Under review as a conference paper at ICLR 2026

AlphaResearch : ACCELERATING NEW ALGORITHM
DISCOVERY WITH LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models have made significant progress in complex but easy-to-
verify problems, yet they still struggle with discovering the unknown. In this
paper, we present AlphaResearch, an autonomous research agent designed to dis-
cover new algorithms on open-ended problems by iteratively running the follow-
ing steps: (1) propose new ideas (2) program to verify (3) optimize the research
proposals. To synergize the feasibility and innovation of the discovery process,
we construct a new reward environment by combining the execution-based verifi-
able reward and reward from simulated real-world peer review environment. We
construct AlphaResearchComp, a new evaluation benchmark that includes an
eight open-ended algorithmic problems competition, with each problem carefully
curated and verified through executable pipelines, objective metrics, and repro-
ducibility checks. AlphaResearch gets a 2/8 win rate in head-to-head comparison
with human researchers. Notably, the algorithm discovered by AlphaResearch on
the “packing circles” problem achieves the best-of-known performance, surpass-
ing the results of human researchers and strong baselines from recent work (e.g.,
AlphaEvolve). Additionally, we conduct a comprehensive analysis of the bene-
fits and remaining challenges of autonomous research agent, providing valuable
insights for future research.

1 INTRODUCTION

Recent progress has shown that frontier LLMs like GPT-5 (OpenAll [2025) and Gemini 2.5 (Co-
manici et al., [2025)) could achieve expert-level performance in complex tasks such as mathemat-
ics (Trinh et al.| 2024} |Lin et al.l [2025)) and programming (Jimenez et al., 2024; Jain et al., [2025)).
While LLMs excel at processing and reasoning on problems that are within the boundary of ex-
isting human knowledge (Wang et al.l |2024b; Phan et al., [2025)), their capacity for independent
discovery that pushes the boundaries of human knowledge still remains a question of paramount
importance (Novikov et al.,[2025)). Can these models create advanced knowledge or algorithms that
surpass human researchers?

Previous studies demonstrate that LLMs can generate novel ideas at a human expert level (Si et al.,
2024; Wang et al.,[2024a). However, the outcome evaluation of LLM-generated research ideas still
struggles with biased verification methods (Ye et al., 2024) that constrain the exploration of out-of-
boundary machine knowledge, such as LL.M-as-a-judge (Lu et al.| | 2024)), where misaligned LLMs
are used to evaluate fresh ideas and inevitably favor solutions within existing knowledge bound-
aries. Furthermore, the ideation—execution gap (Si et al., 2025) between generating and executing
new ideas also hinders models from producing advanced research outcomes. Moreover, prior at-
tempts at autonomous algorithm discovery face a fundamental tension. Execution-based verification
systems like AlphaEvolve Novikov et al.| (2025) can rigorously validate whether code runs and
meets constraints, but this verification alone might not be completely sufficient for discovery. For
example, these systems could converge on technically correct but scientifically uninteresting or less
impactful solutions—code that executes successfully yet offers no advancement over existing meth-
ods. Conversely, idea-generation systems evaluated purely by LLM judges can propose innovative
concepts that prove computationally infeasible or violate problem constraints when implemented.
The absence of real-world research environment rewards in execution-based agents and execution-

Under review as a conference paper at ICLR 2026

step1 step 2 step 3 (lteration 1~n)

Collect real-world research papers Launch AlphaReseach with original Iterate the autonomous research process

and train a reward model. ideas and programs

Collect peer-reviewed A proposal to describe I,_ — Ge?s"al\tlle 'zel‘:')" i?ea based

papers from online i the research problem. onthe MetaData LLM Ensemble

platforms. E el (proposals, program,

; evaluation results) at Task: Propose new
Peer-reviewed Papers Round n-1 s bEest i e
l MetaData

l Evaluate proposal as % l
) positive idea or negative S
Extract ideas or a - ones using reward ‘ Eva]t{atg proposal as . -
proposals from "__E (;iesggal;) eas models. R e posltlve. idea or negative @i\
real-world research ones using reward

Reward Model

papers and theirreview _____________ Score: \boxed(6.0} models.
scores. (>=threshold,accept) l
O Human reviews
O l Update the program to
match the new idea. And 8
e evaluate it with
l Construct initial program Initial idea ;
. : execution. LLM Ensemble
Train| del and automatic evaluation “=E (Proposals)
rain language mocels € (metadata) fortheidea. ~ _____________ | R
with the research idea S) = Task: Programming
d review score. i . Initial based on the ideas
an . == Program
Reward Model . lEvaJuate
Input: research idea @@ Automatic Obtain new MetaData
Output:idea score g Evaluatiol and enter the next =z
MetaData iteration MetaData at Round n

Figure 1: The launch of AlphaResearch contains two steps. (1) Train reward models with real-
world peer-reviewed records. (2) Prepare initial research proposals, initial programs and evalution
program. AlphaResearch will refine the research proposals and programs autonomously.

based reward in idea-generation systems renders the discovery of new knowledge and algorithms
challenging for current autonomous research agents (Tian et al., 2024)).

To combine the feasibility and innovation of the algorithm discovery process, we introduce Al-
phaResearch, an autonomous research agent that could discover new advanced algorithms with a
suite of research skills including idea generation and code implementation that could interact with
the environment. To synergize these research skills during the discovery process, we construct a
novel dual research-based environment (Tian et al.| [2024), where novel insights are forged by the
simulated real-world peer-reviewed environment and execution-based verification. We use this dual
environments to accelerate the discovery process because many research ideas can be evaluated be-
fore even implementing and executing on the idea. based on factors such as novelty, literature and
the knowledge used. Specifically, we (1) train a reward model AlphaResearch-RM-7B with real-
world peer-reviewed records, addressing the limitation of prior coding-only approaches that lack
real-world research feedback, and use it to score the fresh ideas generated by LLMs; (2) construct
an automatic program-based verifiable environment that executes these ideas with an interpreter.
This dual environment facilitates a rigorous algorithm discovery process for autonomous research
agents. As illustrated in AlphaResearch discovers new algorithms by iteratively running
the following steps: (i) proposing new research ideas, (ii) verify the ideas in the dual research-based
environment, and (iii) optimizing the proposals for higher reward from the environment. = The
synergy between an iterative real-world peer review environment and program-based verification
empowers AlphaResearch to continuously explore novel research ideas and verify them via pro-
gram execution. Once the generated optimal program surpasses current human-best achievements,
these validated novel ideas could form feasible algorithms, thereby pushing the boundaries of human
research forward.

To compare AlphaResearch with human researchers on novel algorithm discovery, we construct
AlphaResearchComp, a simulated discovery competition between research agents and human re-
searchers, by collecting 8 open-ended research problems and their best-of-human records (shown in
[Appendix I). Our results demonstrate that AlphaResearch surpasses human researchers on two prob-
lems but fails on the other six. The novel algorithms discovered by AlphaResearch not only surpass
best-of-human performance but also significantly outperform the state-of-the-art results achieved by
AlphaEvolve. Specifically, AlphaResearch optimizes the result of “Packing Circles (n=32)” prob-
lem to 2.939, where the goal is to pack n disjoint circles inside a unit square so as to maximize
the sum of their radii, surpassing the results of best-of-human and previous SoTA results achieved

Under review as a conference paper at ICLR 2026

Algorithm 1 AlphaResearch

Require: initial idea 4o, initial program po, initial result ro, model .4, evaluation program £(-), maximum
iteration rounds n,

1: 70 < (40,P0,70), Thest = 0 > Initialization
2: for k = 1tondodo

3 (i¢, pe, re) ~ P(:|Th—1) > States Sampling
4 i ~Pa(-|ic B pe ®re) > New Idea Generation (Eq. 1)
5: if RM(ix) < threshold then

6: continue > Reward Model for New Idea
7: end if

8 Pk~ Pa(:|pe ®ir) > Program Generation (Eq. 2)
9 ri < E(px) > Program-based Execution
10: if 75 > rpest then
11: (ibestgpbesh Tbest) = (Z'/mpkvrk)
12: end if
13: Tk <= Th—1 @i © pr DT > Trajectory Update (Eq. 3)
14: end for

15: return (ibestypbesty rbest)

by AlphaEvolve (as shown in [Appendix G)). These entirely novel ideas and algorithms constitute
the most advanced solutions currently present in the human knowledge base, demonstrating the fea-
sibility of employing LLMs to advance the frontiers of human knowledge. The six failure modes
in AlphaResearchComp demonstrate the challenges for the autonomous algorithm discovery with
research agents. We analyze the benefits and remaining challenges of autonomous research agents
for knowledge discovery, providing valuable insights for future work.

2 ALPHARESEARCH

2.1 OVERVIEW

AlphaResearch discovers out-of-boundary novel algorithms by continuously optimizing the re-
search outcome from the dual reward that synergizes rigorous program verification and a simu-
lated real-world peer review environment. As shown in given initial idea iy and pro-
gram pg, AlphaResearch runs the program py with execution, producing o, which represents the
initial overall rating. The triplet (4o, po, 79) Will be fed to AlphaResearch for subsequent process-
ing, including newer idea generation, code implementation, and program-based execution. When
reaching a point where execution output r,, surpasses the previous rating, AlphaResearch will save
the triplet (ipest, Prests Tvest) as the best record. We repeat the process until 7.5 surpasses the
best-of-human score, or the maximum round is reached. The resulting trajectory is denoted as
T = 10PoT0---bn—1Pn—1Tn—1inPnTn, Where n is the total rounds.

2.2 ACTIONS

New Idea Generation. For each step k, AlphaResearch start with generating a new idea i based
on a sampled previous step (i, p;,) from previous trajectory 74,1 = ioPoTo.--ik—1Pk—1Tk—1. This
process can be denoted as:

ik ~ PA([ie ©pr ©1e) (1)
where @ means concatenation, ¢ is the sampled step from trajectory 7;_1 and IP 4 () indicates uniform
sampling. We use a reward model to filter out high-quality ideas overall. If RM/(i,) outputs a
negative score, we cease the subsequent actions in this round.

Program-based Verification. After obtain the fresh idea, AlphaResearch generates new program
pi. based on the previous implementation p; and new idea 4, next:

pr ~ Pa(lpe ®ix) 2)
and yield the evaluation result r, by verifying py with code executor ry, < £(pg). Then, we update
the trajectory 7;, with the newly generated idea i, program pj and result r:

Th < Th—1 Dir O pr Oy €))

Under review as a conference paper at ICLR 2026

Table 1: Dataset for reward model training. Table 2: Evaluation results of RM. We use the

We use the end of author-reviewer rebuttal more recent date between the model release

period as the latest knowledge date. date and the dataset cutoff as the latest date.
Split | Train | Test Reward Model | Cutoff Acc
Records ICLR ICLR Random (theoretical) - 50.0%
Range 2017~2024 | 2025 Human Annotator - 65.0%
Num 24,445 100 GPT-5 (medium) 2025-08 53.0%
Start Date 2016-11 2024-10 Qwen2.5-7B-Instruct 2024-09 37.0%
End Date 2023-12 2024-12 AlphaResearch-RM-7B | 2024-09 72.0%

We repeat the above interaction process until k reaches the maximum rounds n and get the best
result (ipest, Phests Thest) s final output.

2.3 ENVIRONMENT

2.3.1 REWARD FROM REAL-WORLD RESEARCH RECORDS

Existing autonomous idea generation process suffers from a trade-off where highly novel research
ideas may lack feasibility (Guo et al.l 2025} |Si et al., [2025). To address this gap and ensure the
feasibility of idea candidates, we train a reward model with ideas from real-world peer-review infor-
mation to simulate the real-world peer-review environment.

Dataset for reward model. To train our reward model (RM) to identify good ideas, we collect
all ICLR peer review records from 2017 to 2024 as our training set. We sample a subset of ICLR
2025 records as a test set, where the dates of train and test are disjoint, which prevents knowledge
contamination between the train and test split. We also select Qwen2.5-7B-Instruct as our base
model, whose release date 2024-09 is earlier than the ICLR 2025 author-reviewer rebuttal period
2024-10. For each record in the training dataset, we extract the abstract part as RM input and wrap
the average peer-review overall ratings with \boxed{ } as RM output. We fine-tune Qwen2.5-7B-
Instruct with the RM pairs, yielding the AlphaResearch-RM-7B model.

Can LLMs identify good ideas? To simplify the RM evaluation, we binarize the RM output score
according to the ICLR Reviewer Guide, where overall rating > 5.5 records are regarded as a posi-
tive score and < 5.5 records are negative. We compute the binary classification accuracy and evalu-
ate three models (Deepseek-V3-0324, Qwen2.5-Coder-Instruct, and AlphaResearch-RM-7B) on the
AlphaResearch-RM test set. presents the evaluation results that eliminate the knowledge
contamination, highlighting the following observations: (1) Both Deepseek-V3-0324 and Qwen2.5-
7B-Instruct have lower than 50% accuracy when identifying the good ideas from ICLR 2025 records.
(2) After fine-tuned with ideas from previous ICLR peer-review information, AlphaResearch-RM-
7B demonstrates 72% binary classification accuracy on unseen ICLR 2025 ideas, significantly out-
performing baseline models and human annotators. Based on these observations, we use the fine-
tuned AlphaResearch-RM-7B as the final RM to simulate a real-world peer-review environment and
filter out good ideas generated by AlphaResearch.

