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Abstract

Using only global image-class labels, weakly-supervised learning methods, such as class
activation mapping, allow training CNNs to jointly classify an image, and locate regions
of interest associated with the predicted class. However, without any guidance at the
pixel level, such methods may yield inaccurate regions. This problem is known to be more
challenging with histology images than with natural ones, since objects are less salient,
structures have more variations, and foreground and background regions have stronger
similarities. Therefore, computer vision methods for visual interpretation of CNNs may not
directly apply. In this paper, a simple yet efficient method based on a composite loss is
proposed to learn information from the fully negative samples (i.e., samples without positive
regions), and thereby reduce false positives/negatives. Our new loss function contains two
complementary terms: the first exploits positive evidence collected from the CNN classifier,
while the second leverages the fully negative samples from training data. In particular, a
pre-trained CNN is equipped with a decoder that allows refining the regions of interest.
The CNN is exploited to collect both positive and negative evidence at the pixel level to
train the decoder. Our method called NEGEV benefits from the fully negative samples that
naturally occur in the data, without any additional supervision signals beyond image-class
labels. Extensive experiments' show that our proposed method can substantial outperform
related state-of-art methods on GlaS (public benchmark for colon cancer), and Camelyon16
(patch-based benchmark for breast cancer using three different backbones). Our results
highlight the benefits of using both positive and negative evidence, the first obtained from
a classifier, and the other naturally available in datasets.

Keywords: Deep Learning, Weakly Supervised Learning, Histology Images, Visual Inter-
pretability, Positive / Negative Evidence, Class Activation Maps.

1. Introduction

The analysis of histology images remains the gold standard in the assessment of many
pathologies such as breast (He et al., 2012; Gurcan et al., 2009; Veta et al., 2014), colon
(Shapcott et al., 2019; Sirinukunwattana et al., 2015; Xu et al., 2020) and brain cancer (Ker
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et al., 2019; Khalsa et al., 2020; Xu et al., 2017). Typically, pathologists perform such tasks
on large histology images. To alleviate the workload of pathologists, computer-aided diagnosis
(CAD) has been developed with the main aim to help them provide more reliable decision
with less effort. CAD typically relies on computer vision and machine learning algorithms,
and has been increasingly focused on deep learning (DL) models (Rony et al., 2019). In
recent years, weakly-supervised learning methods for interpretation of CNN classifiers have
attracted much attention (Campanella et al., 2019; Daisuke and Shumpei, 2018; Rony et al.,
2019; Spanhol et al., 2016b,a; Sudharshan et al., 2019). Their main advantage is the ability
to classify an input image, while providing visual interpretation of the classifier’s decision.
Often, such an interpretation comes in the form of a heat map or soft segmentation indicating
the regions of interest (ROI) associated with the classifier prediction (Rony et al., 2019).

Training accurate DL models to provide reliable interpretations requires image-class and
pixel-wise annotations on large image datasets. While acquiring image-class annotations
can be manageable for human experts, producing the dense (pixel-wise) annotations such
as a segmentation is extremely expensive and time-consuming. This annotation bottleneck
is even more severe when processing histology images, where manual segmentation of large
images is intractable.

Recently, weakly supervised learning (WSL) (Choe et al., 2020; Zhou, 2017) has emerged
as a proxy aiming to reduce the cost and burden of fully annotating large datasets. Such
methods exploit weak annotations such as global/coarse or ambiguous labels, and even more
unlabeled samples in order to alleviate the need for dense labels. In segmentation tasks, weak
supervisory signal comes under different forms making it more attractive to several practical
scenarios. This includes scribbles (Lin et al., 2016; Tang et al., 2018a), points (Bearman
et al., 2016), bounding boxes (Dai et al., 2015; Khoreva et al., 2017; Kervadec et al., 2020),
global image statistics such as the target-region size (Kervadec et al., 2019b; Bateson et al.,
2019; Jia et al., 2017; Kervadec et al., 2019a), and image-level labels (Belharbi et al., 2022;
Kim et al., 2017; Pathak et al., 2015; Teh et al., 2016; Wei et al., 2017b). In this paper, we
focus on image-class labels, where we are only given the image class for each image, such as
cancerous or not. The goal is to jointly classify an input image, and accurately interpret
the classifier’s decision — i.e., locate the ROIs associated with the class prediction. This
is achieved without any pixel-wise supervision or other cues/supervision signals, such as
the size of the target regions (Kervadec et al., 2019b). Note that interpretability research
has expanded significantly in the recent years, and has attracted broad interest within the
computer vision (Bhatt et al., 2020; Fong et al., 2019; Fong and Vedaldi, 2017; Goh et al.,
2020; Osman et al., 2020; Samek et al., 2020; Zhang et al., 2020c; Belharbi et al., 2021) and
medical imaging communities (de La Torre et al., 2020; Gondal et al., 2017; Gonzalez-Gonzalo
et al., 2020; Taly et al., 2019; Quellec et al., 2017; Keel et al., 2019; Wang et al., 2017).

