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ABSTRACT

Large language models have made significant progress in complex but easy-to-
verify problems, yet they still struggle with discovering the unknown. In this
paper, we present AlphaResearch, an autonomous research agent designed to dis-
cover new algorithms on open-ended problems by iteratively running the follow-
ing steps: (1) propose new ideas (2) program to verify (3) optimize the research
proposals. To synergize the feasibility and innovation of the discovery process,
we construct a new reward environment by combining the execution-based verifi-
able reward and reward from simulated real-world peer review environment. We
construct AlphaResearchComp, a new evaluation benchmark that includes an
eight open-ended algorithmic problems competition, with each problem carefully
curated and verified through executable pipelines, objective metrics, and repro-
ducibility checks. AlphaResearch gets a 2/8 win rate in head-to-head comparison
with human researchers. Notably, the algorithm discovered by AlphaResearch on
the “packing circles” problem achieves the best-of-known performance, surpass-
ing the results of human researchers and strong baselines from recent work (e.g.,
AlphaEvolve). Additionally, we conduct a comprehensive analysis of the bene-
fits and remaining challenges of autonomous research agent, providing valuable
insights for future research.

1 INTRODUCTION

Recent progress has shown that frontier LLMs like GPT-5 (OpenAI, 2025) and Gemini 2.5 (Co-
manici et al., 2025) could achieve expert-level performance in complex tasks such as mathemat-
ics (Trinh et al., 2024; Lin et al., 2025) and programming (Jimenez et al., 2024; Jain et al., 2025).
While LLMs excel at processing and reasoning on problems that are within the boundary of ex-
isting human knowledge (Wang et al., 2024b; Phan et al., 2025), their capacity for independent
discovery that pushes the boundaries of human knowledge still remains a question of paramount
importance (Novikov et al., 2025). Can these models create advanced knowledge or algorithms that
surpass human researchers?

Previous studies demonstrate that LLMs can generate novel ideas at a human expert level (Si et al.,
2024; Wang et al., 2024a). However, the outcome evaluation of LLM-generated research ideas still
struggles with biased verification methods (Ye et al., 2024) that constrain the exploration of out-of-
boundary machine knowledge, such as LLM-as-a-judge (Lu et al., 2024), where misaligned LLMs
are used to evaluate fresh ideas and inevitably favor solutions within existing knowledge bound-
aries. Furthermore, the ideation–execution gap (Si et al., 2025) between generating and executing
new ideas also hinders models from producing advanced research outcomes. Moreover, prior at-
tempts at autonomous algorithm discovery face a fundamental tension. Execution-based verification
systems like AlphaEvolve Novikov et al. (2025) can rigorously validate whether code runs and
meets constraints, but this verification alone might not be completely sufficient for discovery. For
example, these systems could converge on technically correct but scientifically uninteresting or less
impactful solutions—code that executes successfully yet offers no advancement over existing meth-
ods. Conversely, idea-generation systems evaluated purely by LLM judges can propose innovative
concepts that prove computationally infeasible or violate problem constraints when implemented.
The absence of real-world research environment rewards in execution-based agents and execution-
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AlphaResearch

Reward Model

Collect real-world research papers 
and train a reward model. 
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Input: research idea

Output: idea score
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real-world research 
papers and their review 
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with the research idea 
and review score.

Collect peer-reviewed 
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step 2 

Research ideas 
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step 3 (Iteration 1~n)
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execution.

Obtain new MetaData 
and enter the next 
iteration

Figure 1: The launch of AlphaResearch contains two steps. (1) Train reward models with real-
world peer-reviewed records. (2) Prepare initial research proposals, initial programs and evalution
program. AlphaResearch will refine the research proposals and programs autonomously.

based reward in idea-generation systems renders the discovery of new knowledge and algorithms
challenging for current autonomous research agents (Tian et al., 2024).

To combine the feasibility and innovation of the algorithm discovery process, we introduce Al-
phaResearch, an autonomous research agent that could discover new advanced algorithms with a
suite of research skills including idea generation and code implementation that could interact with
the environment. To synergize these research skills during the discovery process, we construct a
novel dual research-based environment (Tian et al., 2024), where novel insights are forged by the
simulated real-world peer-reviewed environment and execution-based verification. We use this dual
environments to accelerate the discovery process because many research ideas can be evaluated be-
fore even implementing and executing on the idea. based on factors such as novelty, literature and
the knowledge used. Specifically, we (1) train a reward model AlphaResearch-RM-7B with real-
world peer-reviewed records, addressing the limitation of prior coding-only approaches that lack
real-world research feedback, and use it to score the fresh ideas generated by LLMs; (2) construct
an automatic program-based verifiable environment that executes these ideas with an interpreter.
This dual environment facilitates a rigorous algorithm discovery process for autonomous research
agents. As illustrated in Figure 1, AlphaResearch discovers new algorithms by iteratively running
the following steps: (i) proposing new research ideas, (ii) verify the ideas in the dual research-based
environment, and (iii) optimizing the proposals for higher reward from the environment. The
synergy between an iterative real-world peer review environment and program-based verification
empowers AlphaResearch to continuously explore novel research ideas and verify them via pro-
gram execution. Once the generated optimal program surpasses current human-best achievements,
these validated novel ideas could form feasible algorithms, thereby pushing the boundaries of human
research forward.

To compare AlphaResearch with human researchers on novel algorithm discovery, we construct
AlphaResearchComp, a simulated discovery competition between research agents and human re-
searchers, by collecting 8 open-ended research problems and their best-of-human records (shown in
Appendix I). Our results demonstrate that AlphaResearch surpasses human researchers on two prob-
lems but fails on the other six. The novel algorithms discovered by AlphaResearch not only surpass
best-of-human performance but also significantly outperform the state-of-the-art results achieved by
AlphaEvolve. Specifically, AlphaResearch optimizes the result of “Packing Circles (n=32)” prob-
lem to 2.939, where the goal is to pack n disjoint circles inside a unit square so as to maximize
the sum of their radii, surpassing the results of best-of-human and previous SoTA results achieved
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Algorithm 1 AlphaResearch
Require: initial idea i0, initial program p0, initial result r0, model A, evaluation program E(·), maximum
iteration rounds n,
1: τ0 ← (i0, p0, r0), rbest = 0 ▷ Initialization
2: for k = 1 to n do do
3: (it, pt, rt) ∼ P(·|τk−1) ▷ States Sampling
4: ik ∼ PA(·|it ⊕ pt ⊕ rt) ▷ New Idea Generation (Eq. 1)
5: ifRM(ik) < threshold then
6: continue ▷ Reward Model for New Idea
7: end if
8: pk ∼ PA(·|pt ⊕ ik) ▷ Program Generation (Eq. 2)
9: rk ← E(pk) ▷ Program-based Execution

10: if rk > rbest then
11: (ibest, pbest, rbest) = (ik, pk, rk)
12: end if
13: τk ← τk−1 ⊕ ik ⊕ pk ⊕ rk ▷ Trajectory Update (Eq. 3)
14: end for
15: return (ibest, pbest, rbest)

by AlphaEvolve (as shown in Appendix G). These entirely novel ideas and algorithms constitute
the most advanced solutions currently present in the human knowledge base, demonstrating the fea-
sibility of employing LLMs to advance the frontiers of human knowledge. The six failure modes
in AlphaResearchComp demonstrate the challenges for the autonomous algorithm discovery with
research agents. We analyze the benefits and remaining challenges of autonomous research agents
for knowledge discovery, providing valuable insights for future work.

2 ALPHARESEARCH

2.1 OVERVIEW

AlphaResearch discovers out-of-boundary novel algorithms by continuously optimizing the re-
search outcome from the dual reward that synergizes rigorous program verification and a simu-
lated real-world peer review environment. As shown in Figure 1, given initial idea i0 and pro-
gram p0, AlphaResearch runs the program p0 with execution, producing r0, which represents the
initial overall rating. The triplet (i0, p0, r0) will be fed to AlphaResearch for subsequent process-
ing, including newer idea generation, code implementation, and program-based execution. When
reaching a point where execution output rn surpasses the previous rating, AlphaResearch will save
the triplet (ibest, pbest, rbest) as the best record. We repeat the process until rbest surpasses the
best-of-human score, or the maximum round is reached. The resulting trajectory is denoted as
τ = i0p0r0...in−1pn−1rn−1inpnrn, where n is the total rounds.

2.2 ACTIONS

New Idea Generation. For each step k, AlphaResearch start with generating a new idea ik based
on a sampled previous step (it, pt, rt) from previous trajectory τk−1 = i0p0r0...ik−1pk−1rk−1. This
process can be denoted as:

ik ∼ PA(·|it ⊕ pt ⊕ rt) (1)
where⊕means concatenation, t is the sampled step from trajectory τi−1 and PA() indicates uniform
sampling. We use a reward model to filter out high-quality ideas overall. If RM(in) outputs a
negative score, we cease the subsequent actions in this round.

Program-based Verification. After obtain the fresh idea, AlphaResearch generates new program
pk based on the previous implementation pt and new idea ik next:

pk ∼ PA(·|pt ⊕ ik) (2)

and yield the evaluation result rk by verifying pk with code executor rk ← E(pk). Then, we update
the trajectory τk with the newly generated idea ik, program pk and result rk:

τk ← τk−1 ⊕ ik ⊕ pk ⊕ rk (3)

3
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Table 1: Dataset for reward model training.
We use the end of author-reviewer rebuttal
period as the latest knowledge date.

Split Train Test

Records ICLR ICLR
Range 2017∼2024 2025
Num 24,445 100
Start Date 2016-11 2024-10
End Date 2023-12 2024-12

Table 2: Evaluation results of RM. We use the
more recent date between the model release
date and the dataset cutoff as the latest date.

Reward Model Cutoff Acc
Random (theoretical) - 50.0%
Human Annotator - 65.0%

GPT-5 (medium) 2025-08 53.0%
Qwen2.5-7B-Instruct 2024-09 37.0%
AlphaResearch-RM-7B 2024-09 72.0%

We repeat the above interaction process until k reaches the maximum rounds n and get the best
result (ibest, pbest, rbest) as final output.

2.3 ENVIRONMENT

2.3.1 REWARD FROM REAL-WORLD RESEARCH RECORDS

Existing autonomous idea generation process suffers from a trade-off where highly novel research
ideas may lack feasibility (Guo et al., 2025; Si et al., 2025). To address this gap and ensure the
feasibility of idea candidates, we train a reward model with ideas from real-world peer-review infor-
mation to simulate the real-world peer-review environment.

Dataset for reward model. To train our reward model (RM) to identify good ideas, we collect
all ICLR peer review records from 2017 to 2024 as our training set. We sample a subset of ICLR
2025 records as a test set, where the dates of train and test are disjoint, which prevents knowledge
contamination between the train and test split. We also select Qwen2.5-7B-Instruct as our base
model, whose release date 2024-09 is earlier than the ICLR 2025 author-reviewer rebuttal period
2024-10. For each record in the training dataset, we extract the abstract part as RM input and wrap
the average peer-review overall ratings with \boxed{} as RM output. We fine-tune Qwen2.5-7B-
Instruct with the RM pairs, yielding the AlphaResearch-RM-7B model.