2.3.2 REWARD FROM PROGRAM-BASED EXECUTION

Inspired by AlphaEvolve (Novikov et al.,2025)), we construct an automatic evaluation process with
a code executor where each new program p; generated by AlphaResearch will be captured and
evaluated. The evaluation program £ (-) includes two modules: (i) Verification module that validates
whether p;, conforms to the problem constraints. (ii) Measurement module that output the score
of program performance. The program output 7, will be injected into the idea generation prompt
(if sampled), thereby participating in the optimization process for fresh ideas. These programs and
results are stored in a candidate pool, where the primary goal is to optimally resurface previously
explored ideas in future generations. The verifiable reward by code executor significantly simplifies
the action spaces of AlphaResearch, thereby enhancing the efficiency of the discovery process.

Under review as a conference paper at ICLR 2026

Table 3: Problem overview in AlphaResearchComp. More information are shown at[Appendix 1|

Problem | Human Best | Human Researcher
packing circles (n=26) 2.634 David Cantrell (2011)
packing circles (n=32) 2.936 Eckard Specht (2012)
minimizing max-min distance raio (d=2, n=16) 12.89 David Cantrell (2009)
third autocorrelation inequality 1.4581 Carlos Vinuesa (2009)
spherical code (n=30) 0.67365 | Hardin & Sloane (1996, 2002)
autoconvolution peak minimization (upper bound) 0.755 Matolcsi—Vinuesa (2010)
littlewood polynomials (n=512) 32 Rudin—Shapiro (1959/1952)
MSTD (n=30) 1.04 Hegarty (2006/2007)

3 ALPHARESEARCHCOMP

Problems collection. AlphaEvolve has not publicly disclosed all the test problems so far. To pro-
vide a transparent evaluation process, we curate AlphaResearchComp, a set of 8 frontier program-
based research tasks spanning geometry, number theory, harmonic analysis, and combinatorial op-
timization. These problems were selected based on the following principles: AlphaResearchComp
provides explicit, academically defined problem formulations, verification rules, and unified metrics
(e.g., excel @best), enabling reproducible and controlled evaluation for open-ended discovery. This
standardized pipeline design is essential for studying research agents.

* Well-defined objectives. Each task has a precise mathematical formulation with an objective
function that admits rigorous automatic evaluation.

* Known human-best baselines. For every problem, we provide the best-known human result from
the literature. These represent conjectured best-known values rather than proven optima, ensuring
ample room for further improvement.

The curated problems are either inherited from prior work (e.g., AlphaEvolve) or collected from on-
line repositories and domain experts. Each problem’s baseline is supported by verifiable resources in
the corresponding field. This design enables AlphaResearch to demonstrate both the reproducibil-
ity of established mathematical results and the potential for discovery beyond current human-best
achievements. Detailed definitions, baseline values, and references for each problem are provided

in the

Initialization strategy. After obtaining the research problems of AlphaResearchComp, we con-
struct diverse initial states for each problem with the following strategies: (1) For the “Packing
Circles” (n=26) and “Packing Circles” (n=32) problems, we initialize them with null programs
(ro = 0) to simulate researches starting from scratch. (2) For the “Littlewood Polynomials” and
“MSTD (n=30)” problems, we directly adopt the best-known solutions (79 = 7hyman) from human
researchers to emulate improvements upon established methods. (3) For the remaining problems,
we employ a moderate initialization strategy (0 < ro < Thuman) to ensure sufficient room for the
research agent to explore. This initialization strategy simulates a variety of real-world scenarios for
the research agent, thereby facilitating a thorough evaluation process.

Metrics. For benchmarks like code generation with good verification techniques (e.g., unit tests),
pass@k (Chen et al.,[2021)) is a metric denoting that at least one out of k i.i.d. task trials is successful,
which captures the ability of LLMs to solve easy-to-verified problems. For open-ended real-world
algorithm discovery tasks, we propose a new metric - excel@best (excel at best), defined as the
percentage excess on baseline (best of human level) results:

Thest — Th . Hd
excelQbest = E (Tbes uman)
Problems Thuman

“4)

where 7,,man indicates the results of human’s best level. I; indicates the optimization direction
where [; = 1 represents that higher score is better and [; = —1 represents lower.

Under review as a conference paper at ICLR 2026

Table 4: Results on AlphaResearchComp. 1 inidicates that higher score is better and | for lower.

Problem Human AlphaResearch Excel @best
init best
packing circles (n=26) 1 2.634 0 2.636 0.32%
packing circles (n=32) 1 2.936 0 2.939 0.10%
minimizing max-min distance ratio | 12.89 15.55 12.92 -0.23%
third autocorrelation inequality | 1.458 | 35746 1.546 -6.03%
spherical code (d=3, n=30) 1 0.6736 | 0.5130 0.6735 -0.01%
autoconvolution peak minimization | | 0.755 1.512 0.756 -0.13%
littlewood polynomials (n=512) | 32 32 32 0
MSTD (n=30) 1 1.04 1.04 1.04 0
Packing Circles in Unit Square (n=26) Third Autocorrelation Inequality
2.5 0.6

° 2

£ 2.0 Los

& ¢

gl o 0.4

% 1.54 %

3 3 031

109 s

g S 0.2

Eo& EOl

0.0 HT— 0.0 =Tk
6 10‘00 20‘00 30‘00 40‘00 6 260 460 660 860 10‘00 12‘00 14‘00
Iteration Iteration

Figure 2: Execution-based reward of AlphaResearch on packing circles (n=26) problem (left) and
third autocorrelation inequality problem (right).

4 EXPERIMENTS

4.1 SETUP

We select o4-mini, a strong but cost-efficient LLM as our research agent and run Al-
phaResearch on each problem to get the best algorithm. We perform supervised finetuning
on Qwen-2.5-7B-Instruct (Yang et all 2025) with the collected ICLR records, yielding
AlphaResearch-RM-7B. We do not compute loss on paper information, only on the average rat-
ing scores within \boxed{ }. For fine-tuning hyperparameters, we train our model with a learning
rate of le-5 warmed up linearly for 100 steps. We train all the models in bfloatl6 precision with
Pytorch Fully Shard Data Parallel (FSDP) and set a global batch size to 128 for 2 epochs. All other
settings not mentioned in this paper follow the default values of Huggingface Trainer[ﬂ

4.2 RESULTS

LLMs could sometimes discover new algorithms themselves. presents the results of
AlphaResearchComp on 8 algorithms discovery problems. AlphaResearch achieved a 2/8 win rate
(excel@best > 0) against human researchers, with one notable success: the algorithm discovered
by AlphaResearch for “Packing Circles” problem reaches the best-of-known performance (2.636
for n=26, 2.939 for n=32), outperforming human researchers (2.634 for n=26, 2.936 for n=32) and
AlphaEvolve (2.635 for n=26, 2.937 for n=32), where case (n = 32) is shown in [Figure 10]

LLMs can refine their research ideas autonomously. AlphaResearch discovers advanced algo-
rithms by iteratively proposing and verifying new research ideas. As shown in[Table 2] 6/8 problems

'https://huggingface.co/docs/transformers/main_classes/trainer

https://huggingface.co/docs/transformers/main_classes/trainer

Under review as a conference paper at ICLR 2026

o
0:026 13.3% 11.0% 11.6% 12.2%
52.2% o
44.4% 51.7% 51.1% 58.7%
o
41.8% 42.3% S AT
P

100 7

mmm Lower than RM threshold
B Execution successful
B Execution failed

80

60 1

40

Percentage (%)

4,1’@,\ O 2° a\"d) oo AD 439\ 0066
A\ ¢ (\609 §1° g o & " @
& W QO g™ SN &
N . \\
o O L « e N
& o N o 5 WO o
.({\d*""\“ XX o Q¢
« N

Figure 4: Reward overview during the discovery process. Each action in AlphaResearch will obtain
3 kinds of reward: (1) idea scrapping due to a lower RM score than the threshold (2) idea execution
successes (3) idea execution fails.

demonstrate consistent improvement throughout the discovery process. presents two ex-
amples of the reward trend in AlphaResearch, where the execution-based reward initially grows
rapidly, then slowly plateaus for optimal performance seeking. This improvement trend emphasizes
the autonomous discovery ability of research agents.

The discovery of superhuman algorithms remains challenging for LLMs. As illustrated in
despite exhibiting continuous reward growth, AlphaResearch’s performance still under-
performs human researchers in 6 out of 8 problems. We initialize AlphaResearch with the best-
known solution from human researchers on “Littlewood polynomials* and “MSTD(n=30)“ prob-
lems, where AlphaResearch didn’t show an increase in execution-based rewards. This indicates that
current LLMs still struggle to consistently find better algorithms than human researchers.

4.3 ABLATIONS AND ANALYSIS

Execution-only agent against AlphaResearch.
To compare AlphaResearch with execution-only

agents, we utilize AlphaResearch-RM-7B to eval- 035 Executiononly = _—
uate the novelty of ideas generated by the 0.30 1 AlphaResearch
execution-only agent and ideas produced by Al-
phaResearch. As illustrated in the ideas _ **°]
generated by AlphaResearch generally achieve £ 0201
higher scores than execution-only research agents. % os]
This illustrates that AlphaResearch tends to gener- &
ate better ideas to get higher external rewards, thus 0.101 \\
facilitating a more effective research optimization 0.05 \\
process. \
0.00 -
3 4 5 6 7 8

Analysis of the discovery process. We analyze
the reward distribution in AlphaResearch discov-
ery process. As shown in|Figure 4] approximately .)
30%~40% of newly proposed ideas fall below the Figure 3: The idea comparison between the
RM threshold and are thus discarded. The remain- €Xecution-only research agent and AlphaRe-
ing ideas are executed, with the success rate of ex- S¢arch, where AlphaResearch-RM-7B is used.
ecution largely depending on the inherent charac- This is done betyveen the full dlStl’lbuthIl.Of all
teristics of the problems. For example, the exe- 1000 generated ideas from both agents without

cution success rate on “Packing Circles” problem filtering.

Score by AlphaResearch-RM-7B

Under review as a conference paper at ICLR 2026

is 28.9%, whereas it reaches 51.7% on the “Third

Autocorrelation Inequality” problem. il-

lustrates the execution-based rewards for these two examples in AlphaResearch. Despite the sub-
stantial variations in execution success rates, the execution-based rewards in both cases exhibit a
consistent increasing trend. These findings demonstrate the interactions between LLM-based au-
tonomous research agents and real-world environments.

w/o AlphaResearch-RM-7B 48 %) B Execution successful

Lower than RM threshold

5 Execution failed
w/ AlphaResearch-RM-7B (37.8%)

Feedback from AlphaResearch Environment

Figure 5: The impact of real-world peer review environment on execution results. AlphaResearch-
RM-7B filters 151 bad ideas, where 108 ideas fail to execute and 43 are successful.

The impact of real-world peer-review environment. To assess the effectiveness of reward from
a simulated real-world peer-view environment, we ablate AlphaResearch-RM-7B at the first 400
iterations on “Packing Circles” problem. presents the execution results of w/ and w/o
AlphaReasearch-RM-7B during the discovery process. Compared to the baseline without RM,
AlphaResearch-RM-7B successfully filtered 151 ideas below the threshold. This process yielded
108 correct rejections of execution failures while making 43 erroneous rejections of viable ideas.
AlphaResearch attained an accuracy of 71.5% (108/151), a result that aligns closely with its per-
formance on the AlphaResearch-RM test set, as shown inThis outcome effectively demon-
strates the model’s generalization capabilities and the efficacy of incorporating feedback from a
simulated real-world peer-review environment.

4.4 CASE STUDY

We select the successful example from AlphaResearch to better understand the discovery process.
We’ll consider the problem “Packing Circles” where the goal is to pack n disjoint circles inside a
unit square so as to maximize the sum of their radii, shown in [Figure 6] We first initialize AlphaRe-
search with an original research proposal and a related program that returns a list of circles (z, y,)
as output, as shown in Appendix [[4] The verification program first employs verify_circles
function to check if the outputs of the initial program meet the problem constraints (e.g., all circles
are inside a unit square) and evaluate function to output the sum of their radii. The metadata,
including: (1) research ideas, (2) programs, (3) execution results, are subsequently preserved as
candidates which represent the end of one step. At the next step, AlphaResearch will sample from
the candidate pool and generate a new idea to improve the research proposals from the sampled
metadata. After generating the new research ideas, AlphaResearch will further generate a patch to
modify the existing program if the idea obtains a positive score from AlphaResearch-RM. The new
program is then evaluated by the same verification program, thereby generating new metadata. We
select the best program and idea as the final solution of AlphaResearch in this iterative process.

