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ABSTRACT

Large language models have made significant progress in complex but easy-to-
verify problems, yet they still struggle with discovering the unknown. In this
paper, we present AlphaResearch, an autonomous research agent designed to dis-
cover new algorithms on open-ended problems by iteratively running the follow-
ing steps: (1) propose new ideas (2) program to verify (3) optimize the research
proposals. To synergize the feasibility and innovation of the discovery process,
we construct a new reward environment by combining the execution-based verifi-
able reward and reward from simulated real-world peer review environment. We
construct AlphaResearchComp, a new evaluation benchmark that includes an
eight open-ended algorithmic problems competition, with each problem carefully
curated and verified through executable pipelines, objective metrics, and repro-
ducibility checks. AlphaResearch gets a 2/8 win rate in head-to-head comparison
with human researchers. Notably, the algorithm discovered by AlphaResearch on
the “packing circles” problem achieves the best-of-known performance, surpass-
ing the results of human researchers and strong baselines from recent work (e.g.,
AlphaEvolve). Additionally, we conduct a comprehensive analysis of the bene-
fits and remaining challenges of autonomous research agent, providing valuable
insights for future research.

1 INTRODUCTION

Recent progress has shown that frontier LLMs like GPT-5 (OpenAll |2025) and Gemini 2.5 (Co-
manici et al., |2025)) could achieve expert-level performance in complex tasks such as mathemat-
ics (Trinh et al.| 2024} [Lin et al.l [2025)) and programming (Jimenez et al., 2024; Jain et al., [2025)).
While LLMs excel at processing and reasoning on problems that are within the boundary of ex-
isting human knowledge (Wang et all [2024b; [Phan et al [2025), their capacity for independent
discovery that pushes the boundaries of human knowledge still remains a question of paramount
importance (Novikov et al.,[2025)). Can these models create advanced knowledge or algorithms that
surpass human researchers?

Previous studies demonstrate that LLMs can generate novel ideas at a human expert level (Si et al.
2024} [Wang et al., [2024a)). However, the outcome evaluation of LLM-generated research ideas still
struggles with biased verification methods (Ye et al.| |2024) that constrain the exploration of out-of-
boundary machine knowledge, such as LLM-as-a-judge (Lu et al.| 2024), where misaligned LLMs
are used to evaluate fresh ideas and inevitably favor solutions within existing knowledge boundaries.
Furthermore, the ideation—execution gap (Si et al., [2025) between generating and executing new
ideas also hinders models from producing advanced research outcomes. AlphaEvolve (Novikov
et al.l [2025)) introduces an evolutionary coding agent that could tackle open scientific problems
with program-based verification. However, the absence of real-world research environment rewards
in coding-only agents (Tian et al.,|2024) renders the discovery of out-of-boundary knowledge and
algorithms challenging for current autonomous research agents.

In this paper, we introduce AlphaResearch, an autonomous research agent designed to discover new
advanced algorithms by ensembling LLMs with a suite of research skills, including idea generation,
code implementation, and iterative optimization. To combine the feasibility and innovation of the
algorithm discovery process, we construct a dual environment, where novel algorithms are forged by
the simulated real-world peer-reviewed environment and execution-based verification (Tian et al.,
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Figure 1: The launch of AlphaResearch contains two steps. (1) Train reward models with real-
world peer-reviewed records. (2) Prepare initial research proposals, initial programs and evalution
program. AlphaResearch will refine the research proposals and programs autonomously.

2024). Specifically, we (1) train a reward model AlphaResearch-RM-7B with real-world peer-
reviewed records to simulate the real-world peer review environment, addressing the limitation of
prior coding-only approaches that lack real-world research feedback, and use it to score the fresh
ideas generated by LLMs. (2) construct an automatic program-based verifiable environment that
executes these ideas with an interpreter. This dual environment facilitates a rigorous algorithm
discovery process for autonomous research agents.

AlphaResearch discovers new algorithms by iteratively running the following steps: (i) propos-
ing new research ideas, (ii) programming based on strong ideas, and (iii) optimizing the propos-
als for better algorithms. The commencement of each iteration in AlphaResearch mandates an
LLM’s creation of a new idea informed by previous research findings. After obtaining a fresh
idea, AlphaResearch-RM will preserve the positive ideas as candidates and discard the negative
ones. Those positive ideas are then implemented into executable programs by coding agents ensem-
bled with LLMs. The program is subjected to rigorous code execution and automatic evaluation,
a process previously demonstrated to be highly effective in mitigating incorrect suggestions often
observed from LLMs (Tian et al.,[2024). The synergy between an iterative real-world peer review en-
vironment and program-based verification empowers AlphaResearch to continuously explore novel
research ideas and verify them via program execution. Once the generated optimal program sur-
passes current human-best achievements, these validated novel ideas could form feasible algorithms,
thereby pushing the boundaries of human research forward.

To compare AlphaResearch with human researchers on novel algorithm discovery, we construct
AlphaResearchComp, a simulated discovery competition between research agents and human re-
searchers, by collecting 8 open-ended research problems and their best-of-human records (shown
in [Appendix D). Our results demonstrate that AlphaResearch surpasses human researchers on two
problems but fails on the other six. The novel algorithms discovered by AlphaResearch not only
surpass best-of-human performance but also significantly outperform the state-of-the-art results
achieved by AlphaEvolve. Specifically, AlphaResearch optimizes the result of “Packing Circles
(n=32)” problem to 2.939, where the goal is to pack n disjoint circles inside a unit square so as to
maximize the sum of their radii, surpassing the results of best-of-human and previous SoTA results
achieved by AlphaEvolve (as shown in[Appendix B). These entirely novel ideas and algorithms con-
stitute the most advanced solutions currently present in the human knowledge base, demonstrating
the feasibility of employing LLMs to advance the frontiers of human knowledge. The six failure
modes in AlphaResearchComp demonstrate the challenges for the autonomous algorithm discovery
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Algorithm 1 AlphaResearch

Require: initial idea 4o, initial program po, initial result ro, model .4, evaluation program £(-), maximum
iteration rounds n,

1: 70 < (40,P0,70), Thest = 0 > Initialization
2: for k = 1tondodo

3 (i¢, pe, re) ~ P(:|Th—1) > States Sampling
4 i ~Pa(-|ic B pe ®re) > New Idea Generation (Eq. 1)
5: if RM(ix) < threshold then

6: continue > Reward Model for New Idea
7: end if

8 Pk~ Pa(:|pe ®ir) > Program Generation (Eq. 2)
9 ri < E(px) > Program-based Execution
10: if 75 > rpest then
11: (ibestgpbesh Tbest) = (Z'/mpkvrk)
12: end if
13: Tk <= Th—1 @i © pr DT > Trajectory Update (Eq. 3)
14: end for

15: return (ibestypbesty rbest)

with research agents. We analyze the benefits and remaining challenges of autonomous research
agents for knowledge discovery, providing valuable insights for future work.

2 ALPHARESEARCH

2.1 OVERVIEW

AlphaResearch discovers out-of-boundary novel algorithms by continuously optimizing the re-
search outcome from the dual reward that synergizes rigorous program verification and a simu-
lated real-world peer review environment. As shown in given initial idea ¢y and pro-
gram pg, AlphaResearch runs the program p, with execution, producing rg, which represents the
initial overall rating. The triplet (ig, po, 7o) Will be fed to AlphaResearch for subsequent process-
ing, including newer idea generation, code implementation, and program-based execution. When
reaching a point where execution output r,, surpasses the previous rating, AlphaResearch will save
the triplet (ipest, Prests Thest) as the best record. We repeat the process until 7.5 surpasses the
best-of-human score, or the maximum round is reached. The resulting trajectory is denoted as
T = 99P0T0---In—1Pn—1"n—1tnPnTn, Where n is the total rounds.

2.2 ACTIONS

New Idea Generation. For each step k, AlphaResearch start with generating a new idea i based
on a sampled previous step (i, p;, ;) from previous trajectory 741 = igPoT0.--ixk—1Pk—17k—1. This
process can be denoted as:

ik ~Pa(lic ©pr ©re) (D
where @ means concatenation, ¢ is the sampled step from trajectory 7;,_;. We use a reward model to
filter out high-quality ideas overall. If R M (i,,) outputs a negative score, we cease the subsequent
actions in this round.

Program-based Verification. After obtain the fresh idea, AlphaResearch generates new program
Pk based on the previous implementation p; and new idea 7, next:

i~ PA(-|pe @ ig) (2)

and yield the evaluation result r, by verifying py with code executor ry, <— £(px). Then, we update
the trajectory 7j, with the newly generated idea i, program pj and result r:

Tk < Th—1 D ik D pr BTy €))

We repeat the above interaction process until k£ reaches the maximum rounds n and get the best
result (ipest, Prest, Thest) as final output.
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Table 1: Dataset for reward model training. Table 2: Evaluation results of RM. We use the

We use the end of author-reviewer rebuttal more recent date between the model release

period as the latest knowledge date. date and the dataset cutoff as the latest date.
Split | Train | Test Reward Model | Cutoff Acc
Records ICLR ICLR Random (theoretical) - 50.0%
Range 2017~2024 | 2025 Human Annotator - 65.0%
Num 24,445 100 Deepseek-V3-0324 2025-03  39.0%
Start Date 2016-11 2024-10 Qwen2.5-7B-Instruct 2024-09 37.0%
End Date 2023-12 2024-12 AlphaResearch-RM-7B | 2024-09 72.0%

2.3 ENVIRONMENT
2.3.1 REWARD FROM REAL-WORLD RESEARCH RECORDS

Existing autonomous idea generation process suffers from a trade-off where highly novel research
ideas may lack feasibility (Guo et al.l 2025} |Si et al., [2025). To address this gap and ensure the
feasibility of idea candidates, we train a reward model with ideas from real-world peer-review infor-
mation to simulate the real-world peer-review environment.

