
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AlphaResearch : ACCELERATING NEW ALGORITHM
DISCOVERY WITH LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models have made significant progress in complex but easy-to-
verify problems, yet they still struggle with discovering the unknown. In this
paper, we present AlphaResearch, an autonomous research agent designed to dis-
cover new algorithms on open-ended problems by iteratively running the follow-
ing steps: (1) propose new ideas (2) program to verify (3) optimize the research
proposals. To synergize the feasibility and innovation of the discovery process,
we construct a new reward environment by combining the execution-based verifi-
able reward and reward from simulated real-world peer review environment. We
construct AlphaResearchComp, a new evaluation benchmark that includes an
eight open-ended algorithmic problems competition, with each problem carefully
curated and verified through executable pipelines, objective metrics, and repro-
ducibility checks. AlphaResearch gets a 2/8 win rate in head-to-head comparison
with human researchers. Notably, the algorithm discovered by AlphaResearch on
the “packing circles” problem achieves the best-of-known performance, surpass-
ing the results of human researchers and strong baselines from recent work (e.g.,
AlphaEvolve). Additionally, we conduct a comprehensive analysis of the bene-
fits and remaining challenges of autonomous research agent, providing valuable
insights for future research.

1 INTRODUCTION

Recent progress has shown that frontier LLMs like GPT-5 (OpenAI, 2025) and Gemini 2.5 (Co-
manici et al., 2025) could achieve expert-level performance in complex tasks such as mathemat-
ics (Trinh et al., 2024; Lin et al., 2025) and programming (Jimenez et al., 2024; Jain et al., 2025).
While LLMs excel at processing and reasoning on problems that are within the boundary of ex-
isting human knowledge (Wang et al., 2024b; Phan et al., 2025), their capacity for independent
discovery that pushes the boundaries of human knowledge still remains a question of paramount
importance (Novikov et al., 2025). Can these models create advanced knowledge or algorithms that
surpass human researchers?

Previous studies demonstrate that LLMs can generate novel ideas at a human expert level (Si et al.,
2024; Wang et al., 2024a). However, the outcome evaluation of LLM-generated research ideas still
struggles with biased verification methods (Ye et al., 2024) that constrain the exploration of out-of-
boundary machine knowledge, such as LLM-as-a-judge (Lu et al., 2024), where misaligned LLMs
are used to evaluate fresh ideas and inevitably favor solutions within existing knowledge boundaries.
Furthermore, the ideation–execution gap (Si et al., 2025) between generating and executing new
ideas also hinders models from producing advanced research outcomes. AlphaEvolve (Novikov
et al., 2025) introduces an evolutionary coding agent that could tackle open scientific problems
with program-based verification. However, the absence of real-world research environment rewards
in coding-only agents (Tian et al., 2024) renders the discovery of out-of-boundary knowledge and
algorithms challenging for current autonomous research agents.

In this paper, we introduce AlphaResearch, an autonomous research agent designed to discover new
advanced algorithms by ensembling LLMs with a suite of research skills, including idea generation,
code implementation, and iterative optimization. To combine the feasibility and innovation of the
algorithm discovery process, we construct a dual environment, where novel algorithms are forged by
the simulated real-world peer-reviewed environment and execution-based verification (Tian et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

AlphaResearch

Reward Model

Collect real-world research papers
and train a reward model.

step 1

Input: research idea

Output: idea score

Extract ideas or
proposals from
real-world research
papers and their review
scores.

Train language models
with the research idea
and review score.

Collect peer-reviewed
papers from online
platforms.

Peer-reviewed Papers

step 2

Research ideas
(Proposals)

Human reviews

Launch AlphaReseach with original
ideas and programs

Reward Model

Initial idea
(Proposal)

Score: \boxed{6.0}
(>=threshold,accept)

LLM Ensemble

Task: Propose new
ideas based on the
MetaData

Initial idea
(Proposals)

Initial
Program

Automatic
Evaluation

A proposal to describe
the research problem.

Evaluate proposal as
positive idea or negative
ones using reward
models.

Construct initial program
and automatic evaluation
(metadata) for the idea.

step 3 (Iteration 1~n)

LLM Ensemble

Task: Programming
based on the ideas

Iterate the autonomous research process

MetaData

Reward Model

Generate new idea based
on the MetaData
(proposals, program,
evaluation results) at
Round n-1

Evaluate proposal as
positive idea or negative
ones using reward
models.

Evaluate

MetaData at Round n

Update the program to
match the new idea. And
evaluate it with
execution.

Obtain new MetaData
and enter the next
iteration

Figure 1: The launch of AlphaResearch contains two steps. (1) Train reward models with real-
world peer-reviewed records. (2) Prepare initial research proposals, initial programs and evalution
program. AlphaResearch will refine the research proposals and programs autonomously.

2024). Specifically, we (1) train a reward model AlphaResearch-RM-7B with real-world peer-
reviewed records to simulate the real-world peer review environment, addressing the limitation of
prior coding-only approaches that lack real-world research feedback, and use it to score the fresh
ideas generated by LLMs. (2) construct an automatic program-based verifiable environment that
executes these ideas with an interpreter. This dual environment facilitates a rigorous algorithm
discovery process for autonomous research agents.

AlphaResearch discovers new algorithms by iteratively running the following steps: (i) propos-
ing new research ideas, (ii) programming based on strong ideas, and (iii) optimizing the propos-
als for better algorithms. The commencement of each iteration in AlphaResearch mandates an
LLM’s creation of a new idea informed by previous research findings. After obtaining a fresh
idea, AlphaResearch-RM will preserve the positive ideas as candidates and discard the negative
ones. Those positive ideas are then implemented into executable programs by coding agents ensem-
bled with LLMs. The program is subjected to rigorous code execution and automatic evaluation,
a process previously demonstrated to be highly effective in mitigating incorrect suggestions often
observed from LLMs (Tian et al., 2024). The synergy between an iterative real-world peer review en-
vironment and program-based verification empowers AlphaResearch to continuously explore novel
research ideas and verify them via program execution. Once the generated optimal program sur-
passes current human-best achievements, these validated novel ideas could form feasible algorithms,
thereby pushing the boundaries of human research forward.

To compare AlphaResearch with human researchers on novel algorithm discovery, we construct
AlphaResearchComp, a simulated discovery competition between research agents and human re-
searchers, by collecting 8 open-ended research problems and their best-of-human records (shown
in Appendix D). Our results demonstrate that AlphaResearch surpasses human researchers on two
problems but fails on the other six. The novel algorithms discovered by AlphaResearch not only
surpass best-of-human performance but also significantly outperform the state-of-the-art results
achieved by AlphaEvolve. Specifically, AlphaResearch optimizes the result of “Packing Circles
(n=32)” problem to 2.939, where the goal is to pack n disjoint circles inside a unit square so as to
maximize the sum of their radii, surpassing the results of best-of-human and previous SoTA results
achieved by AlphaEvolve (as shown in Appendix B). These entirely novel ideas and algorithms con-
stitute the most advanced solutions currently present in the human knowledge base, demonstrating
the feasibility of employing LLMs to advance the frontiers of human knowledge. The six failure
modes in AlphaResearchComp demonstrate the challenges for the autonomous algorithm discovery

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Algorithm 1 AlphaResearch
Require: initial idea i0, initial program p0, initial result r0, model A, evaluation program E(·), maximum
iteration rounds n,
1: τ0 ← (i0, p0, r0), rbest = 0 ▷ Initialization
2: for k = 1 to n do do
3: (it, pt, rt) ∼ P(·|τk−1) ▷ States Sampling
4: ik ∼ PA(·|it ⊕ pt ⊕ rt) ▷ New Idea Generation (Eq. 1)
5: ifRM(ik) < threshold then
6: continue ▷ Reward Model for New Idea
7: end if
8: pk ∼ PA(·|pt ⊕ ik) ▷ Program Generation (Eq. 2)
9: rk ← E(pk) ▷ Program-based Execution

10: if rk > rbest then
11: (ibest, pbest, rbest) = (ik, pk, rk)
12: end if
13: τk ← τk−1 ⊕ ik ⊕ pk ⊕ rk ▷ Trajectory Update (Eq. 3)
14: end for
15: return (ibest, pbest, rbest)

with research agents. We analyze the benefits and remaining challenges of autonomous research
agents for knowledge discovery, providing valuable insights for future work.

2 ALPHARESEARCH

2.1 OVERVIEW

AlphaResearch discovers out-of-boundary novel algorithms by continuously optimizing the re-
search outcome from the dual reward that synergizes rigorous program verification and a simu-
lated real-world peer review environment. As shown in Figure 1, given initial idea i0 and pro-
gram p0, AlphaResearch runs the program p0 with execution, producing r0, which represents the
initial overall rating. The triplet (i0, p0, r0) will be fed to AlphaResearch for subsequent process-
ing, including newer idea generation, code implementation, and program-based execution. When
reaching a point where execution output rn surpasses the previous rating, AlphaResearch will save
the triplet (ibest, pbest, rbest) as the best record. We repeat the process until rbest surpasses the
best-of-human score, or the maximum round is reached. The resulting trajectory is denoted as
τ = i0p0r0...in−1pn−1rn−1inpnrn, where n is the total rounds.

2.2 ACTIONS

New Idea Generation. For each step k, AlphaResearch start with generating a new idea ik based
on a sampled previous step (it, pt, rt) from previous trajectory τk−1 = i0p0r0...ik−1pk−1rk−1. This
process can be denoted as:

ik ∼ PA(·|it ⊕ pt ⊕ rt) (1)

where ⊕ means concatenation, t is the sampled step from trajectory τi−1. We use a reward model to
filter out high-quality ideas overall. If RM(in) outputs a negative score, we cease the subsequent
actions in this round.

Program-based Verification. After obtain the fresh idea, AlphaResearch generates new program
pk based on the previous implementation pt and new idea ik next:

pk ∼ PA(·|pt ⊕ ik) (2)

and yield the evaluation result rk by verifying pk with code executor rk ← E(pk). Then, we update
the trajectory τk with the newly generated idea ik, program pk and result rk:

τk ← τk−1 ⊕ ik ⊕ pk ⊕ rk (3)

We repeat the above interaction process until k reaches the maximum rounds n and get the best
result (ibest, pbest, rbest) as final output.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Dataset for reward model training.
We use the end of author-reviewer rebuttal
period as the latest knowledge date.

Split Train Test

Records ICLR ICLR
Range 2017∼2024 2025
Num 24,445 100
Start Date 2016-11 2024-10
End Date 2023-12 2024-12

Table 2: Evaluation results of RM. We use the
more recent date between the model release
date and the dataset cutoff as the latest date.