5 RELATED WORK

LLMs for New Ideas. Several recent works explored methods to improve research idea genera-
tion, such as iterative novelty refinement (Wang et al.,[2024a}; Baek et al.|[2024). These works focus
on improving the research idea over vanilla prompting but critically miss an effective verification
method. To promote more reliable Al-generated research ideas, many studies have proposed solu-
tions from different perspectives, such as comparisons with any human expert (Si et al., 2024]), using
LLMs for executing experiments by generating code with human-curated research problems (Huang
et al., 2024; Tian et al., 2024)), and executing LLM-generated research ideas with LLM-generated
programs (Li et al., [2024; [Lu et al., 2024} |Aygiin et al., [2025). These works either use automatic
program evaluation or a misaligned LLM evaluator method, which presents a challenge for their
scalability to real-world advanced algorithm discovery. Our AlphaResearch presents a more fea-
sible direction by combining program execution with RM training from real-world peer-reviewed
research records.

Under review as a conference paper at ICLR 2026

Initial Research Idea

The program presents a computational approach to the circle packing problem within a unit
square, aiming to maximize the sum of radii for a given number of circles. The pack_circles
function initiates a structured placement of 26 circles: one at the center, eight in an inner ring,
and sixteen in an outer ring. While this initial arrangement is a predefined pattern, it serves as
afoundation for further optimization. The core of the algorithm lies in the compute_max_radii
function, which iteratively determines the largest possible radius for each circle. This is
achieved by first constraining radii based on proximity to the unit square's boundaries and
then adjusting them to prevent overlap between any pair of circles. Overlapping circles have
their radii proportionally scaled down to ensure non-intersection, effectively pushing them to
ajust-touching state. The final output provides the optimized centers, radii, and the total sum
of radii for the packed configuration, demonstrating a method for generating dense circle
arrangements within a confined space.

Initial Program
tmp/packing_circles/initial_program.py
def pack_circles(n = 26):
Construct a specific arrangement of 26 circles in a unit square
that attempts to maximize the sum of their radii
.r“eturn sum_radii, circles
def compute_max_radii(centers):

Compute the maximum possible radii for each circle position
such that they don't overlap and stay within the unit square."""...

Verification Program
tmp/packing_circles/evaluator.py

def verify_circles(circles):
"""Checks that the circles are disjoint and lie inside a unit square. """

def evaluate(program_path: str = "results/initial_program.py"):
Evaluate the pack_circles function from the given program file

Returns the total radius sum if valid, otherwise raises an exception.

return {"pack_result_26": total_r_26}

Execution Results
{"pack_result_26": 0.864}

New Idea Generation

winstruction

You are a research advisor tasked with improving research proposals.

Your goal is to generate a new research proposal that builds upon the current research idea
while addressing its limitations and incorporating insights from successful approaches.
wMetaData

Current Research Idea

The program presents a computational approach to the circle packing problem within a unit
square, aiming to maximize the sum of radii for a given number of circles.

Current Program

““python

def pack_circles(n = 26):

Construct a specific arrangement of 26 circles in a unit square
that attempts to maximize the sum of their radii

Current Metrics
packing_result_26=0.864

Program Generation

wlnstruction

You are an expert software developer tasked with iteratively improving a codebase.

Your job is to analyze the current program and suggest improvements based on feedback
from previous attempts.Focus on making targeted changes that will increase the program's
performance metrics.

‘wMetaData

Current Research Idea

The program presents a computational approach to the circle packing problem within a unit
square, aiming to maximize the sum of radii for a given number of circles.

Current Program

“python

def pack_circles(n = 26):

Construct a specific arrangement of 26 circles in a unit square
that attempts to maximize the sum of their radii

##H# Current Metrics

packing_result_26=0.864

New Research Idea

We propose a novel computational framework to improve the dense packing of n
variable-radius circles within a unit square, targeting maximization of the total sum of radii.
Our approach addresses key limitations in existing methods—namely, rigid initialization
patterns, local-only radius adjustment, and O(n?) pairwise scaling...

wFormat

You MUST use the exact SEARCH/REPLACE diff format shown below to indicate changes:
<<<<<<< SEARCH

Original code to find and replace (must match exactly)

New replacement code
>>>>>>>REPLACE

Figure 6: We show an example of a formatted task of AlphaResearch.

LLMs for Code Generation. In autonomous research agents, code generation serves as a funda-
mental step. Previous models (Guo et all, 2024} [Yu et al 2023}, [Hui et al 2024) and benchmarks
(Chen et al| [2021}; [Yu et all, [2025) for code generation are in a longstanding pursuit of synthesizing
code from natural language descriptions. SWE-Bench (Jimenez et all, [2024)), PaperBench
(2025), MLE-Bench introduces the problems in real-world agentic coding.
Many studies on SWE-Bench have greatly contributed to the emergence of coding agents like SWE-
Agent (Yang et al [2024) and OpenHands (Wang et all, [2025). These agent frameworks greatly

facilitate the training of agentic LLMs like Kimi-K2 (Team et al.|[2025) and GLM-4.5 (Zeng et al.|
2025)). The surge of these models on SWE-Bench underscores a critical need to reassess the future

directions of coding agent research. Our AlphaResearchComp benchmark shows that testing LLMs
on open-ended research for algorithm discovery is a promising direction to adapt language models
to real-world tasks.

6 CONCLUSION

We present AlphaResearch, an autonomous research agent that synergistically combines new idea
generation with program-based verification for novel algorithm discovery. Our approach demon-
strates the potential of employing LLLM to discover unexplored research areas, enabling language
models to effectively tackle complex open-ended tasks. We construct AlphaResearchComp, includ-
ing 8 open-ended algorithmic problems, where AlphaResearch outperforms human researchers in
2/8 algorithmic problems but lags behind in the remaining 6 problems.which demonstrates the re-
maining challenges of autonomous algorithm discovery for future research.

Under review as a conference paper at ICLR 2026

REFERENCES

Eser Aygiin, Anastasiya Belyaeva, Gheorghe Comanici, Marc Coram, Hao Cui, Jake Garrison, Re-
nee Johnston Anton Kast, Cory Y McLean, Peter Norgaard, Zahra Shamsi, et al. An ai system to
help scientists write expert-level empirical software. arXiv preprint arXiv:2509.06503, 2025.

Jinheon Baek, Sujay Kumar Jauhar, Silviu Cucerzan, and Sung Ju Hwang. ResearchAgent: Iter-
ative Research Idea Generation over Scientific Literature with Large Language Models. ArXiv,
abs/2404.07738, 2024.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, et al. Mle-bench: Evaluating machine learn-
ing agents on machine learning engineering. arXiv preprint arXiv:2410.07095, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming—
the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Sikun Guo, Amir Hassan Shariatmadari, Guangzhi Xiong, Albert Huang, Myles Kim, Corey M
Williams, Stefan Bekiranov, and Aidong Zhang. Ideabench: Benchmarking large language mod-
els for research idea generation. In Proceedings of the 31st ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining V. 2, pp. 5888-5899, 2025.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. MLAgentBench: Evaluating Language
Agents on Machine Learning Experimentation. In ICML, 2024.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen?2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-
mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamina-
tion free evaluation of large language models for code. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
chfJJYC31iLl

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=VTF8yNQM66.

Robert Tjarko Lange, Yuki Imajuku, and Edoardo Cetin. Shinkaevolve: Towards open-ended and
sample-efficient program evolution. arXiv preprint arXiv:2509.19349, 2025.

Ruochen Li, Teerth Patel, Qingyun Wang, and Xinya Du. MLR-Copilot: Autonomous Machine
Learning Research based on Large Language Models Agents. ArXiv, abs/2408.14033, 2024.

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia LI, Mengzhou
Xia, Danqgi Chen, Sanjeev Arora, and Chi Jin. Goedel-prover: A frontier model for open-source
automated theorem proving. In Second Conference on Language Modeling, 2025. URL https:
//openreview.net/forum?id=x2y912HD]D.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scien-
tist: Towards fully automated open-ended scientific discovery. arXiv preprint arXiv:2408.06292,
2024.

10

https://openreview.net/forum?id=chfJJYC3iL
https://openreview.net/forum?id=chfJJYC3iL
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=x2y9i2HDjD
https://openreview.net/forum?id=x2y9i2HDjD

Under review as a conference paper at ICLR 2026

Alexander Novikov, Ngan Vi, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt
Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas Mehrabian,
et al. Alphaevolve: A coding agent for scientific and algorithmic discovery. arXiv preprint
arXiv:2506.13131, 2025.

OpenAl Gpt-5. 2025. URL https://openai.com/index/introducing—gpt-5/,

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity’s last exam. arXiv preprint
arXiv:2501.14249, 2025. URL https://arxiv.org/abs/2501.14249.

Asankhaya Sharma. Openevolve: an open-source evolutionary coding agent, 2025. URL https:
//github.com/codelion/openevolvel

Chenglei Si, Diyi Yang, and Tatsunori Hashimoto. Can llms generate novel research ideas. 2024.

Chenglei Si, Tatsunori Hashimoto, and Diyi Yang. The ideation-execution gap: Execution outcomes
of llm-generated versus human research ideas. arXiv preprint arXiv:2506.20803, 2025.

Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern Chan, Leon Maksin, Rachel
Dias, Evan Mays, Benjamin Kinsella, Wyatt Thompson, et al. Paperbench: Evaluating ai’s ability
to replicate ai research. arXiv preprint arXiv:2504.01848, 2025.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv
preprint arXiv:2507.20534, 2025.

Minyang Tian, Luyu Gao, Shizhuo Dylan Zhang, Xinan Chen, Cunwei Fan, Xuefei Guo, Roland
Haas, Pan Ji, Kittithat Krongchon, Yao Li, Shengyan Liu, Di Luo, Yutao Ma, Hao Tong, Kha
Trinh, Chenyu Tian, Zihan Wang, Bohao Wu, Yanyu Xiong, Shengzhu Yin, Min Zhu, Kil-
ian Lieret, Yanxin Lu, Genglin Liu, Yufeng Du, Tianhua Tao, Ofir Press, Jamie Callan, E. A.
Huerta, and Hao Peng. SciCode: A Research Coding Benchmark Curated by Scientists. ArXiv,
abs/2407.13168, 2024.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476-482, 2024.

Qingyun Wang, Doug Downey, Heng Ji, and Tom Hope. Scimon: Scientific inspiration machines
optimized for novelty. In Proceedings of the 62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 279-299, 2024a.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for Al soft-
ware developers as generalist agents. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=0Jd3ayDDoF,

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weim-
ing Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang,
Rongqi Fan, Xiang Yue, and Wenhu Chen. MMLU-pro: A more robust and challenging multi-
task language understanding benchmark. In The Thirty-eight Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2024b. URL https://openreview.
net/forum?id=y10DM6R2r3.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,

and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
Advances in Neural Information Processing Systems, 37:50528-50652, 2024.

11

https://openai.com/index/introducing-gpt-5/
https://arxiv.org/abs/2501.14249
https://github.com/codelion/openevolve
https://github.com/codelion/openevolve
https://openreview.net/forum?id=OJd3ayDDoF
https://openreview.net/forum?id=y10DM6R2r3
https://openreview.net/forum?id=y10DM6R2r3

Under review as a conference paper at ICLR 2026

Jiayi Ye, Yanbo Wang, Yue Huang, Dongping Chen, Qihui Zhang, Nuno Moniz, Tian Gao, Werner
Geyer, Chao Huang, Pin-Yu Chen, et al. Justice or prejudice? quantifying biases in llm-as-a-
judge. arXiv preprint arXiv:2410.02736, 2024.

Zhaojian Yu, Xin Zhang, Ning Shang, Yangyu Huang, Can Xu, Yishujie Zhao, Wenxiang Hu, and
Qiufeng Yin. Wavecoder: Widespread and versatile enhancement for code large language models
by instruction tuning. arXiv preprint arXiv:2312.14187, 2023.

Zhaojian Yu, Yilun Zhao, Arman Cohan, and Xiao-Ping Zhang. HumanEval pro and MBPP pro:
Evaluating large language models on self-invoking code generation task. In Wanxiang Che, Joyce
Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Findings of the Associa-
tion for Computational Linguistics: ACL 2025, pp. 13253-13279, Vienna, Austria, July 2025.
Association for Computational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.
findings-acl.686. URL https://aclanthology.org/2025.findings—acl.686/.

Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie, Cunxiang Wang,
Da Yin, Hao Zeng, Jiajie Zhang, et al. Glm-4.5: Agentic, reasoning, and coding (arc) foundation
models. arXiv preprint arXiv:2508.06471, 2025.