Class activation mapping (CAM) methods are currently driving state-of-the-art deep
WSL methods (Rony et al., 2019; Zhang and Zhu, 2018; Zhou et al., 2016). Using image-class
labels, a CNN can be trained to classify images. Typically, this yields spatial activation
maps that typically provide strong activations in the regions associated with the image
class. This makes these methods attractive for both interpretability and weakly-supervised
segmentation of the ROIs. Existing methods could be divided into the following two main
categories (Rony et al., 2019). (1) Bottom-up methods: They rely on the forward signal to
locate the ROIs associated with the image class. This includes spatial pooling techniques
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over activation maps (Durand et al., 2017; Oquab et al., 2015; Sun et al., 2016; Zhang et al.,
2018a; Zhou et al., 2016), multiple-instance learning (Ilse et al., 2018) and attend-and-erase
based methods (Kim et al., 2017; Li et al., 2018; Singh and Lee, 2017; Wei et al., 2017b). (2)
Top-down methods: Inspired by human visual attention, these methods have gained much
attention, and were designed initially as visual explanatory tools (Simonyan et al., 2014;
Springenberg et al., 2015; Zeiler and Fergus, 2014). Both categories rely on the forward and
backward signals to determine ROIs. Examples include special feedback layers (Cao et al.,
2015) and back-propagation errors (Zhang et al., 2016). In addition, gradients are used to
interrogate a CNN as to the ROIs of a specific class label (Fu et al., 2020; Lin et al., 2013;
Pinheiro and Collobert, 2015).

Currently, WSL methods yield promising performance over natural images, where an
object typically has a color distribution that is different from the background. This makes
for salient objects that are relatively easy to locate. However, histology images provide
additional challenges (Rony et al., 2019). In particular: (1) objects are less salient and
difficult for non-experts to locate: Often, the ROIs have similar overall color/texture as the
background. This requires an expert to decide what is relevant in the image with respect
to the image class. (2) images are highly unstructured: Depending on several factors such
as biopsy location/angle, images do not present repetitive global patterns that a machine
learning model can learn. (3) high intra-class variability, due in large part to the high
variation in structure, and the Hematoxylin and Eosin (H&E) staining process. This yields
images from the same class that are completely different. This is challenging for a machine
learning model as they often rely on the discovery of common shapes/pattern within a class.

Since most deep WSL methods were designed and evaluated on natural images, their
direct application to histology images is limited by the above challenges. Without any
pixel-level supervision, the task becomes more difficult. In paper, we consider using the
uncertain knowledge learned by a classifier to guide a decoder towards better localization of
ROIs. In addition to the positive evidence that indicates potential ROIs, we focus on negative
evidence that points to potential background. This is useful with histology images since
they often incorporate tissue (background) and cells (foreground). Moreover, we exploit fully
negative samples, which are samples without any ROI, that can be easily obtained in practice.
Such samples hold valuable information that indicates how a background should appear, and
is expected to help a model distinguish between the foreground and background. Overall,
we advocate using both positive and negative evidence to improve the ROI segmentation,
thereby improving the interpretability aspect. Since our method is focused on exploiting
NEGative EVidence, we name it NEGEV.

Our main contributions is summarized as follows. (1) To improve the interpretability of
a classifier, we leverage negative evidence. This is expected to help our model discern the
foreground from background more accurately. We propose a simple yet efficient method based
on an original composite loss to learn information from the negative samples, while using
only the image class as supervision. In contrast with existing works, which often uses the
pixel-wise positive evidence collected from a classifier, we also explore the negative evidence,
and integrate it with positive evidence, thereby taking advantage of the fully negative samples
already available in the data. (2) Our training loss contains two complementary terms: One
term exploits evidence collected from the classifier, and a second deals with the fully negative
samples. When a sample is fully negative, knowledge from the classifier is not used. (3)
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Following the experimental protocol in (Choe et al., 2020), we compare several WSL methods
on two challenging histology benchmarks: GlaS colon cancer data set, and Camelyonl6
patch-based benchmark for breast cancer. Our results show the benefits of using both
negative and positive evidence, i.e., the one obtained from a classifier and the one naturally
available in datasets. We provide an ablation study to highlight the impact of each term.

2. Proposed method
2.1. Notation

Let D= {(X,y);}YY, denotes a training set, where X : Q C R? is an input image and
y €{1,---, K} is its global label, with K the number of classes. D~ C D denotes the set of
all negative training samples that do not contain any ROI. The architecture of our model
is similar to U-Net (Ronneberger et al., 2015). It contains two parts: (a) classification
module g, and (b) segmentation module (decoder) f to output two activation maps, one for
the foreground and the other for background. The classifier g is composed of an encoder
backbone for building features, and a pooling head to yield classification scores. During the
training phase of our method, all the weights of the classifier are frozen, and only the decoder
weights @ are updated.

The decoder generates softmax activation maps denoted as S = f(X) € [0, 1]I*2, where
SO ST refer to the background and foreground maps, respectively. We note that the map S*
is class-agnostic. Let S, € [0, 1])? denotes a row of matrix S, with index p €  indicating a
point within . Using the pre-trained classifier g, we collect positive and negative evidence
at the pixel level using the normalized class activation map (CAM) corresponding to the
true class y of the input sample. We refer to this CAM as C € [0, 1],

2.2. Sampling positive/negative evidence

We trained the decoder using the collected positive/negative evidence from CAM C and the
negative-evidence subset D~. To sample pixels from C, we rely on the CAM magnitude at
each pixel. We assume that high activations indicate a potential foreground (ROI), while
low activations indicate background, i.e., absence of ROI.