Reward Model Cutoff Acc
Random (theoretical) - 50.0%
Human Annotator - 65.0%

Deepseek-V3-0324 2025-03 39.0%
Qwen2.5-7B-Instruct 2024-09 37.0%
AlphaResearch-RM-7B 2024-09 72.0%

2.3 ENVIRONMENT

2.3.1 REWARD FROM REAL-WORLD RESEARCH RECORDS

Existing autonomous idea generation process suffers from a trade-off where highly novel research
ideas may lack feasibility (Guo et al., 2025; Si et al., 2025). To address this gap and ensure the
feasibility of idea candidates, we train a reward model with ideas from real-world peer-review infor-
mation to simulate the real-world peer-review environment.

Dataset for reward model. To train our reward model (RM) to identify good ideas, we collect
all ICLR peer review records from 2017 to 2024 as our training set. We sample a subset of ICLR
2025 records as a test set, where the dates of train and test are disjoint, which prevents knowledge
contamination between the train and test split. We also select Qwen2.5-7B-Instruct as our base
model, whose release date 2024-09 is earlier than the ICLR 2025 author-reviewer rebuttal period
2024-10. For each record in the training dataset, we extract the abstract part as RM input and wrap
the average peer-review overall ratings with \boxed{} as RM output. We fine-tune Qwen2.5-7B-
Instruct with the RM pairs, yielding the AlphaResearch-RM-7B model.

Can LLMs identify good ideas? To simplify the RM evaluation, we binarize the RM output score
according to the ICLR Reviewer Guide, where overall rating > 5.5 records are regarded as a posi-
tive score and ≤ 5.5 records are negative. We compute the binary classification accuracy and evalu-
ate three models (Deepseek-V3-0324, Qwen2.5-Coder-Instruct, and AlphaResearch-RM-7B) on the
AlphaResearch-RM test set. Table 2 presents the evaluation results that eliminate the knowledge
contamination, highlighting the following observations: (1) Both Deepseek-V3-0324 and Qwen2.5-
7B-Instruct have lower than 50% accuracy when identifying the good ideas from ICLR 2025 records.
(2) After fine-tuned with ideas from previous ICLR peer-review information, AlphaResearch-RM-
7B demonstrates 72% binary classification accuracy on unseen ICLR 2025 ideas, significantly out-
performing baseline models and human annotators. Based on these observations, we use the fine-
tuned AlphaResearch-RM-7B as the final RM to simulate a real-world peer-review environment and
filter out good ideas generated by AlphaResearch.

2.3.2 REWARD FROM PROGRAM-BASED EXECUTION

Inspired by AlphaEvolve (Novikov et al., 2025), we construct an automatic evaluation process with
a code executor where each new program pk generated by AlphaResearch will be captured and
evaluated. The evaluation program E(·) includes two modules: (i) Verification module that validates
whether pk conforms to the problem constraints. (ii) Measurement module that output the score rk
of program performance. The program output rk will be injected into the idea generation prompt
(if sampled), thereby participating in the optimization process for fresh ideas. These programs and
results are stored in a candidate pool, where the primary goal is to optimally resurface previously
explored ideas in future generations. The verifiable reward by code executor significantly simplifies
the action spaces of AlphaResearch, thereby enhancing the efficiency of the discovery process.

3 ALPHARESEARCHCOMP

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 3: Problem overview in AlphaResearchComp. More information are shown at Appendix D.

Problem Human Best Human Researcher

packing circles (n=26) 2.634 David Cantrell (2011)
packing circles (n=32) 2.936 Eckard Specht (2012)
minimizing max-min distance raio (d=2, n=16) 12.89 David Cantrell (2009)
third autocorrelation inequality 1.4581 Carlos Vinuesa (2009)
spherical code (n=30) 0.67365 Hardin & Sloane (1996, 2002)
autoconvolution peak minimization (upper bound) 0.755 Matolcsi–Vinuesa (2010)
littlewood polynomials (n=512) 32 Rudin–Shapiro (1959/1952)
MSTD (n=30) 1.04 Hegarty (2006/2007)

Problems collection. To evaluate AlphaResearch, we curate a set of 8 frontier program-based re-
search tasks spanning geometry, number theory, harmonic analysis, and combinatorial optimization.
These problems were selected based on the following principles:

• Well-defined objectives. Each task has a precise mathematical formulation with an objective
function that admits rigorous automatic evaluation.

• Known human-best baselines. For every problem, we provide the best-known human result from
the literature. These represent conjectured best-known values rather than proven optima, ensuring
ample room for further improvement.

The curated problems are either inherited from prior work (e.g., AlphaEvolve) or collected from on-
line repositories and domain experts. Each problem’s baseline is supported by verifiable resources in
the corresponding field. This design enables AlphaResearch to demonstrate both the reproducibil-
ity of established mathematical results and the potential for discovery beyond current human-best
achievements. Detailed definitions, baseline values, and references for each problem are provided
in the Appendix D.

Initialization strategy. After obtaining the research problems of AlphaResearchComp, we con-
struct diverse initial states for each problem with the following strategies: (1) For the “Packing
Circles” (n=26) and “Packing Circles” (n=32) problems, we initialize them with null programs
(r0 = 0) to simulate researches starting from scratch. (2) For the “Littlewood Polynomials” and
“MSTD (n=30)” problems, we directly adopt the best-known solutions (r0 = rhuman) from human
researchers to emulate improvements upon established methods. (3) For the remaining problems,
we employ a moderate initialization strategy (0 < r0 < rhuman) to ensure sufficient room for the
research agent to explore. This initialization strategy simulates a variety of real-world scenarios for
the research agent, thereby facilitating a thorough evaluation process.

Metrics. For benchmarks like code generation with good verification techniques (e.g., unit tests),
pass@k (Chen et al., 2021) is a metric denoting that at least one out of k i.i.d. task trials is successful,
which captures the ability of LLMs to solve easy-to-verified problems. For open-ended real-world
algorithm discovery tasks, we propose a new metric - excel@best (excel at best), defined as the
percentage excess on baseline (best of human level) results:

excel@best = E
Problems

[
|rbest − rhuman| · Id

rhuman

]
(4)

where rhuman indicates the results of human’s best level. Id indicates the optimization direction
where Id = 1 represents that higher score is better and Id = −1 represents lower.

4 EXPERIMENTS

4.1 SETUP

We select o4-mini, a strong but cost-efficient LLM as our research agent and run Al-
phaResearch on each problem to get the best algorithm. We perform supervised finetuning

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 4: Results on AlphaResearchComp. ↑ inidicates that higher score is better and ↓ for lower.

Problem Human AlphaResearch Excel@bestinit best

packing circles (n=26) ↑ 2.634 0 2.636 0.32%
packing circles (n=32) ↑ 2.936 0 2.939 0.10%
minimizing max-min distance ratio ↓ 12.89 15.55 12.92 -0.23%
third autocorrelation inequality ↓ 1.458 35.746 1.546 -6.03%
spherical code (d=3, n=30) ↑ 0.6736 0.5130 0.6735 -0.01%
autoconvolution peak minimization ↓ 0.755 1.512 0.756 -0.13%
littlewood polynomials (n=512) ↓ 32 32 32 0
MSTD (n=30) ↑ 1.04 1.04 1.04 0

0 1000 2000 3000 4000
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Ex
ec

ut
io

n-
ba

se
d

Re
wa

rd

Packing Circles in Unit Square (n=26)

rbest

rk

0 200 400 600 800 1000 1200 1400
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ex
ec

ut
io

n-
ba

se
d

Re
wa

rd

Third Autocorrelation Inequality

rbest

rk

Figure 2: Execution-based reward of AlphaResearch on packing circles (n=26) problem (left) and
third autocorrelation inequality problem (right).

on Qwen-2.5-7B-Instruct (Yang et al., 2025) with the collected ICLR records, yielding
AlphaResearch-RM-7B. We do not compute loss on paper information, only on the average rat-
ing scores within \boxed{}. For fine-tuning hyperparameters, we train our model with a learning
rate of 1e-5 warmed up linearly for 100 steps. We train all the models in bfloat16 precision with
Pytorch Fully Shard Data Parallel (FSDP) and set a global batch size to 128 for 2 epochs. All other
settings not mentioned in this paper follow the default values of Huggingface Trainer 1.

4.2 RESULTS

LLMs can discover new algorithms themselves. Table 4 presents the results of AlphaResearch-
Comp on 8 algorithms discovery problems. AlphaResearch achieved a 2/8 win rate (excel@best >
0) against human researchers, with one notable success: the algorithm discovered by AlphaResearch
for “Packing Circles” problem reaches the best-of-known performance (2.636 for n=26, 2.939 for
n=32), outperforming human researchers (2.634 for n=26, 2.936 for n=32) and AlphaEvolve (2.635
for n=26, 2.937 for n=32), where case (n = 32) is shown in Figure 7.

LLMs can refine their research ideas autonomously. AlphaResearch discovers advanced algo-
rithms by iteratively proposing and verifying new research ideas. As shown in Table 2, 6/8 problems
demonstrate consistent improvement throughout the discovery process. Figure 2 presents two ex-
amples of the reward trend in AlphaResearch, where the execution-based reward initially grows
rapidly, then slowly plateaus for optimal performance seeking. This improvement trend emphasizes
the autonomous discovery ability of research agents.

The discovery of superhuman algorithms remains challenging for LLMs. As illustrated in
Table 2, despite exhibiting continuous reward growth, AlphaResearch’s performance still under-

1https://huggingface.co/docs/transformers/main_classes/trainer

6

https://huggingface.co/docs/transformers/main_classes/trainer

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

packing circ
les (n

=26)

packing circ
les (n

=32)

minimizin
g max-min dista

nce raio

third autocorrelation inequality

autoconvolution peak minimization

little
wood polynomials (n

=512)

MSTD (n=30)

spherica
l co

de
0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

31.7% 31.7%
41.8% 42.3% 37.3% 35.0% 36.7% 34.9%

28.9% 28.9%

52.2%
44.4% 51.7% 53.4% 51.1% 58.7%

39.4% 39.4%

6.0%
13.3% 11.0% 11.6% 12.2% 6.4%

Reward Overview during Discovery Process

Lower than RM threshold
Execution successful
Execution failed

Figure 4: Reward overview during the discovery process. Each action in AlphaResearch will obtain
3 kinds of reward: (1) idea scrapping due to a lower RM score than the threshold (2) idea execution
successes (3) idea execution fails.

performs human researchers in 6 out of 8 problems. We initialize AlphaResearch with the best-
known solution from human researchers on “Littlewood polynomials“ and “MSTD(n=30)“ prob-
lems, where AlphaResearch didn’t show an increase in execution-based rewards. This indicates that
current LLMs still struggle to consistently find better algorithms than human researchers.