12

https://aclanthology.org/2025.findings-acl.686/

Under review as a conference paper at ICLR 2026

APPENDIX CONTENTS

I TInfroducfion| 1
2 AlphaResearch| 3
DIOVerviewl . . . o o oot 3
B2 ACHONS - - e e 3
23 Environmentl. e 4
2.3.1 Reward from Real-world Research Records| 4

2.3.2 Reward from Program-based Execution| 4

|3 AlphaResearchComp| 5
6
/] SCLUP| + v v e 6
B2 TRESUITE. - v o o o e e 6
4.3 Ablations and Analysis| oo o 7

14 C Study| . . 8

5 Related Work 8
6 Conclusion 9
A~ Comparison with OpenEvolve| 15
B Experiment Cosi] 16
mpact of different S 16

[D Comparison with ShinkaEvolve| 16
[E Case Study during Discovery Process| 18
[The Use of Large Language Models| 21

21

TP - 23
I__Curated Problems and Human-Best Valuesl| 24
. Spherical Code (S*, n =30). 24
.2 Littlewood Polynomuals.|, 26
.3 Sum vs. Difterence Sets (MSTD).| 28
L4 Packing Circle in a Square (variableradi).|. 29

13

Under review as a conference paper at ICLR 2026

IL.5 Minimizing Max/Min Distance Ratio (d =2,n =16)| 34
.6 Autoconvolution Peak Minimization (L*°).| 36
I’/ "Third Autocorrelation Inequality.| o L. 39
I.8 Third-Order Autocorrelation Inequality (Cs Upper Bound)[. 39

14

Under review as a conference paper at ICLR 2026

A COMPARISON WITH OPENEVOLVE

Auto-Convolution Peak Minimization

= Minizing Ratio of max_min_distance =
@]
el Qo
L'0.0751 1 +! —— OpenEvolve
w
ot 0,070 |—4 9., AlphaResearch
C C
© ©
€ 0.065 1 €
o S 1.1
£ =
@ 0.060 9]
o (a1
€ € 1.0
0.055
S £
5 0.0501 — OpenEvolve o)
= AlphaResearch =091
< P <
+20.045 , , . . 2 . ; ; ;
] 0 200 400 600 800 1000 @ O 200 400 600 800 1000
o Iteration o Iteration
= Third Autocorrelation Inequality = Spherical Code
)]
o Q
o 0. o
o o 0.66 -
g 051 g
o © J
0.64
€ 04l £
= L
— | - 0.62 -
& 0.3 g
E o] E 060
= =,
S 0.1 — OpenEvolve S ¢sg4 ——— QOpenEvolve
o o
= AlphaResearch = AlphaResearch
+ 00- T T T T + T T T T
g o 200 400 600 800 1000 @ 0 200 400 600 800 1000
@ Iteration o Iteration
= Littlewood Polynomials = MSTD
]]
o Q
. —— OpenEvolve ! —— OpenEvolve
< 0.0325 1 = 1 0s-
ot AlphaResearch g~ AlphaResearch
€ 0.0320 1 c
® ® 1.06 -
£ £
5 003151 S
s 5 104
a 0.0310 A a
€ S -
£ 0.0305 1 c Loz
B =
S S
S 0.0300 S 1,001
< <
+20.0295 2 . . ; ;
Q 0 200 400 600 800 1000 @ 0 200 400 600 800 1000
@ Iteration @ Iteration

Figure 7: Comprison with OpenEvolve on 6/8 failure modes of AlphaResearchComp.

presents the comparison of AlphaResearch with OpenEvolve, highlghting the following
observations: 1. Among the 8 problems, AlphaResearch outperforms the results of human researcher
and AlphaEvolve (Coding-only) on packing circles (n=26, n=32) problems, which demonstrate the
potential of accelerating human-level algorithm discovery with language models. 2. We add the
experiment results of the other 6 problems in Figure 7 of Appendix A. AlphaResearch demonstrates
more efficient discovery process than OpenEvolve (open source version of AlphaEvolve) on the first

15

Under review as a conference paper at ICLR 2026

4 tasks, which shows the effectiveness of our dual environments for research-based agent. 3. On last
2 problems (littlewood polynomials, MSTD), Both AlphaResearch and OpenEvolve fail to improve
the "out-of-the-shelf" algorithm performance, which reveals the limitation of current long-horizon
agents where they are not able to explore the search space efficiently on out-of-the-shelf solutions.

B EXPERIMENT COST

In this section, we present the experiment parameters (iterations,computational cost) required to
reach the best solution for each on 8 tasks of AlphaResearchComp.

Table 5: Experiment Parameters of AlphaResearch .

Problem Iterations Cost per iteration (dollar)
packing circles (n=26) 4768 0.013
packing circles (n=32) 4768 0.013
minizing max-min distance ratio (d=2, n=16) 4400 0.017
third autocorrelation inequality 1366 0.012
autoconvolution peak minimization (upper bound) 979 0.013
littlewood polynomials (n=512) 2233 0.011
MSTD (n=30) 2826 0.011
spherical code 1132 0.015

C IMPACT OF DIFFERENT LLMS

In order to compare the impact of different LLMs in AlphaResearch, we use GPT-5 and o4-mini
to run AlphaResearch for 200 steps in "The Autocorrelation Inequality” problem. As illustrate in
AlphaResearch (GPT-5) reaches high performance significantly faster than o4-mini in the
early stages of discovery. However, in the later stages, the two models perform comparably, which
suggests that their underlying capabilities are close on algorithm discovery task.

Third Autocorrelation Inequality

o
(<))
1

o
w
L

o
S
L

©
N
L

—— AlphaResearch (04-mini)
—— AlphaResearch (GPT-5)

o
)
!

o
o
1

25 50 75 100 125 150 175 200
Iteration

Best Algorithm Performance (r_best)
&
o 1

Figure 8: Comparison between different frontier LLMs in AlphaResearch.

D COMPARISON WITH SHINKAEVOLVE

As shown in[Figure 9] we compare AlphaResearch, OpenEvolve [2023)) and ShinkaEvolve
(Cange et al., [2025) on packing circles (n=26) problem at the first 500 steps for simplicity. Al-

16

Under review as a conference paper at ICLR 2026

Packing Circles (n=26)

2.25 A1
2.00 A
g
o 1.751
O
0
g 1.50 -
g
& 1.25
1.00 1 = ShinkaEvolve
= QOpenEvolve
0.75 A = AlphaResearch
0 100 200 300 400 500

Steps

Figure 9: Comparison of OpenEvolve (with program-based reward), ShinkaEvolve (with program-
based reward) and AlphaResearch (with program-based and peer-review reward). We run three
agents on Packing Circles (n=26) problems. AlphaResearch achieves better performance than others.

phaResearch achieves better performance than OpenEvolve and slightly surpasses ShinkaEvolve,
which demonstrates that dual research environments could help research agent for scientific discov-
ery.

17

Under review as a conference paper at ICLR 2026

E CASE STUDY DURING DISCOVERY PROCESS

In the rejected pair from checkpoint 634, the revised draft 4f4c7847 is effectively identical to its
parent e436¢c26a. Notably, this is found in the later period of the discovery process (Round 632-
633). Aside from inflating Genetic Algorithm (GA) hyperparameters (e.g., population = 300 — 500,
generations = 40 — 120) and adding an optional differential_evolution branch, the entire pipeline
above find_better_c3_upper_bound is byte-for-byte the same. Crucially, the core loop still calls
the undefined normalize_population, triggering the same NameError before any new logic can run.
Because this “revision” neither fixes the blocking bug nor implements the promised multi-phase
CMA-ES/surrogate/SOS pipeline, it constitutes only a cosmetic variant rather than a substantive
new direction.

Problem : Third Autocorrelation Inequality (e436c26a)
Idea score by AlphaResearch-RM-7B: 6.67.

Research ideas

Title: A Scalable, Certified Pipeline for Third-Order Autocorrelation Optimization via
Multi-Fidelity Bayesian Surrogates and Auto-Differentiable Mesh Adaptation

Abstract: We introduce a unified framework that overcomes the brittle performance (error =
1.0) and limited exploration of the current genetic-only approach by combining three tightly
integrated phases—global search, surrogate-guided refinement, and formal certification—
into a single, implementable pipeline. Key innovations include:

1. Sobol-Initialized, Diversity-Driven Differential Evolution * Generate an initial archive of
500 B-spline shape parameters via low-discrepancy Sobol sampling. * Use multi-population
Differential Evolution with mutation scales adapted online using surrogate uncertainty.

2. Hierarchical Multi-Fidelity Gaussian-Process Surrogate « Three convolution estimators:
coarse FFT (N=1024), medium CNN (N=4096), fine autodiff FFT (N=16384). « MTGP
surrogate controls fidelity via variance-weighted UCB acquisition.

3. Differentiable Trust-Region Local Refinement ¢ L-BFGS-B on B-spline knots/RBF
weights with autodiff FFT gradients. ¢ Adaptive knot insertion driven by (f*f) peaks.

4. Sparse Sum-of-Squares Certification ® Chebyshev discretization + interval arithmetic to
certify final C3 bound with le-6 rigor.

Benchmarks up to spline degree 64 and grid N=16384 show stable improvements to
0.60-0.65 with full certification.

\. .

Code implementation of the above idea:

Code extracted from file e436c26a (full content)
import numpy as np
try:
from numpy.fft import next_fast_len
except ImportError:
def next_fast_len(n):
Fallback to next power of two which is usually fast
return 1 << (n - 1).bit_length()

def calculate_c3_upper_bound (height_sequence) :

N = len (height_sequence)

delta_x =1 / (2 = N)

Cache padded lengths to avoid recomputing next_fast_len repeatedly

if not hasattr (calculate_c3_upper_bound, "_pad_cache"):
calculate_c3_upper_bound._pad_cache = {}

pad_cache = calculate_c3_upper_bound._pad_cache

if N not in pad_cache:
pad_cache[N] = next_fast_len(2 x N - 1)

padded = pad_cache[N]

Compute unit-mass norm squared

integral_f = np.sum(height_sequence) x delta_x

if integral_f < le-12: # early exit if near zero
return 0.0

integral_sq = integral_f x integral_f

FFT-based convolution for O(N log N)
H = np.fft.rfft (height_sequence, n=padded)

18

Under review as a conference paper at ICLR 2026

conv_vals = np.fft.irfft (H * H, n=padded) [:2 * N - 1] * delta_x
max_conv_val = np.max (conv_vals)

return max_conv_val / integral_sqg

def genetic_algorithm(population_size, num_intervals, generations, mutation_rate,
crossover_rate) :

population = np.random.rand(population_size, num_intervals) x 2
best_solution None
best_fitness = 0.0

for gen in range (generations):

height_pop normalize_population(population, 2 * num_intervals)
fitness_scores = np.array([calculate_c3_upper_bound(h) for h in height_pop])
current_best_idx = np.argmax(fitness_scores)
if fitness_scores|[current_best_idx] > best_fitness:

best_fitness = fitness_scores[current_best_idx]

best_solution = population[current_best_idx].copy ()

indices = np.random.randint (0, population_size, size=(population_size, 2))
comp_scores = fitness_scores[indices]
winners = indices[np.arange (population_size), np.argmax (comp_scores, axis=1l)]

new_population = population[winners].copy ()

for 1 in range (0, population_size, 2):
if np.random.rand() < crossover_rate:

parentl = new_population([i]

parent2 = new_population[i+1]

crossover_point = np.random.randint (1, num_intervals - 1)

new_population[i] = np.concatenate ((parentl[:crossover_point],
parent2[crossover_point:]))

new_population[i+1l] = np.concatenate ((parent2[:crossover_point],

parentl[crossover_point:]))

for 1 in range (population_size):
if np.random.rand() < mutation_rate:
mutation_point = np.random.randint (num_intervals)
new_population[i, mutation_point] += np.random.normal (0, 0.1)

new_population[i, mutation_point] = np.clip(new_population([i, mutation_point],
-2, 2)
population new_population

height_best = normalize_population (best_solution[np.newaxis, :], 2 x num_intervals) [0]
return height_best

def find_better_c3_upper_bound() :

NUM_INTERVALS

=4
POPULATION_SIZE =

2
GENERATIONS = 10
MUTATION_RATE 0.1

CROSSOVER_RATE = 0.8

height_sequence_3 = genetic_algorithm (POPULATION_SIZE, NUM_INTERVALS, GENERATIONS,
MUTATION_RATE, CROSSOVER_RATE)

return height_sequence_3

Problem : Third Autocorrelation Inequality (4f4c7847)
Idea score by AlphaResearch-RM-7B: 5.67.

19

Under review as a conference paper at ICLR 2026

Research ideas

Title: A Robust, Multi-Phase Pipeline for Certified Third-Order Autocorrelation Max-
imization via Hybrid Evolutionary Search, Hierarchical Neural Surrogates, and Auto-
Differentiable Refinement

Abstract: We present a novel, four-stage framework that fixes the brittle, negative-error
behavior (error = 10.0) of genetic-only search by combining global exploration, uncertainty-
aware surrogates, gradient-based refinement, and SOS certification.

