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Abstract

The dissemination of misinformation on on-
line platforms has necessitated the develop-
ment of automatic fact verification systems.
Recent studies leverage semantic features of
both claims and evidence to make predictions.
However, these methods hypothesize that evi-
dence is always available and accessible, which
is undoubtedly impossible in real-world cir-
cumstances. Recent studies attempt to use
retrieval-augmented approaches to retrieve rele-
vant evidence to conduct fact verification tasks.
However, these methods typically use the en-
tire statement as a query to retrieve evidence,
which may lead to missing relevant results. Be-
sides, some studies utilize decomposed claims
as queries, but they omit the filtering pro-
cess, which may retrieve redundant information.
Thus, to solve these challenges, we propose a
novel Cross-granularity Retrieval-Augmented
Network (CRAN) for open-domain fact verifi-
cation. Specifically, we first utilize an LLM-
based decomposer to divide the claims into
atomic facts, facilitating sufficient retrieval. Be-
sides, we leverage a novel reranking method to
filter the redundant evidence. Then, we design
a bipartite graph to fuse claim-evidence repre-
sentations and make predictions. The experi-
mental results on four common-used datasets
demonstrate the effectiveness and superiority
of our model.

1 Introduction

The dissemination of misinformation and disinfor-
mation has become a critical problem in the age
of information overload, where false or misleading
claims can easily spread across various platforms.
This stimulates the development of automatic fact
verification methods, aiming to verify the truth-
fulness of a given claim as a safeguard to protect
public knowledge and trust in information (Chen
et al., 2025; Kanaani, 2024; Bazaga et al., 2024).
Traditional methods of fact verification typically
involve automated systems that assess the veracity

of a claim using authorized or fact-checked evi-
dence (Guo et al., 2022; Zeng et al., 2021). These
methods hypothesize that the gold evidence of each
claim is available and accessible, and they can-
not deal with the data without evidence. How-
ever, in real-world circumstances, the relevant evi-
dence needs to be retrieved dynamically from open
sources or databases like Wikipedia' and Politi-
Fact?>. Hence, traditional approaches are hard to
apply to real-world fact verification systems.

Therefore, retrieval-augmented fact verification
methods have been proposed to tackle this problem
(Fan et al., 2024; Chakrabarty et al., 2018; Shi et al.,
2021). These methods utilize the claim as a query
to retrieve relevant evidence from knowledge bases
or open sources and verify the truthfulness of the
claim with the retrieved information. These meth-
ods are more capable of dealing with real-world
scenarios. However, they tend to ignore that one
claim may contain multiple facts to be verified by
using the whole claim as one query. For exam-
ple, the statement Shands Hospital of Gainesville
Florida has confirmed its first case of coronavirus
has 2 facts to be checked. Specifically, Shands Hos-
pital located in Gainesville Florida and Shands
Hospital confirmed the first case of coronavirus are
2 hidden atomic statements whose truthfulness is
unclear.

Taking this circumstance into account, some
methods divide claims into several atomic propo-
sitions to help retrievers find more sufficient and
comprehensive evidence (Zhang and Gao, 2024,
2023). They utilize decoder-based models like T5
(Raftel et al., 2019) to extract atomic propositions.
Recent studies leverage Large Language Models
(LLMs) as atomic proposition extractors. However,
divided propositions may contain the same fact
points and these methods overlook the importance
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of filtering redundant evidence. Thus the retriever
will find redundant evidence. This redundancy may
divert the model’s attention, thereby causing other
more critical evidence to be overlooked. This dis-
persion of focus could potentially lead to subopti-
mal weighting of information priorities during the
analytical process.

