
Interpreting learned search: finding a transition model
and value function in an RNN that plays Sokoban

Anonymous Author(s)
Affiliation
Address
email

Abstract

We partially reverse-engineer a convolutional recurrent neural network (RNN)1

trained to play the puzzle game Sokoban with model-free reinforcement learning.2

Prior work found that this network solves more levels with more test-time compute.3

Our analysis reveals several mechanisms analogous to components of classic4

bidirectional search. For each square, the RNN represents its plan in the activations5

of channels associated with specific directions. These state-action activations are6

analogous to a value function – their magnitudes determine when to backtrack and7

which plan branch survives pruning. Specialized kernels extend these activations8

(containing plan and value) forward and backward to create paths, forming a9

transition model. The algorithm is also unlike classical search in some ways. State10

representation is not unified; instead, the network considers each box separately.11

Each layer has its own plan representation and value function, increasing search12

depth. Far from being inscrutable, the mechanisms leveraging test-time compute13

learned in this network by model-free training can be understood in familiar terms.14

1 Introduction15

Traditional online planning algorithms such as alpha-beta or Monte Carlo Tree Search (MCTS)16

attempt to accomplish a goal by exploring many possible courses of action (plans) using a transition17

model [53]. These algorithms can use additional compute to improve decisions by increasing18

the number of plans evaluated or the length of considered plans (the planning horizon). At each19

environment step, the algorithm considers many plans, ranks each according to its outcome, and picks20

the first action of the best plan. Often, the goal is further away than the horizon, so the outcome of21

intermediate states at the horizon must be evaluated with an approximate value function. To consider22

fewer plans (and thus be able to search deeper), these algorithms use move generation heuristics to23

simplify the problem and avoid exploring some actions1.24

It is difficult to craft heuristics and value functions for complex environments, leading to work25

such as AlphaGo and AlphaZero that combines MCTS with machine-learned evaluation and move26

generation [60, 61, 11]. This hybrid approach uses the model for high-quality move generation27

and evaluation, while the search backbone uses extra compute to improve performance via more28

and deeper exploration. Recent work has shown that large language models (LLMs) exhibit test-29

time scaling: using more compute can generate better answers [45, 13]. However, unlike previous30

examples, it is unclear exactly how this additional compute is used to improve performance.31

How does test-time scaling work? We study a model organism for test-time scaling: a Deep Repeating32

ConvLSTM (DRC) trained to play the Sokoban puzzle game. [22, 62]. We focus on the DRC because33

1In alpha-beta search, this corresponds to trying better moves first so branches can be pruned later on by the
β-threshold [53], and in some MCTS variants, this corresponds to the prior policy [61].

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

Box down
L1H17

Box right
L1H17

Step 0 tick 1 Step 1 tick 2 Step 2 tick 1

Turn Plan Extension (TPE) kernels

Input Channel

0.5

-0.5

0

0.4
0.2

-0.2
-0.4

0
1

2

O
ut

pu
t C

ha
nn

el

Ba
ck

w
ar

d

Up Down RightUp Down Right

Up
Do

w
n

Ri
gh

t

Down
Up to Right

to Up
Down to
Right

Right to
Down

Up to Right
to Up

Down to
Right

Fo
rw

ar
d

& Plan
Extension

Plan
Extension

WTA at
box,

target

Winner Takes All (WTA)

Observation

Linear Plan Extension (LPE) kernels

Figure 1: A situation with two equally good paths from the box to the target . The sum of
box-down (L1H17) and box-right (L1H13) channels shows that the network searches forward from
the box and backward from the target. Both paths (down-then-right and right-then-down) are visible
at step 0 tick 1 (left) due to the encoder; and the down and right channels have similar activations on
the box square (gray). From step 0 tick 1 until step 2 tick 1 (Section 3.1 defines ‘tick’), the plans are
extended in the same direction by Linear Plan Extension (LPE) kernels (bottom-middle) and extended
into switching directions by Turn Plan Extension kernels (bottom-right), stopping (Figure 6) on
signals corresponding to reaching the target or hitting obstacles. The plan at the box square is resolved
at step 1 tick 2 using a Winner-Takes-All (WTA) mechanism. The average WTA kernel weights
(bottom-left) subtract each channel from all the others, which through a sigmoid approximates an
argmax. The magnitude of the diagonal entries (stronger for down than right) break ties.