1. Hybrid Global Exploration ¢ Sobol-seeded CMA-ES enhanced with an actor-critic mod-
ule to adapt mutation covariance. ¢ Constraint-aware resampling ensures valid normalized
height sequences.

2. Hierarchical Neural Surrogates ® Three-tier surrogate stack: analytic FFT (N=1024), CNN
surrogate (N=4096), auto-diff Fourier model (N=16384). * Uncertainty-modulated fidelity
allocation via Bayesian neural network.

3. Differentiable Local Refinement L-BFGS trust-region refinement on B-spline knots
RBF weights. * Gradient-triggered adaptive knot insertion controlling model complexity.

4. Sparse Sum-of-Squares Certification * Chebyshev discretization + interval arithmetic for
rigorous C3 bound. ¢ Full-pipeline automation ensures reliable certification.

Experiments on degrees up to 128 and grid sizes to 65536 yield C30.75-0.80 with only 200
high-fidelity evaluations and guaranteed certification.

Code implementation of the above idea:

Code extracted from file 4f4c7847 (full content)
import numpy as np
try:
from numpy.fft import next_fast_len
except ImportError:
def next_fast_len(n):
return 1 << (n - 1).bit_length()

def calculate_c3_upper_bound (height_sequence) :

N = len (height_sequence)

delta_x =1 / (2 = N)

if not hasattr (calculate_c3_upper_bound, "_pad_cache"):
calculate_c3_upper_bound._pad_cache = {}

pad_cache = calculate_c3_upper_bound._pad_cache

if N not in pad_cache:
pad_cache[N] = next_fast_len(2 = N - 1)

padded = pad_cache[N]

integral_f = np.sum(height_sequence) x delta_x
if integral_f < le-12:

return 0.0
integral_sqg = integral_f x integral_f

H = np.fft.rfft (height_sequence, n=padded)
conv_vals = np.fft.irfft (H » H, n=padded) [:2 * N - 1] * delta_x
max_conv_val = np.max(conv_vals)

return max_conv_val / integral_sqg

def genetic_algorithm(population_size, num_intervals, generations, mutation_rate,
crossover_rate) :

population = np.random.rand(population_size, num_intervals) 2 - 1

best_solution = None
best_fitness = 0.0

for gen in range (generations):

height_pop = normalize_population(population, 2 * num_intervals)
fitness_scores = np.array([calculate_c3_upper_bound(h) for h in height_pop])

current_best_idx = np.argmax(fitness_scores)

if fitness_scores|[current_best_idx] > best_fitness:
best_fitness = fitness_scores|[current_best_idx]
best_solution = population[current_best_idx].copy ()

indices = np.random.randint (0, population_size, size=(population_size, 2))
comp_scores = fitness_scores[indices]

20

Under review as a conference paper at ICLR 2026

winners = indices[np.arange (population_size), np.argmax (comp_scores, axis=1l)]
new_population = population[winners].copy ()

for 1 in range (0, population_size, 2):
if np.random.rand() < crossover_rate:

parentl = new_population([i]

parent2 = new_population[i+1]

crossover_point = np.random.randint (1, num_intervals - 1)

new_population[i] = np.concatenate ((parentl[:crossover_point],
parent2[crossover_point:]))

new_population[i+1l] = np.concatenate ((parent2[:crossover_point],

parentl[crossover_point:]))

for 1 in range (population_size):
if np.random.rand() < mutation_rate:

mutation_point = np.random.randint (num_intervals)

new_population[i, mutation_point] += np.random.normal (0, 0.1)

new_population[i, mutation_point] = np.clip(new_population([i, mutation_point],
-2, 2)

population = new_population

height_best = normalize_population (best_solution[np.newaxis, :], 2 x num_intervals) [0]
return height_best

def find_better_c3_upper_bound() :

NUM_INTERVALS = 8
POPULATION_SIZE = 100
GENERATIONS = 200
MUTATION_RATE = 0.2
CROSSOVER_RATE = 0.9

try:
from scipy.optimize import differential_evolution
bounds = [(-2, 2)] * NUM_INTERVALS
result = differential_evolution(
lambda x: —-calculate_c3_upper_bound (
normalize_population(x[np.newaxis, :], 2 % NUM_INTERVALS) [0
)
bounds,
maxiter=GENERATIONS,
popsize=max (1, POPULATION_SIZE // 10),
tol=le-6
)
height_sequence_3 = normalize_population(result.x[np.newaxis, :], 2 %= NUM_INTERVALS) [0
except ImportError:
height_sequence_3 = genetic_algorithm(
POPULATION_SIZE, NUM_INTERVALS, GENERATIONS, MUTATION_RATE, CROSSOVER_RATE
)

return height_sequence_3

F THE USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, we utilized large language models (LLMs) for grammar
checking and writing suggestions to enhance the readability and clarity of the content.

G EXAMPLES

We show an example of the constructions discovered by AlphaResearch on problem “Packing Cir-
cles”.

AlphaEvolve
packing_circles_alphaevolve = np.array([[0.09076163, 0.40381803, 0.090761620923837],
[0.07310993, 0.92689178, 0.07310821268917801], [0.08745017, 0.22570576,

0.087381421261857], [0.24855246, 0.30880277, 0.093428060657193], [0.4079865, 0.06300614,
0.063006133699386], [0.47646318, 0.90136179, 0.09863820013617901], [0.89604966,
0.10309934, 0.10309932969006601], [0.9066386, 0.68096117, 0.09336139066386], [0.08962002,
0.76509474, 0.0895289910471], [0.06973669, 0.06965159, 0.06965158303484101],
[0.40979823, 0.21756451, 0.09156283084371601], [0.25742466, 0.88393887,
0.11606111839388701], [0.09064689, 0.58506214, 0.090482500951749], [0.90294698
0.30231577, 0.09623644037635501], [0.57265603, 0.10585396, 0.105853949414604],

21

Under review as a conference paper at ICLR 2026

[0.74007588, 0.40129314, 0.09435083056491601], [0.57539962, 0.71183255,
0.115160168483982], [0.7367635, 0.21592191, 0.09104997089500201], [0.41096972,
0.40263617, 0.093512520648747], [0.88664452, 0.88667032, 0.113317128668286], [0.57582722,
0.49961748, 0.09705531029446801], [0.24962585, 0.49417195, 0.09194421080557799],
[0.90546338, 0.49309632, 0.094507120549287], [0.67381348, 0.90149423,
0.09850576014942301], [0.24310147, 0.1077195, 0.10771948922805], [0.40815297, 0.5886157,
0.09248833075116601], [0.24737889, 0.6771266, 0.090994980900501], [0.75801377, 0.7532924,
0.07192969280703], [0.73526642, 0.06243992, 0.062439303756069], [0.57415412, 0.30715219,
0.095403150459684], [0.39239379, 0.75259664, 0.07223814277618501], [0.7439361,
0.58879735, 0.093166630683336]]

AlphaResearch

packing_circles_alpharesearch = np.array([[(0.1115677319034151, 0.11156773191787371,
0.11156438489140026), (0.09380224787136374, 0.3161654253705352, 0.09379943380606216),
(0.09485964915877172, 0.5048217088596118, 0.09485680337610973), (0.09657322554702913,
0.6962443020287629, 0.09657032835808858), (0.10365512530384222, 0.8963448746980195,
0.10365201565567386), (0.3334956594919712, 0.09664441783072292, 0.0966415184920332),
(0.26448615440016093, 0.9376113341122044, 0.06238679422590162), (0.5287192731314015,
0.09859146596680078, 0.09858850822808951), (0.591325020569507, 0.9366833118077788,
0.0633147886877468), (0.7427106948954978, 0.11611889563206494, 0.11611541209023483),
(0.7566639864477509, 0.8920585771994192, 0.1079381845606288), (0.9269317750270191,
0.07306822497789416, 0.07306603293080358), (0.9105741716090636, 0.23473376300222965,
0.08942314561430993), (0.9094700615258342, 0.41468336419923396, 0.09052722258939731),
(0.9124275486288124, 0.7738960294683863, 0.08756982419268892), (0.9302276007184027,
0.9302276007259072, 0.06977030612132157), (0.5931627035790205, 0.4107363306659128,
0.09216300786888813), (0.5896628759126524, 0.5965222415947758, 0.09365298106148348),
(0.26303074890883915, 0.783747668079202, 0.09148238826692158), (0.42710033854875884,
0.28662965969327264, 0.1151473780101257), (0.7511102582575875, 0.5051558281448295,
0.09185177348783963), (0.4273023330525072, 0.8937703360976411, 0.10622647700018645),
(0.24372345356089029, 0.24143034678815986, 0.07371479291303436), (0.4260882762526937,
0.6918664604322906, 0.09567746779211372), (0.2572363869779693, 0.4085253312744954,
0.09392364829884896), (0.9094294608754079, 0.5957810763279916, 0.0905678220228201)
(0.42560864125756626, 0.49898110459434486, 0.09720528992590773), (0.7533817110763772,
0.32263902019589896, 0.09067643144615074), (0.5903729314333418, 0.7817733747765757,
0.09159665425215473), (0.7515568081174837, 0.6905957415401818, 0.09358581053778628),
(0.2605636694821685, 0.5973506902903994, 0.09492800518715086), (0.6095540558280068,
0.24805951545091487, 0.07133567304015336)11)

A collection of 32 disjoint circles: Radii: 2.937944526205518 o A collection of 32 disjoint circles: Radii: 2.9395203049320564

Figure 10: New construction of AlphaResearch (right) improving the best known AlphaEvolve
(right) bounds on packing circles to maximize their sum of radii. Left: 32 circles in a unit square
with sum of radii > 2.9379. Right: 32 circles in a unit square with sum of radii > 2.9395

22

Under review as a conference paper at ICLR 2026

H PROMPTS

[N T

e ® 9 o

[= K N U VO R SR

Prompt for New Program Generation

You are an expert software developer tasked with iteratively improving a codebase. Your job
is to analyze the current program and suggest improvements based on the current proposal
and feedback from previous round. Focus on making targeted changes that will increase the
program’s performance metrics.

Previous Proposal:

{previous proposal }

Previous Program:

{previous program}

Previous Performance Metrics:

{previous result}

Current Proposal

{proposal}

Task

Suggest improvements to the program that will lead to better performance on the specified
metrics.

You MUST use the exact SEARCH/REPLACE diff format shown below to indicate
changes:

<<<<<<< SEARCH

Original code to find and replace (must match exactly)

New replacement code

<<<<<<< REPLACE

Example of valid diff format:

<<<<<<< SEARCH
for i in range (m) :
for j in range(p):
for k in range(n):
C[i, Jj] += A[i, k] = B[k, 7J]

Reorder loops for better memory access pattern

for 1 in range (m) :
for k in range(n):
for j in range(p):
C[i, jl += A[i, k] = B[k, 7Jjl

>>>>>>> REPLACE

You can suggest multiple changes. Each SEARCH section must exactly match code in the
current program.

Be thoughtful about your changes and explain your reasoning thoroughly.

IMPORTANT: Do not rewrite the entire program - focus on targeted improvements.

23

Under review as a conference paper at ICLR 2026

Prompt for New Idea Generation

You are a research advisor tasked with evolving and improving research proposals. Your goal
is to generate a new research proposal that builds upon the current proposal while addressing
its limitations and incorporating insights from successful approaches.

Based on the following information, generate an improved research proposal:
Focus on:

1. Identifying weaknesses in the current approach based on performance metrics
2. Proposing novel improvements that could enhance performance

3. Learning from successful inspirations while maintaining originality

4. Ensuring the new proposal is implementable

- Current Proposal:

{proposal}

- Current Program:

{program}

- Current Metrics:

{results}

Please generate a new research proposal that:

1. Addresses the limitations shown in the current metrics

2. Incorporates insights from successful approaches

3. Proposes specific technical improvements

4. Maintains clarity and technical rigor

Return the proposal as a clear, concise research abstract.

Prompt for AlphaResearch-RM-7B

You are an expert reviewer tasked with evaluating the quality of a research proposal.

Your goal is to assign a score between 1 and 10 based on the proposal’s clarity, novelty,
technical rigor, and potential impact. Here are the criteria:

1. Read the following proposal carefully and provide a score from 1 to 10.

2. Score 6 means slightly higher than the borderline, 5 is slightly lower than the borderline.
Write the score in the \boxed{}.

{proposal}

I CURATED PROBLEMS AND HUMAN-BEST VALUES

We summarize the ten problems used in the ALPHARESEARCH benchmark. For each item we state
the objective, the current human-best value at the benchmark’s default parameters, and whether this
value is proved optimal or only best-known.

I.1 SPHERICAL CODE (52, n = 30).

Problem Description: Place n = 30 points on the unit sphere in R? to maximize the minimal
pairwise angle 0, .