To solve the aforementioned problems, we
propose a novel Cross-granularity Retrieval-
Augmented Network (CRAN) for open-domain
fact verification. Specifically, we decompose the
claim into several propositions through an LLM-
based decomposer to retrieve sufficient and com-
prehensive information. Different from existing
methods, our decomposition process directly ob-
tains interrogative atomic propositions instead of
declarative atomic propositions. This is because in-
terrogative sentences are easier to generate queries
without plenty of semantic modifications. Be-
sides, we leverage a novel rethinking method to
filter redundant evidence, taking 3 dimensions into
account, relativity, utility and redundancy. This
avoids the negative impact of information fusion
and the model’s attention weight. Then, we design
a claim-evidence bipartite graph to learn fused rep-
resentations and make predictions to verify truthful-
ness. Different from the traditional bipartite graph,
we construct two subgraphs using the claim set and
the evidence set respectively. This modification can
formulate the hierarchical information and facili-
tate information integration. We use both evidence
retrieval and fact verification datasets to investi-
gate the effectiveness of CRAN. The experimental
results demonstrate the CRAN outperforms other
state-of-the-art methods and is capable of solving
open-domain fact verification tasks.

Our major contributions are as follows:

* We propose a novel Cross-granularity
Retrieval-Augmented Network for open-
domain fact verification tasks. We use the
decomposition method and reordering process
to retrieve comprehensive information to
predict the verdict, as well as to eliminate the
impact of redundancy.

* We design a new Bipartite graph integration
module to fuse claim and evidence informa-
tion and learn comprehensive representations.
This module enables the model to better un-
derstand the relations between propositions
and evidence.

* To evaluate the performance of the proposed
method, we carry out experiments on 4
datasets. Our model outperforms the com-
parison methods, which demonstrates the ef-
fectiveness and superiority of the proposed
model.

2 Related work

Fact verification aims to predict the verdicts of
check-worthy claims with several retrieved evi-
dence. Traditional fact verification approaches only
utilize textual information to make predictions (),
which fails to deal with claims that need multi-hop
consideration. Hence, multi-hop fact verification
has become a research hotspot. Besides, LLMs
have made significant developments and have been
applied to fact verification tasks. In this section,
we will report on the related work in these three
research fields.

2.1 Fact verification

Research on unimodal fact verification typically in-
volves verifying text-only claims using textual evi-
dence, such as metadata of the claim, documents re-
trieved from knowledge bases, or tabular evidence
(Wang, 2017; Aly et al., 2021; Panchendrarajan
and Zubiaga, 2024; Gong et al., 2024).

Wang (2017) incorporated additional metadata
as external evidence, such as the speaker’s profile,
locations and communities, to verify claims using
a Convolutional Neural Network. By harnessing
entities derived from textual materials, Chen et al.
(2021) built entity graphs with the aim of acquiring
more detailed data representations. Meanwhile, cer-
tain scholars have endeavoured to exploit structured
sources, including tabular information, to achieve
enhanced results. For example, Gu et al. (2022)
serialized table evidence to convert table evidence
into a sequential form and merged it with the claim
to determine its validity. Wang et al. (2021) learnt
the salient semantic representations for fact verifi-
cation to deal with the unbalanced vocabulary of
statements and evidence.

These approaches leverage various claim-
evidence interaction methods to deal with text-only
fact verification and demonstrate satisfactory per-
formance on unimodal fact verification.

2.2 Retrieval-augmented fact verification

Studies on retrieval-augmented fact verification
tend to incorporate effective retrieval methods to



obtain relevant evidence and solve the open-domain
fact verification tasks (Chakrabarty et al., 2018; Shi
et al., 2021; Chen et al., 2022).

FEVER (Chakrabarty et al., 2018) first incorpo-
rated the retrieval methods with verification tasks
and built the FEVER dataset for further investi-
gation. Since then, retrieval-augmented fact ver-
ification has become a hotspot. Shi et al. (2021)
tackled table-based fact verification by establish-
ing an evidence retrieval and reasoning framework.
This approach effectively integrates evidence re-
trieval with logical reasoning to enhance the accu-
racy of fact verification. Chen et al. (2022) pro-
posed GERE that improves fact verification by gen-
erating evidence and its title more efficiently and
dynamically, addressing the shortcomings of tradi-
tional retrieval methods. RAV (Zheng et al., 2024)
added a simple similarity-based reordering process
after the coarse-grained retrieval, avoiding irrele-
vant or redundant evidence to impact the perfor-
mance. RAFTS (Yue et al., 2024) utilizing LLMs
to retrieve document-level evidence and combine
sparse and dense retrieval methods to enhance the
retrieval performance.

