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Abstract001

The dissemination of misinformation on on-002
line platforms has necessitated the develop-003
ment of automatic fact verification systems.004
Recent studies leverage semantic features of005
both claims and evidence to make predictions.006
However, these methods hypothesize that evi-007
dence is always available and accessible, which008
is undoubtedly impossible in real-world cir-009
cumstances. Recent studies attempt to use010
retrieval-augmented approaches to retrieve rele-011
vant evidence to conduct fact verification tasks.012
However, these methods typically use the en-013
tire statement as a query to retrieve evidence,014
which may lead to missing relevant results. Be-015
sides, some studies utilize decomposed claims016
as queries, but they omit the filtering pro-017
cess, which may retrieve redundant information.018
Thus, to solve these challenges, we propose a019
novel Cross-granularity Retrieval-Augmented020
Network (CRAN) for open-domain fact verifi-021
cation. Specifically, we first utilize an LLM-022
based decomposer to divide the claims into023
atomic facts, facilitating sufficient retrieval. Be-024
sides, we leverage a novel reranking method to025
filter the redundant evidence. Then, we design026
a bipartite graph to fuse claim-evidence repre-027
sentations and make predictions. The experi-028
mental results on four common-used datasets029
demonstrate the effectiveness and superiority030
of our model.031

1 Introduction032

The dissemination of misinformation and disinfor-033

mation has become a critical problem in the age034

of information overload, where false or misleading035

claims can easily spread across various platforms.036

This stimulates the development of automatic fact037

verification methods, aiming to verify the truth-038

fulness of a given claim as a safeguard to protect039

public knowledge and trust in information (Chen040

et al., 2025; Kanaani, 2024; Bazaga et al., 2024).041

Traditional methods of fact verification typically042

involve automated systems that assess the veracity043

of a claim using authorized or fact-checked evi- 044

dence (Guo et al., 2022; Zeng et al., 2021). These 045

methods hypothesize that the gold evidence of each 046

claim is available and accessible, and they can- 047

not deal with the data without evidence. How- 048

ever, in real-world circumstances, the relevant evi- 049

dence needs to be retrieved dynamically from open 050

sources or databases like Wikipedia1 and Politi- 051

Fact2. Hence, traditional approaches are hard to 052

apply to real-world fact verification systems. 053

Therefore, retrieval-augmented fact verification 054

methods have been proposed to tackle this problem 055

(Fan et al., 2024; Chakrabarty et al., 2018; Shi et al., 056

2021). These methods utilize the claim as a query 057

to retrieve relevant evidence from knowledge bases 058

or open sources and verify the truthfulness of the 059

claim with the retrieved information. These meth- 060

ods are more capable of dealing with real-world 061

scenarios. However, they tend to ignore that one 062

claim may contain multiple facts to be verified by 063

using the whole claim as one query. For exam- 064

ple, the statement Shands Hospital of Gainesville 065

Florida has confirmed its first case of coronavirus 066

has 2 facts to be checked. Specifically, Shands Hos- 067

pital located in Gainesville Florida and Shands 068

Hospital confirmed the first case of coronavirus are 069

2 hidden atomic statements whose truthfulness is 070

unclear. 071

Taking this circumstance into account, some 072

methods divide claims into several atomic propo- 073

sitions to help retrievers find more sufficient and 074

comprehensive evidence (Zhang and Gao, 2024, 075

2023). They utilize decoder-based models like T5 076

(Raffel et al., 2019) to extract atomic propositions. 077

Recent studies leverage Large Language Models 078

(LLMs) as atomic proposition extractors. However, 079

divided propositions may contain the same fact 080

points and these methods overlook the importance 081

1https://www.wikipedia.org/
2https://www.politifact.com/
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of filtering redundant evidence. Thus the retriever082