Can LLMs identify good ideas? To simplify the RM evaluation, we binarize the RM output score
according to the ICLR Reviewer Guide, where overall rating > 5.5 records are regarded as a posi-
tive score and ≤ 5.5 records are negative. We compute the binary classification accuracy and evalu-
ate three models (Deepseek-V3-0324, Qwen2.5-Coder-Instruct, and AlphaResearch-RM-7B) on the
AlphaResearch-RM test set. Table 2 presents the evaluation results that eliminate the knowledge
contamination, highlighting the following observations: (1) Both Deepseek-V3-0324 and Qwen2.5-
7B-Instruct have lower than 50% accuracy when identifying the good ideas from ICLR 2025 records.
(2) After fine-tuned with ideas from previous ICLR peer-review information, AlphaResearch-RM-
7B demonstrates 72% binary classification accuracy on unseen ICLR 2025 ideas, significantly out-
performing baseline models and human annotators. Based on these observations, we use the fine-
tuned AlphaResearch-RM-7B as the final RM to simulate a real-world peer-review environment and
filter out good ideas generated by AlphaResearch.

2.3.2 REWARD FROM PROGRAM-BASED EXECUTION

Inspired by AlphaEvolve (Novikov et al., 2025), we construct an automatic evaluation process with
a code executor where each new program pk generated by AlphaResearch will be captured and
evaluated. The evaluation program E(·) includes two modules: (i) Verification module that validates
whether pk conforms to the problem constraints. (ii) Measurement module that output the score rk
of program performance. The program output rk will be injected into the idea generation prompt
(if sampled), thereby participating in the optimization process for fresh ideas. These programs and
results are stored in a candidate pool, where the primary goal is to optimally resurface previously
explored ideas in future generations. The verifiable reward by code executor significantly simplifies
the action spaces of AlphaResearch, thereby enhancing the efficiency of the discovery process.
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Table 3: Problem overview in AlphaResearchComp. More information are shown at Appendix I.

Problem Human Best Human Researcher

packing circles (n=26) 2.634 David Cantrell (2011)
packing circles (n=32) 2.936 Eckard Specht (2012)
minimizing max-min distance raio (d=2, n=16) 12.89 David Cantrell (2009)
third autocorrelation inequality 1.4581 Carlos Vinuesa (2009)
spherical code (n=30) 0.67365 Hardin & Sloane (1996, 2002)
autoconvolution peak minimization (upper bound) 0.755 Matolcsi–Vinuesa (2010)
littlewood polynomials (n=512) 32 Rudin–Shapiro (1959/1952)
MSTD (n=30) 1.04 Hegarty (2006/2007)

3 ALPHARESEARCHCOMP

Problems collection. AlphaEvolve has not publicly disclosed all the test problems so far. To pro-
vide a transparent evaluation process, we curate AlphaResearchComp, a set of 8 frontier program-
based research tasks spanning geometry, number theory, harmonic analysis, and combinatorial op-
timization. These problems were selected based on the following principles: AlphaResearchComp
provides explicit, academically defined problem formulations, verification rules, and unified metrics
(e.g., excel@best), enabling reproducible and controlled evaluation for open-ended discovery. This
standardized pipeline design is essential for studying research agents.

• Well-defined objectives. Each task has a precise mathematical formulation with an objective
function that admits rigorous automatic evaluation.

• Known human-best baselines. For every problem, we provide the best-known human result from
the literature. These represent conjectured best-known values rather than proven optima, ensuring
ample room for further improvement.

The curated problems are either inherited from prior work (e.g., AlphaEvolve) or collected from on-
line repositories and domain experts. Each problem’s baseline is supported by verifiable resources in
the corresponding field. This design enables AlphaResearch to demonstrate both the reproducibil-
ity of established mathematical results and the potential for discovery beyond current human-best
achievements. Detailed definitions, baseline values, and references for each problem are provided
in the Appendix I.

Initialization strategy. After obtaining the research problems of AlphaResearchComp, we con-
struct diverse initial states for each problem with the following strategies: (1) For the “Packing
Circles” (n=26) and “Packing Circles” (n=32) problems, we initialize them with null programs
(r0 = 0) to simulate researches starting from scratch. (2) For the “Littlewood Polynomials” and
“MSTD (n=30)” problems, we directly adopt the best-known solutions (r0 = rhuman) from human
researchers to emulate improvements upon established methods. (3) For the remaining problems,
we employ a moderate initialization strategy (0 < r0 < rhuman) to ensure sufficient room for the
research agent to explore. This initialization strategy simulates a variety of real-world scenarios for
the research agent, thereby facilitating a thorough evaluation process.

Metrics. For benchmarks like code generation with good verification techniques (e.g., unit tests),
pass@k (Chen et al., 2021) is a metric denoting that at least one out of k i.i.d. task trials is successful,
which captures the ability of LLMs to solve easy-to-verified problems. For open-ended real-world
algorithm discovery tasks, we propose a new metric - excel@best (excel at best), defined as the
percentage excess on baseline (best of human level) results:

excel@best = E
Problems

[
(rbest − rhuman) · Id

rhuman

]
(4)

where rhuman indicates the results of human’s best level. Id indicates the optimization direction
where Id = 1 represents that higher score is better and Id = −1 represents lower.

5
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Table 4: Results on AlphaResearchComp. ↑ inidicates that higher score is better and ↓ for lower.

Problem Human AlphaResearch Excel@bestinit best

packing circles (n=26) ↑ 2.634 0 2.636 0.32%
packing circles (n=32) ↑ 2.936 0 2.939 0.10%
minimizing max-min distance ratio ↓ 12.89 15.55 12.92 -0.23%
third autocorrelation inequality ↓ 1.458 35.746 1.546 -6.03%
spherical code (d=3, n=30) ↑ 0.6736 0.5130 0.6735 -0.01%
autoconvolution peak minimization ↓ 0.755 1.512 0.756 -0.13%
littlewood polynomials (n=512) ↓ 32 32 32 0
MSTD (n=30) ↑ 1.04 1.04 1.04 0

0 1000 2000 3000 4000
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Ex
ec

ut
io

n-
ba

se
d 

Re
wa

rd

Packing Circles in Unit Square (n=26)

rbest

rk

0 200 400 600 800 1000 1200 1400
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ex
ec

ut
io

n-
ba

se
d 

Re
wa

rd

Third Autocorrelation Inequality

rbest

rk

Figure 2: Execution-based reward of AlphaResearch on packing circles (n=26) problem (left) and
third autocorrelation inequality problem (right).

4 EXPERIMENTS

4.1 SETUP

We select o4-mini, a strong but cost-efficient LLM as our research agent and run Al-
phaResearch on each problem to get the best algorithm. We perform supervised finetuning
on Qwen-2.5-7B-Instruct (Yang et al., 2025) with the collected ICLR records, yielding
AlphaResearch-RM-7B. We do not compute loss on paper information, only on the average rat-
ing scores within \boxed{}. For fine-tuning hyperparameters, we train our model with a learning
rate of 1e-5 warmed up linearly for 100 steps. We train all the models in bfloat16 precision with
Pytorch Fully Shard Data Parallel (FSDP) and set a global batch size to 128 for 2 epochs. All other
settings not mentioned in this paper follow the default values of Huggingface Trainer 1.

4.2 RESULTS

LLMs could sometimes discover new algorithms themselves. Table 4 presents the results of
AlphaResearchComp on 8 algorithms discovery problems. AlphaResearch achieved a 2/8 win rate
(excel@best > 0) against human researchers, with one notable success: the algorithm discovered
by AlphaResearch for “Packing Circles” problem reaches the best-of-known performance (2.636
for n=26, 2.939 for n=32), outperforming human researchers (2.634 for n=26, 2.936 for n=32) and
AlphaEvolve (2.635 for n=26, 2.937 for n=32), where case (n = 32) is shown in Figure 10.

LLMs can refine their research ideas autonomously. AlphaResearch discovers advanced algo-
rithms by iteratively proposing and verifying new research ideas. As shown in Table 2, 6/8 problems

1https://huggingface.co/docs/transformers/main_classes/trainer
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Figure 4: Reward overview during the discovery process. Each action in AlphaResearch will obtain
3 kinds of reward: (1) idea scrapping due to a lower RM score than the threshold (2) idea execution
successes (3) idea execution fails.

demonstrate consistent improvement throughout the discovery process. Figure 2 presents two ex-
amples of the reward trend in AlphaResearch, where the execution-based reward initially grows
rapidly, then slowly plateaus for optimal performance seeking. This improvement trend emphasizes
the autonomous discovery ability of research agents.

The discovery of superhuman algorithms remains challenging for LLMs. As illustrated in
Table 2, despite exhibiting continuous reward growth, AlphaResearch’s performance still under-
performs human researchers in 6 out of 8 problems. We initialize AlphaResearch with the best-
known solution from human researchers on “Littlewood polynomials“ and “MSTD(n=30)“ prob-
lems, where AlphaResearch didn’t show an increase in execution-based rewards. This indicates that
current LLMs still struggle to consistently find better algorithms than human researchers.

4.3 ABLATIONS AND ANALYSIS

3 4 5 6 7 8
Score by AlphaResearch-RM-7B
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Figure 3: The idea comparison between the
execution-only research agent and AlphaRe-
search, where AlphaResearch-RM-7B is used.
This is done between the full distribution of all
1000 generated ideas from both agents without
filtering.

Execution-only agent against AlphaResearch.
To compare AlphaResearch with execution-only
agents, we utilize AlphaResearch-RM-7B to eval-
uate the novelty of ideas generated by the
execution-only agent and ideas produced by Al-
phaResearch. As illustrated in Figure 3, the ideas
generated by AlphaResearch generally achieve
higher scores than execution-only research agents.
This illustrates that AlphaResearch tends to gener-
ate better ideas to get higher external rewards, thus
facilitating a more effective research optimization
process.

Analysis of the discovery process. We analyze
the reward distribution in AlphaResearch discov-
ery process. As shown in Figure 4, approximately
30%∼40% of newly proposed ideas fall below the
RM threshold and are thus discarded. The remain-
ing ideas are executed, with the success rate of ex-
ecution largely depending on the inherent charac-
teristics of the problems. For example, the exe-
cution success rate on “Packing Circles” problem
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is 28.9%, whereas it reaches 51.7% on the “Third
Autocorrelation Inequality” problem. Figure 2 il-
lustrates the execution-based rewards for these two examples in AlphaResearch. Despite the sub-
stantial variations in execution success rates, the execution-based rewards in both cases exhibit a
consistent increasing trend. These findings demonstrate the interactions between LLM-based au-
tonomous research agents and real-world environments.

Feedback from AlphaResearch Environment

w/ AlphaResearch-RM-7B

w/o AlphaResearch-RM-7B

151
(37.8%)

194
(48.5%)

151
(37.8%)

98
(24.5%)

206
(51.5%) Execution successful

Lower than RM threshold
Execution failed

Figure 5: The impact of real-world peer review environment on execution results. AlphaResearch-
RM-7B filters 151 bad ideas, where 108 ideas fail to execute and 43 are successful.