Dataset for reward model. To train our reward model (RM) to identify good ideas, we collect
all ICLR peer review records from 2017 to 2024 as our training set. We sample a subset of ICLR
2025 records as a test set, where the dates of train and test are disjoint, which prevents knowledge
contamination between the train and test split. We also select Qwen2.5-7B-Instruct as our base
model, whose release date 202409 is earlier than the ICLR 2025 author-reviewer rebuttal period
2024-10. For each record in the training dataset, we extract the abstract part as RM input and wrap
the average peer-review overall ratings with \boxed{ } as RM output. We fine-tune Qwen2.5-7B-
Instruct with the RM pairs, yielding the AlphaResearch-RM-7B model.

Can LLMs identify good ideas? To simplify the RM evaluation, we binarize the RM output score
according to the ICLR Reviewer Guide, where overall rating > 5.5 records are regarded as a posi-
tive score and < 5.5 records are negative. We compute the binary classification accuracy and evalu-
ate three models (Deepseek-V3-0324, Qwen2.5-Coder-Instruct, and AlphaResearch-RM-7B) on the
AlphaResearch-RM test set. presents the evaluation results that eliminate the knowledge
contamination, highlighting the following observations: (1) Both Deepseek-V3-0324 and Qwen2.5-
7B-Instruct have lower than 50% accuracy when identifying the good ideas from ICLR 2025 records.
(2) After fine-tuned with ideas from previous ICLR peer-review information, AlphaResearch-RM-
7B demonstrates 72% binary classification accuracy on unseen ICLR 2025 ideas, significantly out-
performing baseline models and human annotators. Based on these observations, we use the fine-
tuned AlphaResearch-RM-7B as the final RM to simulate a real-world peer-review environment and
filter out good ideas generated by AlphaResearch.

2.3.2 REWARD FROM PROGRAM-BASED EXECUTION

Inspired by AlphaEvolve (Novikov et al.l2025]), we construct an automatic evaluation process with
a code executor where each new program p;, generated by AlphaResearch will be captured and
evaluated. The evaluation program £ (-) includes two modules: (i) Verification module that validates
whether p;, conforms to the problem constraints. (ii) Measurement module that output the score 7,
of program performance. The program output 7 will be injected into the idea generation prompt
(if sampled), thereby participating in the optimization process for fresh ideas. These programs and
results are stored in a candidate pool, where the primary goal is to optimally resurface previously
explored ideas in future generations. The verifiable reward by code executor significantly simplifies
the action spaces of AlphaResearch, thereby enhancing the efficiency of the discovery process.

3 ALPHARESEARCHCOMP
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Table 3: Problem overview in AlphaResearchComp. More information are shown at[Appendix D]

Problem | Human Best | Human Researcher
packing circles (n=26) 2.634 David Cantrell (2011)
packing circles (n=32) 2.936 Eckard Specht (2012)
minimizing max-min distance raio (d=2, n=16) 12.89 David Cantrell (2009)
third autocorrelation inequality 1.4581 Carlos Vinuesa (2009)
spherical code (n=30) 0.67365 | Hardin & Sloane (1996, 2002)
autoconvolution peak minimization (upper bound) 0.755 Matolcsi—Vinuesa (2010)
littlewood polynomials (n=512) 32 Rudin—Shapiro (1959/1952)
MSTD (n=30) 1.04 Hegarty (2006/2007)

Problems collection. To evaluate AlphaResearch, we curate a set of 8 frontier program-based re-
search tasks spanning geometry, number theory, harmonic analysis, and combinatorial optimization.
These problems were selected based on the following principles:

* Well-defined objectives. Each task has a precise mathematical formulation with an objective
function that admits rigorous automatic evaluation.

* Known human-best baselines. For every problem, we provide the best-known human result from
the literature. These represent conjectured best-known values rather than proven optima, ensuring
ample room for further improvement.

The curated problems are either inherited from prior work (e.g., AlphaEvolve) or collected from on-
line repositories and domain experts. Each problem’s baseline is supported by verifiable resources in
the corresponding field. This design enables AlphaResearch to demonstrate both the reproducibil-
ity of established mathematical results and the potential for discovery beyond current human-best
achievements. Detailed definitions, baseline values, and references for each problem are provided

in the

Initialization strategy. After obtaining the research problems of AlphaResearchComp, we con-
struct diverse initial states for each problem with the following strategies: (1) For the “Packing
Circles” (n=26) and “Packing Circles” (n=32) problems, we initialize them with null programs
(ro = 0) to simulate researches starting from scratch. (2) For the “Littlewood Polynomials” and
“MSTD (n=30)” problems, we directly adopt the best-known solutions (19 = 7hyman) from human
researchers to emulate improvements upon established methods. (3) For the remaining problems,
we employ a moderate initialization strategy (0 < 79 < Thuman) to ensure sufficient room for the
research agent to explore. This initialization strategy simulates a variety of real-world scenarios for
the research agent, thereby facilitating a thorough evaluation process.

Metrics. For benchmarks like code generation with good verification techniques (e.g., unit tests),
pass@k (Chen et al.,[2021])) is a metric denoting that at least one out of k i.i.d. task trials is successful,
which captures the ability of LLMs to solve easy-to-verified problems. For open-ended real-world
algorithm discovery tasks, we propose a new metric - excel@best (excel at best), defined as the
percentage excess on baseline (best of human level) results:

Thest — Th g
excelQbest = E [7bes uman|

Problems Thuman

(4)

where 7,man indicates the results of human’s best level. [; indicates the optimization direction
where [; = 1 represents that higher score is better and [; = —1 represents lower.

4 EXPERIMENTS

4.1 SETUP

We select o4-mini, a strong but cost-efficient LLM as our research agent and run Al-
phaResearch on each problem to get the best algorithm. We perform supervised finetuning
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Table 4: Results on AlphaResearchComp. 1 inidicates that higher score is better and | for lower.

Problem Human AlphaResearch Excel @best
init best
packing circles (n=26) 1 2.634 0 2.636 0.32%
packing circles (n=32) 1 2.936 0 2.939 0.10%
minimizing max-min distance ratio | 12.89 15.55 12.92 -0.23%
third autocorrelation inequality | 1.458 | 35746  1.546 -6.03%
spherical code (d=3, n=30) 1 0.6736 | 0.5130 0.6735 -0.01%
autoconvolution peak minimization | | 0.755 1.512  0.756 -0.13%
littlewood polynomials (n=512) | 32 32 32 0
MSTD (n=30) 1 1.04 1.04 1.04 0
Packing Circles in Unit Square (n=26) Third Autocorrelation Inequality
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Figure 2: Execution-based reward of AlphaResearch on packing circles (n=26) problem (left) and
third autocorrelation inequality problem (right).

on Qwen-2.5-7B-Instruct (Yang et all 2025) with the collected ICLR records, yielding
AlphaResearch-RM-7B. We do not compute loss on paper information, only on the average rat-
ing scores within \boxed{ }. For fine-tuning hyperparameters, we train our model with a learning
rate of le-5 warmed up linearly for 100 steps. We train all the models in bfloatl6 precision with
Pytorch Fully Shard Data Parallel (FSDP) and set a global batch size to 128 for 2 epochs. All other
settings not mentioned in this paper follow the default values of Huggingface Trainerﬂ

4.2 RESULTS

LLMs can discover new algorithms themselves. presents the results of AlphaResearch-
Comp on 8 algorithms discovery problems. AlphaResearch achieved a 2/8 win rate (excel @best >
0) against human researchers, with one notable success: the algorithm discovered by AlphaResearch
for “Packing Circles” problem reaches the best-of-known performance (2.636 for n=26, 2.939 for
n=32), outperforming human researchers (2.634 for n=26, 2.936 for n=32) and AlphaEvolve (2.635
for n=26, 2.937 for n=32), where case (n = 32) is shown in

LLMs can refine their research ideas autonomously. AlphaResearch discovers advanced algo-
rithms by iteratively proposing and verifying new research ideas. As shown in[Table 2] 6/8 problems
demonstrate consistent improvement throughout the discovery process. presents two ex-
amples of the reward trend in AlphaResearch, where the execution-based reward initially grows
rapidly, then slowly plateaus for optimal performance seeking. This improvement trend emphasizes
the autonomous discovery ability of research agents.

The discovery of superhuman algorithms remains challenging for LLMs. As illustrated in
despite exhibiting continuous reward growth, AlphaResearch’s performance still under-

'https://huggingface.co/docs/transformers/main_classes/trainer
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Figure 4: Reward overview during the discovery process. Each action in AlphaResearch will obtain
3 kinds of reward: (1) idea scrapping due to a lower RM score than the threshold (2) idea execution

successes (3) idea execution fails.

performs human researchers in 6 out of 8 problems. We initialize AlphaResearch with the best-
known solution from human researchers on “Littlewood polynomials* and “MSTD(n=30)“ prob-
lems, where AlphaResearch didn’t show an increase in execution-based rewards. This indicates that
current LLMs still struggle to consistently find better algorithms than human researchers.