For a training sample, we define two stochastically sampled subsets of pixels, C* and
C~, as foreground and background regions, respectively, estimated as follows:

Ct = w(c)7 Cc” = 1/1(1 - C) ) <1>

where ¢(C) is a pizel sampling function based on the multinomial distribution. For the
foreground regions, we use the CAM activations as sampling weights, thereby encouraging
the sampling of pixels with high activations. However, to sample background regions, we
use the inverse magnitude, ¢.e. 1 — C. For the foreground, we assign the pseudo-label 1
to pixels in C* whereas, for the background, pixels in C~ are associated with label 0. An
unknown label is assigned to the pixels that were not sampled. Let Y denotes the partially
pseudo-labeled mask for sample X, where Y, € {0, 1}2, with the labels being equal to 0 for
the background, and to 1 for the foreground.

Due to the potential label noise in the collected pseudo-labels C* and C~, we randomly
sample only a few pixels, n, for each region, independently for each mini-batch gradient
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update, and training image. Conceptually, this simulates extreme dropout (Singh and Lee,
2017; Srivastava et al., 2014), where a large part of a signal is dropped out, and only a small
portion of it is considered?. However, while dropout is performed with uniform sampling,
our sampling is weighted with importance. Intuitively, this prevents the model from quickly
fitting the wrong labels, and gives more time for consistent ROIs to emerge during training.

Learning using the randomly estimated pseudo-annotation is achieved through partial
cross-entropy. Let H(Y),,Sp) = —(1—Y,) log(1l — SS) -Y, log(S;) denotes the standard
binary cross-entropy between S, and pseudo-label mask Y}, at pixel p. This partial training
loss over one sample reads:

mgn Z H(Y),S,) . (2)
pe{CtuUC—}

Minimizing Eq. (2) enables the model to approximately discriminates between the foreground
and background regions.

2.3. Accounting for fully negative samples

In several real applications, we can easily access fully negative samples. While such samples do
not indicate any ROI, they yield a valuable information about what is not a ROI. We consider
using these samples D~ for learning at the pixel level. This is expected to provide the model
with useful information that helps in discriminating the foreground and background regions.
To indicate that there are no ROIs in fully negative samples, we simply add a cross-entropy
term H(Y),, Sp) that encourages predicting all pixels as background. We formulate this as:

. _ _ 0 —
min I%S:Z log(1-5,),vX eD™ . 3)

2.4. Overall training loss

The full training loss consists of the two exclusive terms defined above. The first term is
defined over partially annotated regions, and a second term is defined over fully negative
samples. Over a single training sample X, the full loss is formulated as,

min lxep- (Z —log(1 — Sﬁ)) + (1 - Ixep-) (A Y H(©Y, Sp)) : (4)

peEN pe{Ct UC—}

where 1 xcp- is the indicator function, and A is a weighting coefficient to account for the
noise in the labels.

3. Experiments

Since we aim to evaluation segmentation of ROI of a classifier, image-class and pixel-wise
annotation are required. There are two public histology datasets with both annotation (Rony
et al., 2019). Image-class is used for training and evaluation of classification task. Pixel-wise
labels are exclusively used for evaluation.

2. In all our experiments, for each mini-batch based stochastic gradient descent update during training, we
randomly sample one (n = 1) single pixel per region, and such a sampling is done independently for each
training image.
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3.1. Datasets

(a) GlaS dataset (Sirinukunwattana et al., 2015) (GlaS): It is a histology dataset for
colon cancer diagnosis®. It contains 165 images from 16 Hematoxylin and Eosin (H&E)
histology sections and their corresponding labels. For each image, both pixel-level and image-
level annotations for cancer grading (i.e., benign or malign) are provided. The whole dataset
is split into training (67 samples), validation (18 samples) and testing (80 samples) subsets, as
in (Rony et al., 2019). (b) Camelyonl16 patch-based benchmark (Rony et al., 2019)
(CAMELYON16): This benchmark is derived from the Camelyonl6 dataset (Ehteshami Bejnordi
et al., 2017), which contains 399 whole-slide images (normal or metastatic) for detection of
metastases in H&E stained tissue sections of sentinel auxiliary lymph nodes (SNLs) of women
with breast cancer. In (Rony et al., 2019), the authors designed a protocol to sample images
with global and pixel-level annotations. Following this protocol, a patch can either be (i)
normal without any metastatic regions, (i) or metastatic with both normal and metastatic
or only metastatic regions. In this work, we consider the benchmark containing images of
size 512x512, and use the same split as in (Rony et al., 2019). This benchmark contains
a total of 48,870 samples: 24,348 samples for training, 8,858 samples for validation, and
15,664 samples for testing. All subset have balanced global labels. Among both datasets,
only CAMELYON16 dataset contains fully negative samples. For GlaS datset, D™ = &.