The impact of real-world peer-review environment. To assess the effectiveness of reward from
a simulated real-world peer-view environment, we ablate AlphaResearch-RM-7B at the first 400
iterations on “Packing Circles” problem. Figure 5 presents the execution results of w/ and w/o
AlphaReasearch-RM-7B during the discovery process. Compared to the baseline without RM,
AlphaResearch-RM-7B successfully filtered 151 ideas below the threshold. This process yielded
108 correct rejections of execution failures while making 43 erroneous rejections of viable ideas.
AlphaResearch attained an accuracy of 71.5% (108/151), a result that aligns closely with its per-
formance on the AlphaResearch-RM test set, as shown in Table 2 This outcome effectively demon-
strates the model’s generalization capabilities and the efficacy of incorporating feedback from a
simulated real-world peer-review environment.

4.4 CASE STUDY

We select the successful example from AlphaResearch to better understand the discovery process.
We’ll consider the problem “Packing Circles” where the goal is to pack n disjoint circles inside a
unit square so as to maximize the sum of their radii, shown in Figure 6. We first initialize AlphaRe-
search with an original research proposal and a related program that returns a list of circles (x, y, r)
as output, as shown in Appendix I.4. The verification program first employs verify_circles
function to check if the outputs of the initial program meet the problem constraints (e.g., all circles
are inside a unit square) and evaluate function to output the sum of their radii. The metadata,
including: (1) research ideas, (2) programs, (3) execution results, are subsequently preserved as
candidates which represent the end of one step. At the next step, AlphaResearch will sample from
the candidate pool and generate a new idea to improve the research proposals from the sampled
metadata. After generating the new research ideas, AlphaResearch will further generate a patch to
modify the existing program if the idea obtains a positive score from AlphaResearch-RM. The new
program is then evaluated by the same verification program, thereby generating new metadata. We
select the best program and idea as the final solution of AlphaResearch in this iterative process.

5 RELATED WORK

LLMs for New Ideas. Several recent works explored methods to improve research idea genera-
tion, such as iterative novelty refinement (Wang et al., 2024a; Baek et al., 2024). These works focus
on improving the research idea over vanilla prompting but critically miss an effective verification
method. To promote more reliable AI-generated research ideas, many studies have proposed solu-
tions from different perspectives, such as comparisons with any human expert (Si et al., 2024), using
LLMs for executing experiments by generating code with human-curated research problems (Huang
et al., 2024; Tian et al., 2024), and executing LLM-generated research ideas with LLM-generated
programs (Li et al., 2024; Lu et al., 2024; Aygün et al., 2025). These works either use automatic
program evaluation or a misaligned LLM evaluator method, which presents a challenge for their
scalability to real-world advanced algorithm discovery. Our AlphaResearch presents a more fea-
sible direction by combining program execution with RM training from real-world peer-reviewed
research records.
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def pack_circles(n = 26):
    """
    Construct a specific arrangement of 26 circles in a unit square
    that attempts to maximize the sum of their radii.
    """
    …
    return sum_radii, circles

def compute_max_radii(centers):
    """
    Compute the maximum possible radii for each circle position
    such that they don't overlap and stay within the unit square."""...

 

tmp/packing_circles/initial_program.py

Initial Program

 

def verify_circles(circles):
    """Checks that the circles are disjoint and lie inside a unit square.  """
...

def evaluate(program_path: str = "results/initial_program.py"):
    """
    Evaluate the pack_circles function from the given program file.
    Returns the total radius sum if valid, otherwise raises an exception.
    """
…
    return {"pack_result_26": total_r_26}

 

tmp/packing_circles/evaluator.py

Verification  Program

 

Initial Research Idea

The program presents a computational approach to the circle packing problem within a unit 
square, aiming to maximize the sum of radii for a given number of circles. The pack_circles 
function initiates a structured placement of 26 circles: one at the center, eight in an inner ring, 
and sixteen in an outer ring. While this initial arrangement is a predefined pattern, it serves as 
a foundation for further optimization. The core of the algorithm lies in the compute_max_radii 
function, which iteratively determines the largest possible radius for each circle. This is 
achieved by first constraining radii based on proximity to the unit square's boundaries and 
then adjusting them to prevent overlap between any pair of circles. Overlapping circles have 
their radii proportionally scaled down to ensure non-intersection, effectively pushing them to 
a just-touching state. The final output provides the optimized centers, radii, and the total sum 
of radii for the packed configuration, demonstrating a method for generating dense circle 
arrangements within a confined space.

{"pack_result_26": 0.864}

Execution Results  

 

    Instruction
You are a research advisor tasked with improving research proposals.
Your goal is to generate a new research proposal that builds upon the current research idea 
while addressing its limitations and incorporating insights from successful approaches.
    MetaData
### Current Research Idea
The program presents a computational approach to the circle packing problem within a unit 
square, aiming to maximize the sum of radii for a given number of circles.
### Current Program
```python
def pack_circles(n = 26):
    """
    Construct a specific arrangement of 26 circles in a unit square
    that attempts to maximize the sum of their radii
    """…
```
### Current Metrics
packing_result_26=0.864

New Idea Generation

 