previous work has established that it benefits from test-time compute while being a small enough34

network to make intensive mechanistic interpretability tractable. Additionally, actions and goals35

in Sokoban are concrete and observable, in contrast to the unclear goals and state-action space of36

LLMs.237

Our primary contribution is to partially reverse-engineer the algorithm that the DRC learned. To38

the best of our knowledge, this work advances the Pareto frontier between the completeness of a39

mechanistic explanation and the complexity of the phenomenon: we characterize more of the Sokoban40

algorithm than any previous work [2, 62] that has aimed to do so, and our work is more complete or41

more complex than any other related work (see Section 6) in mechanistic interpretability. We find42

that the DRC contains several analogues to classic online search, performing bidirectional search as43

argued by Bush et al. [2]. To explain the algorithm, we first focus on the data representation.44

Representation. Since the DRC repeats the same computations for each square with limited45

feedforward depth, it cannot use more “memory" for longer paths. However, its convolutional46

structure allows it to use a distributed representation: at each square, the activations of agent and box47

direction path channels (Section 4) encode the direction to go from that square. The DRC uses short-48

and long-term path channels to represent going in different directions at different times the square49

is visited. A path is represented by adjacent squares having path channel activations that indicate a50

move to the next square in the sequence. How are these path channel activations constructed?51

Algorithm. These path channel activations are initialized by the encoder kernels to begin plan52

segments at the agent, boxes, and targets (Section 5.1). The plan segments are then extended53

bidirectionally by forward and backward plan extension kernels which extend them linearly or with a54

turn until an obstacle is met, functioning as a transition function that extends plans with valid next55

actions (Section 5.2). These plan extension kernels also double to propagate negative activations56

2Tokens are concrete, but LLM goals and world models likely only make sense at a higher level of abstraction.

2

bidirectionally, pruning unpromising paths (Section 5.3). A winner-takes-all (WTA) mechanism57

strengthens the strongest directions in the path channel activations and inhibits the weaker directions58

which, along with the sigmoid nonlinearities, causes the plan segments to commit to the higher59

activation directions when there are multiple options available (Section 5.3).60

Taken together, the backtracking and WTA mechanisms show that the path channel activations are61

analogous to a value function, propagating positive and negative value information along a path, and62

being used to select high value subplans. This provides a mechanism for specialized heuristics to63

influence the final plan: simply add or subtract activation to strengthen or inhibit a path.64

(Dis)analogies to classical algorithms. Thus, the DRC has analogues to key components of65

classical algorithms in the form of a plan representation in the path channel activations, which are66

repurposed as a valuation mechanism, and constructed according to a transition function. However,67

the convolutional computational structure imposes subtle differences. The plan’s representation68

is distributed across activations for each square, leading to potential inconsistencies that need to69

be suppressed by the WTA mechanism. These activations are used as a value function, but they70

propagate subplan value information along the path via the convolutional plan extension kernels so71

that the effective value of the plan is the result of an equilibrium rather than a variable assignment.72

2 Background73

Mechanistic interpretability. Linear probing and PCA have been widely successful in finding74

representations of spatial information [66] or state representations and game-specific concepts in75

games like Maze [27, 31, 39], Othello [32, 41], and chess [36, 57, 29]. However, these works are76

limited to input feature attribution and concept representation, and do not analyze the algorithm77

learned by the network. Recent work has sought to go beyond representations and understand key78

circuits in agents. It is inspired by earlier work in convolutional image models [5] discovering the79

circuits responsible for computing key features like edges, curves, and spatial frequency [4, 43, 56].80

In particular, recent work has found mechanistic evidence for few-step lookahead in superhuman81

chess networks [28, 57], and future token predictions in LLMs on tasks like poetry and simple block82

stacking [33, 37, 47]. However, these works still focus on particular mechanisms in the network83

rather than a comprehensive understanding of the learned algorithm.84

Planning in Sokoban. Sokoban is a grid-based puzzle game with walls , floors , movable85

boxes , and target tiles where the goal of the agent is to push all boxes onto target tiles. Since86

boxes can only be pushed (not pulled), some wrong moves can make the puzzle unsolvable, making87