Human Best: 0,,;, ~ 0.673651 radians (= 38.5971°).

24

Under review as a conference paper at ICLR 2026

Initial Proposal

Problem definition. Choose N = 30 points on the unit sphere S to maximize the mini-
mum pairwise angle

Omin = minarccos((p;,p;))-
1<
Constraints.
¢ Points are unit vectors (rows normalized).

e Metric iS 0p,;, in radians.

Optimization goal. Maximize 0,,;,. The evaluator returns {score, f,in, N, dimension},
with score = Oi,.
Best-known reference (for N = 30 on S?):

cos(0*) ~ 0.7815518750949873 = 0" =~ 0.6736467551690225 rad.

Reference table: Henry Cohn’s spherical codes data (https://cohn.mit.edu/
spherical-codes).

Best-known results (human).

 On S? (3D), small NV optima coincide with symmetric polyhedra (e.g., tetrahedron,
octahedron, icosahedron).

* For larger N, best codes come from numerical optimization; exact optimality is
only known in limited cases.

Algorithmic goal. Construct codes with larger 6,,;,,. The baseline seeds with symmetric
configurations and uses farthest-point max—min. Stronger methods include:

* Energy minimization,
* Projected gradient / coordinate descent,

¢ Stochastic max—min refinement.

Initial Program:

import numpy as np

def _normalize_rows (P):
nrm = np.linalg.norm(P, axis=1, keepdims=True)
nrm = np.maximum(nrm, le-12)
return P / nrm

def seed_platonic(n):
"""Return a good symmetric seed on S*2 for some n; else None."""

if n == 2: # antipodal
return np.array([[0,0,1],([0,0,-1]1], dtype=float)
if n == 3: # equilateral on equator
ang = 2*np.pi/3
return np.array([[1,0,0], [np.cos (ang),np.sin(ang),0], [np.cos (2xang),np.sin(2+ang),011],
dtype=float)
if n == 4: # tetrahedron
return _normalize_rows (np.array([([1,1,1],[1,-1,-1],(-1,1,-1],[-1,-1,1]], dtype=float))
if n == 6: # octahedron
return np.array(t(1,o0,01,(-1,0,01, (0,1,0], [0O,~-1,0], [0,0,1],[0,0,-1]], dtype=float)
if n == 8: # cube vertices
V = np.array([[sx,sy,sz] for sx in (-1,1) for sy in (-1,1) for sz in (-1,1)],

dtype=float)
return _normalize_rows (V)

if n == 12: # icosahedron (one realization)
phi = (l+np.sqgrt(5))/2
v =[]
for s in (-1,1):
v += [[0, s, phi], [0, s, -phi],[s, phi,0],[s, -phi,0],[phi,0, s],[-phi, 0, s]

V = np.array(V, dtype=float)
return _normalize_rows (V)

return None
def farthest_point_greedy(n, seed=None, rng=np.random.default_rng(0)):
wnn

Greedy max min on S$”2: start from seed, then add points that maximize min angle.

25

https://cohn.mit.edu/spherical-codes
https://cohn.mit.edu/spherical-codes

Under review as a conference paper at ICLR 2026

nnn

def random_unit (k) :
X = rng.normal (size=(k,3)); return _normalize_rows (X)

if seed is None:

P = random_unit (1) # start with one random point
else:
P = _normalize_rows (seed)

while len(P) < n:
generate candidates and pick the one with largest min angle to current set
C = random_unit (2000) # candidates per iteration (tune as needed)
cosines to existing points
cos = C @ P.T
min angle to set -> maximize this
min_ang = np.arccos (np.clip(np.max(cos, axis=1l), -1.0, 1.0))
idx = np.argmax (min_ang)
P = np.vstack ([P, Cl[idx:idx+1]])
return P

def main() :
n = 30
seed = seed_platonic(n)
pts = farthest_point_greedy(n, seed=seed, rng=np.random.default_rng(42))
print (f"n={n}, points={len(pts)}")
return pts
if __name__ == "__main_ ":
points = main(

np.save ("points.npy", points)

Ensure compatibility with evaluators that expect a global variable
try:

points # type: ignore[name-defined]
except NameError:

points = main(

1.2 LITTLEWOOD POLYNOMIALS.

Problem Description For coefficients ¢, € {£1} and P, (t) = Y30 cxe™™, minimize | P, ||oo =

supeg | Pn(t)]-

Human Best: the Rudin-Shapiro construction gives || Py ||oc < v/2n. At the benchmark setting n =
512, this yields || Ps12|lcc < 32 (so the “larger-is-better” score 1/|| P, is > 1/32 = 0.03125).

Sharper constants are known for special families, but v/2n remains a clean baseline.

26

Under review as a conference paper at ICLR 2026

Initial Proposal

Choose coefficients ¢, € {£1} for

=11
P(z) = Z crz”, |z| =1,
k=0

S0 as to minimize the supremum norm

1Plleo = max |P(2)].

Constraints.
¢ Coefficients ¢;, are restricted to +1.

¢ The metric || P|| is estimated by FFT sampling on an equally spaced grid (denser
grid — tighter upper bound).

Optimization Goal. The evaluator returns:

——, if valid
score — ||P||oo7 1I valid,

—1.0, otherwise.
Notes on Bounds. For the Rudin—Shapiro construction of length n, a classical identity gives
1Pl < v2n.
For the benchmark default n = 512, this yields
[Plloo < V1024 = 32,

SO

score = o5 = 0.03125.

Initial Program:

def rudin_shapiro(n: int):

First n signs of the Rudin-Shapiro sequence.
W
a = np.ones(n, dtype=int)
for k in range(n):
x, cnt, prev =%k, 0, 0

while x:
b=x¢61
if b & prev: # saw 11/
cnt "= 1
prev = b
x >>= 1
alk] = 1 if cnt == 0 else -1

return a

def random_littlewood(n: int, seed=0):
rng = np.random.default_rng(seed)

return rng.choice([-1, 1], size=n).astype (int)
def main() :

n = 512

¢ = rudin_shapiro (n)

print (f"n={n}, coeffs={len(c)}")
return c

if __name__ == "__main__":
coeffs = main()

Ensure compatibility with evaluators that expect a global variable
try:

coeffs # type: ignore[name-defined]
except NameError:

coeffs = main()

27

Under review as a conference paper at ICLR 2026

1.3 SuM vS. DIFFERENCE SETS (MSTD).

Problem Description For a finite set A C Z, maximize |A+A|/|A—A].

Human Best: MSTD sets exist; the smallest possible size is |A| = 8 (classification up to affine
equivalence is known). For larger |A|, extremal ratios remain open; our benchmark instance reports

a representative value (= 1.04 for | A| = 30).

Initial Proposal

Objective. Classical MSTD (enforced): Given A C {0,1,..., N — 1} represented by a
0/1 indicator array of length N, maximize the ratio

A+ A]
R= A— Al
* Score: score = R (higher is better).

» Comparisons should be made under the same N.

Default setup.
* N =30.

* Evaluator enforces A = B (classical setting). If a pair (A, B) is provided, B is
ignored and A is used.

Known best for N = 30 (baseline). Conway’s MSTD set
A={0,2,3,4,7,11,12,14}

yields R ~ 1.04. This is the baseline included in initial_program.py. Better ratios
may exist for NV = 30; pushing R upwards is the optimization goal.
Notes.

* R > 1israre and indicates sum-dominance.

* The ratio depends strongly on /N; do not compare ratios across different /N without
a normalization scheme.

* If cross-N comparison is necessary, consider reporting both R and N, or use log R
as an auxiliary measure.

Initial Program:

def main() :
N = 30
Conway MSTD set example; we take A=B for classical MSTD
A = [0, 2, 3, 4, 7, 11, 12, 14]
B = A[:]
A_ind np.zeros (N, dtype=int); A_ind[A] 1

[}
[

B_ind = np.zeros (N, dtype=int); B_ind[B]
return A_ind, B_ind

Ensure globals for evaluator
try:

A_indicators; B_indicators # type: ignore[name-defined]
except NameError:

A_indicators, B_indicators = main|()

28

Under review as a conference paper at ICLR 2026

1.4 PACKING CIRCLE IN A SQUARE (VARIABLE RADII).

Problem Description In the unit square, place n disjoint circles (radii free) to maximize the sum of
radii ;.

Best-known: for n = 26, > r; = 2.634 (Cantrell, 2011); for n = 32, > r; = 2.936 (Specht,
2012).

Initial Proposal

Problem definition. Given an integer n, place n disjoint circles in the unit square [0, 1]
to maximize the total sum of radii.
Objective and metric.

e Score: score = Y -

i—1Ti (larger is better).

 Validity: circles must be pairwise disjoint and fully contained in the unit square.

Notes on records.

 This variable-radius “sum of radii”” objective is not the classical equal-radius pack-
ing; authoritative SOTA tables are not standardized.

* Values reported in code or experiments should be treated as benchmarks rather than
literature SOTA.

Goal. Create algorithms that increase the total sum of radii for n € {26, 32} under the
above validity constraints.

Initial Program:

import random
from concurrent.futures import ThreadPoolExecutor

def pack_circles(n, square_size=1.0):
wan
Pack n disjoint circles in a unit square using uniform tiling approach.

Returns the sum of radii and list of circles (x, y, r).
wan

def max_circle_radius(x, y, circles, square_size=1.0, skip_idx=None):
wnn
Compute the maximum radius for a circle centered at (x, y) that:
- Stays within the unit square [0, square_size] \times [0, square_size].
— Does not overlap with existing circles.
skip_idx: if provided, index in circles[] to ignore (self).
wnn
Distance to nearest boundary of the unit square
r_max = min(x, y, square_size - x, square_size - y)

Check distance to existing circles, exit early if r_max \rightarrow 0
early exit if r_max is tiny, and avoid needless sqrt
for idx, (cx, cy, cr) in enumerate (circles):

if skip_idx == idx:
continue

if r_max <= le-8:
break

dx = x - cx

dy =y - cy

sep = r_max + cr

if dxxdx + dy*dy < sep=*sep:
only compute sqrt when we know we can shrink
dist = math.sqgrt (dxxdx + dy=*dy)
r_max = min(r_max, dist - cr)
return max (r_max, 0.0)

def uniform_tiling_circles(n, square_size=1.0):
wnn

Uniformly tile the square with circles using optimal grid placement.

wnn
if n <= 0:
return []

circles = []

29

Under review as a conference paper at ICLR 2026

Calculate optimal grid dimensions

For n circles, find the best grid layout (rows x cols)
best_layout = None

best_total_radius = 0

Try different grid configurations
for rows in range(l, min(n + 1, 20)):
cols = math.ceil(n / rows)
if cols > 20: # Limit grid size
continue

Calculate spacing
spacing_x = square_size / (cols + 1)
spacing_y = square_size / (rows + 1)

Use the smaller spacing to ensure circles fit
min_spacing = min(spacing_x, spacing_y)

Calculate maximum radius for this layout
max_radius = min_spacing / 2

Ensure radius doesn’t exceed boundaries
max_radius = min (max_radius,
spacing_x / 2 - le-6,
spacing_y / 2 - le-6)

if max_radius <= 0:
continue

Place circles in uniform grid
temp_circles = []
count = 0

for row in range (rows):
for col in range(cols):
if count >= n:
break

x = spacing_x * (col + 1)
spacing_y * (row + 1)

<
I

Ensure circle stays within bounds
if (x - max_radius >= 0 and x + max_radius <= square_size and
y - max_radius >= 0 and y + max_radius <= square_size):

temp_circles.append((x, y, max_radius)
count +=1

if count >= n:
break

Calculate total radius for this layout
total_radius = len(temp_circles) x max_radius

if total_radius > best_total_radius and len(temp_circles)
best_total_radius = total_radius
best_layout = temp_circles

Il
Il
=}

If we found a valid layout, return it
if best_layout:
return best_layout

Fallback: use hexagonal packing for better density
return hexagonal_packing(n, square_size)

def hexagonal_packing(n, square_size=1.0):

nuw

Use hexagonal close packing for better space utilization.
wnn

circles = []

Estimate number of rows and columns for hexagonal packing
Hexagonal packing has rows offset by sqgrt(3)/2 x diameter

rows = int (math.sqgrt(n * 2 / math.sqrt(3))) + 2
count = 0
row = 0

while count < n and row < rows:

30

Under review as a conference paper at ICLR 2026

Calculate y position for this row
y = (row + 0.5) x (square_size / (rows + 1)

Number of circles in this row

if row % == 0:

cols = int (math.sgrt(n)) + 1
else:

cols = int (math.sqrt (n))

spacing_x = square_size / (cols + 1)

for col in range(cols):
if count >= n:
break

if row % 2 ==
X = spacing_x * (col + 1)
else:
x = spacing_x * (col + 1) + spacing_x / 2

Calculate maximum radius for this position
r = max_circle_radius(x, y, circles, square_size)

if r > 0:
circles.append((x, y, r))
count += 1

row += 1
return circles

def optimize_placement (n, square_size=1.0):