4.3 ABLATIONS AND ANALYSIS

3 4 5 6 7 8
Score by AlphaResearch-RM-7B

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
eq

ue
nc

y

Execution only
AlphaResearch

Figure 3: The idea comparison between the
execution-only research agent and AlphaRe-
search, where AlphaResearch-RM-7B is used.

Execution-only agent against AlphaResearch.
To compare AlphaResearch with execution-only
agents, we utilize AlphaResearch-RM-7B to eval-
uate the novelty of ideas generated by the
execution-only agent and ideas produced by Al-
phaResearch. As illustrated in Figure 3, the ideas
generated by AlphaResearch generally achieve
higher scores than execution-only research agents.
This illustrates that AlphaResearch tends to gener-
ate better ideas to get higher external rewards, thus
facilitating a more effective research optimization
process.

Analysis of the discovery process. We analyze
the reward distribution in AlphaResearch discov-
ery process. As shown in Figure 4, approximately
30%∼40% of newly proposed ideas fall below the
RM threshold and are thus discarded. The remain-
ing ideas are executed, with the success rate of ex-
ecution largely depending on the inherent charac-
teristics of the problems. For example, the execu-
tion success rate on “Packing Circles” problem is 28.9%, whereas it reaches 51.7% on the “Third
Autocorrelation Inequality” problem. Figure 2 illustrates the execution-based rewards for these
two examples in AlphaResearch. Despite the substantial variations in execution success rates, the
execution-based rewards in both cases exhibit a consistent increasing trend. These findings demon-
strate the interactions between LLM-based autonomous research agents and real-world environ-
ments.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Feedback from AlphaResearch Environment

w/ AlphaResearch-RM-7B

w/o AlphaResearch-RM-7B

151
(37.8%)

194
(48.5%)

151
(37.8%)

98
(24.5%)

206
(51.5%) Execution successful

Lower than RM threshold
Execution failed

Figure 5: The impact of real-world peer review environment on execution results. AlphaResearch-
RM-7B filters 151 bad ideas, where 108 ideas fail to execute and 43 are successful.

def pack_circles(n = 26):
 """
 Construct a specific arrangement of 26 circles in a unit square
 that attempts to maximize the sum of their radii.
 """
 …
 return sum_radii, circles

def compute_max_radii(centers):
 """
 Compute the maximum possible radii for each circle position
 such that they don't overlap and stay within the unit square."""...

tmp/packing_circles/initial_program.py

Initial Program

def verify_circles(circles):
 """Checks that the circles are disjoint and lie inside a unit square. """
...

def evaluate(program_path: str = "results/initial_program.py"):
 """
 Evaluate the pack_circles function from the given program file.
 Returns the total radius sum if valid, otherwise raises an exception.
 """
…
 return {"pack_result_26": total_r_26}

tmp/packing_circles/evaluator.py

Verification Program

Initial Research Idea

The program presents a computational approach to the circle packing problem within a unit
square, aiming to maximize the sum of radii for a given number of circles. The pack_circles
function initiates a structured placement of 26 circles: one at the center, eight in an inner ring,
and sixteen in an outer ring. While this initial arrangement is a predefined pattern, it serves as
a foundation for further optimization. The core of the algorithm lies in the compute_max_radii
function, which iteratively determines the largest possible radius for each circle. This is
achieved by first constraining radii based on proximity to the unit square's boundaries and
then adjusting them to prevent overlap between any pair of circles. Overlapping circles have
their radii proportionally scaled down to ensure non-intersection, effectively pushing them to
a just-touching state. The final output provides the optimized centers, radii, and the total sum
of radii for the packed configuration, demonstrating a method for generating dense circle
arrangements within a confined space.

{"pack_result_26": 0.864}

Execution Results

 Instruction
You are a research advisor tasked with improving research proposals.
Your goal is to generate a new research proposal that builds upon the current research idea
while addressing its limitations and incorporating insights from successful approaches.
 MetaData
Current Research Idea
The program presents a computational approach to the circle packing problem within a unit
square, aiming to maximize the sum of radii for a given number of circles.
Current Program
```python
def pack_circles(n = 26):
    """
    Construct a specific arrangement of 26 circles in a unit square
    that attempts to maximize the sum of their radii
    """…
```
Current Metrics
packing_result_26=0.864