3.2. Experimental Protocol

We follow the same protocol in (Choe et al., 2020). Authors introduced a well defined setup
to evaluate ROI obtained by weakly supervised classifier. This protocol entails two main
elements: model selection, and evaluation metric at pixel level. Authors in (Choe et al., 2020)
also define the area under the pixel precision and recall curve as an evaluation metric at the
pixel-level. Since WSL method rely on thresholding, such metric marginalizes the threshold
value. The metric is named PxAP where the higher the value is the better. We use the same
set of thresholds in the interval [0, 1] with a step of 0.001. Model selection is another critical
issue. Classification and segmentation task are shown to be antagonist tasks (Choe et al.,
2020). While segmentation task converges at the very early training epochs, classification task
converges at the last epochs. Therefore, to yield better segmentation of ROI, an adequate
model selection protocol is required. Following (Choe et al., 2020), we randomly select few
samples in validation set where we have access to their segmentation. Such samples are
exclusively used for early stopping using PxAP metric. Over GlaS dataset, we randomly select
3 samples per class, i.e. 6 samples in total. For CAMELYON16, we select 5 samples per class,
i.e. 10 samples in total. For image-class evaluation, we use standard classification accuracy
(CL).

3.3. Implementation details

The training of all methods is performed using SGD with 32 batch size (Choe et al., 2020),
1000 epochs for GlaS, and 20 epochs for CAMELYON16 (Rony et al., 2019). We use weigh
decay of 10~%. Images are resized to 256x256, and patches of size 224x224 are randomly
sampled for training. Since all the methods were evaluated on natural images, we can not

3. The Gland Segmentation in Colon Histology Contest: https://warwick.ac.uk/fac/sci/dcs/research/tia/glascontest
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use the reported best hyper-parameters in the original papers. For each method, including
ours, we perform a search of the best hyper-parameter over the validation set, including the
learning rate. For each method, the number of hyper-parameters to tune ranges from one
to six. We use three different common backbones (Choe et al., 2020), VGG16 (Simonyan
and Zisserman, 2015), InceptionV3 (Szegedy et al., 2016), and ResNet50 (He et al., 2016).
Since our method is dependent on a pretrained classifier, we choose a simple CAM-based
method that is CAM method (Zhou et al., 2016) which has an average PxAP performance.
We use U-Net (Ronneberger et al., 2015) with full pixel-annotation to yield an upper-bound
segmentation performance.

3.4. Results

Image classification accuracy is reported in appendix. Tab.l presents the segmentation
performance. Overall, we note that CAMELYON16 dataset is much more difficult than GlaS. In
addition, there is a performance discrepancy between the different backbones. Over Glas,
Grad-based methods show interesting results compared to bottom-up methods. However, over
CAMELYON16 dataset, most methods yield poor PxAP € [29%,45%]. Only Deep MIL obtained
54%. This is due to the difficulty of this dataset. Using CAM method (Zhou et al., 2016)
as a pretrained classifier, our method allows to improve the segmentation performance over
both datasets. For example, simply using one random pixel for foreground /background (at
each SGD step) collected from the classifier, we were able to improve PxAP of Inception from
50.5% to 70.1%. Over the three backbones, we improve the average PxAP of CAM method
from 61.1% to 77.8% over GlaS, and from 33.8% to 58.9% over CAMELYON16. In addition, our
method yielded consistent improvement independent from the backbone/dataset. Moreover,
we obtained better results than most state-of-the-art methods. However, there is still a large
performance gap between WSL methods and fully supervised method. The ablation study in
Tab.2 shows the impact of each term of our loss. Over Gla$S, using positive evidence helps
improving the performance. Using negative evidence adds further improvements, especially
when the positive evidence is not enough such as in Inception. Similar behavior is observed
over CAMELYON16. However, using fully negative samples adds a large improvement. For
instance, over VGG, the PxAP goes from 38.1% with evidence from the classifier, to 70.3%
with fully negative samples.

3.5. Discussions and conclusion

We have shown that simply exploiting negative evidence bring additional improvement
to the segmentation of ROI of a pretrained classifier. Generally, this allows to enhance
the interpretability of any classifier that yields CAMs. A main limitation to our method
is its dependence to the classifier. The quality of the collected evidence depends on the
segmentation performance of the classifier. When this evidence is relatively good such as in
GlaS, exploiting this information can easily bring large improvement. However, when dealing
with very noisy evidence, the improvement is small such as in CAMELYON16. This brings us
to a common issue in the literature that is learning with noisy labels which is a growing
field (Song et al., 2020). A direction to improve upon this work is to minimize the dependency
of the learning over the classifier evidence. One could filter out poor evidence using strong
uncertainty measure (Gal, 2016). Local and global constraints, such as color/texture and
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GlasS CAMELYON16
VGG Inception ResNet Mean VGG Inception ResNet Mean