     Instruction
You are an expert software developer tasked with iteratively improving a codebase.
Your job is to analyze the current program and suggest improvements based on feedback 
from previous attempts.Focus on making targeted changes that will increase the program's 
performance metrics.
     MetaData
### Current Research Idea
The program presents a computational approach to the circle packing problem within a unit 
square, aiming to maximize the sum of radii for a given number of circles.
### Current Program
```python
def pack_circles(n = 26):
    """
    Construct a specific arrangement of 26 circles in a unit square
    that attempts to maximize the sum of their radii
    """… ```
### Current Metrics
packing_result_26=0.864
### New Research Idea
We propose a novel computational framework to improve the dense packing of n 
variable‐radius circles within a unit square, targeting maximization of the total sum of radii. 
Our approach addresses key limitations in existing methods—namely, rigid initialization 
patterns, local‐only radius adjustment, and O(n²) pairwise scaling…
     Format
You MUST use the exact SEARCH/REPLACE diff format shown below to indicate changes:
<<<<<<< SEARCH
# Original code to find and replace (must match exactly)
=======
# New replacement code
>>>>>>> REPLACE

Program Generation

Figure 6: We show an example of a formatted task of AlphaResearch.

LLMs for Code Generation. In autonomous research agents, code generation serves as a funda-
mental step. Previous models (Guo et al., 2024; Yu et al., 2023; Hui et al., 2024) and benchmarks
(Chen et al., 2021; Yu et al., 2025) for code generation are in a longstanding pursuit of synthesizing
code from natural language descriptions. SWE-Bench (Jimenez et al., 2024), PaperBench Starace
et al. (2025), MLE-Bench Chan et al. (2024) introduces the problems in real-world agentic coding.
Many studies on SWE-Bench have greatly contributed to the emergence of coding agents like SWE-
Agent (Yang et al., 2024) and OpenHands (Wang et al., 2025). These agent frameworks greatly
facilitate the training of agentic LLMs like Kimi-K2 (Team et al., 2025) and GLM-4.5 (Zeng et al.,
2025). The surge of these models on SWE-Bench underscores a critical need to reassess the future
directions of coding agent research. Our AlphaResearchComp benchmark shows that testing LLMs
on open-ended research for algorithm discovery is a promising direction to adapt language models
to real-world tasks.

6 CONCLUSION

We present AlphaResearch, an autonomous research agent that synergistically combines new idea
generation with program-based verification for novel algorithm discovery. Our approach demon-
strates the potential of employing LLM to discover unexplored research areas, enabling language
models to effectively tackle complex open-ended tasks. We construct AlphaResearchComp, includ-
ing 8 open-ended algorithmic problems, where AlphaResearch outperforms human researchers in
2/8 algorithmic problems but lags behind in the remaining 6 problems.which demonstrates the re-
maining challenges of autonomous algorithm discovery for future research.
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A COMPARISON WITH OPENEVOLVE
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Figure 7: Comprison with OpenEvolve on 6/8 failure modes of AlphaResearchComp.

Figure 7 presents the comparison of AlphaResearch with OpenEvolve, highlghting the following
observations: 1. Among the 8 problems, AlphaResearch outperforms the results of human researcher
and AlphaEvolve (Coding-only) on packing circles (n=26, n=32) problems, which demonstrate the
potential of accelerating human-level algorithm discovery with language models. 2. We add the
experiment results of the other 6 problems in Figure 7 of Appendix A. AlphaResearch demonstrates
more efficient discovery process than OpenEvolve (open source version of AlphaEvolve) on the first
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4 tasks, which shows the effectiveness of our dual environments for research-based agent. 3. On last
2 problems (littlewood polynomials, MSTD), Both AlphaResearch and OpenEvolve fail to improve
the "out-of-the-shelf" algorithm performance, which reveals the limitation of current long-horizon
agents where they are not able to explore the search space efficiently on out-of-the-shelf solutions.

B EXPERIMENT COST

In this section, we present the experiment parameters (iterations,computational cost) required to
reach the best solution for each on 8 tasks of AlphaResearchComp.

Table 5: Experiment Parameters of AlphaResearch .
Problem Iterations Cost per iteration (dollar)
packing circles (n=26) 4768 0.013
packing circles (n=32) 4768 0.013
minizing max-min distance ratio (d=2, n=16) 4400 0.017
third autocorrelation inequality 1366 0.012
autoconvolution peak minimization (upper bound) 979 0.013
littlewood polynomials (n=512) 2233 0.011
MSTD (n=30) 2826 0.011
spherical code 1132 0.015

C IMPACT OF DIFFERENT LLMS

In order to compare the impact of different LLMs in AlphaResearch, we use GPT-5 and o4-mini
to run AlphaResearch for 200 steps in "The Autocorrelation Inequality" problem. As illustrate in
Figure 8, AlphaResearch (GPT-5) reaches high performance significantly faster than o4-mini in the
early stages of discovery. However, in the later stages, the two models perform comparably, which
suggests that their underlying capabilities are close on algorithm discovery task.
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Figure 8: Comparison between different frontier LLMs in AlphaResearch.

D COMPARISON WITH SHINKAEVOLVE

As shown in Figure 9, we compare AlphaResearch, OpenEvolve (Sharma, 2025) and ShinkaEvolve
(Lange et al., 2025) on packing circles (n=26) problem at the first 500 steps for simplicity. Al-
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Figure 9: Comparison of OpenEvolve (with program-based reward), ShinkaEvolve (with program-
based reward) and AlphaResearch (with program-based and peer-review reward). We run three
agents on Packing Circles (n=26) problems. AlphaResearch achieves better performance than others.

phaResearch achieves better performance than OpenEvolve and slightly surpasses ShinkaEvolve,
which demonstrates that dual research environments could help research agent for scientific discov-
ery.
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E CASE STUDY DURING DISCOVERY PROCESS

In the rejected pair from checkpoint 634, the revised draft 4f4c7847 is effectively identical to its
parent e436c26a. Notably, this is found in the later period of the discovery process (Round 632-
633). Aside from inflating Genetic Algorithm (GA) hyperparameters (e.g., population = 300 → 500,
generations = 40 → 120) and adding an optional differential_evolution branch, the entire pipeline
above find_better_c3_upper_bound is byte-for-byte the same. Crucially, the core loop still calls
the undefined normalize_population, triggering the same NameError before any new logic can run.
Because this “revision” neither fixes the blocking bug nor implements the promised multi-phase
CMA-ES/surrogate/SOS pipeline, it constitutes only a cosmetic variant rather than a substantive
new direction.

Problem : Third Autocorrelation Inequality (e436c26a)

Idea score by AlphaResearch-RM-7B: 6.67.

Research ideas

Title: A Scalable, Certified Pipeline for Third-Order Autocorrelation Optimization via
Multi-Fidelity Bayesian Surrogates and Auto-Differentiable Mesh Adaptation
Abstract: We introduce a unified framework that overcomes the brittle performance (error =
1.0) and limited exploration of the current genetic-only approach by combining three tightly
integrated phases—global search, surrogate-guided refinement, and formal certification—
into a single, implementable pipeline. Key innovations include:
1. Sobol-Initialized, Diversity-Driven Differential Evolution • Generate an initial archive of
500 B-spline shape parameters via low-discrepancy Sobol sampling. • Use multi-population
Differential Evolution with mutation scales adapted online using surrogate uncertainty.
2. Hierarchical Multi-Fidelity Gaussian-Process Surrogate • Three convolution estimators:
coarse FFT (N=1024), medium CNN (N=4096), fine autodiff FFT (N=16384). • MTGP
surrogate controls fidelity via variance-weighted UCB acquisition.
3. Differentiable Trust-Region Local Refinement • L-BFGS-B on B-spline knots/RBF
weights with autodiff FFT gradients. • Adaptive knot insertion driven by (f*f) peaks.
4. Sparse Sum-of-Squares Certification • Chebyshev discretization + interval arithmetic to
certify final C³ bound with 1e-6 rigor.
Benchmarks up to spline degree 64 and grid N=16384 show stable improvements to
0.60–0.65 with full certification.

Code implementation of the above idea:

# Code extracted from file e436c26a (full content)
import numpy as np
try:

from numpy.fft import next_fast_len
except ImportError:

def next_fast_len(n):
# Fallback to next power of two which is usually fast
return 1 << (n - 1).bit_length()

def calculate_c3_upper_bound(height_sequence):

N = len(height_sequence)
delta_x = 1 / (2 * N)
# Cache padded lengths to avoid recomputing next_fast_len repeatedly
if not hasattr(calculate_c3_upper_bound, "_pad_cache"):

calculate_c3_upper_bound._pad_cache = {}
pad_cache = calculate_c3_upper_bound._pad_cache
if N not in pad_cache:

pad_cache[N] = next_fast_len(2 * N - 1)
padded = pad_cache[N]

# Compute unit-mass norm squared
integral_f = np.sum(height_sequence) * delta_x
if integral_f < 1e-12: # early exit if near zero

return 0.0
integral_sq = integral_f * integral_f

# FFT-based convolution for O(N log N)
H = np.fft.rfft(height_sequence, n=padded)
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conv_vals = np.fft.irfft(H * H, n=padded)[:2 * N - 1] * delta_x
max_conv_val = np.max(conv_vals)

return max_conv_val / integral_sq

def genetic_algorithm(population_size, num_intervals, generations, mutation_rate,
crossover_rate):

population = np.random.rand(population_size, num_intervals) * 2 - 1
best_solution = None
best_fitness = 0.0

for gen in range(generations):

height_pop = normalize_population(population, 2 * num_intervals)
fitness_scores = np.array([calculate_c3_upper_bound(h) for h in height_pop])

current_best_idx = np.argmax(fitness_scores)
if fitness_scores[current_best_idx] > best_fitness:

best_fitness = fitness_scores[current_best_idx]
best_solution = population[current_best_idx].copy()

indices = np.random.randint(0, population_size, size=(population_size, 2))
comp_scores = fitness_scores[indices]
winners = indices[np.arange(population_size), np.argmax(comp_scores, axis=1)]
new_population = population[winners].copy()

for i in range(0, population_size, 2):
if np.random.rand() < crossover_rate:

parent1 = new_population[i]
parent2 = new_population[i+1]
crossover_point = np.random.randint(1, num_intervals - 1)
new_population[i] = np.concatenate((parent1[:crossover_point],

parent2[crossover_point:]))
new_population[i+1] = np.concatenate((parent2[:crossover_point],

parent1[crossover_point:]))

for i in range(population_size):
if np.random.rand() < mutation_rate:

mutation_point = np.random.randint(num_intervals)
new_population[i, mutation_point] += np.random.normal(0, 0.1)
new_population[i, mutation_point] = np.clip(new_population[i, mutation_point],

-2, 2)

population = new_population

height_best = normalize_population(best_solution[np.newaxis, :], 2 * num_intervals)[0]
return height_best

def find_better_c3_upper_bound():

NUM_INTERVALS = 4
POPULATION_SIZE = 2
GENERATIONS = 10
MUTATION_RATE = 0.1
CROSSOVER_RATE = 0.8

height_sequence_3 = genetic_algorithm(POPULATION_SIZE, NUM_INTERVALS, GENERATIONS,
MUTATION_RATE, CROSSOVER_RATE)

return height_sequence_3

Problem : Third Autocorrelation Inequality (4f4c7847)