will find redundant evidence. This redundancy may083

divert the model’s attention, thereby causing other084

more critical evidence to be overlooked. This dis-085

persion of focus could potentially lead to subopti-086

mal weighting of information priorities during the087

analytical process.088

To solve the aforementioned problems, we089

propose a novel Cross-granularity Retrieval-090

Augmented Network (CRAN) for open-domain091

fact verification. Specifically, we decompose the092

claim into several propositions through an LLM-093

based decomposer to retrieve sufficient and com-094

prehensive information. Different from existing095

methods, our decomposition process directly ob-096

tains interrogative atomic propositions instead of097

declarative atomic propositions. This is because in-098

terrogative sentences are easier to generate queries099

without plenty of semantic modifications. Be-100

sides, we leverage a novel rethinking method to101

filter redundant evidence, taking 3 dimensions into102

account, relativity, utility and redundancy. This103

avoids the negative impact of information fusion104

and the model’s attention weight. Then, we design105

a claim-evidence bipartite graph to learn fused rep-106

resentations and make predictions to verify truthful-107

ness. Different from the traditional bipartite graph,108

we construct two subgraphs using the claim set and109

the evidence set respectively. This modification can110

formulate the hierarchical information and facili-111

tate information integration. We use both evidence112

retrieval and fact verification datasets to investi-113

gate the effectiveness of CRAN. The experimental114

results demonstrate the CRAN outperforms other115

state-of-the-art methods and is capable of solving116

open-domain fact verification tasks.117

Our major contributions are as follows:118

• We propose a novel Cross-granularity119

Retrieval-Augmented Network for open-120

domain fact verification tasks. We use the121

decomposition method and reordering process122

to retrieve comprehensive information to123

predict the verdict, as well as to eliminate the124

impact of redundancy.125

• We design a new Bipartite graph integration126

module to fuse claim and evidence informa-127

tion and learn comprehensive representations.128

This module enables the model to better un-129

derstand the relations between propositions130

and evidence.131

• To evaluate the performance of the proposed 132

method, we carry out experiments on 4 133

datasets. Our model outperforms the com- 134

parison methods, which demonstrates the ef- 135

fectiveness and superiority of the proposed 136

model. 137

2 Related work 138

Fact verification aims to predict the verdicts of 139

check-worthy claims with several retrieved evi- 140

dence. Traditional fact verification approaches only 141

utilize textual information to make predictions (), 142

which fails to deal with claims that need multi-hop 143

consideration. Hence, multi-hop fact verification 144

has become a research hotspot. Besides, LLMs 145

have made significant developments and have been 146

applied to fact verification tasks. In this section, 147

we will report on the related work in these three 148

research fields. 149

2.1 Fact verification 150

Research on unimodal fact verification typically in- 151

volves verifying text-only claims using textual evi- 152

dence, such as metadata of the claim, documents re- 153

trieved from knowledge bases, or tabular evidence 154

(Wang, 2017; Aly et al., 2021; Panchendrarajan 155

and Zubiaga, 2024; Gong et al., 2024). 156

Wang (2017) incorporated additional metadata 157

as external evidence, such as the speaker’s profile, 158

locations and communities, to verify claims using 159

a Convolutional Neural Network. By harnessing 160

entities derived from textual materials, Chen et al. 161

(2021) built entity graphs with the aim of acquiring 162

more detailed data representations. Meanwhile, cer- 163

tain scholars have endeavoured to exploit structured 164

sources, including tabular information, to achieve 165

enhanced results. For example, Gu et al. (2022) 166

serialized table evidence to convert table evidence 167

into a sequential form and merged it with the claim 168

to determine its validity. Wang et al. (2021) learnt 169

the salient semantic representations for fact verifi- 170

cation to deal with the unbalanced vocabulary of 171

statements and evidence. 172

These approaches leverage various claim- 173

evidence interaction methods to deal with text-only 174

fact verification and demonstrate satisfactory per- 175

formance on unimodal fact verification. 176

2.2 Retrieval-augmented fact verification 177

Studies on retrieval-augmented fact verification 178

tend to incorporate effective retrieval methods to 179
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obtain relevant evidence and solve the open-domain180