‘Weakly-Supervised Leaning Methods

GAP (Lin et al., 2013) (corr) 585 575 562 574 375 246 437 352
MAX-POOL (Oquab et al., 2015) (cupr) 58.5 57.1 46.2  53.9 42.1 40.9 202 344
LSE (Sun et al., 2016) (copr) 63.9 62.8 59.1 619 63.1 29.0 42,1 44.7
CAM (Zhou et al., 2016) (cuopr) 68.5 50.5 644 611 254 48.7 275  33.8
Ha$S (Singh and Lee, 2017) (iccv) 65.5 65.4 63.5 648 254 47.1 29.7  34.0
GradCAM (Selvaraju et al., 2017) (iccv) 75.7 56.9 70.0 675  40.2 34.4 29.1 345
WILDCAT (Durand et al., 2017) (cupr) 56.1 54.9 60.1  57.0 44.4 31.4 31.0  35.6
ACoL (Zhang et al., 2018a) (cupr) 63.7 58.2 54.2  58.7 31.3 39.3 313 339
SPG (Zhang et al., 2018b) (eccv) 63.6 583 51.4 577 454 245 22.6  30.8
GradCAM++ (Chattopadhyay et al., 2018) (wacv) 76.1  65.7 70.7 708 413 43.9 25.8  37.0
Deep MIL (Ilse et al., 2018) (icml) 66.6 61.8 64.7  64.3 53.8 51.1 57.9 54.2
PRM (Zhou et al., 2018) (cupr) 59.8 53.1 62.3  58.4 46.0 41.7 232 36.9
ADL (Choe and Shim, 2019) (cvpr) 65.0 60.6 54.1 599  19.0 46.0 46.0  37.0
CutMix (Yun et al., 2019) (eccv) 59.9 50.4 56.7  55.6 56.4 44.9 20.7  40.6
Smooth-GradCAM (Omeiza et al., 2019) (corr) 71.3  67.6 75.5 714  35.1 31.6 25.1  30.6
XGradCAM (Fu et al., 2020) (bmuvc) 73.7 66.4 62.6 675 40.2 33.0 244 325
LayerCAM (Jiang et al., 2021) (ieee) 67.8 66.1 70.9 68.2 34.1 25.0 29.1 294
NEGEV (ours) 81.3 70.1 82.0 77.8 70.3 53.8 52.6  58.9

Fully Supervised Learning Methods

U-Net (Ronneberger et al., 2015) (miccai) 96.8 95.4 96.4 962  83.0 82.2 83.6 829

Table 1: PxAP performance on GlaS and CAMELYON16 test sets.

GlasS CAMELYON16
Methods VGG Inception ResNet Mean VGG Inception ResNet Mean
CAM (Zhou et al., 2016) 68.5 50.5 64.4 61.1 25.4 48.7 27.5 33.8
Ours + C* 81.3 53.3 81.3 719 38.1 36.5 30.8  35.1
Ours + C~ 81.3 52.9 81.3 718 42.1 27.1 38.0 35.7
Ours + CT + C~ 81.3 70.1 82.0 77.8 38.1 35.3 30.2 34.5
Ours + CT + C~ + D~ 70.3 53.8 52.6  58.9
Improvement 12.8 19.6 17.6 16.6 14.9 5.0 25.1 25.0

Table 2: Ablation study (n = 1). PxAP performance over test set. Our method uses evidence
from CAM (Zhou et al., 2016) pretrained model. C*: positive evidence. C~
negative evidence. D™: fully negative samples. Bottom line: improvement of our
fully method compared to the baseline CAM.

object size, could be used with adaptation to histology images. We note that our method
can be easily generalized to other type of medical images.
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Appendix A. Proposal

We present in this section an illustration of our proposal (Fig.1).
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Figure 1: Our proposal. The model is composed of a pretrained classifier equipped with a
decoder to yield refined ROI. During training, the classifier is frozen. Only the
decoder is updated. The CAM C produced by the classifier is used to sample
positive/negative evidence to refine the prediction S. The total loss adjusts
depending whether the sample is fully negative or not.

Appendix B. Related work

Class activation mapping (CAM) was introduced in (Zhou et al., 2016). Authors show
that spatial feature maps of standard deep classifier holds rich spatial information of ROI
associated with the model decision. Since such model is trained only using image-class,
CAMs tend to activate only on small discriminative regions while missing to cover the entire
object. Most subsequent work on CAM come as an attempt to deal with this critical issue.
Different extensions have been proposed. In particular, WSOL methods based on data
enhancement (Choe and Shim, 2019; Singh and Lee, 2017; Wei et al., 2017a; Yun et al., 2019;
Zhang et al., 2018a) aim to encourage the model to be less dependent on most discriminative
regions and seek additional regions. For example, (Singh and Lee, 2017) divides the input
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image into patches, and few of them are randomly selected during training. This forces the
model to look for diverse discriminative regions. However, given this random information
suppression in the input image, the CNN can easily confuse objects from the background
because most discriminative regions were deleted. This leads to high false positives. Other
methods consider improving the feature maps (Lee et al., 2019; Rahimi et al., 2020; Wei
et al., 2021, 2018; Xue et al., 2019; Yang et al., 2020; Zhang et al., 2020a, 2018b). In (Wei
et al., 2021), authors improve the features by considering shallow features of deep models.

Using negative evidence has been less explored in weakly supervised setup where the usage
of positive evidence is more common (Zhou et al., 2016). Negative evidence has been used for
instance in classification scores pooling. For instance, authors in (Durand et al., 2017) exploit
negative evidence, along with positive evidence to compute class scores. Authors argue
that such combination allows better regularization. However, it is not clear how it affects
ROI. In contrast, other classification scoring functions model negative evidence to be later
excluded from subsequent computations. For instance, max-pooling (Oquab et al., 2015) use
the CAM activation magnitude to pick only high activations while ignoring low activations,
1.e., negative evidence. Other methods suppress negative evidence to prevent it from being
considered. This is the case in deep multi-instance learning method (Ilse et al., 2018) where
attention is used to pull a global representation of a bag using a weighted aggregation of its
instance-level representations. Negative instances are expected to have low attention, hence,
low contribution. Attention that neglects negative evidence has been also used in learning
better spatial representations under weak-supervision (Choe and Shim, 2019).