Sokoban a challenging game that is PSPACE-complete [12], requires long-term planning, and a88

popular planning benchmark [48, 51, 23]. Guez et al. [22] introduced the DRC architecture family and89

showed that DRC(3, 3) achieves state-of-the-art performance on Sokoban amongst model-free RL90

approaches and rival model-based agents like MuZero [55, 9]. They argue that the network exhibits91

planning behavior since it is data-efficient in training, generalizes to multiple boxes, and benefits from92

additional compute. Specifically, the solve rate of the DRC improves by 4.7% when the network is93

given extra thinking time by feeding in the first observation ten times during inference. Bush et al. [3]94

use logistic regression probes to find a causal representation of the plan in the DRC, which improves95

with compute, and speculate that it might be performing bidirectional search. Taufeeque et al. [62]96

find that training incentivizes the DRC to often wait for a few steps before acting and during those97

waiting steps the plan changes more quickly, indicating the policy has a meta-strategy of seeking98

test-time compute when needed.99

3 Methodology100

3.1 Network architecture101

We analyze the open-source DRC(3, 3) network trained by Taufeeque et al. [62] to solve Sokoban,102

who closely followed the training setup of Guez et al. [22]. The network consists of a convolutional103

encoder, a stack of 3 ConvLSTM layers, and an MLP head for policy and value function (in the sense104

of the RL policy training, not path valuation) prediction. Each ConvLSTM block perform 3 ticks105

of recurrent computation per step. The encoder block E consists of two 4× 4 convolutional layers106

3

without nonlinearity, which process the H ×W × 3 RGB observation xt into an H ×W ×C output107

et with height H , width W , and C channels, at environment step t.108

ConvConvConvConvPool

or

co
nc
at

encode

Figure 2: The ConvLSTM block in the DRC. Note
the use of convolutions instead of linear layers,
and the last layer of the previous tick (hn−1

D) as
input to the first layer. “Pool” refers to a weighted
combination of mean- and max-pooling.

Figure 2 visualizes the computation of the Con-109

vLSTM layer. Each of the ConvLSTM layers110

at depth d and tick n in the DRC maintains hid-111

den states hn
d , c

n
d with dimensions H ×W × C112

and takes as input the encoder output et, the113

previous layer’s hidden state hn
d−1, c

n−1
d , and114

its own hidden state hn−1
d from the previous115

step. The ConvLSTM layer computes four par-116

allel gates i, j, f, o using convolutional opera-117

tions with 3 × 3 kernels that are combined to118

update the hidden state. For the first ConvLSTM119

layer (d = 0), the architecture uses the top-down120

skip connection from the last ConvLSTM layer121

(d = 2). This gives the network 3 · 3 = 9 layers122

of sequential computation to determine the next123

action at each step. The final layer’s hidden state124

at the last tick is processed through an MLP head to predict the next action and value function. The125

DRC(3, 3) architecture is shown in Figure 10, with additional architecture, training, and dataset126

details provided in Appendices B and C. Unless mentioned otherwise, the dataset of levels for all127

results is the medium-difficulty validation set from Boxoban [21].128

Notation Each DRC tick (n = 0, 1, 2) involves three ConvLSTM layers (d = 0, 1, 2), each129

providing six 32-channel tensors (hd, cd, id, jd, fd, od). Channel c of tensor vd is denoted LdVc.130

3.2 Interpretability Techniques131

This paper employs the following techniques from the mechanistic interpretability literature [17, 43,132

59] to reverse-engineer the planning algorithm of the DRC(3, 3) network. The first four help us form133

hypotheses (denoted [H]) about the DRC, and the last two help us test them (denoted [T]). Through134

the synthesis of these techniques, we build a mechanistic account of how the DRC(3, 3) network135

represents, searches for, refines, and executes plans to solve Sokoban puzzles.136

[H] Feature Identification and Label. Interpretability requires identifying legible features that137

the network uses to make decisions [30, 43]. We analyze individual channels of the hidden state138

h, seeking to label all channels by their purpose. Wherever necessary to explain a mechanism, we139

further decompose the activations of the hidden state channels into the components received from the140

c, i, j, f, o gates based on Equations (7) and (8). To label channels, we observe them, form hypotheses141

about their purpose, and test these using a test set, causal interventions or ablation.142