New Idea Generation

 Instruction
You are an expert software developer tasked with iteratively improving a codebase.
Your job is to analyze the current program and suggest improvements based on feedback
from previous attempts.Focus on making targeted changes that will increase the program's
performance metrics.
 MetaData
Current Research Idea
The program presents a computational approach to the circle packing problem within a unit
square, aiming to maximize the sum of radii for a given number of circles.
Current Program
```python
def pack_circles(n = 26):
    """
    Construct a specific arrangement of 26 circles in a unit square
    that attempts to maximize the sum of their radii
    """… ```
### Current Metrics
packing_result_26=0.864
### New Research Idea
We propose a novel computational framework to improve the dense packing of n 
variable‐radius circles within a unit square, targeting maximization of the total sum of radii. 
Our approach addresses key limitations in existing methods—namely, rigid initialization 
patterns, local‐only radius adjustment, and O(n²) pairwise scaling…
     Format
You MUST use the exact SEARCH/REPLACE diff format shown below to indicate changes:
<<<<<<< SEARCH
# Original code to find and replace (must match exactly)
=======
# New replacement code
>>>>>>> REPLACE

Program Generation

Figure 6: We show an example of a formatted task of AlphaResearch.

The impact of real-world peer-review environment. To assess the effectiveness of reward from
a simulated real-world peer-view environment, we ablate AlphaResearch-RM-7B at the first 400
iterations on “Packing Circles” problem. Figure 5 presents the execution results of w/ and w/o
AlphaReasearch-RM-7B during the discovery process. Compared to the baseline without RM,
AlphaResearch-RM-7B successfully filtered 151 ideas below the threshold. This process yielded
108 correct rejections of execution failures while making 43 erroneous rejections of viable ideas.
AlphaResearch attained an accuracy of 71.5% (108/151), a result that aligns closely with its per-
formance on the AlphaResearch-RM test set, as shown in Table 2 This outcome effectively demon-
strates the model’s generalization capabilities and the efficacy of incorporating feedback from a
simulated real-world peer-review environment.

4.4 CASE STUDY

We select the successful example from AlphaResearch to better understand the discovery process.
We’ll consider the problem “Packing Circles” where the goal is to pack n disjoint circles inside a
unit square so as to maximize the sum of their radii, shown in Figure 6. We first initialize AlphaRe-
search with an original research proposal and a related program that returns a list of circles (x, y, r)
as output, as shown in Appendix D.4. The verification program first employs verify_circles

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

function to check if the outputs of the initial program meet the problem constraints (e.g., all circles
are inside a unit square) and evaluate function to output the sum of their radii. The metadata,
including: (1) research ideas, (2) programs, (3) execution results, are subsequently preserved as
candidates which represent the end of one step. At the next step, AlphaResearch will sample from
the candidate pool and generate a new idea to improve the research proposals from the sampled
metadata. After generating the new research ideas, AlphaResearch will further generate a patch to
modify the existing program if the idea obtains a positive score from AlphaResearch-RM. The new
program is then evaluated by the same verification program, thereby generating new metadata. We
select the best program and idea as the final solution of AlphaResearch in this iterative process.

5 RELATED WORK

LLMs for New Ideas. Several recent works explored methods to improve research idea genera-
tion, such as iterative novelty refinement (Wang et al., 2024a; Baek et al., 2024). These works focus
on improving the research idea over vanilla prompting but critically miss an effective verification
method. To promote more reliable AI-generated research ideas, many studies have proposed solu-
tions from different perspectives, such as comparisons with any human expert (Si et al., 2024), using
LLMs for executing experiments by generating code with human-curated research problems (Huang
et al., 2024; Tian et al., 2024), and executing LLM-generated research ideas with LLM-generated
programs (Li et al., 2024; Lu et al., 2024; Aygün et al., 2025). These works either use automatic
program evaluation or a misaligned LLM evaluator method, which presents a challenge for their
scalability to real-world advanced algorithm discovery. Our AlphaResearch presents a more fea-
sible direction by combining program execution with RM training from real-world peer-reviewed
research records.

LLMs for Code Generation. In autonomous research agents, code generation serves as a funda-
mental step. Previous models (Guo et al., 2024; Yu et al., 2023; Hui et al., 2024) and benchmarks
(Chen et al., 2021; Yu et al., 2025) for code generation are in a longstanding pursuit of synthesizing
code from natural language descriptions. SWE-Bench (Jimenez et al., 2024) introduces the problems
in real-world software development. Many studies on SWE-Bench have greatly contributed to the
emergence of coding agents like SWE-Agent (Yang et al., 2024) and OpenHands (Wang et al., 2025).
These agent frameworks greatly facilitate the training of agentic LLMs like Kimi-K2 (Team et al.,
2025) and GLM-4.5 (Zeng et al., 2025). The surge of these models on SWE-Bench underscores a
critical need to reassess the future directions of coding agent research. Our AlphaResearchComp
benchmark shows that testing LLMs on open-ended research for algorithm discovery is a promising
direction to adapt language models to real-world tasks.

6 DISCUSSION

Limitations and future directions. Although AlphaResearch successfully discovers novel algo-
rithms, we hope to expand its coverage to more realistic applications like accelerating tensor compu-
tations. Second, our experiments aim to establish the simplest and most straightforward approaches
for algorithm discovery. Future research should pay more attention to augmenting the research
agents with useful external tools and the application to more complex problems. Lastly, the training
of RM in AlphaResearch is based on small models (e.g., Qwen-2.5-7B-Instruct) and 24,445 ICLR
peer review records. Enhancing the reward model parameter and dataset size are two important
directions which is left for future research.

Conclusion. We present AlphaResearch, an autonomous research agent that synergistically com-
bines new idea generation with program-based verification for novel algorithm discovery. Our ap-
proach demonstrates the potential of employing LLM to discover unexplored research areas, en-
abling language models to effectively tackle complex open-ended tasks. We construct AlphaRe-
searchComp, including 8 open-ended algorithmic problems, where AlphaResearch outperforms hu-
man researchers in 2/8 algorithmic problems but lags behind in the remaining 6 problems. Our
systematic analysis of the benefits and remaining challenges of autonomous algorithm discovery
provides valuable insights for future research, contributing to the development of more advanced
and capable research agents.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Eser Aygün, Anastasiya Belyaeva, Gheorghe Comanici, Marc Coram, Hao Cui, Jake Garrison, Re-
nee Johnston Anton Kast, Cory Y McLean, Peter Norgaard, Zahra Shamsi, et al. An ai system to
help scientists write expert-level empirical software. arXiv preprint arXiv:2509.06503, 2025.

Jinheon Baek, Sujay Kumar Jauhar, Silviu Cucerzan, and Sung Ju Hwang. ResearchAgent: Iter-
ative Research Idea Generation over Scientific Literature with Large Language Models. ArXiv,
abs/2404.07738, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–
the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Sikun Guo, Amir Hassan Shariatmadari, Guangzhi Xiong, Albert Huang, Myles Kim, Corey M
Williams, Stefan Bekiranov, and Aidong Zhang. Ideabench: Benchmarking large language mod-
els for research idea generation. In Proceedings of the 31st ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining V. 2, pp. 5888–5899, 2025.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. MLAgentBench: Evaluating Language
Agents on Machine Learning Experimentation. In ICML, 2024.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-
mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamina-
tion free evaluation of large language models for code. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
chfJJYC3iL.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=VTF8yNQM66.

Ruochen Li, Teerth Patel, Qingyun Wang, and Xinya Du. MLR-Copilot: Autonomous Machine
Learning Research based on Large Language Models Agents. ArXiv, abs/2408.14033, 2024.

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia LI, Mengzhou
Xia, Danqi Chen, Sanjeev Arora, and Chi Jin. Goedel-prover: A frontier model for open-source
automated theorem proving. In Second Conference on Language Modeling, 2025. URL https:
//openreview.net/forum?id=x2y9i2HDjD.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scien-
tist: Towards fully automated open-ended scientific discovery. arXiv preprint arXiv:2408.06292,
2024.

Alexander Novikov, Ngân Vũ, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt
Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas Mehrabian,
et al. Alphaevolve: A coding agent for scientific and algorithmic discovery. arXiv preprint
arXiv:2506.13131, 2025.

OpenAI. Gpt-5. 2025. URL https://openai.com/index/introducing-gpt-5/.

10

https://openreview.net/forum?id=chfJJYC3iL
https://openreview.net/forum?id=chfJJYC3iL
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=x2y9i2HDjD
https://openreview.net/forum?id=x2y9i2HDjD
https://openai.com/index/introducing-gpt-5/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity’s last exam. arXiv preprint
arXiv:2501.14249, 2025. URL https://arxiv.org/abs/2501.14249.

Chenglei Si, Diyi Yang, and Tatsunori Hashimoto. Can llms generate novel research ideas. 2024.

Chenglei Si, Tatsunori Hashimoto, and Diyi Yang. The ideation-execution gap: Execution outcomes
of llm-generated versus human research ideas. arXiv preprint arXiv:2506.20803, 2025.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv
preprint arXiv:2507.20534, 2025.

Minyang Tian, Luyu Gao, Shizhuo Dylan Zhang, Xinan Chen, Cunwei Fan, Xuefei Guo, Roland
Haas, Pan Ji, Kittithat Krongchon, Yao Li, Shengyan Liu, Di Luo, Yutao Ma, Hao Tong, Kha
Trinh, Chenyu Tian, Zihan Wang, Bohao Wu, Yanyu Xiong, Shengzhu Yin, Min Zhu, Kil-
ian Lieret, Yanxin Lu, Genglin Liu, Yufeng Du, Tianhua Tao, Ofir Press, Jamie Callan, E. A.
Huerta, and Hao Peng. SciCode: A Research Coding Benchmark Curated by Scientists. ArXiv,
abs/2407.13168, 2024.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476–482, 2024.

Qingyun Wang, Doug Downey, Heng Ji, and Tom Hope. Scimon: Scientific inspiration machines
optimized for novelty. In Proceedings of the 62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 279–299, 2024a.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for AI soft-
ware developers as generalist agents. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=OJd3ayDDoF.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weim-
ing Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang,
Rongqi Fan, Xiang Yue, and Wenhu Chen. MMLU-pro: A more robust and challenging multi-