Negative evidence has been exploited as well under the form of priors often in segmentation
task. The aim is to suppress activations over negative regions. Such prior can be formulated
as size constraint (Kervadec et al., 2019b,c; Pathak et al., 2015) where absent classes in an
image are constrained to have zero size. This is also applied to reinforce the presence of
background (Pathak et al., 2015). Authors in (?Belharbi et al., 2019) model the presence of
background in an image using the response of a classifier. Over background regions, classifier
is constrained to be the most uncertain in classification due to the lack of positive evidence
for the corresponding class. In (Belharbi et al., 2022), authors use positive and negative
evidence in addition to size priors and conditional random field (CRF) (Tang et al., 2018b).
However, fully negative samples were not explored.

Authors in (Liu et al., 2021a) exploit positive and negative evidence but at patch level
in order to refine segmentation. During training, a global and local models are trained to
correctly classify image at coarse and local level, respectively. Positive patches are sampled
around potential regions for foreground. However, negative patches are sampled from negative
samples. Size constraints is used to prevent activation over entire image/patch. The patches
are used to the local classifier to perform global classification. This is different from our work
where sampled evidence is used directly to refine the ROI segmentation. The inference in
their method requires both models and sampling patches to predict refined maps, which are
remapped to build final segmentation.

Relation to weakly supervised semantic segmentation (WSSS): Our work in-
tersects with WSSS in terms of architecture and training. Due to the low resolution of
standard CAMs, we considered to equip standard classifier with a decoder to yield refined
ROI. This forms a model similar to standard segmentation models but it is able to classify an
image and yield detailed ROI. Such decoder further more allows aligning ROI with external
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pixel-wise cues when available in particular negative evidence as the decoder explicitly models
background regions. This is impractical with standard CAMs due to their small size which is
the size of the input image downscaled by factor up to 32.

In term of training, using pseudo-labels cues from a classifier is common in WSSS (Kolesnikov
and Lampert, 2016; Liu et al., 2021b; Wang et al., 2020; Zhang et al., 2020b). To collect such
pseudo-labels, typical WSSS rely on thresholding, or taking top activations. This can make
them vulnerable to errors in fixed pseudo-labels. In contrast, our method follows a stochastic
sampling of pixels. Such scheme has shown to be much more effective which highlights a
limitation of using uncertain and constant pseudo-labels. In addition, the focus of our work
is the usage of negative evidence that comes from CAMs or naturally occurs in datasets to
mitigate a main drawback in standard CAM methods that tend to confuse foreground and
background in histology images. While the goal of WSSS is only to segment an image, our
method performance image classification and yield detailed segmentation of ROI. Moreover,
the evaluation of WSSS is performed by taking the mask obtained over the softmax scores
via argmax operation. Meanwhile, weakly supervised methods studied in this work threshold
CAMs to yield ROI mask (Choe et al., 2020). The final metric marginalizes the threshold.

Appendix C. Results

C.1. Experimental details

To conduct our experiments, we first train a classifier g over the training histology samples
where we use standard backbones (VGG, Inception, ResNet50) following (Choe et al., 2020).
Backbones weights are initialized using pre-trained weights from Image-Net (Krizhevsky
et al., 2012). Once the classifier is trained, it is frozen including its backbone; and it is
equipped with decoder as in a standard U-NET architecture (Fig.1). The decoder is randomly
initialized, then trained using our proposed loss over the same training data.

Patches: To clarify our method:

e Our method operates on the entire image.

e The word ‘patch’ used in describing CAMELYON16 in Sec.3.1 should be ‘image’. We
used the same terminology as in(Rony et al., 2019), where they refer to an image as
a patch because it is cropped from a whole slide image (WSI) — very high resolution
(15000 x 15000) images of about 225 million pixels. They sampled sub-images of size
512x512 that are adequate for training machine learning models which we used in our
experiments.

We have clarified this in the paper (see Section 3.1), where we refer to samples in
CAMELYONI16 as images. The rest does not change. During training, we resize the input
image to 256x256 and crop random sub-images (patches) of size 224x224. During the test,
we resize images to 224x224. This follows the protocol proposed in (Choe et al., 2020).

Random sampling and number of labels: In all our experiments, and unless men-
tioned differently, for each sample, and each SGD step, we randomly select one (n = 1) pixel
for foreground, and one random pixel for background. Sampling is done independently for
each sample. Therefore, the selected pixels for each sample will change at each SGD allowing
exploring more regions using the provided evidence from the CAM activations. During the
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entire training session of e epochs, we have used a total of 2 x e random pixels at most, per
sample.