4.3 ABLATIONS AND ANALYSIS

Execution-only agent against AlphaResearch.
To compare AlphaResearch with execution-only
agents, we utilize AlphaResearch-RM-7B to eval-
vate the novelty of ideas generated by the
execution-only agent and ideas produced by Al-
phaResearch. As illustrated in [Figure 3] the ideas
generated by AlphaResearch generally achieve
higher scores than execution-only research agents.
This illustrates that AlphaResearch tends to gener-
ate better ideas to get higher external rewards, thus
facilitating a more effective research optimization
process.

Analysis of the discovery process. We analyze
the reward distribution in AlphaResearch discov-
ery process. As shown in|Figure 4] approximately
30%~40% of newly proposed ideas fall below the
RM threshold and are thus discarded. The remain-
ing ideas are executed, with the success rate of ex-
ecution largely depending on the inherent charac-
teristics of the problems. For example, the execu-
tion success rate on “Packing Circles”
Autocorrelation Inequality” problem.

o
w
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Figure 3: The idea comparison between the
execution-only research agent and AlphaRe-
search, where AlphaResearch-RM-7B is used.

problem is 28.9%, whereas it reaches 51.7% on the “Third
'Elgure ZI illustrates the execution-based rewards for these

two examples in AlphaResearch. Despite the substantial variations in execution success rates, the
execution-based rewards in both cases exhibit a consistent increasing trend. These findings demon-
strate the interactions between LLM-based autonomous research agents and real-world environ-

ments.
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Figure 5: The impact of real-world peer review environment on execution results. AlphaResearch-
RM-7B filters 151 bad ideas, where 108 ideas fail to execute and 43 are successful.

Initial Research Idea

The program presents a computational approach to the circle packing problem within a unit
square, aiming to maximize the sum of radii for a given number of circles. The pack_circles
function initiates a structured placement of 26 circles: one at the center, eight in an inner ring,
and sixteen in an outer ring. While this initial arrangement is a predefined pattern, it serves as
afoundation for further optimization. The core of the algorithm lies in the compute_max_radii
function, which iteratively determines the largest possible radius for each circle. This is
achieved by first constraining radii based on proximity to the unit square's boundaries and
then adjusting them to prevent overlap between any pair of circles. Overlapping circles have
their radii proportionally scaled down to ensure non-intersection, effectively pushing them to
ajust-touching state. The final output provides the optimized centers, radii, and the total sum
of radii for the packed configuration, demonstrating a method for generating dense circle
arrangements within a confined space.

Initial Program
tmp/packing_circles/initial_program.py
def pack_circles(n = 26):
Construct a specific arrangement of 26 circles in a unit square
that attempts to maximize the sum of their radii.
return sum_radii, circles
def compute_max_radii(centers):
Compute the maximum possible radii for each circle position

such that they don't overlap and stay within the unit square."""...

Verification Program
tmp/packing_circles/evaluator.py

def verify_circles(circles):
"""Checks that the circles are disjoint and lie inside a unit square. """

def evaluate(program_path: str = "results/initial_program.py"):
Evaluate the pack_circles function from the given program file

Returns the total radius sum if valid, otherwise raises an exception.

return {"pack_result_26": total_r_26}

Execution Results
{"pack_result_26": 0.864}

New Idea Generation

winstruction

You are a research advisor tasked with improving research proposals.

Your goal is to generate a new research proposal that builds upon the current research idea
while addressing its limitations and incorporating insights from successful approaches.
wMetaData

### Current Research Idea

The program presents a computational approach to the circle packing problem within a unit
square, aiming to maximize the sum of radii for a given number of circles.

### Current Program

““python

def pack_circles(n = 26):

Construct a specific arrangement of 26 circles in a unit square
attempts to maximize the sum of their radii

### Current Metrics
packing_result_26=0.864

Program Generation

wlnstruction

You are an expert software developer tasked with iteratively improving a codebase.

Your job is to analyze the current program and suggest improvements based on feedback
from previous attempts.Focus on making targeted changes that will increase the program's
performance metrics.

‘wMetaData

### Current Research Idea

The program presents a computational approach to the circle packing problem within a unit
square, aiming to maximize the sum of radii for a given number of circles.

### Current Program

“python

def pack_circles(n = 26):

Construct a specific arrangement of 26 circles in a unit square
that attempts to maximize the sum of their radii

##H# Current Metrics

packing_result_26=0.864

### New Research Idea

We propose a novel computational framework to improve the dense packing of n
variable-radius circles within a unit square, targeting maximization of the total sum of radii.
Our approach addresses key limitations in existing methods—namely, rigid initialization
patterns, local-only radius adjustment, and O(n?) pairwise scaling...

wFormat

You MUST use the exact SEARCH/REPLACE diff format shown below to indicate changes:
<<<<<<< SEARCH

# Original code to find and replace (must match exactly)

# New replacement code
>>>>>>>REPLACE

Figure 6: We show an example of a formatted task of AlphaResearch.

The impact of real-world peer-review environment.

To assess the effectiveness of reward from

a simulated real-world peer-view environment, we ablate AlphaResearch-RM-7B at the first 400
iterations on “Packing Circles” problem. presents the execution results of w/ and w/o
AlphaReasearch-RM-7B during the discovery process. Compared to the baseline without RM,
AlphaResearch-RM-7B successfully filtered 151 ideas below the threshold. This process yielded
108 correct rejections of execution failures while making 43 erroneous rejections of viable ideas.
AlphaResearch attained an accuracy of 71.5% (108/151), a result that aligns closely with its per-
formance on the AlphaResearch-RM test set, as shown in[Table 2] This outcome effectively demon-
strates the model’s generalization capabilities and the efficacy of incorporating feedback from a
simulated real-world peer-review environment.

4.4 CASE STUDY

We select the successful example from AlphaResearch to better understand the discovery process.
We’ll consider the problem “Packing Circles” where the goal is to pack n disjoint circles inside a
unit square so as to maximize the sum of their radii, shown in[Figure 6| We first initialize AlphaRe-
search with an original research proposal and a related program that returns a list of circles (z, y,r)
as output, as shown in Appendix [D.4] The verification program first employs verify_circles
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function to check if the outputs of the initial program meet the problem constraints (e.g., all circles
are inside a unit square) and evaluate function to output the sum of their radii. The metadata,
including: (1) research ideas, (2) programs, (3) execution results, are subsequently preserved as
candidates which represent the end of one step. At the next step, AlphaResearch will sample from
the candidate pool and generate a new idea to improve the research proposals from the sampled
metadata. After generating the new research ideas, AlphaResearch will further generate a patch to
modify the existing program if the idea obtains a positive score from AlphaResearch-RM. The new
program is then evaluated by the same verification program, thereby generating new metadata. We
select the best program and idea as the final solution of AlphaResearch in this iterative process.

5 RELATED WORK

LLMs for New Ideas. Several recent works explored methods to improve research idea genera-
tion, such as iterative novelty refinement (Wang et al.,[2024a}; Baek et al.|[2024). These works focus
on improving the research idea over vanilla prompting but critically miss an effective verification
method. To promote more reliable Al-generated research ideas, many studies have proposed solu-
tions from different perspectives, such as comparisons with any human expert (Si et al., 2024]), using
LLMs for executing experiments by generating code with human-curated research problems (Huang
et al., 2024 Tian et al., 2024)), and executing LLM-generated research ideas with LLM-generated
programs (Li et al., [2024; |Lu et al., 2024} |Aygiin et al., [2025). These works either use automatic
program evaluation or a misaligned LLM evaluator method, which presents a challenge for their
scalability to real-world advanced algorithm discovery. Our AlphaResearch presents a more fea-
sible direction by combining program execution with RM training from real-world peer-reviewed
research records.

LLMs for Code Generation. In autonomous research agents, code generation serves as a funda-
mental step. Previous models (Guo et al.| [2024; |Yu et al.| 2023} |Hui et al.l [2024)) and benchmarks
(Chen et al.| [2021}; [Yu et al., 2025)) for code generation are in a longstanding pursuit of synthesizing
code from natural language descriptions. SWE-Bench (Jimenez et al.,[2024) introduces the problems
in real-world software development. Many studies on SWE-Bench have greatly contributed to the
emergence of coding agents like SWE-Agent (Yang et al., 2024) and OpenHands (Wang et al.,[2025).
These agent frameworks greatly facilitate the training of agentic LLMs like Kimi-K2 (Team et al.,
2025) and GLM-4.5 (Zeng et al.l [2025)). The surge of these models on SWE-Bench underscores a
critical need to reassess the future directions of coding agent research. Our AlphaResearchComp
benchmark shows that testing LLMs on open-ended research for algorithm discovery is a promising
direction to adapt language models to real-world tasks.