Idea score by AlphaResearch-RM-7B: 5.67.
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Research ideas

Title: A Robust, Multi-Phase Pipeline for Certified Third-Order Autocorrelation Max-
imization via Hybrid Evolutionary Search, Hierarchical Neural Surrogates, and Auto-
Differentiable Refinement
Abstract: We present a novel, four-stage framework that fixes the brittle, negative-error
behavior (error = 10.0) of genetic-only search by combining global exploration, uncertainty-
aware surrogates, gradient-based refinement, and SOS certification.
1. Hybrid Global Exploration • Sobol-seeded CMA-ES enhanced with an actor-critic mod-
ule to adapt mutation covariance. • Constraint-aware resampling ensures valid normalized
height sequences.
2. Hierarchical Neural Surrogates • Three-tier surrogate stack: analytic FFT (N=1024), CNN
surrogate (N=4096), auto-diff Fourier model (N=16384). • Uncertainty-modulated fidelity
allocation via Bayesian neural network.
3. Differentiable Local Refinement • L-BFGS trust-region refinement on B-spline knots
RBF weights. • Gradient-triggered adaptive knot insertion controlling model complexity.
4. Sparse Sum-of-Squares Certification • Chebyshev discretization + interval arithmetic for
rigorous C³ bound. • Full-pipeline automation ensures reliable certification.
Experiments on degrees up to 128 and grid sizes to 65536 yield C³0.75–0.80 with only 200
high-fidelity evaluations and guaranteed certification.

Code implementation of the above idea:
# Code extracted from file 4f4c7847 (full content)
import numpy as np
try:

from numpy.fft import next_fast_len
except ImportError:

def next_fast_len(n):
return 1 << (n - 1).bit_length()

def calculate_c3_upper_bound(height_sequence):

N = len(height_sequence)
delta_x = 1 / (2 * N)
if not hasattr(calculate_c3_upper_bound, "_pad_cache"):

calculate_c3_upper_bound._pad_cache = {}
pad_cache = calculate_c3_upper_bound._pad_cache
if N not in pad_cache:

pad_cache[N] = next_fast_len(2 * N - 1)
padded = pad_cache[N]

integral_f = np.sum(height_sequence) * delta_x
if integral_f < 1e-12:

return 0.0
integral_sq = integral_f * integral_f

H = np.fft.rfft(height_sequence, n=padded)
conv_vals = np.fft.irfft(H * H, n=padded)[:2 * N - 1] * delta_x
max_conv_val = np.max(conv_vals)

return max_conv_val / integral_sq

def genetic_algorithm(population_size, num_intervals, generations, mutation_rate,
crossover_rate):

population = np.random.rand(population_size, num_intervals) * 2 - 1

best_solution = None
best_fitness = 0.0

for gen in range(generations):

height_pop = normalize_population(population, 2 * num_intervals)
fitness_scores = np.array([calculate_c3_upper_bound(h) for h in height_pop])

current_best_idx = np.argmax(fitness_scores)
if fitness_scores[current_best_idx] > best_fitness:

best_fitness = fitness_scores[current_best_idx]
best_solution = population[current_best_idx].copy()

indices = np.random.randint(0, population_size, size=(population_size, 2))
comp_scores = fitness_scores[indices]
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winners = indices[np.arange(population_size), np.argmax(comp_scores, axis=1)]
new_population = population[winners].copy()

for i in range(0, population_size, 2):
if np.random.rand() < crossover_rate:

parent1 = new_population[i]
parent2 = new_population[i+1]
crossover_point = np.random.randint(1, num_intervals - 1)
new_population[i] = np.concatenate((parent1[:crossover_point],

parent2[crossover_point:]))
new_population[i+1] = np.concatenate((parent2[:crossover_point],

parent1[crossover_point:]))

for i in range(population_size):
if np.random.rand() < mutation_rate:

mutation_point = np.random.randint(num_intervals)
new_population[i, mutation_point] += np.random.normal(0, 0.1)
new_population[i, mutation_point] = np.clip(new_population[i, mutation_point],

-2, 2)

population = new_population

height_best = normalize_population(best_solution[np.newaxis, :], 2 * num_intervals)[0]
return height_best

def find_better_c3_upper_bound():

NUM_INTERVALS = 8
POPULATION_SIZE = 100
GENERATIONS = 200
MUTATION_RATE = 0.2
CROSSOVER_RATE = 0.9

try:
from scipy.optimize import differential_evolution
bounds = [(-2, 2)] * NUM_INTERVALS
result = differential_evolution(

lambda x: -calculate_c3_upper_bound(
normalize_population(x[np.newaxis, :], 2 * NUM_INTERVALS)[0]

),
bounds,
maxiter=GENERATIONS,
popsize=max(1, POPULATION_SIZE // 10),
tol=1e-6

)
height_sequence_3 = normalize_population(result.x[np.newaxis, :], 2 * NUM_INTERVALS)[0]

except ImportError:
height_sequence_3 = genetic_algorithm(

POPULATION_SIZE, NUM_INTERVALS, GENERATIONS, MUTATION_RATE, CROSSOVER_RATE
)

return height_sequence_3

F THE USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, we utilized large language models (LLMs) for grammar
checking and writing suggestions to enhance the readability and clarity of the content.

G EXAMPLES

We show an example of the constructions discovered by AlphaResearch on problem “Packing Cir-
cles”.

AlphaEvolve
1 packing_circles_alphaevolve = np.array([[0.09076163, 0.40381803, 0.090761620923837],

[0.07310993, 0.92689178, 0.07310821268917801], [0.08745017, 0.22570576,
0.087381421261857], [0.24855246, 0.30880277, 0.093428060657193], [0.4079865, 0.06300614,
0.063006133699386], [0.47646318, 0.90136179, 0.09863820013617901], [0.89604966,
0.10309934, 0.10309932969006601], [0.9066386, 0.68096117, 0.09336139066386], [0.08962002,
0.76509474, 0.0895289910471], [0.06973669, 0.06965159, 0.06965158303484101],

[0.40979823, 0.21756451, 0.09156283084371601], [0.25742466, 0.88393887,
0.11606111839388701], [0.09064689, 0.58506214, 0.090482500951749], [0.90294698,
0.30231577, 0.09623644037635501], [0.57265603, 0.10585396, 0.105853949414604],
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[0.74007588, 0.40129314, 0.09435083056491601], [0.57539962, 0.71183255,
0.115160168483982], [0.7367635, 0.21592191, 0.09104997089500201], [0.41096972,
0.40263617, 0.093512520648747], [0.88664452, 0.88667032, 0.113317128668286], [0.57582722,
0.49961748, 0.09705531029446801], [0.24962585, 0.49417195, 0.09194421080557799],

[0.90546338, 0.49309632, 0.094507120549287], [0.67381348, 0.90149423,
0.09850576014942301], [0.24310147, 0.1077195, 0.10771948922805], [0.40815297, 0.5886157,
0.09248833075116601], [0.24737889, 0.6771266, 0.090994980900501], [0.75801377, 0.7532924,
0.07192969280703], [0.73526642, 0.06243992, 0.062439303756069], [0.57415412, 0.30715219,
0.095403150459684], [0.39239379, 0.75259664, 0.07223814277618501], [0.7439361,

0.58879735, 0.093166630683336]])

AlphaResearch
1 packing_circles_alpharesearch = np.array([[(0.1115677319034151, 0.11156773191787371,

0.11156438489140026), (0.09380224787136374, 0.3161654253705352, 0.09379943380606216),
(0.09485964915877172, 0.5048217088596118, 0.09485680337610973), (0.09657322554702913,
0.6962443020287629, 0.09657032835808858), (0.10365512530384222, 0.8963448746980195,
0.10365201565567386), (0.3334956594919712, 0.09664441783072292, 0.0966415184920332),
(0.26448615440016093, 0.9376113341122044, 0.06238679422590162), (0.5287192731314015,
0.09859146596680078, 0.09858850822808951), (0.591325020569507, 0.9366833118077788,
0.0633147886877468), (0.7427106948954978, 0.11611889563206494, 0.11611541209023483),
(0.7566639864477509, 0.8920585771994192, 0.1079381845606288), (0.9269317750270191,
0.07306822497789416, 0.07306603293080358), (0.9105741716090636, 0.23473376300222965,
0.08942314561430993), (0.9094700615258342, 0.41468336419923396, 0.09052722258939731),
(0.9124275486288124, 0.7738960294683863, 0.08756982419268892), (0.9302276007184027,
0.9302276007259072, 0.06977030612132157), (0.5931627035790205, 0.4107363306659128,
0.09216300786888813), (0.5896628759126524, 0.5965222415947758, 0.09365298106148348),
(0.26303074890883915, 0.783747668079202, 0.09148238826692158), (0.42710033854875884,
0.28662965969327264, 0.1151473780101257), (0.7511102582575875, 0.5051558281448295,
0.09185177348783963), (0.4273023330525072, 0.8937703360976411, 0.10622647700018645),
(0.24372345356089029, 0.24143034678815986, 0.07371479291303436), (0.4260882762526937,
0.6918664604322906, 0.09567746779211372), (0.2572363869779693, 0.4085253312744954,
0.09392364829884896), (0.9094294608754079, 0.5957810763279916, 0.0905678220228201),
(0.42560864125756626, 0.49898110459434486, 0.09720528992590773), (0.7533817110763772,
0.32263902019589896, 0.09067643144615074), (0.5903729314333418, 0.7817733747765757,
0.09159665425215473), (0.7515568081174837, 0.6905957415401818, 0.09358581053778628),
(0.2605636694821685, 0.5973506902903994, 0.09492800518715086), (0.6095540558280068,
0.24805951545091487, 0.07133567304015336)]])
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Figure 10: New construction of AlphaResearch (right) improving the best known AlphaEvolve
(right) bounds on packing circles to maximize their sum of radii. Left: 32 circles in a unit square
with sum of radii ≥ 2.9379. Right: 32 circles in a unit square with sum of radii ≥ 2.9395
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H PROMPTS

Prompt for New Program Generation

You are an expert software developer tasked with iteratively improving a codebase. Your job
is to analyze the current program and suggest improvements based on the current proposal
and feedback from previous round. Focus on making targeted changes that will increase the
program’s performance metrics.
# Previous Proposal:
{previous proposal}
# Previous Program:
{previous program}
# Previous Performance Metrics:
{previous result}
# Current Proposal
{proposal}
# Task
Suggest improvements to the program that will lead to better performance on the specified
metrics.
You MUST use the exact SEARCH/REPLACE diff format shown below to indicate
changes:

1 <<<<<<< SEARCH
2

3 # Original code to find and replace (must match exactly)
4

5 =======
6

7 # New replacement code
8

9 <<<<<<< REPLACE

Example of valid diff format:

1 <<<<<<< SEARCH
2 for i in range(m):
3 for j in range(p):
4 for k in range(n):
5 C[i, j] += A[i, k] * B[k, j]
6

7 =======
8

9 # Reorder loops for better memory access pattern
10

11 for i in range(m):
12 for k in range(n):
13 for j in range(p):
14 C[i, j] += A[i, k] * B[k, j]
15

16 >>>>>>> REPLACE

You can suggest multiple changes. Each SEARCH section must exactly match code in the
current program.
Be thoughtful about your changes and explain your reasoning thoroughly.
IMPORTANT: Do not rewrite the entire program - focus on targeted improvements.
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Prompt for New Idea Generation

You are a research advisor tasked with evolving and improving research proposals. Your goal
is to generate a new research proposal that builds upon the current proposal while addressing
its limitations and incorporating insights from successful approaches.
Based on the following information, generate an improved research proposal:
Focus on:
1. Identifying weaknesses in the current approach based on performance metrics
2. Proposing novel improvements that could enhance performance
3. Learning from successful inspirations while maintaining originality
4. Ensuring the new proposal is implementable
- Current Proposal:
{proposal}
- Current Program:
{program}
- Current Metrics:
{results}
Please generate a new research proposal that:
1. Addresses the limitations shown in the current metrics
2. Incorporates insights from successful approaches
3. Proposes specific technical improvements
4. Maintains clarity and technical rigor
Return the proposal as a clear, concise research abstract.

Prompt for AlphaResearch-RM-7B

You are an expert reviewer tasked with evaluating the quality of a research proposal.
Your goal is to assign a score between 1 and 10 based on the proposal’s clarity, novelty,
technical rigor, and potential impact. Here are the criteria:
1. Read the following proposal carefully and provide a score from 1 to 10.