C.2. Importance of randomness in pixels sampling

To show the importance of randomness in pixels selection, we conduct an addition experiment
with static pixel selection, i.e., without any randomness. In this experiment, we fix the
selected pixel for each image. We select the same number of pixels n per region as in
randomness selection. However, instead of using multinomial random selection as proposed,
we select top or low n pixels. For foreground, we select top n pixels ordered by activation
magnitude. For the background, we select the low n pixels. The results are presented in
Tab.3 show the effectiveness of randomness. Nevertheless, even with static selection, our
method still improves the base method CAM (Zhou et al., 2016). On one hand, random
selection has the advantage over static selection by allowing exploring more regions under the
guidance of CAMs’ evidence. On the other hand, being able to generalize better indicates
that randomness may be helping alleviating overfitting compared to static evidence where
the target evidence is always the same.

GlaS CAMELYON16
Methods VGG Inception ResNet Mean VGG Inception ResNet Mean
CAM (Zhou et al., 2016) 68.5 50.5 644 61.1 25.4 48.7 275  33.8
3. 52.6 58.9

Ours (n = 1, random selection) 8
7

1.3 70.1 82.0 77.8 53.8
Ours (n = 1, static selection) 7.7 60.3 76.5 715 47.4 42.8  49.2

Performance drop -3.6 -9.8 -5.5 -6.3 -12.8 -6.4 -9.8 -9.6

Table 3: Ablation study (n =1): random vs. static pixel selection. PxAP performance
over test set. Our method uses evidence from CAM (Zhou et al., 2016) pretrained
model. Random sampling: random n pixels are selected at each SGD step, for
each sample. Sampling is done independently for each image. Static sampling:
same n pixels are selected at each SGD step, for each sample (foreground: top
n pixels ordered by activation magnitude. background: low n pixels ordered by
activation magnitude.). Sampling is done independently for each image.

C.3. Ablation study of n

We present in Tab.4 the impact the number of random sampled pixels per region, n, over the
segmentation performance. Overall, varying the number of selected pixels does not break
the performance of our method. Except Inception over GlaS, most models have seen slight
degradation of performance when increasing the number of pixels. Given the noisy evidence,
especially over CAMELYON16, using more pixels can be in disadvantage as the training may
undergo fitting the wrong labels. It could be safer to consider sampling one random pixel
to reduce the risk to pick wrong labels. Under the high uncertainty of the CAMs evidence,
selecting large number of pixels increases the chance of consistently fitting wrong labels to
the model through the entire training session.
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Glas CAMELYON16
n VGG Inception ResNet Mean VGG Inception ResNet Mean

1 81.3 70.1 8.0 778 703 53.8 52.6  58.9
2 81.3 52.9 81.3 718  69.7 51.1 47.2  56.0
3 81.3 52.9 81.3 718  69.7 51.9 472 56.2
4 81.3 55.0 81.3 725  69.7 50.0 47.2  56.6
5 81.3 52.9 81.3 718  69.7 53.4 472 56.7

10 81.3 53.7 81.3 721 69.7 52.6 472 56.5
20 81.3 52.9 822 721 69.7 51.3 47.2  56.0
50 81.3 52.0 81.3 715  69.7 53.8 50.3  57.9
100 81.3 53.4 81.3 720  69.7 50.5 47.2 55.8
500 81.3 52.9 81.3 718  69.7 51.5 476  56.2
1k 81.3 53.7 81.3 721 69.7 51.2 48.5  56.4
2k 81.3 53.0 81.3 718  69.7 51.5 472 56.1
3k 81.3 54.2 81.3 722  69.7 50.4 48.5  56.2
4k 81.3 52.9 81.3 718  69.7 52.9 47.2  56.6
5k 81.3 53.2 82.7 724  69.7 51.4 47.7  56.2
10k 81.3 52.9 81.3 718  69.7 52.1 472 56.3

CAM (Zhou et al., 2016)  68.5 50.5 644 61.1 25.4 48.7 275 338

Table 4: Ablation study of n, the number of random sampled pixels per region, in our method.
PxAP performance over test set. Our method uses evidence from CAM (Zhou et al.,
2016) pretrained model.

C.4. Ablation study of A

In our initial results, the value of A is empirically estimated using validation from values
{1,0.1}. We found that large values leads to better results and faster training. Low values
are deemed to diminish the contribution of collected evidence into the gradient since it is the
only source of learning. Typically, weighted terms are used in addition to other terms that
can help boost gradients. However, in our case, collected evidence is the only training source.
Under the same number of epochs, small value of A will slow learning since it multiplier
coefficient of the learning rate. This slows learning, and requires more training epochs to
converge to better solutions. We investigate large range values of A. Results are presented in
Tab.5 that show that low values lead to poor results. We recommend using large values for .

Glas CAMELYON16
A VGG Inception ResNet Mean VGG Inception ResNet Mean
1 81.3 70.1 82.0 77.8 70.3 53.8 52.6  58.9
0.1 81.3 50.8 81.3 711  69.7 52.5 47.1 564
0.01 80.3 52.9 73.0 68.7 69.5 50.6 51.0 57.0
0.001 80.2 52.9 56.8 63.3  65.3 51.2 38.1 515
0.0001 64.7 52.9 55.0 57.5  45.2 42.6 234 37.0

CAM (Zhou et al., 2016)  68.5 50.5 644 61.1 25.4 48.7 275  33.8

Table 5: Ablation study of A in our method. PxAP performance over test set. Our method
uses evidence from CAM (Zhou et al., 2016) pretrained model.
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C.5. Visual results

We report few qualitative results of our method compared to the CAM method (Zhou et al.,
2004) over both test datasets (Fig.2, 3). These results show the benefit of our method and
how segmentation is affected when explicitly aligning pixels to a (noisy) target compared
to CAMs (Zhou et al., 2004) where ROI emerge indirectly using global labels. Additional
visual results over both datasets are presented in Fig,4, 5, 6, 7.