6 DISCUSSION

Limitations and future directions. Although AlphaResearch successfully discovers novel algo-
rithms, we hope to expand its coverage to more realistic applications like accelerating tensor compu-
tations. Second, our experiments aim to establish the simplest and most straightforward approaches
for algorithm discovery. Future research should pay more attention to augmenting the research
agents with useful external tools and the application to more complex problems. Lastly, the training
of RM in AlphaResearch is based on small models (e.g., Qwen-2.5-7B-Instruct) and 24,445 ICLR
peer review records. Enhancing the reward model parameter and dataset size are two important
directions which is left for future research.

Conclusion. We present AlphaResearch, an autonomous research agent that synergistically com-
bines new idea generation with program-based verification for novel algorithm discovery. Our ap-
proach demonstrates the potential of employing LLM to discover unexplored research areas, en-
abling language models to effectively tackle complex open-ended tasks. We construct AlphaRe-
searchComp, including 8 open-ended algorithmic problems, where AlphaResearch outperforms hu-
man researchers in 2/8 algorithmic problems but lags behind in the remaining 6 problems. Our
systematic analysis of the benefits and remaining challenges of autonomous algorithm discovery
provides valuable insights for future research, contributing to the development of more advanced
and capable research agents.
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A THE USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, we utilized large language models (LLMs) for grammar
checking and writing suggestions to enhance the readability and clarity of the content.

B EXAMPLES

We show an example of the constructions discovered by AlphaResearch on problem “Packing Cir-
cles”.

AlphaEvolve

packing_circles_alphaevolve = np.array([[0.09076163, 0.40381803, 0.090761620923837],
[0.07310993, 0.92689178, 0.07310821268917801], [0.08745017, 0.22570576,
0.087381421261857], [0.24855246, 0.30880277, 0.093428060657193], [0.4079865, 0.06300614,
0.063006133699386], [0.47646318, 0.90136179, 0.09863820013617901], [0.89604966,
0.10309934, 0.10309932969006601], [0.9066386, 0.68096117, 0.09336139066386], [0.08962002,

0.76509474, 0.0895289910471], [0.06973669, 0.06965159, 0.06965158303484101],
[0.40979823, 0.21756451, 0.09156283084371601], [0.25742466, 0.88393887,
0.11606111839388701], [0.09064689, 0.58506214, 0.090482500951749], [0.90294698
0.30231577, 0.09623644037635501], [0.57265603, 0.10585396, 0.105853949414604],
[0.74007588, 0.40129314, 0.09435083056491601], [0.57539962, 0.71183255,
0.115160168483982], [0.7367635, 0.21592191, 0.09104997089500201], [0.41096972,
0.40263617, 0.093512520648747], [0.88664452, 0.88667032, 0.113317128668286], [0.57582722,

0.49961748, 0.09705531029446801], [0.24962585, 0.49417195, 0.09194421080557799]
[0.90546338, 0.49309632, 0.094507120549287], [0.67381348, 0.90149423,
0.09850576014942301], [0.24310147, 0.1077195, 0.10771948922805], [0.40815297, 0.5886157,
0.09248833075116601], [0.24737889, 0.6771266, 0.090994980900501], [0.75801377, 0.7532924,

0.07192969280703], [0.73526642, 0.06243992, 0.062439303756069], [0.57415412, 0.30715219,

0.095403150459684], [0.39239379, 0.75259664, 0.07223814277618501], [0.7439361,
0.58879735, 0.093166630683336]]

AlphaResearch

packing_circles_alpharesearch = np.array([[(0.1115677319034151, 0.11156773191787371,
0.11156438489140026), (0.09380224787136374, 0.3161654253705352, 0.09379943380606216),
(0.09485964915877172, 0.5048217088596118, 0.09485680337610973), (0.09657322554702913,
0.6962443020287629, 0.09657032835808858), (0.10365512530384222, 0.8963448746980195,
0.10365201565567386), (0.3334956594919712, 0.09664441783072292, 0.0966415184920332),
(0.26448615440016093, 0.9376113341122044, 0.06238679422590162), (0.5287192731314015,
0.09859146596680078, 0.09858850822808951), (0.591325020569507, 0.9366833118077788,
0.0633147886877468), (0.7427106948954978, 0.11611889563206494, 0.11611541209023483),
(0.7566639864477509, 0.8920585771994192, 0.1079381845606288), (0.9269317750270191,
0.07306822497789416, 0.07306603293080358), (0.9105741716090636, 0.23473376300222965,
0.08942314561430993), (0.9094700615258342, 0.41468336419923396, 0.09052722258939731),
(0.9124275486288124, 0.7738960294683863, 0.08756982419268892), (0.9302276007184027,
0.9302276007259072, 0.06977030612132157), (0.5931627035790205, 0.4107363306659128,
0.09216300786888813), (0.5896628759126524, 0.5965222415947758, 0.09365298106148348),
(0.26303074890883915, 0.783747668079202, 0.09148238826692158), (0.42710033854875884,
0.28662965969327264, 0.1151473780101257), (0.7511102582575875, 0.5051558281448295,
0.09185177348783963), (0.4273023330525072, 0.8937703360976411, 0.10622647700018645),
(0.24372345356089029, 0.24143034678815986, 0.07371479291303436), (0.4260882762526937,
0.6918664604322906, 0.09567746779211372), (0.2572363869779693, 0.4085253312744954,
0.09392364829884896), (0.9094294608754079, 0.5957810763279916, 0.0905678220228201)
(0.42560864125756626, 0.49898110459434486, 0.09720528992590773), (0.7533817110763772,
0.32263902019589896, 0.09067643144615074), (0.5903729314333418, 0.7817733747765757,
0.09159665425215473), (0.7515568081174837, 0.6905957415401818, 0.09358581053778628),
(0.2605636694821685, 0.5973506902903994, 0.09492800518715086), (0.6095540558280068,
0.24805951545091487, 0.07133567304015336)11)
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Figure 7: New construction of AlphaResearch (right) improving the best known AlphaEvolve (right)
bounds on packing circles to maximize their sum of radii. Left: 32 circles in a unit square with sum
of radii > 2.9379. Right: 32 circles in a unit square with sum of radii > 2.9395

C PROMPTS

[ N

© ® 9 o

Prompt for New Program Generation

You are an expert software developer tasked with iteratively improving a codebase. Your job
is to analyze the current program and suggest improvements based on the current proposal
and feedback from previous round. Focus on making targeted changes that will increase the
program’s performance metrics.

# Previous Proposal:

{previous proposal }

# Previous Program:

{previous program}

# Previous Performance Metrics:

{previous result}

# Current Proposal

{proposal}

# Task

Suggest improvements to the program that will lead to better performance on the specified
metrics.

You MUST use the exact SEARCH/REPLACE diff format shown below to indicate
changes:

<<<<<<< SEARCH

# Original code to find and replace (must match exactly)

# New replacement code

<<<<<<< REPLACE

Example of valid diff format:

<<<<<<< SEARCH
for i in range(m):
for j in range(p):

15
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for k in range(n):
cli, J1 += A[i, k] * Blk, 3l

# Reorder loops for better memory access pattern

for 1 in range (m) :
for k in range(n):
for j in range(p):
Cli, 3] += A[i, k] * B[k, 7]

>>>>>>> REPLACE

You can suggest multiple changes. Each SEARCH section must exactly match code in the
current program.

Be thoughtful about your changes and explain your reasoning thoroughly.

IMPORTANT: Do not rewrite the entire program - focus on targeted improvements.

Prompt for New Idea Generation

You are a research advisor tasked with evolving and improving research proposals. Your goal
is to generate a new research proposal that builds upon the current proposal while addressing
its limitations and incorporating insights from successful approaches.

Based on the following information, generate an improved research proposal:
Focus on:

1. Identifying weaknesses in the current approach based on performance metrics
2. Proposing novel improvements that could enhance performance

3. Learning from successful inspirations while maintaining originality

4. Ensuring the new proposal is implementable

- Current Proposal:

{proposal}

- Current Program:

{program}

- Current Metrics:

{results }

Please generate a new research proposal that:

1. Addresses the limitations shown in the current metrics

2. Incorporates insights from successful approaches

3. Proposes specific technical improvements

4. Maintains clarity and technical rigor

Return the proposal as a clear, concise research abstract.

Prompt for AlphaResearch-RM-7B

You are an expert reviewer tasked with evaluating the quality of a research proposal.

Your goal is to assign a score between 1 and 10 based on the proposal’s clarity, novelty,
technical rigor, and potential impact. Here are the criteria:

1. Read the following proposal carefully and provide a score from 1 to 10.

2. Score 6 means slightly higher than the borderline, 5 is slightly lower than the borderline.
Write the score in the \boxed{}.

{proposal}
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D CURATED PROBLEMS AND HUMAN-BEST VALUES

We summarize the ten problems used in the ALPHARESEARCH benchmark. For each item we state
the objective, the current human-best value at the benchmark’s default parameters, and whether this
value is proved optimal or only best-known.

D.1 SPHERICAL CODE (52, n = 30).

Problem Description: Place n = 30 points on the unit sphere in R? to maximize the minimal
pairwise angle 6, .

Human Best: 0,,;, ~ 0.673651 radians (= 38.5971°).

Initial Proposal

Problem definition. Choose N = 30 points on the unit sphere S? to maximize the mini-
mum pairwise angle

Omin = min arccos((pi,pj)).
1<
Constraints.
¢ Points are unit vectors (rows normalized).

e Metric iS 0pn;, in radians.

