055 n , and INFID. Here, higher values are better for FUD, Insertion, and Sensitivity- n , whereas lower
 1056 values are better for Deletion and INFID. Gradient-path based methods such as BIG, AGI, IG
 1057 and GIG achieve relatively higher FUD scores, whereas some methods that perform well under
 1058 conventional Insertion/Deletion metrics (for example, variants that rely on aggressive masking or
 1059 boundary attacks) move down in the ranking under FUD. Combined with the Kendall’s τ analysis
 1060 in Sec. 4.3.3, we observe that, under traditional INS/DEL evaluation, methods like IG and GIG can
 1061 exhibit non-monotonic behaviour and even abnormal confidence increases, while under FUD their
 1062 deletion curves become much smoother and closer to monotonic decay. This is consistent with the
 1063 overall pattern in Table 7: FUD not only reorders existing attribution methods, but also clarifies
 1064 which methods are more trustworthy when evaluated in-distribution and without relying on spurious
 1065 evidence, thereby changing our empirical judgement about which family of attribution methods is
 1066 more faithful.

H EXTENDED TABLE FOR TABLE 2

1069
 1070 Compared to the Table 2 in the main text, we have added the results of AUPR-In here.

I ADDITIONAL EXPERIMENTS COMPARISON WITH PRIOR OOD-AWARE METHODS

1078 In addition to the experiments reported in the main paper, we conducted supplementary evaluations
 1079 to further validate the effectiveness of FUD against recent attribution evaluation protocols such as
 IDSDS (Hesse et al., 2024), ROAD (Rong et al., 2022), Distill baselines (Sturmels et al., 2020),

1080
1081 Table 8: OOD detection performance for intermediate evaluation samples (higher values indicate
1082 easier detection as OOD). We report AUROC (higher means better OOD discrimination), FPR_{95}
1083 (false positive rate at 95% true positive rate), AUPR-In, and AUPR-Out for a standard OOD detector
1084 distinguishing intermediate samples (OOD) from normal validation images (ID). **Bold** highlights
1085 the values indicating the **most ID-like (hardest to detect)** samples in each case. *Note:* In this
1086 context, AUROC, AUPR-In, and AUPR-Out values approaching 0.5 indicate maximal uncertainty in
1087 distinguishing between ID and OOD samples, thus reflecting increased in-distribution similarity and
1088 greater detection difficulty.

Model	Evaluation	AUROC \downarrow	$\text{FPR}_{95} \uparrow$	AUPR-In \downarrow	AUPR-Out \downarrow
RESNET-50	INS/DEL	0.8974	0.3603	0.8948	0.8893
	Sen-N	0.8773	0.5450	0.8579	0.8864
	INFID	0.7801	0.7720	0.7526	0.7876
	FUD (Ours)	0.6863	0.8317	0.6660	0.6922
ViT-B/16	INS/DEL	0.8784	0.4761	0.8529	0.8894
	Sen-N	0.8781	0.5660	0.8568	0.8734
	INFID	0.8181	0.7390	0.7904	0.8119
	FUD (Ours)	0.6450	0.9404	0.5827	0.6812

1099 and Gevaert et al. (2024). The results reinforce that FUD consistently produces in-distribution,
1100 high-fidelity transitional samples and more faithful attribution evaluations.

I.1 PERCEPTUAL AND STRUCTURAL FIDELITY

1104 Table 9 compares image quality metrics of transitional samples generated by different evaluation
1105 schemes. FUD achieves the best performance across nearly all metrics, indicating that its generated
1106 samples remain both perceptually and structurally closer to the natural data distribution.

1108 Table 9: Additional perceptual/structural fidelity results. Higher values are better for PSNR/SSIM/MS-
1109 SSIM/FSIM/HaarPSI/VSI, lower is better for GMSD.

Evaluation	PSNR \uparrow	SSIM \uparrow	MS-SSIM \uparrow	FSIM \uparrow	GMSD \downarrow	HaarPSI \uparrow	VSI \uparrow
IDS DS Hesse et al. (2024)	10.592	0.487	0.459	0.699	0.323	0.263	0.864
ROAD Rong et al. (2022)	18.169	0.385	0.783	0.728	0.159	0.594	0.868
Distill Sturmels et al. (2020)	16.273	0.385	0.631	0.683	0.227	0.465	0.853
Gevaert Gevaert et al. (2024)	23.829	0.722	0.859	0.805	0.161	0.620	0.936
FUD (Ours)	25.200	0.750	0.780	0.860	0.124	0.663	0.946

I.2 OOD DETECTION ROBUSTNESS

1119 Table 11 reports the ability of a standard OOD detector to distinguish transitional samples from
1120 true in-distribution (ID) data. Lower AUROC, AUPR-In, and AUPR-Out, and higher FPR_{95} indicate
1121 samples are harder to detect as OOD (i.e., closer to ID). FUD consistently yields the most
1122 ID-like samples across both ResNet-50 and ViT-B/16.