[H] Kernel Visualization. After identifying what the channel activations represent, we visualize the143

convolutional kernels connecting various input channels in the network to intuitively understand the144

mechanisms (or “circuit”) involved in computing an output channel [64, 4].145

[H] Encoder Simplification. Individually, the encoder weights have no privileged basis [16]. To146

interpret the weights of the encoder, we use the associativity of linear operations to combine the147

convolution kernels of the encoder and the i, j, f, o gate weights that process the encoder output148

et into a single convolutional layer. This results in 9 × 9 convolution kernels directly mapping149

observations to each gate (Figures 4 and 22).150

[H] Direct effect. To study which inputs channels contribute the most to an output channel gate, we151

sort and filter the input channels by their direct effect, computed as the largest magnitude of activation152

added to the output across all squares in the grid.153

[T] Causal Intervention. To ground our interpretation of the activations and weights in the154

network’s behavior, we intervene on the activations [32, 19, 68] and weights of the network and155

observe whether the network’s behavior changes as expected based on the intervention x′ ← α ·x+c,156

4

where x can represent the activations or weights depending on the experiment, α is a constant157

multiplier, and c is a constant steering vector [63, 52].158

[T] Ablation. Ablation is one specific causal intervention technique used to ‘remove’ components159

from a neural network and thus understand their importance [68, 65, 10]. We perform mean-ablation160

on the activations as x′ ← E[x] replacing the activations of a component with its mean over some161

episode distribution, and measure the drop in performance to decide which components to focus on162

in our analysis. We also perform zero-ablation on the kernel weights by replacing a set of kernel163

weights with zero to validate our interpretation of the kernels [38].164

4 The Plan Representation165

At each layer, the DRC has C channels, each of which is a H ×W array. The DRC repeats the same166

computations convolutionally over each square. This results in a subset of channels representing the167

plan where each channel corresponds to a movement direction. If the agent or a box is at a position168

where the channel is activated, this causes the DRC to choose that channel’s direction as the action169

(Figure 3, left).170

Table 1: Channel groups, their definitions and counts for each direction (up, down, left, right).
Group Definitions Channels
Box-movement Path of box (short- and long-term) 20 (3, 6, 5, 6)
Agent-movement Path of agent (short- and long-term) 10 (3, 2, 1, 4)
Grid Next Action (GNA) Immediate next action, represented at agent square 4 (1, 1, 1, 1)
Pooled Next Action (PNA) Pools GNA to represent next action in all squares 4 (1, 1, 1, 1)
Entity Target, agent, or box locations 8
Combined path Aggregate 2+ directions from movement channels 29
No label Difficult to interpret channels 21

0 20 40
Steps

60

80

100

A
U

C
 (%

)

Short term
Long term

20 0 20
Centered time steps (t)

0.0

0.2

0.4

Av
g

ac
tiv

at
io

n
(d

ow
n)

Long term
Short term

Figure 3: Left: illustration of path channels. Each channel is a 2D slice of the 3D activations, which
activates highly at a square to indicate the direction it is associated with. Middle: The network
represents actions at different horizons separately to express concepts like “first time go right, second
time go down.” Short-term box-movement channels accurately predict (> 95%) the next 10 steps
of box-movement. For later box-movements, long-term channels represent actions accurately, with
AUC approaching > 95%. Right: Average activations of short-term (L0H2, L1H17, L1H19) and
long-term (L0H14, L0H20, L1H14) box-down channels averaged across squares where a non-down
action is taken at the centered time step t = 0 and a down action is taken at t > 0. The down action
is stored in the long-term channel at t < 0 and transferred into the short-term channels after the
non-down action occurs and down becomes the next action to take at that square.

Manual inspection of every channel across all layers revealed that most channels are interpretable171

(Table 1). Detailed labels are in Tables 7 and 8 of the Appendix. We group the channels into seven172

categories: 1) box-movement and 2) agent-movement channels that, for each cardinal direction,173

activate highly on a square in the grid if the box or agent moves in that direction from that square at a174

future timestep. The probes from Taufeeque et al. [62] and Bush et al. [3] aggregated information175

from these channels. 3) The combined path channels that aggregate various directions from the box-176

and agent-movement channels. 4) The GNA channels that extract the next action from the previous177

groups of channels. 5) The PNA channels that pool the GNA channels which are then picked up by the178