fact verification tasks (Chakrabarty et al., 2018; Shi181

et al., 2021; Chen et al., 2022).182

FEVER (Chakrabarty et al., 2018) first incorpo-183

rated the retrieval methods with verification tasks184

and built the FEVER dataset for further investi-185

gation. Since then, retrieval-augmented fact ver-186

ification has become a hotspot. Shi et al. (2021)187

tackled table-based fact verification by establish-188

ing an evidence retrieval and reasoning framework.189

This approach effectively integrates evidence re-190

trieval with logical reasoning to enhance the accu-191

racy of fact verification. Chen et al. (2022) pro-192

posed GERE that improves fact verification by gen-193

erating evidence and its title more efficiently and194

dynamically, addressing the shortcomings of tradi-195

tional retrieval methods. RAV (Zheng et al., 2024)196

added a simple similarity-based reordering process197

after the coarse-grained retrieval, avoiding irrele-198

vant or redundant evidence to impact the perfor-199

mance. RAFTS (Yue et al., 2024) utilizing LLMs200

to retrieve document-level evidence and combine201

sparse and dense retrieval methods to enhance the202

retrieval performance.203

These approaches leverage various retrieval204

methods to enhance the model’s capability of205

searching and extracting relevant information as206

evidence and to solve open-domain fact verifica-207

tion.208

3 Methodology209

This section presents the Cross-granularity210

Retrieval-Augmented Network (CRAN) in detail211

for open-domain fact verification. We begin212

by defining the task and introducing the overall213

framework of CRAN. Then, we’ll go over the214

details of the proposed method.215

3.1 Task definition216

Open-domain fact verification aims to retrieve rel-217

evant information from open knowledge bases as218

evidence and verify the truthfulness of claims. Let219

C = {C1, C2, · · · , C|C|} and KB be the claim set220

consisting of claims that need to be verified and the221

open knowledge base. Each Ci has a truthfulness222

label y ∈ Y . The task first requires to retrieve m223

relevant documents Di = {D1
i , D

2
i , · · · , Dm

i } as224

the evidence set for each claim Ci. Then it needs225

to find a function F : (C,D) → Y that maps the226

data to the label set and makes predictions.227

3.2 Overall architecture 228

We aim to decompose the claim into atomic propo- 229

sitions and retrieve relevant evidence to verify the 230

claim’s truthfulness. Hence, we propose a novel 231

Cross-granularity Retrieval-Augmented Network 232

for open-domain fact verification. Fig. 1 illustrates 233

the overall architecture of CRAN, which consists 234

of the following modules: 235

• LLM-based claim decomposition: We fine- 236

tune an LLM to decompose the claim into 237

atomic propositions for fine-grained evidence 238

retrieval to obtain sufficient and comprehen- 239

sive evidence. 240

• R2 Document-level retrieval: We leverage 241

a retrieval model to retrieve relevant informa- 242

tion from an open knowledge base, and use a 243

rethinking approach to filter redundant noises. 244

• Bipartite graph integration: We construct a 245

subgraph-based bipartite graph using claims 246

and evidence to fuse information and obtain 247

comprehensive graph representations. 248

• Fact classification: We utilize an MLP-based 249

classifier to verify the truthfulness with the 250

graph representation of each claim. 251

3.3 LLM-based claim decomposition 252

Claim decomposition is proved to be the better 253

way to retrieve evidence as comprehensively as 254

possible, and LLMs demonstrate the great capa- 255

bility of dealing with this task. Hence, we fine- 256

tune Llama3.1-8b (Grattafiori et al., 2024) to fully 257

explore the capability of LLM to decompose the 258

claim correctly and sufficiently, instead of directly 259

utilizing the knowledge of LLM learned in pre- 260

training. Specifically, instead of utilizing declar- 261

ative atomic propositions, we train the model to 262

generate interrogative propositions directly, which 263

is more suitable to be a query. To this end, fol- 264

lowing Hu et al. (2021), we deliberately choose 265

the decomposition-based fact verification dataset 266

AVeriTeC (Schlichtkrull et al., 2023) and utilize the 267

Low-Rank Adaptation (LoRA) mechanism to fine- 268

tune the LLM to obtain atomic propositions3. Con- 269

sequently, for each Ci, we obtain its proposition set 270

Pi = {P 1
i , P

2
i , · · · , P k

i } for the document-level 271

retrieval. 272

3The reason we utilize LoRA rather than SFT to fine-tune
Llama3.1 is that the scale of the training data is relatively low.
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Figure 1: The framework of CRAN. The model takes only the claim as input. It can be divided into four modules: (1)
LLM-based claim decomposition for claim decomposition, (2) R2 Document-level retrieval for evidence retrieval,
(3) Bipartite graph integration for information integration, and (4) Fact classification for truthfulness prediction.