I.3 ADDITIONAL RUNTIME ANALYSIS OF DDIM SAMPLING

1124 To complement the perturbation analysis in this appendix, we also report the wall-clock runtime
1125 of the DDIM sampler on ViT-B/16 for different numbers of diffusion steps. As shown in Table 10,
1126 the cost grows approximately linearly with the number of steps: increasing from 10 to 100 steps
1127 raises the per-image runtime from about 0.40 s to 4.04 s. Importantly, these timings correspond to
1128 the *end-to-end evaluation* of a single image–attribution pair at the given step count, i.e., they already
1129 include the full DDIM-based perturbation process along the deletion trajectory. In our experiments
1130 we use 100 steps to obtain stable in-distribution samples, but smaller step counts (e.g., 40–60) already
1131 keep the overhead within a few seconds per image, indicating that FUD remains computationally
1132 manageable for attribution evaluation.

1134
 1135 Table 10: Runtime of the DDIM sampler with different numbers of diffusion steps on ViT-B/16. The
 1136 numbers report average wall-clock time per image (batch size 1), including the time to apply all
 1137 corresponding perturbation steps.

DDIM steps	10	20	30	40	50	60	70	80	90	100
Time (s)	0.395	0.804	1.210	1.620	2.010	2.430	2.820	3.225	3.615	4.041

1141
 1142 Table 11: Additional OOD detection results of intermediate samples.

Model	Evaluation	AUROC \downarrow	FPR@95TPR \uparrow	AUPR-In \downarrow	AUPR-Out \downarrow
ResNet-50	IDSDS Hesse et al. (2024)	0.8016	0.5653	0.7907	0.7965
	ROAD Rong et al. (2022)	0.7123	0.8226	0.6838	0.7210
	Distill Sturmels et al. (2020)	0.8226	0.5837	0.8107	0.8178
	Gevaert Gevaert et al. (2024)	0.7690	0.6552	0.7585	0.7603
	FUD (Ours)	0.6863	0.8317	0.6660	0.6922
ViT-B/16	IDSDS Hesse et al. (2024)	0.8329	0.5803	0.8059	0.8358
	ROAD Rong et al. (2022)	0.7584	0.8000	0.7209	0.7505
	Distill Sturmels et al. (2020)	0.8174	0.6795	0.7828	0.8255
	Gevaert Gevaert et al. (2024)	0.6675	0.9024	0.6201	0.7013
	FUD (Ours)	0.6450	0.9404	0.5827	0.6812

1154 1155 J L2 DISTANCE BETWEEN PERTURBED AND ORIGINAL IMAGES

1156
 1157 To quantify how strongly our diffusion-based perturbation modifies the input, we measure the
 1158 pixel-wise L_2 distance between the perturbed images and the original image x .

1159
 1160 First, for a fixed mask ratio of 10%, we track the distance between the intermediate denoised samples
 1161 x_t and the original image x over the diffusion steps. As shown in Fig. 5, the mean $L_2(x_t, x)$ starts
 1162 around 80 at the initial noisy state and decreases smoothly and monotonically as the diffusion proceeds,
 1163 reaching values below 5 after 100 denoising steps. The shaded band indicates one standard deviation
 1164 across the evaluation set. This confirms that the optimisation gradually *reduces* the perturbation while
 1165 driving the samples back toward the data manifold, instead of introducing additional distortion.

1166
 1167 Second, we measure the final distance between the reconstructed image x_0 and the original image x
 1168 for different mask ratios. Figure 6 reports the mean $L_2(x_0, x)$ as a function of the mask ratio. The
 1169 distance grows approximately monotonically with the amount of masked area: it remains small for
 1170 mask ratios around 10–30%, becomes moderate for 40–60%, and only becomes large when 70–90%
 1171 of the image is removed. This shows that in the mask regimes typically used for attribution evaluation,
 1172 our method perturbs the image relatively mildly, and stronger deviations occur only when a substantial
 1173 portion of the content is intentionally removed.

1174 K ADDITIONAL ANALYSIS OF PERTURBATION MAGNITUDE

1175 L NOTATION SUMMARY FOR FUD

1176
 1177 For clarity, we summarise the main symbols used in Section 3.3 (Faithfulness Under the Distribution)
 1178 in Table 12. All symbols follow the notation used in the main text.