2. Score 6 means slightly higher than the borderline, 5 is slightly lower than the borderline.
Write the score in the \boxed{}.
{proposal}

I CURATED PROBLEMS AND HUMAN-BEST VALUES

We summarize the ten problems used in the ALPHARESEARCH benchmark. For each item we state
the objective, the current human-best value at the benchmark’s default parameters, and whether this
value is proved optimal or only best-known.

I.1 SPHERICAL CODE (S2 , n = 30).

Problem Description: Place n = 30 points on the unit sphere in R3 to maximize the minimal
pairwise angle θmin.

Human Best: θmin ≈ 0.673651 radians (≈ 38.5971◦).
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Initial Proposal

Problem definition. Choose N = 30 points on the unit sphere S2 to maximize the mini-
mum pairwise angle

θmin = min
i<j

arccos
(
⟨pi, pj⟩

)
.

Constraints.
• Points are unit vectors (rows normalized).
• Metric is θmin in radians.

Optimization goal. Maximize θmin. The evaluator returns {score, θmin, N, dimension},
with score = θmin.
Best-known reference (for N = 30 on S2):

cos(θ∗) ≈ 0.7815518750949873 ⇒ θ∗ ≈ 0.6736467551690225 rad.

Reference table: Henry Cohn’s spherical codes data (https://cohn.mit.edu/
spherical-codes).

Best-known results (human).
• On S2 (3D), small N optima coincide with symmetric polyhedra (e.g., tetrahedron,

octahedron, icosahedron).
• For larger N , best codes come from numerical optimization; exact optimality is

only known in limited cases.

Algorithmic goal. Construct codes with larger θmin. The baseline seeds with symmetric
configurations and uses farthest-point max–min. Stronger methods include:

• Energy minimization,
• Projected gradient / coordinate descent,
• Stochastic max–min refinement.

Initial Program:

import numpy as np

def _normalize_rows(P):
nrm = np.linalg.norm(P, axis=1, keepdims=True)
nrm = np.maximum(nrm, 1e-12)
return P / nrm

def seed_platonic(n):
"""Return a good symmetric seed on S^2 for some n; else None."""
if n == 2: # antipodal

return np.array([[0,0,1],[0,0,-1]], dtype=float)
if n == 3: # equilateral on equator

ang = 2*np.pi/3
return np.array([[1,0,0],[np.cos(ang),np.sin(ang),0],[np.cos(2*ang),np.sin(2*ang),0]],

dtype=float)
if n == 4: # tetrahedron

return _normalize_rows(np.array([[1,1,1],[1,-1,-1],[-1,1,-1],[-1,-1,1]], dtype=float))
if n == 6: # octahedron

return np.array([[1,0,0],[-1,0,0],[0,1,0],[0,-1,0],[0,0,1],[0,0,-1]], dtype=float)
if n == 8: # cube vertices

V = np.array([[sx,sy,sz] for sx in (-1,1) for sy in (-1,1) for sz in (-1,1)],
dtype=float)

return _normalize_rows(V)
if n == 12: # icosahedron (one realization)

phi = (1+np.sqrt(5))/2
V = []
for s in (-1,1):

V += [[0, s, phi],[0, s, -phi],[ s, phi,0],[ s, -phi,0],[ phi,0, s],[-phi,0, s]]
V = np.array(V, dtype=float)
return _normalize_rows(V)

return None

def farthest_point_greedy(n, seed=None, rng=np.random.default_rng(0)):
"""
Greedy max min on S^2: start from seed, then add points that maximize min angle.
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"""
def random_unit(k):

X = rng.normal(size=(k,3)); return _normalize_rows(X)

if seed is None:
P = random_unit(1) # start with one random point

else:
P = _normalize_rows(seed)

while len(P) < n:
# generate candidates and pick the one with largest min angle to current set
C = random_unit(2000) # candidates per iteration (tune as needed)
# cosines to existing points
cos = C @ P.T
# min angle to set -> maximize this
min_ang = np.arccos(np.clip(np.max(cos, axis=1), -1.0, 1.0))
idx = np.argmax(min_ang)
P = np.vstack([P, C[idx:idx+1]])

return P

def main():
n = 30
seed = seed_platonic(n)
pts = farthest_point_greedy(n, seed=seed, rng=np.random.default_rng(42))
print(f"n={n}, points={len(pts)}")
return pts

if __name__ == "__main__":
points = main()

np.save("points.npy", points)

# Ensure compatibility with evaluators that expect a global variable
try:

points # type: ignore[name-defined]
except NameError:

points = main()

I.2 LITTLEWOOD POLYNOMIALS.

Problem Description For coefficients ck ∈ {±1} and Pn(t) =
∑n−1

k=0 cke
ikt, minimize ∥Pn∥∞ =

supt∈R |Pn(t)|.

Human Best: the Rudin–Shapiro construction gives ∥Pn∥∞ ≤
√
2n. At the benchmark setting n =

512, this yields ∥P512∥∞ ≤ 32 (so the “larger-is-better” score 1/∥Pn∥∞ is ≥ 1/32 = 0.03125).
Sharper constants are known for special families, but

√
2n remains a clean baseline.
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Initial Proposal

Choose coefficients ck ∈ {±1} for

P (z) =

n−1∑
k=0

ckz
k, |z| = 1,

so as to minimize the supremum norm

∥P∥∞ = max
|z|=1

|P (z)|.

Constraints.
• Coefficients ck are restricted to ±1.
• The metric ∥P∥∞ is estimated by FFT sampling on an equally spaced grid (denser

grid→ tighter upper bound).
Optimization Goal. The evaluator returns:

score =


1

∥P∥∞
, if valid,

−1.0, otherwise.

Notes on Bounds. For the Rudin–Shapiro construction of length n, a classical identity gives

∥P∥∞ ≤
√
2n.

For the benchmark default n = 512, this yields

∥P∥∞ ≤
√
1024 = 32,

so
score = 1

32 = 0.03125.

Initial Program:

def rudin_shapiro(n: int):
"""
First n signs of the Rudin-Shapiro sequence.
"""
a = np.ones(n, dtype=int)
for k in range(n):

x, cnt, prev = k, 0, 0
while x:

b = x & 1
if b & prev: # saw ’11’

cnt ^= 1
prev = b
x >>= 1

a[k] = 1 if cnt == 0 else -1
return a

def random_littlewood(n: int, seed=0):
rng = np.random.default_rng(seed)
return rng.choice([-1, 1], size=n).astype(int)

def main():
n = 512
c = rudin_shapiro(n)
print(f"n={n}, coeffs={len(c)}")
return c

if __name__ == "__main__":
coeffs = main()

# Ensure compatibility with evaluators that expect a global variable
try:

coeffs # type: ignore[name-defined]
except NameError:

coeffs = main()
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I.3 SUM VS. DIFFERENCE SETS (MSTD).

Problem Description For a finite set A ⊂ Z, maximize |A+A|/|A−A|.
Human Best: MSTD sets exist; the smallest possible size is |A| = 8 (classification up to affine
equivalence is known). For larger |A|, extremal ratios remain open; our benchmark instance reports
a representative value (≈ 1.04 for |A| = 30).

Initial Proposal

Objective. Classical MSTD (enforced): Given A ⊂ {0, 1, . . . , N − 1} represented by a
0/1 indicator array of length N , maximize the ratio

R =
|A+A|
|A−A|

.

• Score: score = R (higher is better).
• Comparisons should be made under the same N .

Default setup.
• N = 30.
• Evaluator enforces A = B (classical setting). If a pair (A,B) is provided, B is

ignored and A is used.

Known best for N = 30 (baseline). Conway’s MSTD set

A = {0, 2, 3, 4, 7, 11, 12, 14}

yields R ≈ 1.04. This is the baseline included in initial_program.py. Better ratios
may exist for N = 30; pushing R upwards is the optimization goal.

Notes.
• R > 1 is rare and indicates sum-dominance.
• The ratio depends strongly on N ; do not compare ratios across different N without

a normalization scheme.
• If cross-N comparison is necessary, consider reporting both R and N , or use logR

as an auxiliary measure.

Initial Program:

def main():
N = 30
# Conway MSTD set example; we take A=B for classical MSTD
A = [0, 2, 3, 4, 7, 11, 12, 14]
B = A[:]
A_ind = np.zeros(N, dtype=int); A_ind[A] = 1
B_ind = np.zeros(N, dtype=int); B_ind[B] = 1
return A_ind, B_ind

# Ensure globals for evaluator
try:

A_indicators; B_indicators # type: ignore[name-defined]
except NameError:

A_indicators, B_indicators = main()
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I.4 PACKING CIRCLE IN A SQUARE (VARIABLE RADII).

Problem Description In the unit square, place n disjoint circles (radii free) to maximize the sum of
radii

∑
ri.

Best-known: for n = 26,
∑

ri = 2.634 (Cantrell, 2011); for n = 32,
∑

ri = 2.936 (Specht,
2012).

Initial Proposal

Problem definition. Given an integer n, place n disjoint circles in the unit square [0, 1]2

to maximize the total sum of radii.
Objective and metric.

• Score: score =
∑n

i=1 ri (larger is better).
• Validity: circles must be pairwise disjoint and fully contained in the unit square.

Notes on records.
• This variable-radius “sum of radii” objective is not the classical equal-radius pack-

ing; authoritative SOTA tables are not standardized.
• Values reported in code or experiments should be treated as benchmarks rather than

literature SOTA.

Goal. Create algorithms that increase the total sum of radii for n ∈ {26, 32} under the
above validity constraints.

Initial Program:

import random
from concurrent.futures import ThreadPoolExecutor

def pack_circles(n, square_size=1.0):
"""
Pack n disjoint circles in a unit square using uniform tiling approach.
Returns the sum of radii and list of circles (x, y, r).
"""

def max_circle_radius(x, y, circles, square_size=1.0, skip_idx=None):
"""
Compute the maximum radius for a circle centered at (x, y) that:
- Stays within the unit square [0, square_size] \times [0, square_size].
- Does not overlap with existing circles.
skip_idx: if provided, index in circles[] to ignore (self).
"""
# Distance to nearest boundary of the unit square
r_max = min(x, y, square_size - x, square_size - y)

# Check distance to existing circles, exit early if r_max \rightarrow 0
# early exit if r_max is tiny, and avoid needless sqrt
for idx, (cx, cy, cr) in enumerate(circles):

if skip_idx == idx:
continue

if r_max <= 1e-8:
break

dx = x - cx
dy = y - cy
sep = r_max + cr
if dx*dx + dy*dy < sep*sep:

# only compute sqrt when we know we can shrink
dist = math.sqrt(dx*dx + dy*dy)
r_max = min(r_max, dist - cr)

return max(r_max, 0.0)

def uniform_tiling_circles(n, square_size=1.0):
"""
Uniformly tile the square with circles using optimal grid placement.
"""
if n <= 0:

return []

circles = []
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# Calculate optimal grid dimensions
# For n circles, find the best grid layout (rows x cols)
best_layout = None
best_total_radius = 0

# Try different grid configurations
for rows in range(1, min(n + 1, 20)):

cols = math.ceil(n / rows)
if cols > 20: # Limit grid size

continue

# Calculate spacing
spacing_x = square_size / (cols + 1)
spacing_y = square_size / (rows + 1)

# Use the smaller spacing to ensure circles fit
min_spacing = min(spacing_x, spacing_y)

# Calculate maximum radius for this layout
max_radius = min_spacing / 2

# Ensure radius doesn’t exceed boundaries
max_radius = min(max_radius,

spacing_x / 2 - 1e-6,
spacing_y / 2 - 1e-6)

if max_radius <= 0:
continue

# Place circles in uniform grid
temp_circles = []
count = 0

for row in range(rows):
for col in range(cols):

if count >= n:
break

x = spacing_x * (col + 1)
y = spacing_y * (row + 1)

# Ensure circle stays within bounds
if (x - max_radius >= 0 and x + max_radius <= square_size and

y - max_radius >= 0 and y + max_radius <= square_size):

temp_circles.append((x, y, max_radius))
count += 1

if count >= n:
break

# Calculate total radius for this layout
total_radius = len(temp_circles) * max_radius

if total_radius > best_total_radius and len(temp_circles) == n:
best_total_radius = total_radius
best_layout = temp_circles

# If we found a valid layout, return it
if best_layout:

return best_layout

# Fallback: use hexagonal packing for better density
return hexagonal_packing(n, square_size)

def hexagonal_packing(n, square_size=1.0):
"""
Use hexagonal close packing for better space utilization.
"""
circles = []

# Estimate number of rows and columns for hexagonal packing
# Hexagonal packing has rows offset by sqrt(3)/2 * diameter

rows = int(math.sqrt(n * 2 / math.sqrt(3))) + 2

count = 0
row = 0

while count < n and row < rows:
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# Calculate y position for this row
y = (row + 0.5) * (square_size / (rows + 1))

# Number of circles in this row
if row % 2 == 0:

cols = int(math.sqrt(n)) + 1
else:

cols = int(math.sqrt(n))