Optimization goal. Maximize 0,,;,. The evaluator returns {score, f,in, N, dimension},
with score = 0,;,.
Best-known reference (for N = 30 on S?):

cos(0*) ~ 0.7815518750949873 = 6" =~ 0.6736467551690225 rad.

Reference table: Henry Cohn’s spherical codes data (https://cohn.mit.edu/
spherical-codes).

Best-known results (human).

 On S? (3D), small NV optima coincide with symmetric polyhedra (e.g., tetrahedron,
octahedron, icosahedron).

* For larger N, best codes come from numerical optimization; exact optimality is
only known in limited cases.

Algorithmic goal. Construct codes with larger 6,,i,. The baseline seeds with symmetric
configurations and uses farthest-point max—min. Stronger methods include:

* Energy minimization,
* Projected gradient / coordinate descent,

¢ Stochastic max—min refinement.

Initial Program:

import numpy as np

def _normalize_rows (P):
nrm = np.linalg.norm(P, axis=1, keepdims=True)
nrm = np.maximum(nrm, le-12)
return P / nrm

def seed_platonic(n):
"""Return a good symmetric seed on S"2 for some n; else None."""

if n == 2: # antipodal
return np.array([[0,0,1],[0,0,-11], dtype=float)
if n == 3: # equilateral on equator
ang = 2+np.pi/3
return np.array([[1,0,0], [np.cos (ang),np.sin(ang), 0], [np.cos (2*ang),np.sin(2+ang),011,
dtype=float)
if n == 4: # tetrahedron
return _normalize_rows (np.array(([1,1,1],(1,-1,-1],(-1,1,-1],[-1,-1,1]], dtype=float))
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f n == 6: # octahedron
return np.array([[(1,0,0],[-1,0,0],(0,1,0],(0,-1,0],(0,0,1],[0,0,-1]1], dtype=float)
if n == 8: # cube vertices
V = np.array([[sx,sy,sz] for sx in (-1,1) for sy in (-1,1) for sz in (-1,1)],

dtype=float)
return _normalize_rows (V)
if n == 12: # icosahedron (one realization)

phi = (l+np.sqrt(5))/2
v =[]
for s in (-1,1):
vV += [[0, s, phi], [0, s, -phi],[ s, phi,0],[ s, -phi,0],[ phi, 0, s],[-phi, 0, s]]

V = np.array(V, dtype=float)
return _normalize_rows (V)
return None

def farthest_point_greedy(n, seed=None, rng=np.random.default_rng(0)):
W

Greedy max min on S$”2: start from seed, then add points that maximize min angle.

nnn

def random_unit (k) :
X = rng.normal (size=(k,3)); return _normalize_rows (X)

if seed is None:

P = random_unit (1) # start with one random point
else:
P = _normalize_rows (seed)

while len(P) < n:
# generate candidates and pick the one with largest min angle to current set
C = random_unit (2000) # candidates per iteration (tune as needed)
# cosines to existing points
cos = C @ P.T
# min angle to set -> maximize this
min_ang = np.arccos (np.clip(np.max(cos, axis=1l), -1.0, 1.0)
idx = np.argmax (min_ang)
P = np.vstack ([P, Clidx:idx+1]])
return P

def main() :
n = 30
seed = seed_platonic(n)
pts = farthest_point_greedy (n, seed=seed, rng=np.random.default_rng(42))
print (f"n={n}, points={len(pts)}")
return pts
if __name__ == "__main__":
points = main ()

np.save ("points.npy", points)

# Ensure compatibility with evaluators that expect a global variable
try:

points # type: ignore[name-defined]
except NameError:

points = main|()

D.2 LITTLEWOOD POLYNOMIALS.

Problem Description For coefficients ¢, € {£1} and P, (t) = Y30 cxe™™, minimize | P, || oo =

supeg | Pn(t)]-

Human Best: the Rudin-Shapiro construction gives || Py ||oc < v/2n. At the benchmark setting n =
512, this yields || Ps12|lcc < 32 (so the “larger-is-better” score 1/|| P, is > 1/32 = 0.03125).
Sharper constants are known for special families, but v/2n remains a clean baseline.
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Initial Proposal

Choose coefficients ¢, € {£1} for

=11
P(z) = Z crz”, |z| =1,
k=0

S0 as to minimize the supremum norm

1Plleo = max |P(2)].

Constraints.
¢ Coefficients ¢;, are restricted to +1.

¢ The metric || P|| is estimated by FFT sampling on an equally spaced grid (denser
grid — tighter upper bound).

Optimization Goal. The evaluator returns:

——, if valid
score — ||P||oo7 1I valid,

—1.0, otherwise.
Notes on Bounds. For the Rudin—Shapiro construction of length n, a classical identity gives
1Pl < v2n.
For the benchmark default n = 512, this yields
[Plloo < V1024 = 32,

SO

score = o5 = 0.03125.

Initial Program:

def rudin_shapiro(n: int):

First n signs of the Rudin-Shapiro sequence.
W
a = np.ones(n, dtype=int)
for k in range(n):
x, cnt, prev =%k, 0, 0

while x:
b=x¢61
if b & prev: # saw 11/
cnt "= 1
prev = b
x >>= 1
alk] = 1 if cnt == 0 else -1

return a

def random_littlewood(n: int, seed=0):
rng = np.random.default_rng(seed)

return rng.choice([-1, 1], size=n).astype (int)
def main() :

n = 512

¢ = rudin_shapiro (n)

print (f"n={n}, coeffs={len(c)}")
return c

if __name__ == "__main__":
coeffs = main()

# Ensure compatibility with evaluators that expect a global variable
try:

coeffs # type: ignore[name-defined]
except NameError:

coeffs = main()
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D.3 SuM vs. DIFFERENCE SETS (MSTD).

Problem Description For a finite set A C Z, maximize |A+A|/|A—A].

Human Best: MSTD sets exist; the smallest possible size is |A| = 8 (classification up to affine
equivalence is known). For larger |A|, extremal ratios remain open; our benchmark instance reports

a representative value (= 1.04 for | A| = 30).

Initial Proposal

Objective. Classical MSTD (enforced): Given A C {0,1,..., N — 1} represented by a
0/1 indicator array of length N, maximize the ratio

A+ A]
R= A— Al
* Score: score = R (higher is better).

» Comparisons should be made under the same N.

Default setup.
* N =30.

* Evaluator enforces A = B (classical setting). If a pair (A, B) is provided, B is
ignored and A is used.

Known best for N = 30 (baseline). Conway’s MSTD set
A={0,2,3,4,7,11,12,14}

yields R ~ 1.04. This is the baseline included in initial_program.py. Better ratios
may exist for NV = 30; pushing R upwards is the optimization goal.
Notes.

* R > 1israre and indicates sum-dominance.

* The ratio depends strongly on /N; do not compare ratios across different /N without
a normalization scheme.

* If cross-N comparison is necessary, consider reporting both R and N, or use log R
as an auxiliary measure.

Initial Program:

def main() :
N = 30
# Conway MSTD set example; we take A=B for classical MSTD
A = [0, 2, 3, 4, 7, 11, 12, 14]
B = A[:]
A_ind np.zeros (N, dtype=int); A_ind[A] 1

[}
[

B_ind = np.zeros (N, dtype=int); B_ind[B]
return A_ind, B_ind

# Ensure globals for evaluator
try:

A_indicators; B_indicators # type: ignore[name-defined]
except NameError:

A_indicators, B_indicators = main|()
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D.4 PACKING CIRCLE IN A SQUARE (VARIABLE RADII).

Problem Description In the unit square, place n disjoint circles (radii free) to maximize the sum of
radii ;.

Best-known: for n = 26, > r; = 2.634 (Cantrell, 2011); for n = 32, > r; = 2.936 (Specht,
2012).

Initial Proposal

Problem definition. Given an integer n, place n disjoint circles in the unit square [0, 1]
to maximize the total sum of radii.
Objective and metric.

e Score: score = Y -

i—1Ti (larger is better).

 Validity: circles must be pairwise disjoint and fully contained in the unit square.

Notes on records.

 This variable-radius “sum of radii”” objective is not the classical equal-radius pack-
ing; authoritative SOTA tables are not standardized.

* Values reported in code or experiments should be treated as benchmarks rather than
literature SOTA.

Goal. Create algorithms that increase the total sum of radii for n € {26, 32} under the
above validity constraints.

Initial Program:

import random
from concurrent.futures import ThreadPoolExecutor

def pack_circles(n, square_size=1.0):
wan
Pack n disjoint circles in a unit square using uniform tiling approach.