3.4 R2 Document-level retrieval273

For document-level retrieval, we design a 2-stage274

retrieval method. First, we utilize a retrieval model275

to retrieve relevant documents as comprehensively276

as possible. Then we leverage a rethinking method277

to filter the duplicates to eliminate the impact of278

redundancy.279

Document-level retrieval In this stage, our ob-280

jective is to retrieve more relevant information281

for further verification. Hence, we use a re-282

trieval model E5-base (Wang et al., 2022) as the283

document-level retriever to extract relevant infor-284

mation. Specifically, given the claim Ci and its285

propositions Pi = {P 1
i , P

2
i , · · · , P k

i }, we set each286

Pi as a query and retrieve the top-n relevant doc-287

ument to obtain the coarse-grained evidence set288

D̂i = {D̂1
i , D̂

2
i , · · · , D̂n

i }.289

Document-level rethinking As aforementioned290

in section 1, the redundancy of evidence will have291

a negative impact on model attention arrangement.292

Thus, we utilize a rethinking approach to filter the293

duplicates and eliminate this problem.294

In detail, we set a score sreij using the score ob-295

tained during the retrieval stage for each retrieved296

document D̂j
i as the retrieval score. Then, we use297

an encoder to obtain the embeddings ci and d̂ji of298

the claim Ci and each D̂j
i , and obtain the verifica-299

tion score sveij by the following equation:300

sveij = cos(ci, d̂
j
i ). (1)301

cos denotes the function to calculate cosine simi-302

larity. This score reflects the importance of each303

document to the original claim during the verifica- 304

tion task. Besides, we design a redundancy score 305

srdij to represent the redundancy extent of each D̂j
i 306

in the coarse-grained evidence set. This score is 307

calculated by: 308

srdij = cos(d̂ji , d̂i). (2) 309

d̂i denotes the embedding matrix of all relevant doc- 310

ument to proposition i. This score quantitatively 311

measures the semantic similarity between docu- 312

ments, facilitating to filter the duplicate noises. 313

With these scores, we can reorder the documents 314

and select top-m more relevant and more contribu- 315

tive documents for fact verification. We first inte- 316

grate them to obtain the final score sij by: 317

sij = A[sreij ||sveij ||(1− srdij )]
T . (3) 318

A = [a1, a2, a3] is the hyperparameter that denotes 319

the weight for each score. This weighted fused 320

score takes three dimensions into account, not only 321

to ensure the effectiveness and helpfulness of the 322

retrieved documents to the verification task but also 323

to eliminate the redundancy in the final fine-grained 324

evidence set Di = {D1
i , D

2
i , · · · , Dm

i }. 325

3.5 Bipartite graph integration 326

After retrieving relevant evidence, we then design 327

a novel graph-based fusion method to integrate in- 328

formation for fact verification. This module can 329

be divided into 2 processes. In the first process, 330

we construct a subgraph-based bipartite graph to 331

structure the information between claim, proposi- 332

tion and evidence. Then we leverage a modified 333

Graph Attention Network (m-GAT) model to learn 334

comprehensive graph representations. 335
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Subgraph-based bipartite construction For336