task language understanding benchmark. In The Thirty-eight Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2024b. URL https://openreview.
net/forum?id=y10DM6R2r3.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
Advances in Neural Information Processing Systems, 37:50528–50652, 2024.

Jiayi Ye, Yanbo Wang, Yue Huang, Dongping Chen, Qihui Zhang, Nuno Moniz, Tian Gao, Werner
Geyer, Chao Huang, Pin-Yu Chen, et al. Justice or prejudice? quantifying biases in llm-as-a-
judge. arXiv preprint arXiv:2410.02736, 2024.

Zhaojian Yu, Xin Zhang, Ning Shang, Yangyu Huang, Can Xu, Yishujie Zhao, Wenxiang Hu, and
Qiufeng Yin. Wavecoder: Widespread and versatile enhancement for code large language models
by instruction tuning. arXiv preprint arXiv:2312.14187, 2023.

Zhaojian Yu, Yilun Zhao, Arman Cohan, and Xiao-Ping Zhang. HumanEval pro and MBPP pro:
Evaluating large language models on self-invoking code generation task. In Wanxiang Che, Joyce
Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Findings of the Associa-
tion for Computational Linguistics: ACL 2025, pp. 13253–13279, Vienna, Austria, July 2025.
Association for Computational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.
findings-acl.686. URL https://aclanthology.org/2025.findings-acl.686/.

11

https://arxiv.org/abs/2501.14249
https://openreview.net/forum?id=OJd3ayDDoF
https://openreview.net/forum?id=y10DM6R2r3
https://openreview.net/forum?id=y10DM6R2r3
https://aclanthology.org/2025.findings-acl.686/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie, Cunxiang Wang,
Da Yin, Hao Zeng, Jiajie Zhang, et al. Glm-4.5: Agentic, reasoning, and coding (arc) foundation
models. arXiv preprint arXiv:2508.06471, 2025.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX CONTENTS

1 Introduction 1

2 AlphaResearch 3

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3.1 Reward from Real-world Research Records . . . . . . . . . . . . . . . . . 4

2.3.2 Reward from Program-based Execution . . . . . . . . . . . . . . . . . . . 4

3 AlphaResearchComp 4

4 Experiments 5

4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.3 Ablations and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Related Work 9

6 Discussion 9

A The Use of Large Language Models 14

B Examples 14

C Prompts 15

D Curated Problems and Human-Best Values 17

D.1 Spherical Code (S2, n = 30). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

D.2 Littlewood Polynomials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

D.3 Sum vs. Difference Sets (MSTD). . . . . . . . . . . . . . . . . . . . . . . . . . . 20

D.4 Packing Circle in a Square (variable radii). . . . . . . . . . . . . . . . . . . . . . . 21

D.5 Minimizing Max/Min Distance Ratio (d = 2, n = 16). . . . . . . . . . . . . . . . 26

D.6 Autoconvolution Peak Minimization (L∞). . . . . . . . . . . . . . . . . . . . . . 28

D.7 Third Autocorrelation Inequality. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

D.8 Third-Order Autocorrelation Inequality (C3 Upper Bound) . . . . . . . . . . . . . 31

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, we utilized large language models (LLMs) for grammar
checking and writing suggestions to enhance the readability and clarity of the content.

B EXAMPLES

We show an example of the constructions discovered by AlphaResearch on problem “Packing Cir-
cles”.

AlphaEvolve
1 packing_circles_alphaevolve = np.array([[0.09076163, 0.40381803, 0.090761620923837],

[0.07310993, 0.92689178, 0.07310821268917801], [0.08745017, 0.22570576,
0.087381421261857], [0.24855246, 0.30880277, 0.093428060657193], [0.4079865, 0.06300614,
0.063006133699386], [0.47646318, 0.90136179, 0.09863820013617901], [0.89604966,
0.10309934, 0.10309932969006601], [0.9066386, 0.68096117, 0.09336139066386], [0.08962002,
0.76509474, 0.0895289910471], [0.06973669, 0.06965159, 0.06965158303484101],

[0.40979823, 0.21756451, 0.09156283084371601], [0.25742466, 0.88393887,
0.11606111839388701], [0.09064689, 0.58506214, 0.090482500951749], [0.90294698,
0.30231577, 0.09623644037635501], [0.57265603, 0.10585396, 0.105853949414604],
[0.74007588, 0.40129314, 0.09435083056491601], [0.57539962, 0.71183255,
0.115160168483982], [0.7367635, 0.21592191, 0.09104997089500201], [0.41096972,
0.40263617, 0.093512520648747], [0.88664452, 0.88667032, 0.113317128668286], [0.57582722,
0.49961748, 0.09705531029446801], [0.24962585, 0.49417195, 0.09194421080557799],

[0.90546338, 0.49309632, 0.094507120549287], [0.67381348, 0.90149423,
0.09850576014942301], [0.24310147, 0.1077195, 0.10771948922805], [0.40815297, 0.5886157,
0.09248833075116601], [0.24737889, 0.6771266, 0.090994980900501], [0.75801377, 0.7532924,
0.07192969280703], [0.73526642, 0.06243992, 0.062439303756069], [0.57415412, 0.30715219,
0.095403150459684], [0.39239379, 0.75259664, 0.07223814277618501], [0.7439361,

0.58879735, 0.093166630683336]])

AlphaResearch
1 packing_circles_alpharesearch = np.array([[(0.1115677319034151, 0.11156773191787371,

0.11156438489140026), (0.09380224787136374, 0.3161654253705352, 0.09379943380606216),
(0.09485964915877172, 0.5048217088596118, 0.09485680337610973), (0.09657322554702913,
0.6962443020287629, 0.09657032835808858), (0.10365512530384222, 0.8963448746980195,
0.10365201565567386), (0.3334956594919712, 0.09664441783072292, 0.0966415184920332),
(0.26448615440016093, 0.9376113341122044, 0.06238679422590162), (0.5287192731314015,
0.09859146596680078, 0.09858850822808951), (0.591325020569507, 0.9366833118077788,
0.0633147886877468), (0.7427106948954978, 0.11611889563206494, 0.11611541209023483),
(0.7566639864477509, 0.8920585771994192, 0.1079381845606288), (0.9269317750270191,
0.07306822497789416, 0.07306603293080358), (0.9105741716090636, 0.23473376300222965,
0.08942314561430993), (0.9094700615258342, 0.41468336419923396, 0.09052722258939731),
(0.9124275486288124, 0.7738960294683863, 0.08756982419268892), (0.9302276007184027,
0.9302276007259072, 0.06977030612132157), (0.5931627035790205, 0.4107363306659128,
0.09216300786888813), (0.5896628759126524, 0.5965222415947758, 0.09365298106148348),
(0.26303074890883915, 0.783747668079202, 0.09148238826692158), (0.42710033854875884,
0.28662965969327264, 0.1151473780101257), (0.7511102582575875, 0.5051558281448295,
0.09185177348783963), (0.4273023330525072, 0.8937703360976411, 0.10622647700018645),
(0.24372345356089029, 0.24143034678815986, 0.07371479291303436), (0.4260882762526937,
0.6918664604322906, 0.09567746779211372), (0.2572363869779693, 0.4085253312744954,
0.09392364829884896), (0.9094294608754079, 0.5957810763279916, 0.0905678220228201),
(0.42560864125756626, 0.49898110459434486, 0.09720528992590773), (0.7533817110763772,
0.32263902019589896, 0.09067643144615074), (0.5903729314333418, 0.7817733747765757,
0.09159665425215473), (0.7515568081174837, 0.6905957415401818, 0.09358581053778628),
(0.2605636694821685, 0.5973506902903994, 0.09492800518715086), (0.6095540558280068,
0.24805951545091487, 0.07133567304015336)]])

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
A collection of 32 disjoint circles: Radii: 2.937944526205518

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
A collection of 32 disjoint circles: Radii: 2.9395203049320564

Figure 7: New construction of AlphaResearch (right) improving the best known AlphaEvolve (right)
bounds on packing circles to maximize their sum of radii. Left: 32 circles in a unit square with sum
of radii ≥ 2.9379. Right: 32 circles in a unit square with sum of radii ≥ 2.9395

C PROMPTS

Prompt for New Program Generation

You are an expert software developer tasked with iteratively improving a codebase. Your job
is to analyze the current program and suggest improvements based on the current proposal
and feedback from previous round. Focus on making targeted changes that will increase the
program’s performance metrics.
# Previous Proposal:
{previous proposal}
# Previous Program:
{previous program}
# Previous Performance Metrics:
{previous result}
# Current Proposal
{proposal}
# Task
Suggest improvements to the program that will lead to better performance on the specified
metrics.
You MUST use the exact SEARCH/REPLACE diff format shown below to indicate
changes:

1 <<<<<<< SEARCH
2

3 # Original code to find and replace (must match exactly)
4

5 =======
6

7 # New replacement code
8

9 <<<<<<< REPLACE

Example of valid diff format:

1 <<<<<<< SEARCH
2 for i in range(m):
3 for j in range(p):

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

4 for k in range(n):
5 C[i, j] += A[i, k] * B[k, j]
6

7 =======
8

9 # Reorder loops for better memory access pattern
10

11 for i in range(m):
12 for k in range(n):
13 for j in range(p):
14 C[i, j] += A[i, k] * B[k, j]
15

16 >>>>>>> REPLACE

You can suggest multiple changes. Each SEARCH section must exactly match code in the
current program.
Be thoughtful about your changes and explain your reasoning thoroughly.
IMPORTANT: Do not rewrite the entire program - focus on targeted improvements.

Prompt for New Idea Generation

You are a research advisor tasked with evolving and improving research proposals. Your goal
is to generate a new research proposal that builds upon the current proposal while addressing
its limitations and incorporating insights from successful approaches.
Based on the following information, generate an improved research proposal:
Focus on:
1. Identifying weaknesses in the current approach based on performance metrics
2. Proposing novel improvements that could enhance performance
3. Learning from successful inspirations while maintaining originality
4. Ensuring the new proposal is implementable
- Current Proposal:
{proposal}
- Current Program:
{program}
- Current Metrics:
{results}
Please generate a new research proposal that:
1. Addresses the limitations shown in the current metrics
2. Incorporates insights from successful approaches
3. Proposes specific technical improvements
4. Maintains clarity and technical rigor
Return the proposal as a clear, concise research abstract.

Prompt for AlphaResearch-RM-7B

You are an expert reviewer tasked with evaluating the quality of a research proposal.
Your goal is to assign a score between 1 and 10 based on the proposal’s clarity, novelty,
technical rigor, and potential impact. Here are the criteria:
1. Read the following proposal carefully and provide a score from 1 to 10.
2. Score 6 means slightly higher than the borderline, 5 is slightly lower than the borderline.
Write the score in the \boxed{}.
{proposal}

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D CURATED PROBLEMS AND HUMAN-BEST VALUES

We summarize the ten problems used in the ALPHARESEARCH benchmark. For each item we state
the objective, the current human-best value at the benchmark’s default parameters, and whether this
value is proved optimal or only best-known.

D.1 SPHERICAL CODE (S2, n = 30).

Problem Description: Place n = 30 points on the unit sphere in R3 to maximize the minimal
pairwise angle θmin.

Human Best: θmin ≈ 0.673651 radians (≈ 38.5971◦).

Initial Proposal

Problem definition. Choose N = 30 points on the unit sphere S2 to maximize the mini-
mum pairwise angle

θmin = min
i<j

arccos
(
⟨pi, pj⟩

)
.

Constraints.
• Points are unit vectors (rows normalized).
• Metric is θmin in radians.

Optimization goal. Maximize θmin. The evaluator returns {score, θmin, N, dimension},
with score = θmin.
Best-known reference (for N = 30 on S2):

cos(θ∗) ≈ 0.7815518750949873 ⇒ θ∗ ≈ 0.6736467551690225 rad.

Reference table: Henry Cohn’s spherical codes data (https://cohn.mit.edu/
spherical-codes).

Best-known results (human).
• On S2 (3D), small N optima coincide with symmetric polyhedra (e.g., tetrahedron,