These approaches leverage various retrieval
methods to enhance the model’s capability of
searching and extracting relevant information as
evidence and to solve open-domain fact verifica-
tion.

3 Methodology

This section presents the Cross-granularity
Retrieval-Augmented Network (CRAN) in detail
for open-domain fact verification. We begin
by defining the task and introducing the overall
framework of CRAN. Then, we’ll go over the
details of the proposed method.

3.1 Task definition

Open-domain fact verification aims to retrieve rel-
evant information from open knowledge bases as
evidence and verify the truthfulness of claims. Let
C ={C1,Cy, - ,Cc|} and K B be the claim set
consisting of claims that need to be verified and the
open knowledge base. Each C; has a truthfulness
label y € Y. The task first requires to retrieve m
relevant documents D; = {D}, D% --- , D"} as
the evidence set for each claim C;. Then it needs
to find a function F : (C,D) — ) that maps the
data to the label set and makes predictions.

3.2 Overall architecture

We aim to decompose the claim into atomic propo-
sitions and retrieve relevant evidence to verify the
claim’s truthfulness. Hence, we propose a novel
Cross-granularity Retrieval-Augmented Network
for open-domain fact verification. Fig. 1 illustrates
the overall architecture of CRAN, which consists
of the following modules:

* LLM-based claim decomposition: We fine-
tune an LLM to decompose the claim into
atomic propositions for fine-grained evidence
retrieval to obtain sufficient and comprehen-
sive evidence.

* RR? Document-level retrieval: We leverage
a retrieval model to retrieve relevant informa-
tion from an open knowledge base, and use a
rethinking approach to filter redundant noises.

 Bipartite graph integration: We construct a
subgraph-based bipartite graph using claims
and evidence to fuse information and obtain
comprehensive graph representations.

* Fact classification: We utilize an MLP-based
classifier to verify the truthfulness with the
graph representation of each claim.

3.3 LLM-based claim decomposition

Claim decomposition is proved to be the better
way to retrieve evidence as comprehensively as
possible, and LLLMs demonstrate the great capa-
bility of dealing with this task. Hence, we fine-
tune Llama3.1-8b (Grattafiori et al., 2024) to fully
explore the capability of LLM to decompose the
claim correctly and sufficiently, instead of directly
utilizing the knowledge of LLM learned in pre-
training. Specifically, instead of utilizing declar-
ative atomic propositions, we train the model to
generate interrogative propositions directly, which
is more suitable to be a query. To this end, fol-
lowing Hu et al. (2021), we deliberately choose
the decomposition-based fact verification dataset
AVeriTeC (Schlichtkrull et al., 2023) and utilize the
Low-Rank Adaptation (LoRA) mechanism to fine-
tune the LLM to obtain atomic propositions®. Con-
sequently, for each C;, we obtain its proposition set
P; = {PL, P?,---, PF} for the document-level
retrieval.

3The reason we utilize LoRA rather than SFT to fine-tune
Llama3.1 is that the scale of the training data is relatively low.
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Figure 1: The framework of CRAN. The model takes only the claim as input. It can be divided into four modules: (1)
LLM-based claim decomposition for claim decomposition, (2) R? Document-level retrieval for evidence retrieval,
(3) Bipartite graph integration for information integration, and (4) Fact classification for truthfulness prediction.

3.4 R? Document-level retrieval

For document-level retrieval, we design a 2-stage
retrieval method. First, we utilize a retrieval model
to retrieve relevant documents as comprehensively
as possible. Then we leverage a rethinking method
to filter the duplicates to eliminate the impact of
redundancy.

Document-level retrieval In this stage, our ob-
jective is to retrieve more relevant information
for further verification. Hence, we use a re-
trieval model E5-base (Wang et al., 2022) as the
document-level retriever to extract relevant infor-
mation. Specifically, given the claim C; and its
propositions P; = {Pil, PZ-Q, e ,Pik}, we set each
P; as a query and retrieve the top-n relevant doc-
ument to obtain the coarse-grained evidence set
= {D},D?,--. DI}