each claim Ci, we merge the claim and337

its relevant propositions into a set P̂i =338

{Ci, P
1
i , P

2
i , · · · , P k

i }. Then, we utilize P̂i and339

its relevant evidence set Di as nodes to construct340

the claim graph and the evidence graph respec-341

tively. These two graphs are all fully connected342

for abundant message passing. Upon these graphs,343

we construct a bipartite graph BGi to bridge the344

relations between propositions and relevant docu-345

ments. Specifically, the node set consists of the346

proposition set Pi without the original claim and347

the fine-grained evidence set Di. Because we di-348

rectly use the proposition as the query to retrieve349

evidence, we hypothesize that the relation between350

the proposition and evidence is closer to that be-351

tween the claim and evidence. Thus, the edge352

between the proposition and evidence exists only353

if the evidence is retrieved by this proposition.354

Finally, we obtain the subgraph-based bipartite355

BGi = {Vi, Ei}, where Vi = {Pi,Di} and Ei =356

{e = 1|if evidence is retrieved by proposition.}.357

Modified graph attention fusion Given the bi-358

partite graph BGi, it is hard to directly leverage359

existing graph fusion methods to learn the represen-360

tations. Hence, we propose a novel modified Graph361

Attention Network (m-GAT) to fuse information362

and learn comprehensive representations.363

To initialize the graph, we utilize the textual en-364

coder to obtain the embeddings ci for the claim,365

pji for each proposition, and dqi for evidence re-366

spectively. For the l-th layer integration, we first367

integrate the information of the evidence graph and368

mask other edges by:369

d
q(l)
i = αq,qΘd

q(l−1)
i +

∑
j∈N (q)

αqΘd
j(l−1)
i . (4)370

d
q(l)
i and d

q(l−1)
i denote the evidence representation371

of the l-th and (l − 1)-th layer respectively. Θ is a372

learnable matrix. N (q) denotes the neighborhood373

set of dqi . α denotes the attention weight calculated374

by:375

αq,j =
exp(aTσ(Θ[dqi ||d

j
i ]))∑

k∈N (q)∪{q} exp(aTσ(Θ[dqi ||dki ]))
. (5)376

aT is a learnable vector.377

Then, we mean to update the bipartite node rep-378

resentations by:379

h
j(l)
i = βj,jΘh

j(l−1)
i +

∑
k∈N (j)

βkΘh
k(l−1)
i . (6)380

h
j(l)
i denotes the l-th representation of the bipar- 381

tite graph, including proposition nodes pji (l − 1) 382

and evidence nodes dq(l)i . β denotes the attention 383

weight which is calculated by eq. 5. It is important 384

that we use the updated evidence representations 385

as the input during the fusion of the bipartite graph 386

because the relation between evidence is useful for 387

understanding the relation between propositions 388

and contributes to verdict prediction. 389

Finally, we integrate the information of the claim 390

graph by eq. 4 and eq. 5. After this, the l-th layer 391

integration is complete and we utilize the l-th rep- 392

resentation of the claim c
(l)
i as the l-th layer graph 393

representation. 394

3.6 Fact classification 395

To predict the label of the given claim, we utilize 396

the final layer graph representation c
(L)
i as the fused 397

representation that contains all information to pre- 398

dict the truthfulness. The prediction process is 399

carried out as follows: 400

ŷ = softmax(W 1σ(W 0)c
(L)
i ). (7) 401

L denotes the last layer of the graph fusion module. 402

W 0 and W 1 are trainable parameters. ŷ is the 403

predicted label. We train our model by minimizing 404

cross-entropy loss to learn the prediction of the 405

categories. 406

4 Experiment 407

4.1 Datasets and evaluation metrics 408

Datasets To evaluate the effectiveness of our 409

proposed CRAN for both evidence retrieval task 410

and fact verification task, we choose MS MACRO 411

(Nguyen et al., 2016) and Check-COVID (Wang 412

et al., 2023) datasets as the retrieval datasets, and 413

LIAR (Wang, 2017) and FEVER (Chakrabarty 414

et al., 2018) datasets as the verification datasets. 415

MS MACRO is a large-scale QA dataset that re- 416

quires the first retrieval of relevant documents or 417

passages to find answers. Check-COVID is a 418

fact-checking dataset that contains claims about 419

COVID-19 and need to retrieve evidence to fact- 420

check them. LIAR and FEVER are two fact- 421

checking datasets that do not offer the evidence 422

directly, which need to first retrieve relevant infor- 423

mation and then predict the verdict of each claim. 424

Evaluation metrix For the evidence retrieval 425

task, the adopted metrics are NDCG and Recall 426

(i.e., N@k and R@k) with k ∈ [3, 5]. For the fact 427
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Model MS MACRO Check-COVID
N@3 R@3 N@5 R@5 N@3 R@3 N@5 R@5