spacing_x = square_size / (cols + 1)

for col in range(cols):
if count >= n:

break

if row % 2 == 0:
x = spacing_x * (col + 1)

else:
x = spacing_x * (col + 1) + spacing_x / 2

# Calculate maximum radius for this position
r = max_circle_radius(x, y, circles, square_size)

if r > 0:
circles.append((x, y, r))
count += 1

row += 1

return circles

def optimize_placement(n, square_size=1.0):
"""
Optimize circle placement using uniform tiling with radius maximization.
"""
circles = []

# First, try hexagonal packing for high initial density
hex_circles = hexagonal_packing(n, square_size)
if len(hex_circles) == n:

# Ensure maximum radii for hex layout with stronger refinement
hex_refined = refine_circles(hex_circles, square_size, iterations=20)
return hex_refined

# Fallback to uniform grid placement
grid_circles = uniform_tiling_circles(n, square_size)
if len(grid_circles) == n:

return grid_circles

# If uniform tiling didn’t work perfectly, use adaptive approach
# Calculate optimal radius based on density
area_per_circle = (square_size * square_size) / n
estimated_radius = math.sqrt(area_per_circle / math.pi) * 0.9 # Conservative estimate

# Create grid with optimal spacing
spacing = estimated_radius * 2.1 # Include gap

cols = int(square_size / spacing)
rows = int(square_size / spacing)

actual_spacing_x = square_size / (cols + 1)
actual_spacing_y = square_size / (rows + 1)

count = 0
for row in range(rows):

for col in range(cols):
if count >= n:

break

x = actual_spacing_x * (col + 1)
y = actual_spacing_y * (row + 1)

# Calculate maximum possible radius
r = max_circle_radius(x, y, circles, square_size)

if r > 0:
circles.append((x, y, r))
count += 1

if count >= n:
break
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# If we still need more circles, use remaining space
remaining = n - len(circles)
if remaining > 0:

# Place remaining circles in remaining spaces
for i in range(remaining):

# Try different positions systematically
best_r = 0
best_pos = (0.5, 0.5)

# Fine grid search (increased resolution)
grid_points = 100
for gx in range(1, grid_points):

for gy in range(1, grid_points):
x = gx / grid_points
y = gy / grid_points

r = max_circle_radius(x, y, circles, square_size)
if r > best_r:

best_r = r
best_pos = (x, y)

if best_r > 0:
circles.append((best_pos[0], best_pos[1], best_r))

return circles

def refine_circles(circles, square_size, iterations=80, perturb_interval=3):
"""
Iteratively grow each circle to its maximum radius under non-overlap constraints.
Includes randomized update order, periodic micro-perturbation to escape
local minima, and a final local-center-perturbation pass for densification.
"""
for it in range(iterations):

# randomize update order to avoid sweep-order bias
indices = list(range(len(circles)))
random.shuffle(indices)
for i in indices:

x, y, _ = circles[i]
# Compute maximal feasible radius here, skipping self
r = max_circle_radius(x, y, circles, square_size, skip_idx=i)
circles[i] = (x, y, r)

# Periodic micro-perturbation: jiggle a few circles
if it % perturb_interval == 0 and len(circles) > 0:

subset = random.sample(indices, min(5, len(circles)))
for j in subset:

x0, y0, r0 = circles[j]
dx = random.uniform(-0.03, 0.03)
dy = random.uniform(-0.03, 0.03)
nx = min(max(x0 + dx, 0), square_size)
ny = min(max(y0 + dy, 0), square_size)
# Compute maximal radius skipping self
nr = max_circle_radius(nx, ny, circles, square_size, skip_idx=j)
if nr > r0:

circles[j] = (nx, ny, nr)
# Full local center-perturbation phase for final densification
for i in range(len(circles)):

x, y, r = circles[i]
best_x, best_y, best_r = x, y, r
delta = 0.1
for _ in range(20):

dx = random.uniform(-delta, delta)
dy = random.uniform(-delta, delta)
nx = min(max(x + dx, 0), square_size)
ny = min(max(y + dy, 0), square_size)
# Compute maximal radius skipping self
nr = max_circle_radius(nx, ny, circles, square_size, skip_idx=i)
if nr > best_r:

best_x, best_y, best_r = nx, ny, nr
else:

delta *= 0.9
circles[i] = (best_x, best_y, best_r)

# Physics-inspired soft relaxation to escape persistent overlaps
for i in range(len(circles)):

x, y, r = circles[i]
fx, fy = 0.0, 0.0
for j, (xj, yj, rj) in enumerate(circles):

if i == j:
continue

dx = x - xj
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dy = y - yj
d = (dx*dx + dy*dy) ** 0.5
overlap = (r + rj) - d
if overlap > 0 and d > 1e-8:

fx += dx / d * overlap
fy += dy / d * overlap

# Nudge the center by 10\% of the computed net "repulsive" force
nx = min(max(x + 0.1 * fx, 0), square_size)
ny = min(max(y + 0.1 * fy, 0), square_size)
nr = max_circle_radius(nx, ny, circles, square_size, skip_idx=i)
circles[i] = (nx, ny, nr)

return circles

def multi_start_optimize(n, square_size, starts=None):
"""
Parallel multi-start global \rightarrow local optimization using ThreadPoolExecutor.
Number of starts adapts to problem size: max(100, 10*n).
"""
if starts is None:

if n <= 50:
starts = max(200, n * 20)

else:
starts = max(100, n * 10)

# precompute hexagonal packing baseline
hex_circ = hexagonal_packing(n, square_size)
hex_sum = sum(r for _, _, r in hex_circ)
best_conf = None
best_sum = 0.0

# single trial: seed \rightarrow refine \rightarrow score
def single_run(_):

conf0 = optimize_placement(n, square_size)
conf1 = refine_circles(conf0, square_size, iterations=40)
s1 = sum(r for _, _, r in conf1)
return s1, conf1

# dispatch trials in parallel
with ThreadPoolExecutor() as executor:

for score, conf in executor.map(single_run, range(starts)):
if score > best_sum:

best_sum, best_conf = score, conf.copy()
# early exit if near the hex-baseline
if best_sum >= hex_sum * 0.995:

break

return best_conf

# Use multi-start global \rightarrow local optimization (adaptive number of starts)
circles = multi_start_optimize(n, square_size)

# Quick 2-cluster remove-and-reinsert densification (extended iterations)
for _ in range(8):

# remove the two smallest circles to create a larger gap
smallest = sorted(range(len(circles)), key=lambda i: circles[i][2])[:2]
removed = [circles[i] for i in smallest]
# pop in reverse order to keep indices valid
for i in sorted(smallest, reverse=True):

circles.pop(i)
# refine the remaining configuration briefly
circles = refine_circles(circles, square_size, iterations=8)
# reinsert each removed circle with more sampling
for x_old, y_old, _ in removed:

best_r, best_pos = 0.0, (x_old, y_old)
for _ in range(500):

x = random.uniform(0, square_size)
y = random.uniform(0, square_size)
r = max_circle_radius(x, y, circles, square_size)
if r > best_r:

best_r, best_pos = r, (x, y)
circles.append((best_pos[0], best_pos[1], best_r))

# final local polish after reinsertion
circles = refine_circles(circles, square_size, iterations=5)

# end 2-cluster remove-and-reinsert densification

# Calculate total radius
total_radius = sum(circle[2] for circle in circles)

return total_radius, circles
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I.5 MINIMIZING MAX/MIN DISTANCE RATIO (d = 2, n = 16).

Problem Description For n points in [0, 1]2, minimize R =
maxi̸=j ∥xi − xj∥
mini̸=j ∥xi − xj∥

.

Best-known: R2 ≈ 12.890 (Cantrell, 2009), i.e., R ≈ 3.590.

Initial Proposal

Problem. Arrange n points in [0, 1]d to optimize the dispersion / packing–covering trade-
off. The benchmark metric is

ratio =
min pairwise distance
max pairwise distance

,

so that larger ratio is better (values in (0, 1]).
Evaluator. Given a program exposing max_min_dis_ratio(n, d), we obtain config-
urations for (n, d) = (16, 2) and (14, 3), then report ratio for each case.
Baseline algorithm. The initial program employs:

• Enhanced simulated annealing with adaptive cooling,
• Neighbor-repulsion moves,
• Periodic smoothing via k-NN weighted averages,
• A local refinement stage.

KD-tree acceleration is used for nearest-neighbor queries; hyperparameters adapt to dimen-
sion.

Initial Program:

from scipy.spatial.distance import pdist
from scipy.spatial import cKDTree

# (Removed) smooth_points smoothing logic is now inlined to reduce indirection

def calculate_distances(points):
"""Calculates min, max, and ratio of pairwise Euclidean distances using scipy pdist."""
if points.shape[0] < 2:

return 0.0, 0.0, 0.0
distances = pdist(points, metric=’euclidean’)
eps = 1e-8
min_dist = max(np.min(distances), eps)
max_dist = np.max(distances)
ratio = max_dist / min_dist
return min_dist, max_dist, ratio

# (Removed) perturb_point now inlined directly where used

def update_temperature(temperature, cooling_rate, accept_history, iteration, total_iters,
initial_temperature, window_size=100):

"""
Adaptive cooling with acceptancerate feedback and periodic reheating.
"""
window = accept_history[-min(len(accept_history), window_size):]
rate = sum(window) / len(window)
# gentler correction: slow/fast cooling factors reduced
if rate < 0.2:

adj = 1.02
elif rate > 0.8:

adj = 0.98
else:

adj = 1.0
temperature *= cooling_rate * adj
# removed periodic reheating to maintain smoother cooling schedule
# if (iteration + 1) % (total_iters // 4) == 0:
# temperature = initial_temperature
return temperature

def max_min_dis_ratio(n: int, d: int, seed=None):
"""
Finds n points in d-dimensional space to minimize the max/min distance ratio
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using simulated annealing.

Args:
n (int): Number of points.
d (int): Dimensionality of the space.

Returns:
tuple: (best_points, best_ratio)

"""

# Adaptive hyperparameters based on dimensionality
iterations = 3000 if d <= 2 else 6000 # increased sweeps for improved convergence
initial_temperature = 10.0
cooling_rate = 0.998 if d <= 2 else 0.996 # slower cooling for extended exploration
perturbation_factor = 0.15 if d <= 2 else 0.12 # tuned smaller steps in 3D for better

local refinement
# relaxation factor for post-acceptance repulsive adjustment
# relaxation_factor removed; using inline 0.1 * perturbation_factor below

# 1. Initial State: reproducible random generator
rng = np.random.default_rng(seed)
# uniform random initialization in [0,1]^d for simplicity
current_points = rng.random((n, d))

_, _, current_ratio = calculate_distances(current_points)

best_points = np.copy(current_points)
best_ratio = current_ratio

temperature = initial_temperature
accept_history = []
window_size = 50 # window for stagnation detection and adaptive injection
# smoothing_interval remains, but smoothing_strength is fixed inlined above
smoothing_interval = max(10, iterations // (20 if d <= 2 else 30)) # more frequent

smoothing in 3D for improved uniformity

for i in range(iterations):
# Build KD-tree once per iteration for neighbor queries
tree = cKDTree(current_points)
# optional smoothing step using distance-weighted neighbor smoothing
if (i + 1) % smoothing_interval == 0:

# choose neighbor count based on dimension
k_smooth = 6 if d > 2 else 4
_, idxs = tree.query(current_points, k=k_smooth+1)
neighbors = current_points[idxs[:,1:]] # exclude self
# compute inverse-distance weights
diffs = neighbors - current_points[:, None, :]
dists = np.linalg.norm(diffs, axis=2) + 1e-6
weights = 1.0 / dists
weights /= weights.sum(axis=1, keepdims=True)
neighbor_means = (neighbors * weights[..., None]).sum(axis=1)
blend = 0.6 if d > 2 else 0.7
current_points = np.clip(current_points * blend + neighbor_means * (1 - blend), 0.0,

1.0)
_, _, current_ratio = calculate_distances(current_points)
if current_ratio < best_ratio:

best_points = current_points.copy()
best_ratio = current_ratio

# 2. Generate Neighboring State: Perturb a random point
# Simplify scaling: rely on temperature to adjust step-size instead of best_ratio
# dynamic perturbation decays sublinearly with temperature for finer local moves
perturbation_strength = perturbation_factor * ((temperature / initial_temperature)**0.6

+ 0.15)

# Choose a random point to perturb
point_to_perturb_index = rng.integers(0, n)