Document-level rethinking As aforementioned
in section 1, the redundancy of evidence will have
a negative impact on model attention arrangement.
Thus, we utilize a rethinking approach to filter the
duplicates and eliminate this problern
In detail, we set a score s;; using the score ob-
tained during the retrieval stage for each retrieved
document DJ as the retrieval score. Then, we use
an encoder to obtain the embeddings ¢; and dg of
the claim C; and each ﬁj and obtain the verifica-
tion score s; by the followmg equation:
sf]e = cos(ci,dg). (D
cos denotes the function to calculate cosine simi-
larity. This score reflects the importance of each

document to the original claim during the verifica-
t10n task. Besides, we design a redundancy score

to represent the redundancy extent of each Dj
in the coarse-grained evidence set. This score is
calculated by:

s;'j‘-i = cos(czz, d;). ()

d; denotes the embedding matrix of all relevant doc-
ument to proposition ¢. This score quantitatively
measures the semantic similarity between docu-
ments, facilitating to filter the duplicate noises.

With these scores, we can reorder the documents
and select top-m more relevant and more contribu-
tive documents for fact verification. We first inte-
grate them to obtain the final score s;; by:

sij = Alsisl[si (1 — s 3)

A = [a1, a2, ag] is the hyperparameter that denotes
the weight for each score. This weighted fused
score takes three dimensions into account, not only
to ensure the effectiveness and helpfulness of the
retrieved documents to the verification task but also
to eliminate the redundancy in the final fine-grained
evidence set D; = {D}, D? ... D"}

3.5 Bipartite graph integration

After retrieving relevant evidence, we then design
a novel graph-based fusion method to integrate in-
formation for fact verification. This module can
be divided into 2 processes. In the first process,
we construct a subgraph-based bipartite graph to
structure the information between claim, proposi-
tion and evidence. Then we leverage a modified
Graph Attention Network (m-GAT) model to learn
comprehensive graph representations.



Subgraph-based bipartite construction For
each claim C;, we merge the claim and
its relevant propositions into a set P =
{Ci, P}, P?,... | PF}. Then, we utilize P; and
its relevant evidence set D; as nodes to construct
the claim graph and the evidence graph respec-
tively. These two graphs are all fully connected
for abundant message passing. Upon these graphs,
we construct a bipartite graph BG; to bridge the
relations between propositions and relevant docu-
ments. Specifically, the node set consists of the
proposition set P; without the original claim and
the fine-grained evidence set D;. Because we di-
rectly use the proposition as the query to retrieve
evidence, we hypothesize that the relation between
the proposition and evidence is closer to that be-
tween the claim and evidence. Thus, the edge
between the proposition and evidence exists only
if the evidence is retrieved by this proposition.
Finally, we obtain the subgraph-based bipartite
BG; = {V;, E;}, where V; = {P;,D;} and E; =
{e = 1|if evidence is retrieved by proposition. }.

Modified graph attention fusion Given the bi-
partite graph BG;, it is hard to directly leverage
existing graph fusion methods to learn the represen-
tations. Hence, we propose a novel modified Graph
Attention Network (m-GAT) to fuse information
and learn comprehensive representations.

To initialize the graph, we utilize the textual en-
coder to obtain the embeddings ¢; for the claim,
p. for each proposition, and d for evidence re-
spectively. For the [-th layer integration, we first
integrate the information of the evidence graph and
mask other edges by:

d!" = 0g0d!V 1+ Y a0dlY. @
JEN(9)

d?" and @'~V denote the evidence representation
of the [-th and (I — 1)-th layer respectively. O is a
learnable matrix. N\ (g) denotes the neighborhood
set of d]. v denotes the attention weight calculated
by:

o exp(aTo(0lddl])
Y S Nt Sxp(aT o (OLdd])

aT

&)

is a learnable vector.
Then, we mean to update the bipartite node rep-
resentations by:

nY =g 0n Y+ ST gentY. (o)
keN(5)

hg(l) denotes the [-th representation of the bipar-
tite graph, including proposition nodes p{ (1-1)
and evidence nodes dg(l). (3 denotes the attention
weight which is calculated by eq. 5. It is important
that we use the updated evidence representations
as the input during the fusion of the bipartite graph
because the relation between evidence is useful for
understanding the relation between propositions
and contributes to verdict prediction.