Figure 2: Predictions over test samples for GlaS. From left to right: input image, ground
truth segmentation (ROI are indicated with red mask highlighting glands.), map
from CAM method (Zhou et al., 2016), map from our proposed CAM, map from
U-Net (Ronneberger et al., 2015) CAM. In all samples, strong CAM’s activations
indicated glands. Top two rows are benign. Bottom two rows are malignant.

C.6. Classification performance

Tab.6 presents image classification accuracy (CL). As observed in (Choe et al., 2020), when
using segmentation performance as a model selection metric, the classification performance
is sub-optimal.
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Figure 3: Predictions over test samples for CAMELYON16. From left to right: input image,
ground truth segmentation (metastatic regions are indicated with red mask.), map
from CAM method (Zhou et al., 2016), map from our proposed CAM, map from
U-Net (Ronneberger et al., 2015) CAM. In all samples, CAM’s activations indicate
metastatic regions. Top two rows are normal. Bottom two rows are metastatic.

GlasS CAMELYON16
VGG Inception ResNet Mean VGG Inception ResNet Mean

‘Weakly-Supervised Learning Methods

GAP (Lin et al., 2013) (corr) 46.2 93.7 87.5 758 50.0 50.0 68.1  56.0
MAX-POOL (Oquab et al., 2015) (cupr) 97.5 86.2 46.2  76.6  50.0 82.0 714 67.8
LSE (Sun et al., 2016) (cupr) 92.5 92.5 100 95.0 67.8 50.0 61.0  59.6
CAM (Zhou et al., 2016) (cvpr) 100 53.7 97.5  83.7 62.2 51.3 53.5  55.6
HaS (Singh and Lee, 2017) (iccv) 100 86.2 93.7 933  62.2 50.0 51.0 544
GradCAM (Selvaraju et al., 2017) (iccv) 97.5 85.0 98.7  93.7 40.2 34.4 29.1 345
WILDCAT (Durand et al., 2017) (cupr) 55.0 86.2 96.2  79.1 50.0 50.0 50.0  50.0
ACoL (Zhang et al., 2018a) (cupr) 100 95.0 46.2 804  50.0 50.0 50.0  50.0
SPG (Zhang et al., 2018b) (eccv) 53.7 53.7 72.5  59.9 65.1 50.0 494 548
GradCAM++ (Chattopadhyay et al., 2018) (wacv)  97.5 87.5 53.7 79.5  50.0 88.9 78.6 725
Deep MIL (Ilse et al., 2018) (icmi) 96.2 81.2 98.7 920  86.6 71.3 88.1  82.0
PRM (Zhou et al., 2018) (cupr) 96.2 53.7 96.2  82.0 50.0 75.5 50.0  58.5
ADL (Choe and Shim, 2019) (cvpr) 100 77.5 93.7 904  50.0 50.0 56.6  52.2
CutMix (Yun et al., 2019) (eccv) 100 86.2 100 95.4 66.8 80.8 53.0 66.8
Smooth-GradCAM (Omeiza et al., 2019) (corr) 100 97.5 97.5 983  50.0 88.5 51.0  63.1
XGradCAM (Fu et al., 2020) (bmuvc) 100 91.2 88.7 933 821 88.9 82.3 844
LayerCAM (Jiang et al., 2021) (ieee) 100 90.0 53.7 812 858 47.4 821 717

Table 6: Image classification accuracy performance (CL) over GlaS and CAMELYON16 test sets.
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Figure 4: Predictions over benign test samples for GlaS. From left to right: input image,
ground truth segmentation (ROI are indicated with red mask highlighting glands.),
map from CAM method (Zhou et al., 2016), map from our porposed CAM,
map from U-Net (Ronneberger et al., 2015) CAM. In all samples, strong CAM’s
activations indicated glands.
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Figure 5: Predictions over malignant test samples for G1aS. From left to right: input image,
ground truth segmentation (ROI are indicated with red mask highlighting glands.),
map from CAM method (Zhou et al., 2016), map from our proposed CAM,
map from U-Net (Ronneberger et al., 2015) CAM. In all samples, strong CAM’s
activations indicated glands.
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Figure 6: Predictions over normal test samples for CAMELYON16. From left to right: input
image, ground truth segmentation (metastatic regions are indicated with red
mask.), map from CAM method (Zhou et al., 2016), map from our proposed
CAM, map from U-Net (Ronneberger et al., 2015) CAM. In all samples, CAM’s

activations indicate metastatic regions.
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Figure 7: Predictions over metastatic test samples for CAMELYON16. From left to right:
input image, ground truth segmentation (metastatic regions are indicated with
red mask.), map of CAM method (Zhou et al., 2016), map from our proposed

CAM, map from U-Net (Ronneberger et al., 2015) CAM. In all samples, CAM’s
activations indicate metastatic regions.
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