old_point = current_points[point_to_perturb_index].copy()
# Increase repulsivemove frequency in low dimensions
# dynamic repulsion probability: stronger at high temperature, tapering off as we cool
if d > 2:

# reduce repulsion frequency in 3D for finer refinement
repulsion_prob = float(np.clip(temperature / initial_temperature, 0.2, 0.8))

else:
repulsion_prob = float(np.clip(temperature / initial_temperature + 0.1, 0.5, 0.95))

# start with a random jitter
# random jitter inlined for readability
candidate = old_point + rng.uniform(-perturbation_strength, perturbation_strength,

size=old_point.shape)
if n > 1 and rng.random() < repulsion_prob:

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

# compute nearest neighbor via KD-tree for efficiency (reusing prebuilt tree)
_, nn_idxs = tree.query(old_point, k=2)
nn_idx = nn_idxs[1]
vec = old_point - current_points[nn_idx]
norm = np.linalg.norm(vec)
if norm > 1e-8:

dir_vec = vec / norm
candidate = old_point + perturbation_strength * dir_vec

# keep the point in [0,1]^d
current_points[point_to_perturb_index] = np.clip(candidate, 0.0, 1.0)
_, _, candidate_ratio = calculate_distances(current_points)

# Acceptance criterion
delta = candidate_ratio - current_ratio
accept = (delta < 0) or (rng.random() < np.exp(-delta / temperature))

if accept:
current_ratio = candidate_ratio
# Post-acceptance repulsive relaxation to improve local spacing
# reuse prebuilt KD-tree for repulsive relaxation
dists, idxs_nn = tree.query(current_points[point_to_perturb_index], k=2)
dir_vec = current_points[point_to_perturb_index] - current_points[idxs_nn[1]]
norm = np.linalg.norm(dir_vec)
if norm > 1e-8:

# push away from nearest neighbor
adjustment = 0.1 * perturbation_factor * dir_vec / norm
current_points[point_to_perturb_index] = np.clip(

current_points[point_to_perturb_index] + adjustment, 0.0, 1.0
)
# update ratio and best points after relaxation
_, _, relaxed_ratio = calculate_distances(current_points)
current_ratio = relaxed_ratio
if relaxed_ratio < best_ratio:

best_points = current_points.copy()
best_ratio = relaxed_ratio

# also keep the standard bestcheck for the candidate move
if current_ratio < best_ratio:

best_points = current_points.copy()
best_ratio = current_ratio

else:
current_points[point_to_perturb_index] = old_point

# Update temperature with adaptive schedule
accept_history.append(accept)
temperature = update_temperature(temperature, cooling_rate, accept_history, i,

iterations, initial_temperature)
# periodic mild reheating for 3D to escape deep minima
if d > 2 and (i + 1) % (iterations // 3) == 0:

temperature = max(temperature, initial_temperature * 0.3)

# random injection to escape plateaus: reinitialize one point every 20% of iterations
# random injection only if weve stagnated (low acceptance in recent window)
if (i + 1) % max(1, iterations // 5) == 0 and len(accept_history) >= window_size \

and sum(accept_history[-window_size:]) / window_size < 0.1:
j = rng.integers(0, n)
current_points[j] = rng.random(d)
_, _, current_ratio = calculate_distances(current_points)

# Local refinement stage: fine-tune best solution with small Gaussian perturbations
refine_iters = max(100, iterations // 20)
for _ in range(refine_iters):

idx = rng.integers(0, n)
old_point = best_points[idx].copy()
perturb = rng.normal(0, perturbation_factor * 0.05, size=d)
best_points[idx] = np.clip(old_point + perturb, 0.0, 1.0)
_, _, refined_ratio = calculate_distances(best_points)
if refined_ratio < best_ratio:

best_ratio = refined_ratio
else:

best_points[idx] = old_point
return best_points, best_ratio

I.6 AUTOCONVOLUTION PEAK MINIMIZATION (L∞).

Problem Description For nonnegative densities f supported on [−1
2 ,

1
2 ] with

∫
f = 1, define

µ∞ = sup
t
(f ∗ f)(t).
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The exact optimum is unknown.

Human Best:
0.64 ≤ µ∞ ≤ 0.75496.

The lower bound is due to Cloninger–Steinerberger, and the upper bound comes from explicit step-
function constructions of Matolcsi–Vinuesa (rescaled to unit support).

Initial Proposal

Problem definition. Let

F =
{
f ∈ L1

(
[− 1

2 ,
1
2 ]
)
: f ≥ 0,

∫ 1/2

−1/2

f(x) dx = 1
}
,

and define
(f ∗ f)(t) =

∫
R
f(x) f(t− x) dx.

We seek to minimize the peak value of the autoconvolution:

µ∞ = inf
f∈F

∥f ∗ f∥∞.

Constraints.
• Nonnegative density.
• Unit mass (L1 = 1).
• Support length 1 (here taken as [− 1

2 ,
1
2 ]).

In the implementation, f is represented by nonnegative step heights on a uniform grid and
normalized to unit integral.

Optimization goal. Minimize

µ∞ = max
t

(f ∗ f)(t).

Smaller values are better.

Best-known human results. In this standard setup, the best currently published bounds
are

0.64 ≤ µ∞ ≤ 0.75496 .

The upper bound traces to work of Matolcsi–Vinuesa (after normalizing support length to
1), and the lower bound to Cloninger–Steinerberger.

Algorithmic goal. Create an algorithm that constructs feasible densities with progres-
sively smaller µ∞. The baseline program generates simple analytical candidates (box, tri-
angle, cosine-squared, Gaussian) on a uniform grid, normalizes to unit mass, and computes
autoconvolution via FFT to measure µ∞. It serves as a starting point for more advanced
search/optimization methods.

References.
• E. P. White, An optimal L2 autoconvolution inequality, Canadian Mathematical

Bulletin (2024).
• M. Matolcsi and C. Vinuesa, Improved bounds on the supremum of autoconvolu-

tions, J. Math. Anal. Appl. 372 (2010), 439–447.
• A. Cloninger and S. Steinerberger, On suprema of autoconvolutions with an appli-

cation to Sidon sets, Proc. Amer. Math. Soc. 145 (2017), 3191–3200.

Initial Program:

# -*- coding: utf-8 -*-
"""
Autoconvolution Peak Minimization
=================================
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This program generates step heights for a probability density function
that minimizes the maximum value of its autoconvolution.
"""

import numpy as np
from typing import Dict

def evaluate_C1_upper_std(step_heights: np.ndarray) -> Dict[str, float]:
"""
Standard-normalized C1 (support [-1/2,1/2], dx=1/K).
- Project to feasible set: h >= 0 and f = 1 (L1 normalization).
- Objective: mu_inf = max_t (f*f)(t) (smaller is better).
Returns: {"valid", "mu_inf", "ratio"(=mu_inf), "integral"(=1.0), "K"}
"""
h = np.asarray(step_heights, dtype=float)
if h.size == 0 or np.any(h < 0):

return {"valid": 0.0, "mu_inf": float("inf"), "ratio": float("inf")}
K = int(len(h))
dx = 1.0 / K

integral = float(np.sum(h) * dx)
if integral <= 0:

return {"valid": 0.0, "mu_inf": float("inf"), "ratio": float("inf")}
h = h / integral # f = 1

F = np.fft.fft(h, 2*K - 1) # linear autoconvolution via padding
conv = np.fft.ifft(F * F).real
conv = np.maximum(conv, 0.0) # clamp tiny negatives

mu_inf = float(np.max(conv) * dx)
return {"valid": 1.0, "mu_inf": mu_inf, "ratio": mu_inf, "integral": 1.0, "K": float(K)}

def make_candidate(K: int, kind: str = "cos2") -> np.ndarray:
"""
Simple candidate builder on [-1/2,1/2] (NOT normalized here).

Args:
K: Number of discretization points
kind: Type of candidate function ("box", "triangle", "cos2", "gauss")

Returns:
Step heights array

"""
x = np.linspace(-1.0, 1.0, K)
if kind == "box":

h = np.ones(K)
elif kind == "triangle":

h = 1.0 - np.abs(x)
h[h < 0] = 0.0

elif kind == "cos2":
h = np.cos(np.pi * x / 2.0) ** 2

elif kind == "gauss":
h = np.exp(-4.0 * x**2)

else:
raise ValueError(f"unknown kind={kind}")

return h

def main():
"""
Main function that generates step heights for autoconvolution minimization.

Returns:
numpy.ndarray: Step heights array

"""
K = 128
kind = "cos2" # Change this to try different candidates (box/triangle/cos2/gauss)
step_heights = make_candidate(K, kind)

# Evaluate the result to verify it’s valid
result = evaluate_C1_upper_std(step_heights)
print(f"Generated {kind} candidate with K={K}, mu_inf={result[’mu_inf’]:.6f}")

return step_heights
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I.7 THIRD AUTOCORRELATION INEQUALITY.

Problem Description Let C3 be the largest constant such that max|t|≤1/2 |(f ∗ f)(t)| ≥
C3

( ∫ 1/4

−1/4
f
)2

for all (signed) f .

Best-known: classical 1.4581 upper bound.

I.8 THIRD-ORDER AUTOCORRELATION INEQUALITY (C3 UPPER BOUND)

Initial Proposal

Problem. For piecewise-constant nonnegative functions on a fixed support with unit mass,
we evaluate an upper bound Cupper_bound derived from the maximum of the autoconvolution
(normalized by squared L1 mass). The benchmark score is

score =
1

Cupper_bound
,

so that larger score indicates a smaller upper bound and hence a better result.
Evaluator. The evaluator calls find_better_c3_upper_bound() from the target
program to obtain step heights, computes the normalized autoconvolution maximum, and
returns 1/Cupper_bound.
Baseline algorithm. A simple genetic algorithm over height sequences serves as the base-
line search method. The algorithm includes:

• Tournament selection,
• One-point crossover,
• Gaussian mutation.

Initial Program:

import scipy.integrate

def calculate_c3_upper_bound(height_sequence):

N = len(height_sequence)
delta_x = 1 / (2 * N)

def f(x):
if -0.25 <= x <= 0.25:

index = int((x - (-0.25)) / delta_x)
if index == N:

index -= 1
return height_sequence[index]

else:
return 0.0

integral_f = np.sum(height_sequence) * delta_x
integral_sq = integral_f**2

if integral_sq < 1e-18:
return 0.0

t_points = np.linspace(-0.5, 0.5, 2 * N + 1)

max_conv_val = 0.0
for t_val in t_points:

lower_bound = max(-0.25, t_val - 0.25)
upper_bound = min(0.25, t_val + 0.25)

if upper_bound <= lower_bound:
convolution_val = 0.0

else:
def integrand(x):

return f(x) * f(t_val - x)

convolution_val, _ = scipy.integrate.quad(integrand, lower_bound, upper_bound,
limit=100)
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if abs(convolution_val) > max_conv_val:
max_conv_val = abs(convolution_val)

return max_conv_val / integral_sq

def genetic_algorithm(population_size, num_intervals, generations, mutation_rate,
crossover_rate):

population = np.random.rand(population_size, num_intervals) * 2 - 1

best_solution = None
best_fitness = 0.0

for gen in range(generations):

fitness_scores = np.array([calculate_c3_upper_bound(individual) for individual in
population])

current_best_idx = np.argmax(fitness_scores)
if fitness_scores[current_best_idx] > best_fitness:

best_fitness = fitness_scores[current_best_idx]
best_solution = population[current_best_idx].copy()
# print(f"Generation {gen}: New best fitness = {best_fitness}")

new_population = np.zeros_like(population)
for i in range(population_size):

competitors_indices = np.random.choice(population_size, 2, replace=False)
winner_idx = competitors_indices[np.argmax(fitness_scores[competitors_indices])]
new_population[i] = population[winner_idx].copy()

for i in range(0, population_size, 2):
if np.random.rand() < crossover_rate:

parent1 = new_population[i]
parent2 = new_population[i+1]
crossover_point = np.random.randint(1, num_intervals - 1)
new_population[i] = np.concatenate((parent1[:crossover_point],

parent2[crossover_point:]))
new_population[i+1] = np.concatenate((parent2[:crossover_point],

parent1[crossover_point:]))

for i in range(population_size):
if np.random.rand() < mutation_rate:

mutation_point = np.random.randint(num_intervals)
new_population[i, mutation_point] += np.random.normal(0, 0.1)

new_population[i, mutation_point] = np.clip(new_population[i, mutation_point],
-2, 2)

population = new_population

return best_solution

def find_better_c3_upper_bound():

NUM_INTERVALS = 4
POPULATION_SIZE = 2
GENERATIONS = 10
MUTATION_RATE = 0.1
CROSSOVER_RATE = 0.8

height_sequence_3 = genetic_algorithm(POPULATION_SIZE, NUM_INTERVALS, GENERATIONS,
MUTATION_RATE, CROSSOVER_RATE)

return height_sequence_3
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