Returns the sum of radii and list of circles (x, y, r).
wan

def max_circle_radius(x, y, circles, square_size=1.0, skip_idx=None):
wnn
Compute the maximum radius for a circle centered at (x, y) that:
- Stays within the unit square [0, square_size] \times [0, square_size].
— Does not overlap with existing circles.
skip_idx: if provided, index in circles[] to ignore (self).
wnn
# Distance to nearest boundary of the unit square
r_max = min(x, y, square_size - x, square_size - y)

# Check distance to existing circles, exit early if r_max \rightarrow 0
# early exit if r_max is tiny, and avoid needless sqrt
for idx, (cx, cy, cr) in enumerate (circles):

if skip_idx == idx:
continue

if r_max <= le-8:
break

dx = x - cx

dy =y - cy

sep = r_max + cr

if dxxdx + dy*dy < sep=*sep:
# only compute sqrt when we know we can shrink
dist = math.sqgrt (dxxdx + dy=*dy)
r_max = min(r_max, dist - cr)
return max (r_max, 0.0)

def uniform_tiling_circles(n, square_size=1.0):
wnn

Uniformly tile the square with circles using optimal grid placement.

wnn
if n <= 0:
return []

circles = []
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# Calculate optimal grid dimensions

# For n circles, find the best grid layout (rows x cols)
best_layout = None

best_total_radius = 0

# Try different grid configurations
for rows in range(l, min(n + 1, 20)):
cols = math.ceil(n / rows)
if cols > 20: # Limit grid size
continue

# Calculate spacing
spacing_x = square_size / (cols + 1)
spacing_y = square_size / (rows + 1)

# Use the smaller spacing to ensure circles fit
min_spacing = min(spacing_x, spacing_y)

# Calculate maximum radius for this layout
max_radius = min_spacing / 2

# Ensure radius doesn’t exceed boundaries
max_radius = min (max_radius,
spacing_x / 2 - le-6,
spacing_y / 2 - le-6)

if max_radius <= 0:
continue

# Place circles in uniform grid
temp_circles = []
count = 0

for row in range (rows):
for col in range(cols):
if count >= n:
break

x = spacing_x * (col + 1)
spacing_y * (row + 1)

<
I

# Ensure circle stays within bounds
if (x - max_radius >= 0 and x + max_radius <= square_size and
y - max_radius >= 0 and y + max_radius <= square_size):

temp_circles.append((x, y, max_radius)
count +=1

if count >= n:
break

# Calculate total radius for this layout
total_radius = len(temp_circles) x max_radius

if total_radius > best_total_radius and len(temp_circles)
best_total_radius = total_radius
best_layout = temp_circles

Il
Il
=}

# If we found a valid layout, return it
if best_layout:
return best_layout

# Fallback: use hexagonal packing for better density
return hexagonal_packing(n, square_size)

def hexagonal_packing(n, square_size=1.0):

nuw

Use hexagonal close packing for better space utilization.
wnn

circles = []

# Estimate number of rows and columns for hexagonal packing
# Hexagonal packing has rows offset by sqgrt(3)/2 x diameter

rows = int (math.sqgrt(n * 2 / math.sqrt(3))) + 2
count = 0
row = 0

while count < n and row < rows:
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# Calculate y position for this row
y = (row + 0.5) x (square_size / (rows + 1)

# Number of circles in this row

if row % == 0:

cols = int (math.sgrt(n)) + 1
else:

cols = int (math.sqrt (n))

spacing_x = square_size / (cols + 1)

for col in range(cols):
if count >= n:
break

if row % 2 ==
X = spacing_x * (col + 1)
else:
x = spacing_x * (col + 1) + spacing_x / 2

# Calculate maximum radius for this position
r = max_circle_radius(x, y, circles, square_size)

if r > 0:
circles.append((x, y, r))
count += 1

row += 1
return circles

def optimize_placement (n, square_size=1.0):

Optimize circle placement using uniform tiling with radius maximization.

nun

circles = []

# First, try hexagonal packing for high initial density

hex_circles = hexagonal_packing(n, square_size)

if len(hex_circles) == n:
# Ensure maximum radii for hex layout with stronger refinement
hex_refined = refine_circles (hex_circles, square_size, iterations=20)
return hex_refined

# Fallback to uniform grid placement
grid_circles = uniform_tiling_circles(n, square_size)
if len(grid_circles) == n:

return grid_circles

# If uniform tiling didn’t work perfectly, use adaptive approach

# Calculate optimal radius based on density

area_per_circle = (square_size * square_size) / n

estimated_radius = math.sqgrt (area_per_circle / math.pi) * 0.9 # Conservative estimate

# Create grid with optimal spacing
spacing = estimated_radius » 2.1 # Include gap

cols = int (square_size / spacing)
rows = int (square_size / spacing)

actual_spacing_x = square_size / (cols + 1)
actual_spacing_y = square_size / (rows + 1)

count = 0
for row in range (rows):
for col in range(cols):
if count >= n:
break

x = actual_spacing_x % (col + 1)
= actual_spacing_y x (row + 1)

<
|

# Calculate maximum possible radius
r = max_circle_radius(x, y, circles, square_size)

if r > 0:
circles.append((x, y, r))

count += 1

if count >= n:
break
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# If we still need more circles, use remaining space
remaining = n - len(circles)
if remaining > 0:
# Place remaining circles in remaining spaces
for i in range(remaining) :
# Try different positions systematically
best_r =0
best_pos = (0.5, 0.5)

# Fine grid search (increased resolution)
grid_points = 100
for gx in range(l, grid_points):
for gy in range(l, grid_points):
x = gx / grid_points
y = gy / grid_points

r = max_circle_radius(x, y, circles, square_size)
if r > best_r:

best_r = r

best_pos = (x, V)

if best_r > 0:
circles.append((best_pos[0], best_pos[l], best_r))

return circles

def refine_circles(circles, square_size, iterations=80, perturb_interval=3):
wnn
Iteratively grow each circle to its maximum radius under non-overlap constraints.
Includes randomized update order, periodic micro-perturbation to escape
local minima, and a final local-center-perturbation pass for densification.
wnn
for it in range (iterations):
# randomize update order to avoid sweep-order bias
indices = list (range(len(circles)))
random.shuffle (indices)
for 1 in indices:
X, y, _ = circles[i]
# Compute maximal feasible radius here, skipping self
r = max_circle_radius(x, y, circles, square_size, skip_idx=i)

circles[i] = (x, y, 1)
# Periodic micro-perturbation: jiggle a few circles
if it % perturb_interval == 0 and len(circles) > O0:
subset = random.sample (indices, min (5, len(circles)))
for j in subset:
x0, y0, r0O = circles[]j]

dx = random.uniform(-0.03, 0.03)
dy = random.uniform(-0.03, 0.03)
nx = min(max(x0 + dx, 0), square_size)
ny = min(max(y0 + dy, 0), square_size)
# Compute maximal radius skipping self
nr = max_circle_radius(nx, ny, circles, square_size, skip_idx=j)
if nr > r0:
circles[j] = (nx, ny, nr)
# Full local center-perturbation phase for final densification
for i in range(len(circles)):
X, y, ¥ = circles[i]
best_x, best_y, best_r = x, y, r
delta = 0.1

for _ in range(20):
dx = random.uniform(-delta, delta)
dy = random.uniform(-delta, delta)

nx = min(max(x + dx, 0), square_size)
ny = min(max(y + dy, 0), square_size)
# Compute maximal radius skipping self
nr = max_circle_radius(nx, ny, circles, square_size, skip_idx=1i)
if nr > best_r:
best_x, best_y, best_r = nx, ny, nr

else:
delta x= 0.9
circles[i] = (best_x, best_y, best_r)

# Physics-inspired soft relaxation to escape persistent overlaps
for 1 in range(len(circles)):
X, y, r = circles[i]
fx, fy = 0.0, 0.0
for j, (xj, yj, rj) in enumerate(circles):
if 1 == J:
continue
dx = x - xj
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dy =y - vJ
d = (dxxdx + dyxdy) =*x 0.5
overlap = (r + rj) - d

if overlap > 0 and d > le-8:
fx += dx / d % overlap
fy += dy / d % overlap
# Nudge the center by 10\% of the computed net "repulsive" force
nx = min(max(x + 0.1 « fx, 0), square_size)
ny = min(max(y + 0.1 = fy, 0), square_size)
nr = max_circle_radius(nx, ny, circles, square_size, skip_idx=1i)
circles[i] = (nx, ny, nr)
return circles

def multi_start_optimize(n, square_size, starts=None):
W
Parallel multi-start global \rightarrow local optimization using ThreadPoolExecutor.
Number of starts adapts to problem size: max (100, 10%n).

nun

if starts is None:

if n <= 50:
starts = max (200, n * 20)
else:

starts = max (100, n = 10)
# precompute hexagonal packing baseline
hex_circ = hexagonal_packing(n, square_size)
hex_sum = sum(r for _, _, r in hex_circ)
best_conf = None
best_sum = 0.0

# single trial: seed \rightarrow refine \rightarrow score
def single_run(_):
conf0 = optimize_placement (n, square_size)
confl = refine_circles(conf0, square_size, iterations=40)
sl = sum(r for _, _, r in confl)
return sl, confl

# dispatch trials in parallel
with ThreadPoolExecutor () as executor:
for score, conf in executor.map(single_run, range (starts)):
if score > best_sum:
best_sum, best_conf = score, conf.copy()
# early exit if near the hex-baseline
if best_sum >= hex_sum * 0.995:
break

return best_conf

# Use multi-start global \rightarrow local optimization (adaptive number of starts)
circles = multi_start_optimize(n, square_size)

# Quick 2-cluster remove-and-reinsert densification (extended iterations)

for _ in range(8):
# remove the two smallest circles to create a larger gap
smallest = sorted(range (len(circles)), key=lambda i: circles[i][2])[:2]
removed = [circles[i1] for i in smallest]

# pop in reverse order to keep indices valid

for 1 in sorted(smallest, reverse=True):
circles.pop (i)

# refine the remaining configuration briefly

circles = refine_circles(circles, square_size, iterations=8)
# reinsert each removed circle with more sampling
for x_old, y_old, _ in removed:
best_r, best_pos = 0.0, (x_old, y_old)
for _ in range (500):
x = random.uniform(0, square_size)
y = random.uniform(0, square_size)

r = max_circle_radius(x, y, circles, square_size)
if r > best_r:
best_r, best_pos = r, (x, V)
circles.append( (best_pos[0], best_pos[l], best_r))
# final local polish after reinsertion
circles = refine_circles(circles, square_size, iterations=5)
# end 2-cluster remove-and-reinsert densification

# Calculate total radius
total_radius = sum(circle[2] for circle in circles)

return total_radius, circles
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D.5 MINIMIZING MAX/MIN DISTANCE RATIO (d = 2,n = 16).

max;; ||z — x|

Problem Description For n points in [0, 1], minimize R = —, .
miniz; [[z; — 24

Best-known: R? ~ 12.890 (Cantrell, 2009), i.e., R ~ 3.590.