TF-IDF 0.531 0.613 0.562 0.687 0.363 0.427 0.385 0.480
BM25 0.746 0.801 0.760 0.836 0.395 0.467 0.426 0.545
DPR 0.793 0.850 0.797 0.903 0.411 0.477 0.457 0.588
E5-base 0.855 0.895 0.865 0.920 0.584 0.679 0.609 0.741
RAFTS 0.858 0.896 0.868 0.920 0.631 0.712 0.646 0.750
RAV 0.856 0.896 0.867 0.921 0.630 0.709 0.640 0.738
CRAN (Ours) 0.863 0.905 0.878 0.926 0.658 0.730 0.672 0.775

Table 1: Results of the evidence retrieval task. Bold denotes the best performance and Underline denotes the
second-best performance.

verification tasks, we use Accuracy and Macro F1428

score as the evaluation metrics.429

4.2 Baselines430

We compare our CRAN to several existing methods431

in evidence retrieval and fact verification tasks.432

Evidence retrieval task We choose 2 sparse re-433

trieval methods TF-IDF and BM25 and 4 dense434

retrieval methods DPR (Karpukhin et al., 2020),435

E5-base (Wang et al., 2022), RAFTS (Yue et al.,436

2024), and RAV (Zheng et al., 2024) to evaluate437

the effectiveness of our proposed R2 document-438

level retrieval method. DPR is the first retriever439

only leverage dense embedding to retrieve docu-440

ments. E5-base is an LLM-based retriever. RAFTS441

leverages a 2-stage retrieval method that combines442

sparse retriever and dense retriever. RAV incorpo-443

rates reordering after obtaining the coarse-grained444

retrieved documents.445

Fact verification task We select 2 transformer-446

based methods BERT (Devlin et al., 2019) and447

DeBERTa (He et al., 2021), and 3 graph-based448

methods GEAR (Zhou et al., 2019), KGAT (Liu449

et al., 2020), and SAGP (Si et al., 2023) to evalu-450

ate the usefulness of our proposed Bipartite graph451

integration. GEAR leverages a graph neural net-452

work to fuse claim and evidence features and make453

predictions. KGAT utilize a kernel-based graph454

fusion method to predict the truthfulness of claims.455

SAGP leverages a perturbed graph neural network456

and selects rational subgraphs to make predictions457

and give explanations.458

4.3 Implementation details459

We use a Tesla V100-PCIE GPU with 32GB mem-460

ory for all experiments and implement our model461

Model FEVER LIAR
Acc F1 Acc F1

BERT 73.67 72.80 77.49 77.18
DeBERTa 73.90 73.19 78.03 78.01
GEAR 74.84 74.79 80.96 80.41
KGAT 78.29 77.11 83.97 83.62
SAGP 82.10 82.15 85.50 85.48
CRAN (Ours) 84.45 84.37 86.73 86.67

Table 2: Results of the fact verification task. Acc and F1
denote the Accuracy and MACRO F1 score respectively.
Bold denotes the best performance and Underline de-
notes the second-best performance.

via the Pytorch framework4. The number of atten- 462

tion heads is set to 4, and the number of GAT con- 463

volutional layers is 3. The number of decomposed 464

propositions is up to 5. The number of retrieved 465

coarse-grained documents n is set to 20 and the 466

number of fine-grained documents m is set to 5. 467

The batch size is 8. We set the learning rate as 468

2e-5. We employ E5-base (Wang et al., 2022) as 469

the textual embedding model. 470

5 Result 471

5.1 Overall performance 472

We conduct the experiments on 4 datasets on ev- 473

idence retrieval and fact verification tasks. The 474

experimental results are shown in Table 1 and Ta- 475

ble 2. 476

Evidence retrieval Table 1 demonstrates the ex- 477

perimental results of the evidence retrieval task. It 478

can be observed that CRAN outperforms other re- 479

trieval models. Specifically, compared to sparse 480

retrieval models like TF-IDF and BM25, all dense 481

retrieval methods perform better and there is a huge 482

4Because of the hardware limitation, we decompose the
claim in the preprocessing so that we do not load the fine-tuned
LLM in GPU during training and testing.
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Model MS MACRO Check-COVID
N@3 R@3 N@5 R@5 N@3 R@3 N@5 R@5