1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

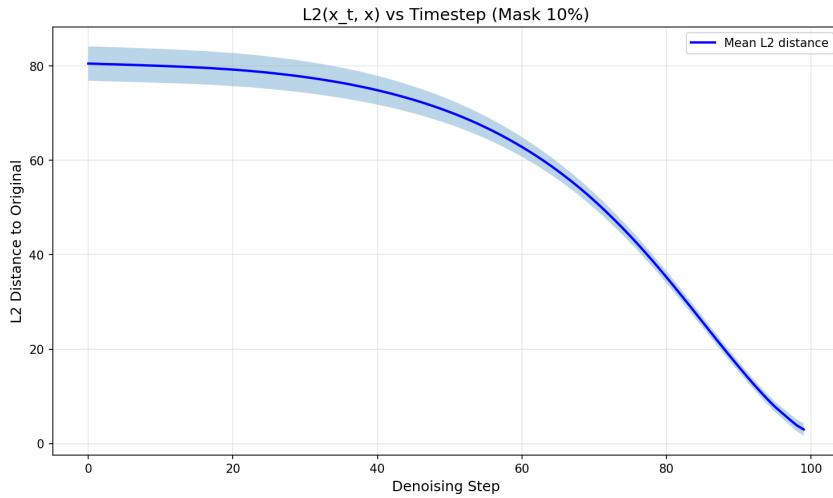


Figure 5: $L_2(x_t, x)$ as a function of the denoising step for a fixed mask ratio of 10%. The solid curve shows the mean distance across images; the shaded region indicates ± 1 standard deviation.



Figure 6: Final $L_2(x_0, x)$ after diffusion as a function of the mask ratio. We report the mean distance across images, with a shaded band for ± 1 standard deviation.

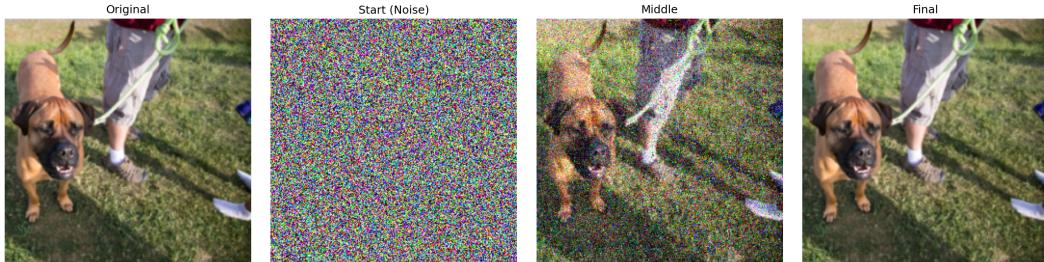


Figure 7: Qualitative ‘Original–Start (Noise)–Middle–Final’ visualisation of the FUD denoising trajectory. From left to right: the original image x , the noisy masked starting point x_T , an intermediate denoising state x_t , and the final in-distribution sample x_0 . The final image remains visually close to the original while the masked region is restored using the diffusion prior.

1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260

Table 12: Summary of notation used in the definition and derivation of FUD.

Symbol	Description
x	Original input image.
\tilde{x}	Masked image constructed from x using the deletion mask M (e.g., $\tilde{x} = M \odot x + (1 - M) \odot 0$).
x^t	Intermediate sample at diffusion step t in the DDIM sampling process.
x^0	Final in-distribution evaluation sample used for the deletion trajectory (Algorithm 1 output).
y	Class label predicted by the classifier.
f	Classifier under evaluation (e.g., ViT-B/16).
M	Binary deletion mask (1 = preserve pixel, 0 = mask pixel).
$A(x)$	Attribution (saliency) map for input x used to construct the deletion masks.
$P(y x^t)$	Predictive distribution of the classifier at state x^t .
$\tilde{P}(y x^t)$	Auxiliary distribution with gradient $\nabla_{x^t} \tilde{P}(y x^t) = -\nabla_{x^t} P(y x^t)$.
z	Event encoding “no additional class- y evidence” (used in Eq. (1)).
$P(x^t z, \tilde{x}, M)$	Target conditional distribution that FUD aims to approximate.
$P(x^t)$	Unconditional image prior at step t , approximated by the score network $s_\theta(x^t)$.
$P(\tilde{x} x^t, M)$	Likelihood term enforcing consistency with the observed (unmasked) pixels.
$P(z x^t)$	Term encoding the “no new evidence for class y ” constraint.
$s_\theta(x^t)$	Learned score network approximating $\nabla_{x^t} \log P(x^t)$ (used in Eq. 6).
$S_\theta(x, \varepsilon, t)$	Score function of the DDIM sampler used in Algorithm 1.
T	Total number of DDIM sampling steps.
O	Out-of-distribution <i>threshold</i> on the diffusion time axis.
$\bar{\alpha}_t$	Cumulative noise-schedule coefficient at diffusion step t .
$\text{FUD}(f, A)$	FUD score of classifier f under attribution map A .

1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295