Initial Proposal

Problem. Arrange n points in [0, 1]¢ to optimize the dispersion / packing—covering trade-
off. The benchmark metric is

. min pairwise distance
ratio =

max pairwise distance’

so that larger ratio is better (values in (0, 1]).
Evaluator. Given a program exposing max_min_dis_ratio (n,d), we obtain config-
urations for (n,d) = (16, 2) and (14, 3), then report ratio for each case.
Baseline algorithm. The initial program employs:
* Enhanced simulated annealing with adaptive cooling,

* Neighbor-repulsion moves,
* Periodic smoothing via k-NN weighted averages,
* A local refinement stage.

KD-tree acceleration is used for nearest-neighbor queries; hyperparameters adapt to dimen-
sion.

Initial Program:

from scipy.spatial.distance import pdist
from scipy.spatial import cKDTree

# (Removed) smooth_points smoothing logic is now inlined to reduce indirection

def calculate_distances (points):
"""Calculates min, max, and ratio of pairwise Euclidean distances using scipy pdist."""
if points.shape[0] < 2:
return 0.0, 0.0, 0.0
distances = pdist (points, metric=’euclidean’)

eps = le-8
min_dist = max(np.min(distances), eps)
max_dist = np.max(distances)

ratio = max_dist / min_dist
return min_dist, max_dist, ratio

# (Removed) perturb_point now inlined directly where used

def update_temperature (temperature, cooling_rate, accept_history, iteration, total_iters,
initial_temperature, window_size=100) :
wan

Adaptive cooling with acceptancerate feedback and periodic reheating.
window = accept_history[-min(len (accept_history), window_size) :]

rate = sum(window) / len (window)

# gentler correction: slow/fast cooling factors reduced

if rate < 0.2:

adj = 1.02
elif rate > 0.8:
adj = 0.98

else:
adj = 1.0

temperature %= cooling_rate x adj

# removed periodic reheating to maintain smoother cooling schedule
# if (iteration + 1) % (total_iters // 4) ==

# temperature = initial_temperature

return temperature

def max_min_dis_ratio(n: int, d: int, seed=None):
wun

Finds n points in d-dimensional space to minimize the max/min distance ratio
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using simulated annealing.

Args:

n (int): Number of points.

d (int): Dimensionality of the space.
Returns:

tuple: (best_points, best_ratio)

# Adaptive hyperparameters based on dimensionality

iterations = 3000 if d <= 2 else 6000 # increased sweeps for improved convergence
initial_temperature = 10.0
cooling_rate = 0.998 if d <= 2 else 0.996 # slower cooling for extended exploration

perturbation_factor = 0.15 if d <= 2 else 0.12 # tuned smaller steps in 3D for better
local refinement

# relaxation factor for post-acceptance repulsive adjustment

# relaxation_factor removed; using inline 0.1 % perturbation_factor below

# 1. Initial State: reproducible random generator

rng = np.random.default_rng(seed)

# uniform random initialization in [0,1]"d for simplicity
current_points = rng.random((n, d))

_, _, current_ratio = calculate_distances (current_points)

best_points = np.copy(current_points)
best_ratio = current_ratio

temperature = initial_temperature

accept_history = []

window_size = 50 # window for stagnation detection and adaptive injection

# smoothing_interval remains, but smoothing_strength is fixed inlined above

smoothing_interval = max (10, iterations // (20 if d <= 2 else 30)) # more frequent
smoothing in 3D for improved uniformity

for i in range(iterations):
# Build KD-tree once per iteration for neighbor queries
tree = cKDTree (current_points)
# optional smoothing step using distance-weighted neighbor smoothing
if (1 + 1) % smoothing_interval ==
# choose neighbor count based on dimension
k_smooth = 6 if d > 2 else 4

_, 1dxs = tree.query(current_points, k=k_smooth+1)
neighbors = current_points[idxs[:,1:]] # exclude self
# compute inverse-distance weights

diffs = neighbors - current_points[:, None, :]

dists = np.linalg.norm(diffs, axis=2) + le-6

weights = 1.0 / dists
weights /= weights.sum(axis=1, keepdims=True)

neighbor_means = (neighbors * weights[..., None]).sum(axis=1
blend = 0.6 if d > 2 else 0.7
current_points = np.clip(current_points % blend + neighbor_means » (1 - blend), 0.0,
1.0)
_, _, current_ratio = calculate_distances (current_points)
if current_ratio < best_ratio:
best_points = current_points.copy ()

best_ratio = current_ratio

# 2. Generate Neighboring State: Perturb a random point

# Simplify scaling: rely on temperature to adjust step-size instead of best_ratio

# dynamic perturbation decays sublinearly with temperature for finer local moves

perturbation_strength = perturbation_factor * ((temperature / initial_temperature)**0.6
+ 0.15)

# Choose a random point to perturb
point_to_perturb_index = rng.integers (0, n)

old_point = current_points[point_to_perturb_index] .copy ()
# Increase repulsivemove frequency in low dimensions
# dynamic repulsion probability: stronger at high temperature, tapering off as we cool

if d > 2:

# reduce repulsion frequency in 3D for finer refinement

repulsion_prob = float (np.clip(temperature / initial_temperature, 0.2, 0.8))
else:

repulsion_prob = float (np.clip(temperature / initial_temperature + 0.1, 0.5, 0.95))
# start with a random jitter
# random jitter inlined for readability
candidate = old_point + rng.uniform(-perturbation_strength, perturbation_strength,
size=o0ld_point.shape)
if n > 1 and rng.random() < repulsion_prob:
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# compute nearest neighbor via KD-tree for efficiency (reusing prebuilt tree)

_, nn_idxs = tree.query(old_point, k=2)
nn_idx = nn_idxs[1]
vec = old_point - current_points[nn_idx]

norm = np.linalg.norm(vec)
if norm > le-8:
dir_vec = vec / norm
candidate = old_point + perturbation_strength % dir_vec
# keep the point in [0,1]"d
current_points[point_to_perturb_index] = np.clip(candidate, 0.0, 1.0)
_, _, candidate_ratio = calculate_distances (current_points)

# Acceptance criterion
delta = candidate_ratio - current_ratio
accept = (delta < 0) or (rng.random() < np.exp(-delta / temperature)

if accept:
current_ratio = candidate_ratio
# Post-acceptance repulsive relaxation to improve local spacing
# reuse prebuilt KD-tree for repulsive relaxation
dists, idxs_nn = tree.query(current_points[point_to_perturb_index], k=2)
dir_vec = current_points[point_to_perturb_index] - current_points[idxs_nn[1l]]
norm = np.linalg.norm(dir_vec)
if norm > le-8:
# push away from nearest neighbor
adjustment = 0.1 % perturbation_factor x dir_vec / norm
current_points|[point_to_perturb_index] = np.clip(
current_points[point_to_perturb_index] + adjustment, 0.0, 1.0
)
# update ratio and best points after relaxation
_+ _, relaxed_ratio = calculate_distances (current_points)
current_ratio = relaxed_ratio
if relaxed_ratio < best_ratio:
best_points = current_points.copy ()
best_ratio = relaxed_ratio
# also keep the standard bestcheck for the candidate move
if current_ratio < best_ratio:
best_points = current_points.copy ()
best_ratio = current_ratio
else:
current_points[point_to_perturb_index] = old_point

# Update temperature with adaptive schedule
accept_history.append (accept)
temperature = update_temperature (temperature, cooling rate, accept_history, i,
iterations, initial_temperature)
# periodic mild reheating for 3D to escape deep minima
if d > 2 and (i + 1) % (iterations // 3) ==
temperature = max (temperature, initial_temperature x 0.3)

# random injection to escape plateaus: reinitialize one point every 20% of iterations
# random injection only if weve stagnated (low acceptance in recent window)

if (1 + 1) % max(l, iterations // 5) == and len(accept_history) >= window_size \
and sum(accept_history[-window_size:]) / window_size < 0.1:
j = rng.integers (0, n)
current_points[j] = rng.random(d)
_, _, current_ratio = calculate_distances (current_points)

# Local refinement stage: fine-tune best solution with small Gaussian perturbations
refine_iters = max (100, iterations // 20)
for _ in range(refine_iters):
idx = rng.integers (0, n)
old_point = best_points[idx].copy ()
perturb = rng.normal (0, perturbation_factor x 0.05, size=d)
best_points[idx] = np.clip(old_point + perturb, 0.0, 1.0)
_, _, refined _ratio = calculate_distances (best_points)
if refined_ratio < best_ratio:
best_ratio = refined_ratio
else:
best_points[idx] = old_point
return best_points, best_ratio

D.6 AUTOCONVOLUTION PEAK MINIMIZATION (L°°).