octahedron, icosahedron).
• For larger N , best codes come from numerical optimization; exact optimality is

only known in limited cases.

Algorithmic goal. Construct codes with larger θmin. The baseline seeds with symmetric
configurations and uses farthest-point max–min. Stronger methods include:

• Energy minimization,
• Projected gradient / coordinate descent,
• Stochastic max–min refinement.

Initial Program:

import numpy as np

def _normalize_rows(P):
nrm = np.linalg.norm(P, axis=1, keepdims=True)
nrm = np.maximum(nrm, 1e-12)
return P / nrm

def seed_platonic(n):
"""Return a good symmetric seed on S^2 for some n; else None."""
if n == 2: # antipodal

return np.array([[0,0,1],[0,0,-1]], dtype=float)
if n == 3: # equilateral on equator

ang = 2*np.pi/3
return np.array([[1,0,0],[np.cos(ang),np.sin(ang),0],[np.cos(2*ang),np.sin(2*ang),0]],

dtype=float)
if n == 4: # tetrahedron

return _normalize_rows(np.array([[1,1,1],[1,-1,-1],[-1,1,-1],[-1,-1,1]], dtype=float))

17

https://cohn.mit.edu/spherical-codes
https://cohn.mit.edu/spherical-codes


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

if n == 6: # octahedron
return np.array([[1,0,0],[-1,0,0],[0,1,0],[0,-1,0],[0,0,1],[0,0,-1]], dtype=float)

if n == 8: # cube vertices
V = np.array([[sx,sy,sz] for sx in (-1,1) for sy in (-1,1) for sz in (-1,1)],

dtype=float)
return _normalize_rows(V)

if n == 12: # icosahedron (one realization)
phi = (1+np.sqrt(5))/2
V = []
for s in (-1,1):

V += [[0, s, phi],[0, s, -phi],[ s, phi,0],[ s, -phi,0],[ phi,0, s],[-phi,0, s]]
V = np.array(V, dtype=float)
return _normalize_rows(V)

return None

def farthest_point_greedy(n, seed=None, rng=np.random.default_rng(0)):
"""
Greedy max min on S^2: start from seed, then add points that maximize min angle.
"""
def random_unit(k):

X = rng.normal(size=(k,3)); return _normalize_rows(X)

if seed is None:
P = random_unit(1) # start with one random point

else:
P = _normalize_rows(seed)

while len(P) < n:
# generate candidates and pick the one with largest min angle to current set
C = random_unit(2000) # candidates per iteration (tune as needed)
# cosines to existing points
cos = C @ P.T
# min angle to set -> maximize this
min_ang = np.arccos(np.clip(np.max(cos, axis=1), -1.0, 1.0))
idx = np.argmax(min_ang)
P = np.vstack([P, C[idx:idx+1]])

return P

def main():
n = 30
seed = seed_platonic(n)
pts = farthest_point_greedy(n, seed=seed, rng=np.random.default_rng(42))
print(f"n={n}, points={len(pts)}")
return pts

if __name__ == "__main__":
points = main()

np.save("points.npy", points)

# Ensure compatibility with evaluators that expect a global variable
try:

points # type: ignore[name-defined]
except NameError:

points = main()

D.2 LITTLEWOOD POLYNOMIALS.

Problem Description For coefficients ck ∈ {±1} and Pn(t) =
∑n−1

k=0 cke
ikt, minimize ∥Pn∥∞ =

supt∈R |Pn(t)|.

Human Best: the Rudin–Shapiro construction gives ∥Pn∥∞ ≤
√
2n. At the benchmark setting n =

512, this yields ∥P512∥∞ ≤ 32 (so the “larger-is-better” score 1/∥Pn∥∞ is ≥ 1/32 = 0.03125).
Sharper constants are known for special families, but

√
2n remains a clean baseline.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Initial Proposal

Choose coefficients ck ∈ {±1} for

P (z) =

n−1∑
k=0

ckz
k, |z| = 1,

so as to minimize the supremum norm

∥P∥∞ = max
|z|=1

|P (z)|.

Constraints.
• Coefficients ck are restricted to ±1.
• The metric ∥P∥∞ is estimated by FFT sampling on an equally spaced grid (denser

grid→ tighter upper bound).
Optimization Goal. The evaluator returns:

score =


1

∥P∥∞
, if valid,

−1.0, otherwise.

Notes on Bounds. For the Rudin–Shapiro construction of length n, a classical identity gives

∥P∥∞ ≤
√
2n.

For the benchmark default n = 512, this yields

∥P∥∞ ≤
√
1024 = 32,

so
score = 1

32 = 0.03125.

Initial Program:

def rudin_shapiro(n: int):
"""
First n signs of the Rudin-Shapiro sequence.
"""
a = np.ones(n, dtype=int)
for k in range(n):

x, cnt, prev = k, 0, 0
while x:

b = x & 1
if b & prev: # saw ’11’

cnt ^= 1
prev = b
x >>= 1

a[k] = 1 if cnt == 0 else -1
return a

def random_littlewood(n: int, seed=0):
rng = np.random.default_rng(seed)
return rng.choice([-1, 1], size=n).astype(int)

def main():
n = 512
c = rudin_shapiro(n)
print(f"n={n}, coeffs={len(c)}")
return c

if __name__ == "__main__":
coeffs = main()

# Ensure compatibility with evaluators that expect a global variable
try:

coeffs # type: ignore[name-defined]
except NameError:

coeffs = main()

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D.3 SUM VS. DIFFERENCE SETS (MSTD).

Problem Description For a finite set A ⊂ Z, maximize |A+A|/|A−A|.
Human Best: MSTD sets exist; the smallest possible size is |A| = 8 (classification up to affine
equivalence is known). For larger |A|, extremal ratios remain open; our benchmark instance reports
a representative value (≈ 1.04 for |A| = 30).

Initial Proposal

Objective. Classical MSTD (enforced): Given A ⊂ {0, 1, . . . , N − 1} represented by a
0/1 indicator array of length N , maximize the ratio

R =
|A+A|
|A−A|

.

• Score: score = R (higher is better).
• Comparisons should be made under the same N .

Default setup.
• N = 30.
• Evaluator enforces A = B (classical setting). If a pair (A,B) is provided, B is

ignored and A is used.

Known best for N = 30 (baseline). Conway’s MSTD set

A = {0, 2, 3, 4, 7, 11, 12, 14}

yields R ≈ 1.04. This is the baseline included in initial_program.py. Better ratios
may exist for N = 30; pushing R upwards is the optimization goal.

Notes.
• R > 1 is rare and indicates sum-dominance.
• The ratio depends strongly on N ; do not compare ratios across different N without

a normalization scheme.
• If cross-N comparison is necessary, consider reporting both R and N , or use logR

as an auxiliary measure.

Initial Program:

def main():
N = 30
# Conway MSTD set example; we take A=B for classical MSTD
A = [0, 2, 3, 4, 7, 11, 12, 14]
B = A[:]
A_ind = np.zeros(N, dtype=int); A_ind[A] = 1
B_ind = np.zeros(N, dtype=int); B_ind[B] = 1
return A_ind, B_ind

# Ensure globals for evaluator
try:

A_indicators; B_indicators # type: ignore[name-defined]
except NameError:

A_indicators, B_indicators = main()

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D.4 PACKING CIRCLE IN A SQUARE (VARIABLE RADII).

Problem Description In the unit square, place n disjoint circles (radii free) to maximize the sum of
radii

∑
ri.

Best-known: for n = 26,
∑

ri = 2.634 (Cantrell, 2011); for n = 32,
∑

ri = 2.936 (Specht,
2012).

Initial Proposal

Problem definition. Given an integer n, place n disjoint circles in the unit square [0, 1]2

to maximize the total sum of radii.
Objective and metric.

• Score: score =
∑n

i=1 ri (larger is better).
• Validity: circles must be pairwise disjoint and fully contained in the unit square.

Notes on records.
• This variable-radius “sum of radii” objective is not the classical equal-radius pack-

ing; authoritative SOTA tables are not standardized.
• Values reported in code or experiments should be treated as benchmarks rather than

literature SOTA.

Goal. Create algorithms that increase the total sum of radii for n ∈ {26, 32} under the
above validity constraints.

Initial Program:

import random
from concurrent.futures import ThreadPoolExecutor

def pack_circles(n, square_size=1.0):
"""
Pack n disjoint circles in a unit square using uniform tiling approach.
Returns the sum of radii and list of circles (x, y, r).
"""

def max_circle_radius(x, y, circles, square_size=1.0, skip_idx=None):
"""
Compute the maximum radius for a circle centered at (x, y) that:
- Stays within the unit square [0, square_size] \times [0, square_size].
- Does not overlap with existing circles.
skip_idx: if provided, index in circles[] to ignore (self).
"""
# Distance to nearest boundary of the unit square
r_max = min(x, y, square_size - x, square_size - y)

# Check distance to existing circles, exit early if r_max \rightarrow 0
# early exit if r_max is tiny, and avoid needless sqrt
for idx, (cx, cy, cr) in enumerate(circles):

if skip_idx == idx:
continue

if r_max <= 1e-8:
break

dx = x - cx
dy = y - cy
sep = r_max + cr
if dx*dx + dy*dy < sep*sep:

# only compute sqrt when we know we can shrink
dist = math.sqrt(dx*dx + dy*dy)
r_max = min(r_max, dist - cr)

return max(r_max, 0.0)

def uniform_tiling_circles(n, square_size=1.0):
"""
Uniformly tile the square with circles using optimal grid placement.
"""
if n <= 0:

return []

circles = []

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

# Calculate optimal grid dimensions
# For n circles, find the best grid layout (rows x cols)
best_layout = None
best_total_radius = 0

# Try different grid configurations
for rows in range(1, min(n + 1, 20)):

cols = math.ceil(n / rows)
if cols > 20: # Limit grid size

continue

# Calculate spacing
spacing_x = square_size / (cols + 1)
spacing_y = square_size / (rows + 1)

# Use the smaller spacing to ensure circles fit
min_spacing = min(spacing_x, spacing_y)

# Calculate maximum radius for this layout
max_radius = min_spacing / 2

# Ensure radius doesn’t exceed boundaries
max_radius = min(max_radius,

spacing_x / 2 - 1e-6,
spacing_y / 2 - 1e-6)

if max_radius <= 0:
continue

# Place circles in uniform grid
temp_circles = []
count = 0

for row in range(rows):
for col in range(cols):

if count >= n:
break

x = spacing_x * (col + 1)
y = spacing_y * (row + 1)

# Ensure circle stays within bounds
if (x - max_radius >= 0 and x + max_radius <= square_size and

y - max_radius >= 0 and y + max_radius <= square_size):

temp_circles.append((x, y, max_radius))
count += 1

if count >= n:
break

# Calculate total radius for this layout
total_radius = len(temp_circles) * max_radius

if total_radius > best_total_radius and len(temp_circles) == n:
best_total_radius = total_radius
best_layout = temp_circles

# If we found a valid layout, return it
if best_layout:

return best_layout

# Fallback: use hexagonal packing for better density
return hexagonal_packing(n, square_size)

def hexagonal_packing(n, square_size=1.0):
"""
Use hexagonal close packing for better space utilization.
"""
circles = []

# Estimate number of rows and columns for hexagonal packing
# Hexagonal packing has rows offset by sqrt(3)/2 * diameter

rows = int(math.sqrt(n * 2 / math.sqrt(3))) + 2

count = 0
row = 0

while count < n and row < rows:

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

# Calculate y position for this row
y = (row + 0.5) * (square_size / (rows + 1))

# Number of circles in this row
if row % 2 == 0:

cols = int(math.sqrt(n)) + 1
else:

cols = int(math.sqrt(n))

spacing_x = square_size / (cols + 1)

for col in range(cols):
if count >= n:

break

if row % 2 == 0:
x = spacing_x * (col + 1)

else:
x = spacing_x * (col + 1) + spacing_x / 2

# Calculate maximum radius for this position
r = max_circle_radius(x, y, circles, square_size)

if r > 0:
circles.append((x, y, r))
count += 1

row += 1

return circles

def optimize_placement(n, square_size=1.0):
"""
Optimize circle placement using uniform tiling with radius maximization.
"""
circles = []

# First, try hexagonal packing for high initial density
hex_circles = hexagonal_packing(n, square_size)
if len(hex_circles) == n:

# Ensure maximum radii for hex layout with stronger refinement
hex_refined = refine_circles(hex_circles, square_size, iterations=20)
return hex_refined

# Fallback to uniform grid placement
grid_circles = uniform_tiling_circles(n, square_size)
if len(grid_circles) == n:

return grid_circles

# If uniform tiling didn’t work perfectly, use adaptive approach
# Calculate optimal radius based on density
area_per_circle = (square_size * square_size) / n