Finally, we integrate the information of the claim
graph by eq. 4 and eq. 5. After this, the [-th layer

integration is complete and we utilize the [-th rep-
O]

resentation of the claim c;

representation.

as the [-th layer graph

3.6 Fact classification

To predict the label of the given claim, we utilize
the final layer graph representation CEL) as the fused
representation that contains all information to pre-
dict the truthfulness. The prediction process is
carried out as follows:

9= softmax(Wla(Wo)ch)). @)

L denotes the last layer of the graph fusion module.
WY and W' are trainable parameters. ¢ is the
predicted label. We train our model by minimizing
cross-entropy loss to learn the prediction of the
categories.

4 Experiment

4.1 Datasets and evaluation metrics

Datasets To evaluate the effectiveness of our
proposed CRAN for both evidence retrieval task
and fact verification task, we choose MS MACRO
(Nguyen et al., 2016) and Check-COVID (Wang
et al., 2023) datasets as the retrieval datasets, and
LIAR (Wang, 2017) and FEVER (Chakrabarty
et al., 2018) datasets as the verification datasets.
MS MACRO is a large-scale QA dataset that re-
quires the first retrieval of relevant documents or
passages to find answers. Check-COVID is a
fact-checking dataset that contains claims about
COVID-19 and need to retrieve evidence to fact-
check them. LIAR and FEVER are two fact-
checking datasets that do not offer the evidence
directly, which need to first retrieve relevant infor-
mation and then predict the verdict of each claim.

Evaluation metrix For the evidence retrieval
task, the adopted metrics are NDCG and Recall
(i.e., N@k and R@k) with k € [3, 5]. For the fact



MS MACRO

Check-COVID

Model N@3 R@3 N@5 R@5 N@3 R@3 N@5 R@5
TF-IDF 0531 0613 0562 0.687 0363 0427 0385 0.480
BM25 0746 0.801 0760 0.836 0395 0467 0426 0.545
DPR 0793 0.850 0.797 0903 0411 0477 0457 0.588
E5-base 0.855 0.895 0.865 0920 0584 0679 0.609 0.741
RAFTS 0.858 0.896 0.868 0920 0.631 0.712 0.646 0.750
RAV 0.856 0.896 0.867 0921 0.630 0709 0.640 0.738
CRAN (Ours) 0.863 0.905 0.878 0.926 0.658 0.730 0.672 0.775

Table 1: Results of the evidence retrieval task.
second-best performance.

verification tasks, we use Accuracy and Macro F1
score as the evaluation metrics.

4.2 Baselines

We compare our CRAN to several existing methods
in evidence retrieval and fact verification tasks.

Evidence retrieval task We choose 2 sparse re-
trieval methods TF-IDF and BM25 and 4 dense
retrieval methods DPR (Karpukhin et al., 2020),
E5-base (Wang et al., 2022), RAFTS (Yue et al.,
2024), and RAV (Zheng et al., 2024) to evaluate
the effectiveness of our proposed R? document-
level retrieval method. DPR is the first retriever
only leverage dense embedding to retrieve docu-
ments. ES-base is an LLM-based retriever. RAFTS
leverages a 2-stage retrieval method that combines
sparse retriever and dense retriever. RAV incorpo-
rates reordering after obtaining the coarse-grained
retrieved documents.

Fact verification task We select 2 transformer-
based methods BERT (Devlin et al., 2019) and
DeBERTa (He et al., 2021), and 3 graph-based
methods GEAR (Zhou et al., 2019), KGAT (Liu
et al., 2020), and SAGP (Si et al., 2023) to evalu-
ate the usefulness of our proposed Bipartite graph
integration. GEAR leverages a graph neural net-
work to fuse claim and evidence features and make
predictions. KGAT utilize a kernel-based graph
fusion method to predict the truthfulness of claims.
SAGP leverages a perturbed graph neural network
and selects rational subgraphs to make predictions
and give explanations.