Problem Description For nonnegative densities f supported on [f%, %} with f f =1, define

foo = Sttlp(f*f)(t).
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The exact optimum is unknown.

Human Best:
0.64 < e < 0.75496.

The lower bound is due to Cloninger—Steinerberger, and the upper bound comes from explicit step-
function constructions of Matolcsi—Vinuesa (rescaled to unit support).

Initial Proposal

Problem definition. Let
1/2
F={rer(-54): r>0 / flayde =1},
-1/2
and define
(=00 = [ f@) 5t =a)da.
We seek to minimize the peak value of the autoconvolution:

— inf .
poo = inf I * flloo

Constraints.

* Nonnegative density.

e Unit mass (L' = 1).

* Support length 1 (here taken as [—1, 1]).
In the implementation, f is represented by nonnegative step heights on a uniform grid and
normalized to unit integral.
Optimization goal. Minimize

foe = max(f % )(1),

Smaller values are better.

Best-known human results. In this standard setup, the best currently published bounds
are

0.64 < proe < 0.75496 .

The upper bound traces to work of Matolcsi—Vinuesa (after normalizing support length to
1), and the lower bound to Cloninger—Steinerberger.

Algorithmic goal. Create an algorithm that constructs feasible densities with progres-
sively smaller ii.. The baseline program generates simple analytical candidates (box, tri-
angle, cosine-squared, Gaussian) on a uniform grid, normalizes to unit mass, and computes
autoconvolution via FFT to measure p.. It serves as a starting point for more advanced
search/optimization methods.

References.

* E. P. White, An optimal L? autoconvolution inequality, Canadian Mathematical
Bulletin (2024).

e M. Matolcsi and C. Vinuesa, Improved bounds on the supremum of autoconvolu-
tions, J. Math. Anal. Appl. 372 (2010), 439-447.

* A. Cloninger and S. Steinerberger, On suprema of autoconvolutions with an appli-
cation to Sidon sets, Proc. Amer. Math. Soc. 145 (2017), 3191-3200.

Initial Program:

# —%— coding: utf-8 -*-—

nun

Autoconvolution Peak Minimization
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This program generates step heights for a probability density function

that minimizes the maximum value of its autoconvolution.
wwn

import numpy as np
from typing import Dict

def evaluate_Cl_upper_std(step_heights: np.ndarray) -> Dict[str, float]:
Standard-normalized Cl (support [-1/2,1/2], dx=1/K).
- Project to feasible set: h >= 0 and £ = 1 (L1 normalization).
- Objective: mu_inf = max_t (fx£f) (t) (smaller is better).
Returns: {"valid", "mu_inf", "ratio" (=mu_inf), "integral"(=1.0), "K"}
h = np.asarray (step_heights, dtype=float)
if h.size == 0 or np.any(h < 0):
return {"valid": 0.0, "mu_inf": float("inf"), "ratio": float ("inf")}
K = int (len(h))
dx = 1.0 / K

integral = float (np.sum(h) x dx)

if integral <= 0:
return {"valid": 0.0, "mu_inf": float ("inf"), "ratio": float ("inf")}

h = h / integral # £ = 1

F = np.fft.fft (h, 2+«K - 1) # linear autoconvolution via padding

conv = np.fft.ifft (F x F).real

conv = np.maximum(conv, 0.0) # clamp tiny negatives

mu_inf = float (np.max(conv) * dx)
return {"valid": 1.0, "mu_inf": mu_inf, "ratio": mu_inf, "integral": 1.0, "K": float(K)}
def make_candidate (K: int, kind: str = "cos2") -> np.ndarray:
wnw
Simple candidate builder on [-1/2,1/2] (NOT normalized here).
Args:
K: Number of discretization points
kind: Type of candidate function ("box", "triangle", "cos2", "gauss"
Returns:
Step heights array
wnw
x = np.linspace(-1.0, 1.0, K)
if kind == "box":
h = np.ones (K)
elif kind == "triangle":
h =1.0 - np.abs(x)
hl(h < 0] = 0.0
elif kind == "cos2":
h = np.cos(np.pi « x / 2.0) %% 2
elif kind == "gauss":
h = np.exp(-4.0 % x*x2)
else:
raise ValueError (f"unknown kind={kind}")
return h
def main() :
W
Main function that generates step heights for autoconvolution minimization.
Returns:
numpy.ndarray: Step heights array
W
K = 128
kind = "cos2" # Change this to try different candidates (box/triangle/cos2/gauss)

step_heights = make_candidate (K, kind)

# Evaluate the result to verify it’s valid

result = evaluate_Cl_upper_std(step_heights)

print (f"Generated {kind} candidate with K={K}, mu_inf={result['mu_inf’]:.6£f}")

return step_heights
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D.7 THIRD AUTOCORRELATION INEQUALITY.

Problem Description Let C3 be the largest constant such that maxp <12 |(f * f)(t)] >

Cs( M3, 1)° forall signed) f.

Best-known: classical 1.4581 upper bound.

D.8 THIRD-ORDER AUTOCORRELATION INEQUALITY (C's UPPER BOUND)

Initial Proposal

Problem. For piecewise-constant nonnegative functions on a fixed support with unit mass,
we evaluate an upper bound Cypper_bouna derived from the maximum of the autoconvolution
(normalized by squared L' mass). The benchmark score is

1

score = ——,
(7uppen_b0und

so that larger score indicates a smaller upper bound and hence a better result.
Evaluator. The evaluator calls find_better_c3_upper_bound () from the target
program to obtain step heights, computes the normalized autoconvolution maximum, and
returns 1/Clpper_bound-
Baseline algorithm. A simple genetic algorithm over height sequences serves as the base-
line search method. The algorithm includes:

¢ Tournament selection,

* One-point crossover,

¢ Gaussian mutation.

Initial Program:

import scipy.integrate
def calculate_c3_upper_bound (height_sequence) :

N = len (height_sequence)
delta_x =1 / (2 = N)

def f(x):
if -0.25 <= x <= 0.25:
index = int((x - (-0.25)) / delta_x)
if index == N:
index -= 1
return height_sequence[index]
else:

return 0.0

integral_f = np.sum(height_sequence) * delta_x
integral_sqg = integral_ f*x2

if integral_sq < le-18:
return 0.0

t_points = np.linspace(-0.5, 0.5, 2 « N + 1)

max_conv_val = 0.0
for t_val in t_points:

lower_bound = max(-0.25, t_val - 0.25)
upper_bound = min(0.25, t_val + 0.25

if upper_bound <= lower_bound:

convolution_val = 0.0
else:
def integrand(x):
return f(x) * f(t_val - x)
convolution_val, _ = scipy.integrate.quad(integrand, lower_bound, upper_bound,
1imit=100)
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if abs (convolution_val) > max_conv_val:
max_conv_val = abs(convolution_val)

return max_conv_val / integral_sqg

def genetic_algorithm(population_size, num_intervals, generations, mutation_rate,
crossover_rate) :

population = np.random.rand(population_size, num_intervals) » 2 - 1

best_solution = None
best_fitness = 0.0

for gen in range (generations):

fitness_scores = np.array([calculate_c3_upper_bound(individual) for individual in
population])

current_best_idx = np.argmax(fitness_scores)
if fitness_scores|[current_best_idx] > best_fitness:

best_fitness = fitness_scores|[current_best_idx]
best_solution = population[current_best_idx].copy ()
# print (f"Generation {gen}: New best fitness = {best_fitness}")

new_population = np.zeros_like (population)
for 1 in range (population_size):

competitors_indices = np.random.choice (population_size, 2, replace=False)
winner_idx = competitors_indices[np.argmax (fitness_scores[competitors_indices])]
new_population[i] = population[winner_idx].copy ()

for 1 in range (0, population_size, 2):
if np.random.rand() < crossover_rate:

parentl = new_population([i]

parent2 = new_population([i+1]

crossover_point = np.random.randint (1, num_intervals - 1)

new_population[i] = np.concatenate ((parentl[:crossover_point],
parent2[crossover_point:]))

new_population[i+1l] = np.concatenate ((parent2[:crossover_point],

parentl[crossover_point:]))

for 1 in range (population_size):
if np.random.rand() < mutation_rate:
mutation_point = np.random.randint (num_intervals)
new_population[i, mutation_point] += np.random.normal (0, 0.1)

new_population[i, mutation_point] = np.clip(new_population[i, mutation_point],
-2, 2)

population = new_population
return best_solution
def find_better_c3_upper_bound() :
NUM_INTERVALS =
POPULATION_SIZE
GENERATIONS = 10

MUTATION_RATE = 0.1
CROSSOVER_RATE = 0.8

4
=2

height_sequence_3 = genetic_algorithm (POPULATION_SIZE, NUM_INTERVALS, GENERATIONS,
MUTATION_RATE, CROSSOVER_RATE)

return height_sequence_3
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