estimated_radius = math.sqrt(area_per_circle / math.pi) * 0.9 # Conservative estimate

# Create grid with optimal spacing
spacing = estimated_radius * 2.1 # Include gap

cols = int(square_size / spacing)
rows = int(square_size / spacing)

actual_spacing_x = square_size / (cols + 1)
actual_spacing_y = square_size / (rows + 1)

count = 0
for row in range(rows):

for col in range(cols):
if count >= n:

break

x = actual_spacing_x * (col + 1)
y = actual_spacing_y * (row + 1)

# Calculate maximum possible radius
r = max_circle_radius(x, y, circles, square_size)

if r > 0:
circles.append((x, y, r))
count += 1

if count >= n:
break

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

# If we still need more circles, use remaining space
remaining = n - len(circles)
if remaining > 0:

# Place remaining circles in remaining spaces
for i in range(remaining):

# Try different positions systematically
best_r = 0
best_pos = (0.5, 0.5)

# Fine grid search (increased resolution)
grid_points = 100
for gx in range(1, grid_points):

for gy in range(1, grid_points):
x = gx / grid_points
y = gy / grid_points

r = max_circle_radius(x, y, circles, square_size)
if r > best_r:

best_r = r
best_pos = (x, y)

if best_r > 0:
circles.append((best_pos[0], best_pos[1], best_r))

return circles

def refine_circles(circles, square_size, iterations=80, perturb_interval=3):
"""
Iteratively grow each circle to its maximum radius under non-overlap constraints.
Includes randomized update order, periodic micro-perturbation to escape
local minima, and a final local-center-perturbation pass for densification.
"""
for it in range(iterations):

# randomize update order to avoid sweep-order bias
indices = list(range(len(circles)))
random.shuffle(indices)
for i in indices:

x, y, _ = circles[i]
# Compute maximal feasible radius here, skipping self
r = max_circle_radius(x, y, circles, square_size, skip_idx=i)
circles[i] = (x, y, r)

# Periodic micro-perturbation: jiggle a few circles
if it % perturb_interval == 0 and len(circles) > 0:

subset = random.sample(indices, min(5, len(circles)))
for j in subset:

x0, y0, r0 = circles[j]
dx = random.uniform(-0.03, 0.03)
dy = random.uniform(-0.03, 0.03)
nx = min(max(x0 + dx, 0), square_size)
ny = min(max(y0 + dy, 0), square_size)
# Compute maximal radius skipping self
nr = max_circle_radius(nx, ny, circles, square_size, skip_idx=j)
if nr > r0:

circles[j] = (nx, ny, nr)
# Full local center-perturbation phase for final densification
for i in range(len(circles)):

x, y, r = circles[i]
best_x, best_y, best_r = x, y, r
delta = 0.1
for _ in range(20):

dx = random.uniform(-delta, delta)
dy = random.uniform(-delta, delta)
nx = min(max(x + dx, 0), square_size)
ny = min(max(y + dy, 0), square_size)
# Compute maximal radius skipping self
nr = max_circle_radius(nx, ny, circles, square_size, skip_idx=i)
if nr > best_r:

best_x, best_y, best_r = nx, ny, nr
else:

delta *= 0.9
circles[i] = (best_x, best_y, best_r)

# Physics-inspired soft relaxation to escape persistent overlaps
for i in range(len(circles)):

x, y, r = circles[i]
fx, fy = 0.0, 0.0
for j, (xj, yj, rj) in enumerate(circles):

if i == j:
continue

dx = x - xj

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

dy = y - yj
d = (dx*dx + dy*dy) ** 0.5
overlap = (r + rj) - d
if overlap > 0 and d > 1e-8:

fx += dx / d * overlap
fy += dy / d * overlap

# Nudge the center by 10\% of the computed net "repulsive" force
nx = min(max(x + 0.1 * fx, 0), square_size)
ny = min(max(y + 0.1 * fy, 0), square_size)
nr = max_circle_radius(nx, ny, circles, square_size, skip_idx=i)
circles[i] = (nx, ny, nr)

return circles

def multi_start_optimize(n, square_size, starts=None):
"""
Parallel multi-start global \rightarrow local optimization using ThreadPoolExecutor.
Number of starts adapts to problem size: max(100, 10*n).
"""
if starts is None:

if n <= 50:
starts = max(200, n * 20)

else:
starts = max(100, n * 10)

# precompute hexagonal packing baseline
hex_circ = hexagonal_packing(n, square_size)
hex_sum = sum(r for _, _, r in hex_circ)
best_conf = None
best_sum = 0.0

# single trial: seed \rightarrow refine \rightarrow score
def single_run(_):

conf0 = optimize_placement(n, square_size)
conf1 = refine_circles(conf0, square_size, iterations=40)
s1 = sum(r for _, _, r in conf1)
return s1, conf1

# dispatch trials in parallel
with ThreadPoolExecutor() as executor:

for score, conf in executor.map(single_run, range(starts)):
if score > best_sum:

best_sum, best_conf = score, conf.copy()
# early exit if near the hex-baseline
if best_sum >= hex_sum * 0.995:

break

return best_conf

# Use multi-start global \rightarrow local optimization (adaptive number of starts)
circles = multi_start_optimize(n, square_size)

# Quick 2-cluster remove-and-reinsert densification (extended iterations)
for _ in range(8):

# remove the two smallest circles to create a larger gap
smallest = sorted(range(len(circles)), key=lambda i: circles[i][2])[:2]
removed = [circles[i] for i in smallest]
# pop in reverse order to keep indices valid
for i in sorted(smallest, reverse=True):

circles.pop(i)
# refine the remaining configuration briefly
circles = refine_circles(circles, square_size, iterations=8)
# reinsert each removed circle with more sampling
for x_old, y_old, _ in removed:

best_r, best_pos = 0.0, (x_old, y_old)
for _ in range(500):

x = random.uniform(0, square_size)
y = random.uniform(0, square_size)
r = max_circle_radius(x, y, circles, square_size)
if r > best_r:

best_r, best_pos = r, (x, y)
circles.append((best_pos[0], best_pos[1], best_r))

# final local polish after reinsertion
circles = refine_circles(circles, square_size, iterations=5)

# end 2-cluster remove-and-reinsert densification

# Calculate total radius
total_radius = sum(circle[2] for circle in circles)

return total_radius, circles

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

D.5 MINIMIZING MAX/MIN DISTANCE RATIO (d = 2, n = 16).

Problem Description For n points in [0, 1]2, minimize R =
maxi̸=j ∥xi − xj∥
mini̸=j ∥xi − xj∥

.

Best-known: R2 ≈ 12.890 (Cantrell, 2009), i.e., R ≈ 3.590.

Initial Proposal

Problem. Arrange n points in [0, 1]d to optimize the dispersion / packing–covering trade-
off. The benchmark metric is

ratio =
min pairwise distance
max pairwise distance

,

so that larger ratio is better (values in (0, 1]).
Evaluator. Given a program exposing max_min_dis_ratio(n, d), we obtain config-
urations for (n, d) = (16, 2) and (14, 3), then report ratio for each case.
Baseline algorithm. The initial program employs:

• Enhanced simulated annealing with adaptive cooling,
• Neighbor-repulsion moves,
• Periodic smoothing via k-NN weighted averages,
• A local refinement stage.

KD-tree acceleration is used for nearest-neighbor queries; hyperparameters adapt to dimen-
sion.

Initial Program:

from scipy.spatial.distance import pdist
from scipy.spatial import cKDTree

# (Removed) smooth_points smoothing logic is now inlined to reduce indirection

def calculate_distances(points):
"""Calculates min, max, and ratio of pairwise Euclidean distances using scipy pdist."""
if points.shape[0] < 2:

return 0.0, 0.0, 0.0
distances = pdist(points, metric=’euclidean’)
eps = 1e-8
min_dist = max(np.min(distances), eps)
max_dist = np.max(distances)
ratio = max_dist / min_dist
return min_dist, max_dist, ratio

# (Removed) perturb_point now inlined directly where used

def update_temperature(temperature, cooling_rate, accept_history, iteration, total_iters,
initial_temperature, window_size=100):

"""
Adaptive cooling with acceptancerate feedback and periodic reheating.
"""
window = accept_history[-min(len(accept_history), window_size):]
rate = sum(window) / len(window)
# gentler correction: slow/fast cooling factors reduced
if rate < 0.2:

adj = 1.02
elif rate > 0.8:

adj = 0.98
else:

adj = 1.0
temperature *= cooling_rate * adj
# removed periodic reheating to maintain smoother cooling schedule
# if (iteration + 1) % (total_iters // 4) == 0:
# temperature = initial_temperature
return temperature

def max_min_dis_ratio(n: int, d: int, seed=None):
"""
Finds n points in d-dimensional space to minimize the max/min distance ratio

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

using simulated annealing.

Args:
n (int): Number of points.
d (int): Dimensionality of the space.

Returns:
tuple: (best_points, best_ratio)

"""

# Adaptive hyperparameters based on dimensionality
iterations = 3000 if d <= 2 else 6000 # increased sweeps for improved convergence
initial_temperature = 10.0
cooling_rate = 0.998 if d <= 2 else 0.996 # slower cooling for extended exploration
perturbation_factor = 0.15 if d <= 2 else 0.12 # tuned smaller steps in 3D for better

local refinement
# relaxation factor for post-acceptance repulsive adjustment
# relaxation_factor removed; using inline 0.1 * perturbation_factor below

# 1. Initial State: reproducible random generator
rng = np.random.default_rng(seed)
# uniform random initialization in [0,1]^d for simplicity
current_points = rng.random((n, d))

_, _, current_ratio = calculate_distances(current_points)

best_points = np.copy(current_points)
best_ratio = current_ratio

temperature = initial_temperature
accept_history = []
window_size = 50 # window for stagnation detection and adaptive injection
# smoothing_interval remains, but smoothing_strength is fixed inlined above
smoothing_interval = max(10, iterations // (20 if d <= 2 else 30)) # more frequent

smoothing in 3D for improved uniformity

for i in range(iterations):
# Build KD-tree once per iteration for neighbor queries
tree = cKDTree(current_points)
# optional smoothing step using distance-weighted neighbor smoothing
if (i + 1) % smoothing_interval == 0:

# choose neighbor count based on dimension
k_smooth = 6 if d > 2 else 4
_, idxs = tree.query(current_points, k=k_smooth+1)
neighbors = current_points[idxs[:,1:]] # exclude self
# compute inverse-distance weights
diffs = neighbors - current_points[:, None, :]
dists = np.linalg.norm(diffs, axis=2) + 1e-6
weights = 1.0 / dists
weights /= weights.sum(axis=1, keepdims=True)
neighbor_means = (neighbors * weights[..., None]).sum(axis=1)
blend = 0.6 if d > 2 else 0.7
current_points = np.clip(current_points * blend + neighbor_means * (1 - blend), 0.0,

1.0)
_, _, current_ratio = calculate_distances(current_points)
if current_ratio < best_ratio:

best_points = current_points.copy()
best_ratio = current_ratio

# 2. Generate Neighboring State: Perturb a random point
# Simplify scaling: rely on temperature to adjust step-size instead of best_ratio
# dynamic perturbation decays sublinearly with temperature for finer local moves
perturbation_strength = perturbation_factor * ((temperature / initial_temperature)**0.6

+ 0.15)

# Choose a random point to perturb
point_to_perturb_index = rng.integers(0, n)

old_point = current_points[point_to_perturb_index].copy()
# Increase repulsivemove frequency in low dimensions
# dynamic repulsion probability: stronger at high temperature, tapering off as we cool
if d > 2:

# reduce repulsion frequency in 3D for finer refinement
repulsion_prob = float(np.clip(temperature / initial_temperature, 0.2, 0.8))

else:
repulsion_prob = float(np.clip(temperature / initial_temperature + 0.1, 0.5, 0.95))

# start with a random jitter
# random jitter inlined for readability
candidate = old_point + rng.uniform(-perturbation_strength, perturbation_strength,

size=old_point.shape)
if n > 1 and rng.random() < repulsion_prob:

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

# compute nearest neighbor via KD-tree for efficiency (reusing prebuilt tree)
_, nn_idxs = tree.query(old_point, k=2)