4.3 Implementation details

We use a Tesla V100-PCIE GPU with 32GB mem-
ory for all experiments and implement our model

Bold denotes the best performance and Underline denotes the

FEVER LIAR

Model Acc  FI  Acc  FI
BERT 7367 7280 7749 77.18
DeBERTa 7390 73.19 78.03 78.01
GEAR 7484 7479 8096 80.41
KGAT 7829 77.11 8397 83.62
SAGP 82.10 82.15 8550 85.48
CRAN (Ours) 84.45 84.37 8673 86.67

Table 2: Results of the fact verification task. Acc and F1
denote the Accuracy and MACRO F1 score respectively.
Bold denotes the best performance and Underline de-
notes the second-best performance.

via the Pytorch framework*. The number of atten-
tion heads is set to 4, and the number of GAT con-
volutional layers is 3. The number of decomposed
propositions is up to 5. The number of retrieved
coarse-grained documents n is set to 20 and the
number of fine-grained documents m is set to 5.
The batch size is 8. We set the learning rate as
2e-5. We employ E5-base (Wang et al., 2022) as
the textual embedding model.

5 Result

5.1 Opverall performance

We conduct the experiments on 4 datasets on ev-
idence retrieval and fact verification tasks. The
experimental results are shown in Table 1 and Ta-
ble 2.

Evidence retrieval Table 1 demonstrates the ex-
perimental results of the evidence retrieval task. It
can be observed that CRAN outperforms other re-
trieval models. Specifically, compared to sparse
retrieval models like TF-IDF and BM25, all dense
retrieval methods perform better and there is a huge

“Because of the hardware limitation, we decompose the
claim in the preprocessing so that we do not load the fine-tuned
LLM in GPU during training and testing.



MS MACRO

Check-COVID

Model

N@3 R@3 N@5 R@5 N@3 R@3 N@5 R@5

CRAN 0.863 0.905 0.878 0.926 0.658 0.730 0.672 0.775
-w/o rethinking  0.852 0.892 0.863 0915 0.626 0.702 0.637 0.732
-w/o relativity 0.859 0.898 0.871 0.923 0.649 0.718 0.666 0.763
-w/o utility 0.858 0901 0.872 0.923 0.650 0.720 0.667 0.766
-w/o redundancy 0.854 0.893 0.865 0918 0.630 0.705 0.640 0.733

Table 3: Results of the ablation study of evidence retrieval task. Bold denotes the best performance.

FEVER LIAR
Model Acc F1 Acc F1
CRAN 84.45 8437 86.73 86.67
-w/o claim graph 83.90 8397 86.59 86.55
-w/o evidence graph  83.78 83.79 86.48 86.40
-w/o bipartite graph  83.45 83.34 86.41 86.38

Table 4: Results of the ablation study of fact verification
task. Acc and F1 denote the Accuracy and MACRO F1
score respectively. Bold denotes the best performance.

gap between sparse retrieval models and dense re-
trieval methods. It indicates that dense retrieval
methods are more capable of the evidence retrieval
task. Besides, compared to the RAFTAS and RAV
which either use the combination of sparse and
dense retrievers or utilize a reordering process
without decomposition, CRAN has a better perfor-
mance, elucidating that the balanced combination
of decomposition and rethinking is beneficial to the
evidence retrieval task.

Fact verification Table 2 shows the experimen-
tal results of the fact verification task. We utilize
the same retrieved evidence as the input evidence
to conduct the experiments. Our proposed CRAN
outperforms other methods significantly. On the
FEVER dataset, CRAN improves both accuracy
and F1 value by 2.35% and 2.22% respectively.
On the LIAR dataset, CRAN also improves accu-
racy and F1 value by 1.23% and 1.19% respec-
tively. This indicates the effectiveness of CRAN
in fact verification tasks. Besides, compared to
transformer-based methods, graph-based methods
are more capable of understanding the inner rela-
tions between claims and evidence.

Overall, the experimental results of evidence re-
trieval and fact verification tasks demonstrate that
our model CRAN is able to deal with these two
tasks and outperforms the state-of-the-art meth-
ods, elucidating the effectiveness and superiority
of CRAN.

5.2 Ablation study

We also conduct the ablation experiments to fur-
ther investigate the effectiveness of our proposed
modules. The experimental results are shown in
Table 3 and Table 4.