CRAN 0.863 0.905 0.878 0.926 0.658 0.730 0.672 0.775
-w/o rethinking 0.852 0.892 0.863 0.915 0.626 0.702 0.637 0.732
-w/o relativity 0.859 0.898 0.871 0.923 0.649 0.718 0.666 0.763
-w/o utility 0.858 0.901 0.872 0.923 0.650 0.720 0.667 0.766
-w/o redundancy 0.854 0.893 0.865 0.918 0.630 0.705 0.640 0.733

Table 3: Results of the ablation study of evidence retrieval task. Bold denotes the best performance.

Model FEVER LIAR
Acc F1 Acc F1

CRAN 84.45 84.37 86.73 86.67
-w/o claim graph 83.90 83.97 86.59 86.55
-w/o evidence graph 83.78 83.79 86.48 86.40
-w/o bipartite graph 83.45 83.34 86.41 86.38

Table 4: Results of the ablation study of fact verification
task. Acc and F1 denote the Accuracy and MACRO F1
score respectively. Bold denotes the best performance.

gap between sparse retrieval models and dense re-483

trieval methods. It indicates that dense retrieval484

methods are more capable of the evidence retrieval485

task. Besides, compared to the RAFTAS and RAV486

which either use the combination of sparse and487

dense retrievers or utilize a reordering process488

without decomposition, CRAN has a better perfor-489

mance, elucidating that the balanced combination490

of decomposition and rethinking is beneficial to the491

evidence retrieval task.492

Fact verification Table 2 shows the experimen-493

tal results of the fact verification task. We utilize494

the same retrieved evidence as the input evidence495

to conduct the experiments. Our proposed CRAN496

outperforms other methods significantly. On the497

FEVER dataset, CRAN improves both accuracy498

and F1 value by 2.35% and 2.22% respectively.499

On the LIAR dataset, CRAN also improves accu-500

racy and F1 value by 1.23% and 1.19% respec-501

tively. This indicates the effectiveness of CRAN502

in fact verification tasks. Besides, compared to503

transformer-based methods, graph-based methods504

are more capable of understanding the inner rela-505

tions between claims and evidence.506

Overall, the experimental results of evidence re-507

trieval and fact verification tasks demonstrate that508

our model CRAN is able to deal with these two509

tasks and outperforms the state-of-the-art meth-510

ods, elucidating the effectiveness and superiority511

of CRAN.512

5.2 Ablation study 513

We also conduct the ablation experiments to fur- 514

ther investigate the effectiveness of our proposed 515

modules. The experimental results are shown in 516

Table 3 and Table 4. 517

Table 3 demonstrates the results of evidence re- 518

trieval tasks. It can be observed that by removing 519

the rethinking process, the performance of CRAN 520

drops, even lower than baseline models. To fur- 521

ther analyze this phenomenon, we remove the 3 522

dimensions respectively to find out the most de- 523

cisive dimension. According to the experimental 524

results, the model’s performance degrades the most 525

when we remove the redundancy score. It indicates 526

that among these dimensions, redundancy is the 527

most harmful to the retriever. 528

Besides, we investigate the effectiveness of the 529

subgraph-based bipartite graph. Consistently, re- 530

moving each graph the performance degrades, elu- 531

cidating that the relations and information between 532

claims, propositions and evidence are significant in 533

open-domain fact verification tasks. Surprisingly, 534

we hypothesize that claim-proposition relations are 535

more important, but the results show that relations 536

between evidence are more essential. This phe- 537

nomenon may be attributed to the fact that atomic 538

propositions are derived from the original claims 539

and are merely connected by simple additive re- 540

lationships. In contrast, the evidence is retrieved 541

based on different atomic propositions, and the 542

early fusion of evidence provides greater benefits 543

for subsequent information integration. 544

5.3 Module analysis 545

To further analyze the usefulness of our proposed 546

retrieval method and fusion method, we conduct 2 547

experiments to illustrate their effectiveness. The 548

experimental results are shown in Fig.2 and Fig.3. 549