nn_idx = nn_idxs[1]
vec = old_point - current_points[nn_idx]
norm = np.linalg.norm(vec)
if norm > 1e-8:

dir_vec = vec / norm
candidate = old_point + perturbation_strength * dir_vec

# keep the point in [0,1]^d
current_points[point_to_perturb_index] = np.clip(candidate, 0.0, 1.0)
_, _, candidate_ratio = calculate_distances(current_points)

# Acceptance criterion
delta = candidate_ratio - current_ratio
accept = (delta < 0) or (rng.random() < np.exp(-delta / temperature))

if accept:
current_ratio = candidate_ratio
# Post-acceptance repulsive relaxation to improve local spacing
# reuse prebuilt KD-tree for repulsive relaxation
dists, idxs_nn = tree.query(current_points[point_to_perturb_index], k=2)
dir_vec = current_points[point_to_perturb_index] - current_points[idxs_nn[1]]
norm = np.linalg.norm(dir_vec)
if norm > 1e-8:

# push away from nearest neighbor
adjustment = 0.1 * perturbation_factor * dir_vec / norm
current_points[point_to_perturb_index] = np.clip(

current_points[point_to_perturb_index] + adjustment, 0.0, 1.0
)
# update ratio and best points after relaxation
_, _, relaxed_ratio = calculate_distances(current_points)
current_ratio = relaxed_ratio
if relaxed_ratio < best_ratio:

best_points = current_points.copy()
best_ratio = relaxed_ratio

# also keep the standard bestcheck for the candidate move
if current_ratio < best_ratio:

best_points = current_points.copy()
best_ratio = current_ratio

else:
current_points[point_to_perturb_index] = old_point

# Update temperature with adaptive schedule
accept_history.append(accept)
temperature = update_temperature(temperature, cooling_rate, accept_history, i,

iterations, initial_temperature)
# periodic mild reheating for 3D to escape deep minima
if d > 2 and (i + 1) % (iterations // 3) == 0:

temperature = max(temperature, initial_temperature * 0.3)

# random injection to escape plateaus: reinitialize one point every 20% of iterations
# random injection only if weve stagnated (low acceptance in recent window)
if (i + 1) % max(1, iterations // 5) == 0 and len(accept_history) >= window_size \

and sum(accept_history[-window_size:]) / window_size < 0.1:
j = rng.integers(0, n)
current_points[j] = rng.random(d)
_, _, current_ratio = calculate_distances(current_points)

# Local refinement stage: fine-tune best solution with small Gaussian perturbations
refine_iters = max(100, iterations // 20)
for _ in range(refine_iters):

idx = rng.integers(0, n)
old_point = best_points[idx].copy()
perturb = rng.normal(0, perturbation_factor * 0.05, size=d)
best_points[idx] = np.clip(old_point + perturb, 0.0, 1.0)
_, _, refined_ratio = calculate_distances(best_points)
if refined_ratio < best_ratio:

best_ratio = refined_ratio
else:

best_points[idx] = old_point
return best_points, best_ratio

D.6 AUTOCONVOLUTION PEAK MINIMIZATION (L∞).

Problem Description For nonnegative densities f supported on [−1
2 ,

1
2 ] with

∫
f = 1, define

µ∞ = sup
t
(f ∗ f)(t).

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

The exact optimum is unknown.

Human Best:
0.64 ≤ µ∞ ≤ 0.75496.

The lower bound is due to Cloninger–Steinerberger, and the upper bound comes from explicit step-
function constructions of Matolcsi–Vinuesa (rescaled to unit support).

Initial Proposal

Problem definition. Let

F =
{
f ∈ L1

(
[− 1

2 ,
1
2 ]
)
: f ≥ 0,

∫ 1/2

−1/2

f(x) dx = 1
}
,

and define
(f ∗ f)(t) =

∫
R
f(x) f(t− x) dx.

We seek to minimize the peak value of the autoconvolution:

µ∞ = inf
f∈F

∥f ∗ f∥∞.

Constraints.
• Nonnegative density.
• Unit mass (L1 = 1).
• Support length 1 (here taken as [− 1

2 ,
1
2 ]).

In the implementation, f is represented by nonnegative step heights on a uniform grid and
normalized to unit integral.

Optimization goal. Minimize

µ∞ = max
t

(f ∗ f)(t).

Smaller values are better.

Best-known human results. In this standard setup, the best currently published bounds
are

0.64 ≤ µ∞ ≤ 0.75496 .

The upper bound traces to work of Matolcsi–Vinuesa (after normalizing support length to
1), and the lower bound to Cloninger–Steinerberger.

Algorithmic goal. Create an algorithm that constructs feasible densities with progres-
sively smaller µ∞. The baseline program generates simple analytical candidates (box, tri-
angle, cosine-squared, Gaussian) on a uniform grid, normalizes to unit mass, and computes
autoconvolution via FFT to measure µ∞. It serves as a starting point for more advanced
search/optimization methods.

References.
• E. P. White, An optimal L2 autoconvolution inequality, Canadian Mathematical

Bulletin (2024).
• M. Matolcsi and C. Vinuesa, Improved bounds on the supremum of autoconvolu-

tions, J. Math. Anal. Appl. 372 (2010), 439–447.
• A. Cloninger and S. Steinerberger, On suprema of autoconvolutions with an appli-

cation to Sidon sets, Proc. Amer. Math. Soc. 145 (2017), 3191–3200.

Initial Program:

# -*- coding: utf-8 -*-
"""
Autoconvolution Peak Minimization
=================================

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

This program generates step heights for a probability density function
that minimizes the maximum value of its autoconvolution.
"""

import numpy as np
from typing import Dict

def evaluate_C1_upper_std(step_heights: np.ndarray) -> Dict[str, float]:
"""
Standard-normalized C1 (support [-1/2,1/2], dx=1/K).
- Project to feasible set: h >= 0 and f = 1 (L1 normalization).
- Objective: mu_inf = max_t (f*f)(t) (smaller is better).
Returns: {"valid", "mu_inf", "ratio"(=mu_inf), "integral"(=1.0), "K"}
"""
h = np.asarray(step_heights, dtype=float)
if h.size == 0 or np.any(h < 0):

return {"valid": 0.0, "mu_inf": float("inf"), "ratio": float("inf")}
K = int(len(h))
dx = 1.0 / K

integral = float(np.sum(h) * dx)
if integral <= 0:

return {"valid": 0.0, "mu_inf": float("inf"), "ratio": float("inf")}
h = h / integral # f = 1

F = np.fft.fft(h, 2*K - 1) # linear autoconvolution via padding
conv = np.fft.ifft(F * F).real
conv = np.maximum(conv, 0.0) # clamp tiny negatives

mu_inf = float(np.max(conv) * dx)
return {"valid": 1.0, "mu_inf": mu_inf, "ratio": mu_inf, "integral": 1.0, "K": float(K)}

def make_candidate(K: int, kind: str = "cos2") -> np.ndarray:
"""
Simple candidate builder on [-1/2,1/2] (NOT normalized here).

Args:
K: Number of discretization points
kind: Type of candidate function ("box", "triangle", "cos2", "gauss")

Returns:
Step heights array

"""
x = np.linspace(-1.0, 1.0, K)
if kind == "box":

h = np.ones(K)
elif kind == "triangle":

h = 1.0 - np.abs(x)
h[h < 0] = 0.0

elif kind == "cos2":
h = np.cos(np.pi * x / 2.0) ** 2

elif kind == "gauss":
h = np.exp(-4.0 * x**2)

else:
raise ValueError(f"unknown kind={kind}")

return h

def main():
"""
Main function that generates step heights for autoconvolution minimization.

Returns:
numpy.ndarray: Step heights array

"""
K = 128
kind = "cos2" # Change this to try different candidates (box/triangle/cos2/gauss)
step_heights = make_candidate(K, kind)

# Evaluate the result to verify it’s valid
result = evaluate_C1_upper_std(step_heights)
print(f"Generated {kind} candidate with K={K}, mu_inf={result[’mu_inf’]:.6f}")

return step_heights

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

D.7 THIRD AUTOCORRELATION INEQUALITY.

Problem Description Let C3 be the largest constant such that max|t|≤1/2 |(f ∗ f)(t)| ≥
C3

( ∫ 1/4

−1/4
f
)2

for all (signed) f .

Best-known: classical 1.4581 upper bound.

D.8 THIRD-ORDER AUTOCORRELATION INEQUALITY (C3 UPPER BOUND)

Initial Proposal

Problem. For piecewise-constant nonnegative functions on a fixed support with unit mass,
we evaluate an upper bound Cupper_bound derived from the maximum of the autoconvolution
(normalized by squared L1 mass). The benchmark score is

score =
1

Cupper_bound
,

so that larger score indicates a smaller upper bound and hence a better result.
Evaluator. The evaluator calls find_better_c3_upper_bound() from the target
program to obtain step heights, computes the normalized autoconvolution maximum, and
returns 1/Cupper_bound.
Baseline algorithm. A simple genetic algorithm over height sequences serves as the base-
line search method. The algorithm includes:

• Tournament selection,
• One-point crossover,
• Gaussian mutation.

Initial Program:

import scipy.integrate

def calculate_c3_upper_bound(height_sequence):

N = len(height_sequence)
delta_x = 1 / (2 * N)

def f(x):
if -0.25 <= x <= 0.25:

index = int((x - (-0.25)) / delta_x)
if index == N:

index -= 1
return height_sequence[index]

else:
return 0.0

integral_f = np.sum(height_sequence) * delta_x
integral_sq = integral_f**2

if integral_sq < 1e-18:
return 0.0

t_points = np.linspace(-0.5, 0.5, 2 * N + 1)

max_conv_val = 0.0
for t_val in t_points:

lower_bound = max(-0.25, t_val - 0.25)
upper_bound = min(0.25, t_val + 0.25)

if upper_bound <= lower_bound:
convolution_val = 0.0

else:
def integrand(x):

return f(x) * f(t_val - x)

convolution_val, _ = scipy.integrate.quad(integrand, lower_bound, upper_bound,
limit=100)

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

if abs(convolution_val) > max_conv_val:
max_conv_val = abs(convolution_val)

return max_conv_val / integral_sq

def genetic_algorithm(population_size, num_intervals, generations, mutation_rate,
crossover_rate):

population = np.random.rand(population_size, num_intervals) * 2 - 1

best_solution = None
best_fitness = 0.0

for gen in range(generations):

fitness_scores = np.array([calculate_c3_upper_bound(individual) for individual in
population])

current_best_idx = np.argmax(fitness_scores)
if fitness_scores[current_best_idx] > best_fitness:

best_fitness = fitness_scores[current_best_idx]
best_solution = population[current_best_idx].copy()
# print(f"Generation {gen}: New best fitness = {best_fitness}")

new_population = np.zeros_like(population)
for i in range(population_size):

competitors_indices = np.random.choice(population_size, 2, replace=False)
winner_idx = competitors_indices[np.argmax(fitness_scores[competitors_indices])]
new_population[i] = population[winner_idx].copy()

for i in range(0, population_size, 2):
if np.random.rand() < crossover_rate:

parent1 = new_population[i]
parent2 = new_population[i+1]
crossover_point = np.random.randint(1, num_intervals - 1)
new_population[i] = np.concatenate((parent1[:crossover_point],

parent2[crossover_point:]))
new_population[i+1] = np.concatenate((parent2[:crossover_point],

parent1[crossover_point:]))

for i in range(population_size):
if np.random.rand() < mutation_rate:

mutation_point = np.random.randint(num_intervals)
new_population[i, mutation_point] += np.random.normal(0, 0.1)

new_population[i, mutation_point] = np.clip(new_population[i, mutation_point],
-2, 2)

population = new_population

return best_solution

def find_better_c3_upper_bound():

NUM_INTERVALS = 4
POPULATION_SIZE = 2
GENERATIONS = 10
MUTATION_RATE = 0.1
CROSSOVER_RATE = 0.8

height_sequence_3 = genetic_algorithm(POPULATION_SIZE, NUM_INTERVALS, GENERATIONS,
MUTATION_RATE, CROSSOVER_RATE)

return height_sequence_3

32


	Introduction
	AlphaResearch
	Overview
	Actions
	Environment
	Reward from Real-world Research Records
	Reward from Program-based Execution


	AlphaResearchComp
	Experiments
	Setup
	Results
	Ablations and Analysis
	Case Study

	Related Work
	Discussion
	The Use of Large Language Models
	Examples
	Prompts
	Curated Problems and Human-Best Values
	Spherical Code (S2, n=30).
	Littlewood Polynomials.
	Sum vs. Difference Sets (MSTD).
	Packing Circle in a Square (variable radii).
	Minimizing Max/Min Distance Ratio (d=2,n=16).
	Autoconvolution Peak Minimization (L).
	Third Autocorrelation Inequality.
	Third-Order Autocorrelation Inequality (C3 Upper Bound)