Optimize circle placement using uniform tiling with radius maximization.

nun

circles = []

First, try hexagonal packing for high initial density

hex_circles = hexagonal_packing(n, square_size)

if len(hex_circles) == n:
Ensure maximum radii for hex layout with stronger refinement
hex_refined = refine_circles (hex_circles, square_size, iterations=20)
return hex_refined

Fallback to uniform grid placement
grid_circles = uniform_tiling_circles(n, square_size)
if len(grid_circles) == n:

return grid_circles

If uniform tiling didn’t work perfectly, use adaptive approach

Calculate optimal radius based on density

area_per_circle = (square_size * square_size) / n

estimated_radius = math.sqgrt (area_per_circle / math.pi) * 0.9 # Conservative estimate

Create grid with optimal spacing
spacing = estimated_radius » 2.1 # Include gap

cols = int (square_size / spacing)
rows = int (square_size / spacing)

actual_spacing_x = square_size / (cols + 1)
actual_spacing_y = square_size / (rows + 1)

count = 0
for row in range (rows):
for col in range(cols):
if count >= n:
break

x = actual_spacing_x % (col + 1)
= actual_spacing_y x (row + 1)

<
|

Calculate maximum possible radius
r = max_circle_radius(x, y, circles, square_size)

if r > 0:
circles.append((x, y, r))

count += 1

if count >= n:
break

31

Under review as a conference paper at ICLR 2026

If we still need more circles, use remaining space
remaining = n - len(circles)
if remaining > 0:
Place remaining circles in remaining spaces
for i in range(remaining) :
Try different positions systematically
best_r =0
best_pos = (0.5, 0.5)

Fine grid search (increased resolution)
grid_points = 100
for gx in range(l, grid_points):
for gy in range(l, grid_points):
x = gx / grid_points
y = gy / grid_points

r = max_circle_radius(x, y, circles, square_size)
if r > best_r:

best_r = r

best_pos = (x, V)

if best_r > 0:
circles.append((best_pos[0], best_pos[l], best_r))

return circles

def refine_circles(circles, square_size, iterations=80, perturb_interval=3):
wnn
Iteratively grow each circle to its maximum radius under non-overlap constraints.
Includes randomized update order, periodic micro-perturbation to escape
local minima, and a final local-center-perturbation pass for densification.
wnn
for it in range (iterations):
randomize update order to avoid sweep-order bias
indices = list (range(len(circles)))
random.shuffle (indices)
for 1 in indices:
X, y, _ = circles[i]
Compute maximal feasible radius here, skipping self
r = max_circle_radius(x, y, circles, square_size, skip_idx=i)

circles[i] = (x, y, 1)
Periodic micro-perturbation: jiggle a few circles
if it % perturb_interval == 0 and len(circles) > O0:
subset = random.sample (indices, min (5, len(circles)))
for j in subset:
x0, y0, r0O = circles[]j]

dx = random.uniform(-0.03, 0.03)
dy = random.uniform(-0.03, 0.03)
nx = min(max(x0 + dx, 0), square_size)
ny = min(max(y0 + dy, 0), square_size)
Compute maximal radius skipping self
nr = max_circle_radius(nx, ny, circles, square_size, skip_idx=j)
if nr > r0:
circles[j] = (nx, ny, nr)
Full local center-perturbation phase for final densification
for i in range(len(circles)):
X, y, ¥ = circles[i]
best_x, best_y, best_r = x, y, r
delta = 0.1

for _ in range(20):
dx = random.uniform(-delta, delta)
dy = random.uniform(-delta, delta)

nx = min(max(x + dx, 0), square_size)
ny = min(max(y + dy, 0), square_size)
Compute maximal radius skipping self
nr = max_circle_radius(nx, ny, circles, square_size, skip_idx=1i)
if nr > best_r:
best_x, best_y, best_r = nx, ny, nr

else:
delta x= 0.9
circles[i] = (best_x, best_y, best_r)

Physics-inspired soft relaxation to escape persistent overlaps
for 1 in range(len(circles)):
X, y, r = circles[i]
fx, fy = 0.0, 0.0
for j, (xj, yj, rj) in enumerate(circles):
if 1 == J:
continue
dx = x - xj

32

Under review as a conference paper at ICLR 2026

dy =y - vJ
d = (dxxdx + dyxdy) =*x 0.5
overlap = (r + rj) - d

if overlap > 0 and d > le-8:
fx += dx / d % overlap
fy += dy / d % overlap
Nudge the center by 10\% of the computed net "repulsive" force
nx = min(max(x + 0.1 « fx, 0), square_size)
ny = min(max(y + 0.1 = fy, 0), square_size)
nr = max_circle_radius(nx, ny, circles, square_size, skip_idx=1i)
circles[i] = (nx, ny, nr)
return circles

def multi_start_optimize(n, square_size, starts=None):
W
Parallel multi-start global \rightarrow local optimization using ThreadPoolExecutor.
Number of starts adapts to problem size: max (100, 10%n).

nun

if starts is None:

if n <= 50:
starts = max (200, n * 20)
else:

starts = max (100, n = 10)
precompute hexagonal packing baseline
hex_circ = hexagonal_packing(n, square_size)
hex_sum = sum(r for _, _, r in hex_circ)
best_conf = None
best_sum = 0.0

single trial: seed \rightarrow refine \rightarrow score
def single_run(_):
conf0 = optimize_placement (n, square_size)
confl = refine_circles(conf0, square_size, iterations=40)
sl = sum(r for _, _, r in confl)
return sl, confl

dispatch trials in parallel
with ThreadPoolExecutor () as executor:
for score, conf in executor.map(single_run, range (starts)):
if score > best_sum:
best_sum, best_conf = score, conf.copy()
early exit if near the hex-baseline
if best_sum >= hex_sum * 0.995:
break

return best_conf

Use multi-start global \rightarrow local optimization (adaptive number of starts)
circles = multi_start_optimize(n, square_size)

Quick 2-cluster remove-and-reinsert densification (extended iterations)

for _ in range(8):
remove the two smallest circles to create a larger gap
smallest = sorted(range (len(circles)), key=lambda i: circles[i][2])[:2]
removed = [circles[i1] for i in smallest]

pop in reverse order to keep indices valid
for 1 in sorted(smallest, reverse=True):
circles.pop (i)
refine the remaining configuration briefly
circles = refine_circles(circles, square_size, iterations=8)
reinsert each removed circle with more sampling
for x_old, y_old, _ in removed:
best_r, best_pos = 0.0, (x_old, y_old)
for _ in range (500):
x = random.uniform(0, square_size)
y = random.uniform(0, square_size)
r = max_circle_radius(x, y, circles, square_size)
if r > best_r:
best_r, best_pos = r, (x, V)
circles.append((best_pos[0], best_pos[l], best_r)
final local polish after reinsertion
circles = refine_circles(circles, square_size, iterations=5)
end 2-cluster remove-and-reinsert densification

Calculate total radius
total_radius = sum(circle[2] for circle in circles)

return total_radius, circles

33

Under review as a conference paper at ICLR 2026

[.5 MINIMIZING MAX/MIN DISTANCE RATIO (d = 2,n = 16).

max;; ||z — x|

Problem Description For n points in [0, 1], minimize R = —, .
miniz; [[z; — 24

Best-known: R? ~ 12.890 (Cantrell, 2009), i.e., R ~ 3.590.

Initial Proposal

Problem. Arrange n points in [0, 1]¢ to optimize the dispersion / packing—covering trade-
off. The benchmark metric is

. min pairwise distance
ratio =

max pairwise distance’

so that larger ratio is better (values in (0, 1]).
Evaluator. Given a program exposing max_min_dis_ratio (n,d), we obtain config-
urations for (n,d) = (16, 2) and (14, 3), then report ratio for each case.
Baseline algorithm. The initial program employs:
* Enhanced simulated annealing with adaptive cooling,

* Neighbor-repulsion moves,
* Periodic smoothing via k-NN weighted averages,
* A local refinement stage.

KD-tree acceleration is used for nearest-neighbor queries; hyperparameters adapt to dimen-
sion.

Initial Program:

from scipy.spatial.distance import pdist
from scipy.spatial import cKDTree

(Removed) smooth_points smoothing logic is now inlined to reduce indirection

def calculate_distances (points):
"""Calculates min, max, and ratio of pairwise Euclidean distances using scipy pdist."""
if points.shape[0] < 2:
return 0.0, 0.0, 0.0
distances = pdist (points, metric=’euclidean’)

eps = le-8
min_dist = max(np.min(distances), eps)
max_dist = np.max(distances)

ratio = max_dist / min_dist
return min_dist, max_dist, ratio

(Removed) perturb_point now inlined directly where used

def update_temperature (temperature, cooling_rate, accept_history, iteration, total_iters,
initial_temperature, window_size=100) :
wan

Adaptive cooling with acceptancerate feedback and periodic reheating.
window = accept_history[-min(len (accept_history), window_size) :]

rate = sum(window) / len (window)

gentler correction: slow/fast cooling factors reduced

if rate < 0.2:

adj = 1.02
elif rate > 0.8:
adj = 0.98

else:
adj = 1.0

temperature %= cooling_rate x adj

removed periodic reheating to maintain smoother cooling schedule
if (iteration + 1) % (total_iters // 4) ==

temperature = initial_temperature

return temperature

def max_min_dis_ratio(n: int, d: int, seed=None):
wun

Finds n points in d-dimensional space to minimize the max/min distance ratio

34

Under review as a conference paper at ICLR 2026

using simulated annealing.

Args:

n (int): Number of points.

d (int): Dimensionality of the space.
Returns:

tuple: (best_points, best_ratio)

Adaptive hyperparameters based on dimensionality

iterations = 3000 if d <= 2 else 6000 # increased sweeps for improved convergence
initial_temperature = 10.0
cooling_rate = 0.998 if d <= 2 else 0.996 # slower cooling for extended exploration

perturbation_factor = 0.15 if d <= 2 else 0.12 # tuned smaller steps in 3D for better
local refinement

relaxation factor for post-acceptance repulsive adjustment

relaxation_factor removed; using inline 0.1 % perturbation_factor below

1. Initial State: reproducible random generator

rng = np.random.default_rng(seed)

uniform random initialization in [0,1]"d for simplicity
current_points = rng.random((n, d))

_, _, current_ratio = calculate_distances (current_points)

best_points = np.copy(current_points)
best_ratio = current_ratio

temperature = initial_temperature

accept_history = []

window_size = 50 # window for stagnation detection and adaptive injection

smoothing_interval remains, but smoothing_strength is fixed inlined above

smoothing_interval = max (10, iterations // (20 if d <= 2 else 30)) # more frequent
smoothing in 3D for improved uniformity

for i in range(iterations):
Build KD-tree once per iteration for neighbor queries
tree = cKDTree (current_points)
optional smoothing step using distance-weighted neighbor smoothing
if (1 + 1) % smoothing_interval ==
choose neighbor count based on dimension
k_smooth = 6 if d > 2 else 4

_, 1dxs = tree.query(current_points, k=k_smooth+1)
neighbors = current_points[idxs[:,1:]] # exclude self
compute inverse-distance weights

diffs = neighbors - current_points[:, None, :]

dists = np.linalg.norm(diffs, axis=2) + le-6

weights = 1.0 / dists
weights /= weights.sum(axis=1, keepdims=True)

neighbor_means = (neighbors * weights[..., None]).sum(axis=1
blend = 0.6 if d > 2 else 0.7
current_points = np.clip(current_points % blend + neighbor_means » (1 - blend), 0.0,
1.0)
_, _, current_ratio = calculate_distances (current_points)
if current_ratio < best_ratio:
best_points = current_points.copy ()

best_ratio = current_ratio

2. Generate Neighboring State: Perturb a random point

Simplify scaling: rely on temperature to adjust step-size instead of best_ratio

dynamic perturbation decays sublinearly with temperature for finer local moves

perturbation_strength = perturbation_factor * ((temperature / initial_temperature)**0.6
+ 0.15)

Choose a random point to perturb
point_to_perturb_index = rng.integers (0, n)

old_point = current_points[point_to_perturb_index] .copy ()
Increase repulsivemove frequency in low dimensions
dynamic repulsion probability: stronger at high temperature, tapering off as we cool

if d > 2:

reduce repulsion frequency in 3D for finer refinement

repulsion_prob = float (np.clip(temperature / initial_temperature, 0.2, 0.8))
else:

repulsion_prob = float (np.clip(temperature / initial_temperature + 0.1, 0.5, 0.95))
start with a random jitter
random jitter inlined for readability
candidate = old_point + rng.uniform(-perturbation_strength, perturbation_strength,
size=o0ld_point.shape)
if n > 1 and rng.random() < repulsion_prob:

35

Under review as a conference paper at ICLR 2026

compute nearest neighbor via KD-tree for efficiency (reusing prebuilt tree)