Analysis of retrieval model Fig.2 demonstrates 550

the performance of different retrieval models. 551

CRAN+RAV denotes that this model uses the re- 552
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Figure 2: Results of different retrieval meth-
ods.BERT+CRAN denotes that the retrieval method is
CRAN and the fusion method is BERT.

Figure 3: Results of different fusion methods.
BERT+CRAN denotes that the retrieval model is CRAN
and the fusion model is BERT.

trieval method of RAV and the fusion method of553

CRAN. It is obvious that once the fusion method554

is fixed, our model outperforms the RAV method555

on both FEVER and LIAR. This indicates that the556

CRAN retrieval method is more capable of per-557

forming open-domain fact verification tasks. Com-558

pared to RAV, it may be because we first decom-559

pose the original claim, facilitating the retrieval560

model to comprehensively extract more relevant561

information from the knowledge base. Besides,562

RAV only utilizes similarity as the reordering score,563

overlooking the other important dimensions when564

filtering redundant evidence. Significantly, the per-565

formance of transformer-based methods still has a566

huge gap compared to graph-based methods, while567

the retrieval model of CRAN improves their perfor-568

mances according to Table 2, so do the graph-based569

methods. This investigation further demonstrates 570

that our proposed R2 Document-level retrieval can 571

retrieve more crucial evidence and is beneficial 572

to open-domain fact verification tasks, even if the 573

classification method doesn’t have satisfactory per- 574

formance individually. 575

Analysis of fusion model Fig.3 demonstrates the 576

performance of different fusion models with the re- 577

trieval model of CRAN. CRAN outperforms other 578

combined methods. Consistently, the performance 579

of transformer-based methods still has a huge gap 580

compared to graph-based methods. Compared to 581

other graph-based methods, CRAN leverages the 582

advantage of a subgraph-based bipartite graph, that 583

is the precise relations match the propositions and 584

evidence and the hierarchical fusion process that 585

can capture more crucial information. 586

Overall, these two experiments further demon- 587

strate that the retrieval and fusion methods of 588

CRAN are effective enough to solve open-domain 589

fact verification tasks. 590

6 Conclusion 591

In this work, we propose a Cross-granularity 592

Retrieval-Augmented Network to first retrieve the 593

relevant but concise evidence and then leverage a 594

bipartite graph to learn integrated representations 595

for open-domain fact verification. Besides, we de- 596

sign a novel R2 Document-level retrieval method to 597

retrieve and reorder the information extracted from 598

knowledge bases. Moreover, we design a novel 599

Bipartite graph integration method, constructing a 600

subgraph-based bipartite graph to capture hierar- 601

chical information and learn comprehensive rep- 602

resentations. The experimental results show that 603

CRAN can effectively retrieve relevant information 604

and make correct predictions for open-domain fact 605

verification tasks. These results highlight the ef- 606

fectiveness and superiority of our proposed model. 607

For future work, we will focus on exploring how 608

we can reduce the retrieval time and systematically 609

combine the retrieval process into the classification. 610

Limitations 611

Initially, there is potential for our model to improve 612

the efficiency. As we design the framework, we 613

focus more on accuracy instead of efficiency. How 614

to cut down the time cost of the decomposition and 615

retrieval process is still under investigation. Addi- 616

tionally, in this paper, we regard evidence retrieval 617

and fact verification as two separate tasks, rather 618

8



than combining them systematically and adopting619

dynamic retrieval. Checking while Searching is a620

hotspot research field in LLMs and RAGs, which621

may be able to be applied to open-domain fact ver-622

ification tasks.623
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