Table 3 demonstrates the results of evidence re-
trieval tasks. It can be observed that by removing
the rethinking process, the performance of CRAN
drops, even lower than baseline models. To fur-
ther analyze this phenomenon, we remove the 3
dimensions respectively to find out the most de-
cisive dimension. According to the experimental
results, the model’s performance degrades the most
when we remove the redundancy score. It indicates
that among these dimensions, redundancy is the
most harmful to the retriever.

Besides, we investigate the effectiveness of the
subgraph-based bipartite graph. Consistently, re-
moving each graph the performance degrades, elu-
cidating that the relations and information between
claims, propositions and evidence are significant in
open-domain fact verification tasks. Surprisingly,
we hypothesize that claim-proposition relations are
more important, but the results show that relations
between evidence are more essential. This phe-
nomenon may be attributed to the fact that atomic
propositions are derived from the original claims
and are merely connected by simple additive re-
lationships. In contrast, the evidence is retrieved
based on different atomic propositions, and the
early fusion of evidence provides greater benefits
for subsequent information integration.

5.3 Module analysis

To further analyze the usefulness of our proposed
retrieval method and fusion method, we conduct 2
experiments to illustrate their effectiveness. The
experimental results are shown in Fig.2 and Fig.3.

Analysis of retrieval model Fig.2 demonstrates
the performance of different retrieval models.
CRAN+RAV denotes that this model uses the re-
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Figure 3: Results of different fusion methods.
BERT+CRAN denotes that the retrieval model is CRAN
and the fusion model is BERT.

trieval method of RAV and the fusion method of
CRAN. It is obvious that once the fusion method
is fixed, our model outperforms the RAV method
on both FEVER and LIAR. This indicates that the
CRAN retrieval method is more capable of per-
forming open-domain fact verification tasks. Com-
pared to RAYV, it may be because we first decom-
pose the original claim, facilitating the retrieval
model to comprehensively extract more relevant
information from the knowledge base. Besides,
RAV only utilizes similarity as the reordering score,
overlooking the other important dimensions when
filtering redundant evidence. Significantly, the per-
formance of transformer-based methods still has a
huge gap compared to graph-based methods, while
the retrieval model of CRAN improves their perfor-
mances according to Table 2, so do the graph-based

methods. This investigation further demonstrates
that our proposed R? Document-level retrieval can
retrieve more crucial evidence and is beneficial
to open-domain fact verification tasks, even if the
classification method doesn’t have satisfactory per-
formance individually.

Analysis of fusion model Fig.3 demonstrates the
performance of different fusion models with the re-
trieval model of CRAN. CRAN outperforms other
combined methods. Consistently, the performance
of transformer-based methods still has a huge gap
compared to graph-based methods. Compared to
other graph-based methods, CRAN leverages the
advantage of a subgraph-based bipartite graph, that
is the precise relations match the propositions and
evidence and the hierarchical fusion process that
can capture more crucial information.

Overall, these two experiments further demon-
strate that the retrieval and fusion methods of
CRAN are effective enough to solve open-domain
fact verification tasks.

6 Conclusion

In this work, we propose a Cross-granularity
Retrieval-Augmented Network to first retrieve the
relevant but concise evidence and then leverage a
bipartite graph to learn integrated representations
for open-domain fact verification. Besides, we de-
sign a novel R? Document-level retrieval method to
retrieve and reorder the information extracted from
knowledge bases. Moreover, we design a novel
Bipartite graph integration method, constructing a
subgraph-based bipartite graph to capture hierar-
chical information and learn comprehensive rep-
resentations. The experimental results show that
CRAN can effectively retrieve relevant information
and make correct predictions for open-domain fact
verification tasks. These results highlight the ef-
fectiveness and superiority of our proposed model.
For future work, we will focus on exploring how
we can reduce the retrieval time and systematically
combine the retrieval process into the classification.

Limitations

Initially, there is potential for our model to improve
the efficiency. As we design the framework, we
focus more on accuracy instead of efficiency. How
to cut down the time cost of the decomposition and
retrieval process is still under investigation. Addi-
tionally, in this paper, we regard evidence retrieval
and fact verification as two separate tasks, rather



than combining them systematically and adopting
dynamic retrieval. Checking while Searching is a
hotspot research field in LLMs and RAGs, which
may be able to be applied to open-domain fact ver-
ification tasks.
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