_, nn_idxs = tree.query(old_point, k=2)
nn_idx = nn_idxs[1]
vec = old_point - current_points[nn_idx]

norm = np.linalg.norm(vec)
if norm > le-8:
dir_vec = vec / norm
candidate = old_point + perturbation_strength % dir_vec
keep the point in [0,1]"d
current_points[point_to_perturb_index] = np.clip(candidate, 0.0, 1.0)
_, _, candidate_ratio = calculate_distances (current_points)

Acceptance criterion
delta = candidate_ratio - current_ratio
accept = (delta < 0) or (rng.random() < np.exp(-delta / temperature)

if accept:
current_ratio = candidate_ratio
Post-acceptance repulsive relaxation to improve local spacing
reuse prebuilt KD-tree for repulsive relaxation
dists, idxs_nn = tree.query(current_points[point_to_perturb_index], k=2)
dir_vec = current_points[point_to_perturb_index] - current_points[idxs_nn[1l]]
norm = np.linalg.norm(dir_vec)
if norm > le-8:
push away from nearest neighbor
adjustment = 0.1 % perturbation_factor x dir_vec / norm
current_points|[point_to_perturb_index] = np.clip(
current_points[point_to_perturb_index] + adjustment, 0.0, 1.0
)
update ratio and best points after relaxation
_+ _, relaxed_ratio = calculate_distances (current_points)
current_ratio = relaxed_ratio
if relaxed_ratio < best_ratio:
best_points = current_points.copy ()
best_ratio = relaxed_ratio
also keep the standard bestcheck for the candidate move
if current_ratio < best_ratio:
best_points = current_points.copy ()
best_ratio = current_ratio
else:
current_points[point_to_perturb_index] = old_point

Update temperature with adaptive schedule
accept_history.append (accept)
temperature = update_temperature (temperature, cooling rate, accept_history, i,
iterations, initial_temperature)
periodic mild reheating for 3D to escape deep minima
if d > 2 and (i + 1) % (iterations // 3) ==
temperature = max (temperature, initial_temperature x 0.3)

random injection to escape plateaus: reinitialize one point every 20% of iterations
random injection only if weve stagnated (low acceptance in recent window)

if (1 + 1) % max(l, iterations // 5) == and len(accept_history) >= window_size \
and sum(accept_history[-window_size:]) / window_size < 0.1:
j = rng.integers (0, n)
current_points[j] = rng.random(d)
_, _, current_ratio = calculate_distances (current_points)

Local refinement stage: fine-tune best solution with small Gaussian perturbations
refine_iters = max (100, iterations // 20)
for _ in range(refine_iters):
idx = rng.integers (0, n)
old_point = best_points[idx].copy ()
perturb = rng.normal (0, perturbation_factor x 0.05, size=d)
best_points[idx] = np.clip(old_point + perturb, 0.0, 1.0)
_, _, refined _ratio = calculate_distances (best_points)
if refined_ratio < best_ratio:
best_ratio = refined_ratio
else:
best_points[idx] = old_point
return best_points, best_ratio

1.6 AUTOCONVOLUTION PEAK MINIMIZATION (L°°).

Problem Description For nonnegative densities f supported on [f%, %} with f f =1, define

foo = Sttlp(f*f)(t).

36

Under review as a conference paper at ICLR 2026

The exact optimum is unknown.

Human Best:
0.64 < e < 0.75496.

The lower bound is due to Cloninger—Steinerberger, and the upper bound comes from explicit step-
function constructions of Matolcsi—Vinuesa (rescaled to unit support).

Initial Proposal

Problem definition. Let
1/2
F={rer(-54): r>0 / flayde =1},
-1/2
and define
(=00 = [f@) 5t =a)da.
We seek to minimize the peak value of the autoconvolution:

— inf .
poo = inf I * flloo

Constraints.

* Nonnegative density.

e Unit mass (L' = 1).

* Support length 1 (here taken as [—1, 1]).
In the implementation, f is represented by nonnegative step heights on a uniform grid and
normalized to unit integral.
Optimization goal. Minimize

foe = max(f %)(1),

Smaller values are better.

Best-known human results. In this standard setup, the best currently published bounds
are

0.64 < proe < 0.75496 .

The upper bound traces to work of Matolcsi—Vinuesa (after normalizing support length to
1), and the lower bound to Cloninger—Steinerberger.

Algorithmic goal. Create an algorithm that constructs feasible densities with progres-
sively smaller ii.. The baseline program generates simple analytical candidates (box, tri-
angle, cosine-squared, Gaussian) on a uniform grid, normalizes to unit mass, and computes
autoconvolution via FFT to measure p.. It serves as a starting point for more advanced
search/optimization methods.

References.

* E. P. White, An optimal L? autoconvolution inequality, Canadian Mathematical
Bulletin (2024).

e M. Matolcsi and C. Vinuesa, Improved bounds on the supremum of autoconvolu-
tions, J. Math. Anal. Appl. 372 (2010), 439-447.

* A. Cloninger and S. Steinerberger, On suprema of autoconvolutions with an appli-
cation to Sidon sets, Proc. Amer. Math. Soc. 145 (2017), 3191-3200.

Initial Program:

—%— coding: utf-8 -*-—

nun

Autoconvolution Peak Minimization

37

Under review as a conference paper at ICLR 2026

This program generates step heights for a probability density function

that minimizes the maximum value of its autoconvolution.
wwn

import numpy as np
from typing import Dict

def evaluate_Cl_upper_std(step_heights: np.ndarray) -> Dict[str, float]:
Standard-normalized Cl (support [-1/2,1/2], dx=1/K).
- Project to feasible set: h >= 0 and £ = 1 (L1 normalization).
- Objective: mu_inf = max_t (fx£f) (t) (smaller is better).
Returns: {"valid", "mu_inf", "ratio" (=mu_inf), "integral"(=1.0), "K"}
h = np.asarray (step_heights, dtype=float)
if h.size == 0 or np.any(h < 0):
return {"valid": 0.0, "mu_inf": float("inf"), "ratio": float ("inf")}
K = int (len(h))
dx = 1.0 / K

integral = float (np.sum(h) x dx)

if integral <= 0:
return {"valid": 0.0, "mu_inf": float ("inf"), "ratio": float ("inf")}

h = h / integral # £ = 1

F = np.fft.fft (h, 2+«K - 1) # linear autoconvolution via padding

conv = np.fft.ifft (F x F).real

conv = np.maximum(conv, 0.0) # clamp tiny negatives

mu_inf = float (np.max(conv) * dx)
return {"valid": 1.0, "mu_inf": mu_inf, "ratio": mu_inf, "integral": 1.0, "K": float(K)}
def make_candidate (K: int, kind: str = "cos2") -> np.ndarray:
wnw
Simple candidate builder on [-1/2,1/2] (NOT normalized here).
Args:
K: Number of discretization points
kind: Type of candidate function ("box", "triangle", "cos2", "gauss"
Returns:
Step heights array
wnw
x = np.linspace(-1.0, 1.0, K)
if kind == "box":
h = np.ones (K)
elif kind == "triangle":
h =1.0 - np.abs(x)
hl(h < 0] = 0.0
elif kind == "cos2":
h = np.cos(np.pi « x / 2.0) %% 2
elif kind == "gauss":
h = np.exp(-4.0 % x*x2)
else:
raise ValueError (f"unknown kind={kind}")
return h
def main() :
W
Main function that generates step heights for autoconvolution minimization.
Returns:
numpy.ndarray: Step heights array
W
K = 128
kind = "cos2" # Change this to try different candidates (box/triangle/cos2/gauss)

step_heights = make_candidate (K, kind)

Evaluate the result to verify it’s valid

result = evaluate_Cl_upper_std(step_heights)

print (f"Generated {kind} candidate with K={K}, mu_inf={result['mu_inf’]:.6£f}")

return step_heights

38

Under review as a conference paper at ICLR 2026

1.7 THIRD AUTOCORRELATION INEQUALITY.

Problem Description Let C3 be the largest constant such that maxp <12 |(f * f)(t)] >

Cs(M3, 1)° forall signed) f.

Best-known: classical 1.4581 upper bound.

1.8 THIRD-ORDER AUTOCORRELATION INEQUALITY (C3 UPPER BOUND)

Initial Proposal

Problem. For piecewise-constant nonnegative functions on a fixed support with unit mass,
we evaluate an upper bound Cypper_bouna derived from the maximum of the autoconvolution
(normalized by squared L' mass). The benchmark score is

1

score = ——,
(7uppen_b0und

so that larger score indicates a smaller upper bound and hence a better result.
Evaluator. The evaluator calls find_better_c3_upper_bound () from the target
program to obtain step heights, computes the normalized autoconvolution maximum, and
returns 1/Clpper_bound-
Baseline algorithm. A simple genetic algorithm over height sequences serves as the base-
line search method. The algorithm includes:

¢ Tournament selection,

* One-point crossover,

¢ Gaussian mutation.

Initial Program:

import scipy.integrate
def calculate_c3_upper_bound (height_sequence) :

N = len (height_sequence)
delta_x =1 / (2 = N)

def f(x):
if -0.25 <= x <= 0.25:
index = int((x - (-0.25)) / delta_x)
if index == N:
index -= 1
return height_sequence[index]
else:

return 0.0

integral_f = np.sum(height_sequence) * delta_x
integral_sqg = integral_ f*x2

if integral_sq < le-18:
return 0.0

t_points = np.linspace(-0.5, 0.5, 2 « N + 1)

max_conv_val = 0.0
for t_val in t_points:

lower_bound = max(-0.25, t_val - 0.25)
upper_bound = min(0.25, t_val + 0.25

if upper_bound <= lower_bound:

convolution_val = 0.0
else:
def integrand(x):
return f(x) * f(t_val - x)
convolution_val, _ = scipy.integrate.quad(integrand, lower_bound, upper_bound,
1imit=100)

39

Under review as a conference paper at ICLR 2026

if abs (convolution_val) > max_conv_val:
max_conv_val = abs(convolution_val)

return max_conv_val / integral_sqg

def genetic_algorithm(population_size, num_intervals, generations, mutation_rate,
crossover_rate) :

population = np.random.rand(population_size, num_intervals) » 2 - 1

best_solution = None
best_fitness = 0.0

for gen in range (generations):

fitness_scores = np.array([calculate_c3_upper_bound(individual) for individual in
population])

current_best_idx = np.argmax(fitness_scores)
if fitness_scores|[current_best_idx] > best_fitness:

best_fitness = fitness_scores|[current_best_idx]
best_solution = population[current_best_idx].copy ()
print (f"Generation {gen}: New best fitness = {best_fitness}")

new_population = np.zeros_like (population)
for 1 in range (population_size):

competitors_indices = np.random.choice (population_size, 2, replace=False)
winner_idx = competitors_indices[np.argmax (fitness_scores[competitors_indices])]
new_population[i] = population[winner_idx].copy ()

for 1 in range (0, population_size, 2):
if np.random.rand() < crossover_rate:

parentl = new_population([i]

parent2 = new_population([i+1]

crossover_point = np.random.randint (1, num_intervals - 1)

new_population[i] = np.concatenate ((parentl[:crossover_point],
parent2[crossover_point:]))

new_population[i+1l] = np.concatenate ((parent2[:crossover_point],

parentl[crossover_point:]))

for 1 in range (population_size):
if np.random.rand() < mutation_rate:
mutation_point = np.random.randint (num_intervals)
new_population[i, mutation_point] += np.random.normal (0, 0.1)

new_population[i, mutation_point] = np.clip(new_population[i, mutation_point],
-2, 2)

population = new_population
return best_solution
def find_better_c3_upper_bound() :
NUM_INTERVALS =
POPULATION_SIZE
GENERATIONS = 10

MUTATION_RATE = 0.1
CROSSOVER_RATE = 0.8

4
=2

height_sequence_3 = genetic_algorithm (POPULATION_SIZE, NUM_INTERVALS, GENERATIONS,
MUTATION_RATE, CROSSOVER_RATE)

return height_sequence_3

40

	Introduction
	AlphaResearch
	Overview
	Actions
	Environment
	Reward from Real-world Research Records
	Reward from Program-based Execution

	AlphaResearchComp
	Experiments
	Setup
	Results
	Ablations and Analysis
	Case Study

	Related Work
	Conclusion
	Comparison with OpenEvolve
	Experiment Cost
	Impact of different LLMs
	Comparison with ShinkaEvolve
	Case Study during Discovery Process
	The Use of Large Language Models
	Examples
	Prompts
	Curated Problems and Human-Best Values
	Spherical Code (S2, n=30).
	Littlewood Polynomials.
	Sum vs. Difference Sets (MSTD).
	Packing Circle in a Square (variable radii).
	Minimizing Max/Min Distance Ratio (d=2,n=16).
	Autoconvolution Peak Minimization (L).
	Third Autocorrelation Inequality.
	Third-Order Autocorrelation Inequality (C3 Upper Bound)