5

MLP to predict the next action. 6) The entity channels that predominantly represent target locations,179

with some also representing box and agent locations, and 7) Some channels we understand180

very little of (‘no-label’). We define the path channels as the set comprising the box-movement,181

agent-movement, and combined path categories, as they collectively maintain the complete plan of182

action for the agent. The remaining groups (GNA, PNA, entity, and no-label) are termed non-path183

channels, storing primarily short-term information, with some state for move selection heuristics. The184

box- and agent-movement channels further decompose into short- and long-term channels (Table 7,185

Appendix L). As illustrated in Figure 3 (middle), these channels collectively predict future movements186

up to 50 steps ahead with high accuracy (AUC > 95%, area under the ROC curve). Figure 14 shows187

the AUC curves for each channel separately.188

Long-term path channels. The network utilizes the long-term channels to manage spatially189

overlapping plans for different boxes intended for different times. Figure 3 (right) illustrates this: in190

cases where two boxes pass through the same square sequentially in different directions with the first191

box moving at t = 0, the long-term channel for the second move activates well in advance (t≪ 0),192

while its corresponding short-term channel only becomes active after the first move is completed193

(t = 0). Figure 16 shows the mechanism of this transfer is primarily mediated through the j-gate.194

Ablating the state. To test whether non-path channels hold state, we performed a single-step cache195

ablation. This ablation replaces the activations of a target group of channels with the hidden state196

generated from running the policy on the previous observation starting from a zero state, effectively197

removing long-term dependencies while preserving short-term computations within those channels.198

Intervening on the 59 path channels caused a substantial 57.6% drop in the solve rate. By contrast,199

intervening on the 37 non-path channels resulted in a 10.5% performance decrease ((a significantly200

smaller, yet non-negligible, decrease). Controlling for channel count, intervening on a random subset201

of 37 path channels still led to a 41.3% drop in solve rate. This evidence strongly suggests that the202

computations essential for long-term planning on difficult levels are primarily carried out within the203

identified path channels.204

Uncharted behaviors and channels. The DRC does more things that we do not yet understand.205

For example, the plan extension has a tendency to move towards boxes and targets, as opposed to206

exploring every possible direction, but only when the box and target are at most 10-15 squares apart.207

There are many channels for which we do not have labels, though we are confident that these channels208

only affect the action through the short-term path channels because several short-term channels have209

> 99% AUC (Figure 3) for predicting the next action. However, their activations are sometimes210

important and they appear to be used on more difficult levels, so we call these channels heuristics.211

Table 2: Causal intervention scores for dif-
ferent channel groups, alongside comparative
probe scores from Taufeeque et al. [62].

Group Score (%)
Pooled Next Action (PNA) 99.7± 0.2
Grid Next Action (GNA) 98.9± 0.4
Box- and agent-movement 88.1± 1.9
Box-movement 86.3± 2.1
Agent-movement 53.2± 2.1

Probe: box movement 82.5± 2.5
Probe: agent movement 20.7± 0.7

Causal intervention We verify the channel labels212

by performing causal interventions on the channels.213

We modify the channel activations based on their la-214

bels to make the agent take a different action than the215

one originally predicted by the network. We collect a216

dataset of 10,000 transitions by running the network217

on the Boxoban levels [21], measuring the fraction of218

transitions where the intervention succeeds at causing219

the agent to take any alternate target action, follow-220

ing the approach of Taufeeque et al. [62]. Table 2221

shows high intervention scores for every group ex-222

cept the agent-movement channels. The lower score223

for agent-movement channels is because they are224

causally relevant only when the agent is not pushing225

a box, a condition we did not filter for. We also compare our results to probes trained by Taufeeque226

et al. [62] to predict box and agent movements and find that intervening based on our channel labels227

is more effective than using their probes. In Appendix E, we further validate our channel labels.228

We thus conclude that the network’s plan resides primarily within the identified box-movement and229

agent-movement channels, which are mapped to the next action through the GNA/PNA channels. In230

Appendix F, we explain the mechanisms that map these plans to the next actions.231

6

5 The Planning Algorithm232

Bush et al. [2] observed qualitatively with their box-movement probe that the DRC(3, 3) network233

forms plans by forward chaining from boxes and backward chaining from targets in parallel in the234

first few steps. We find concrete evidence of this in the weights of the network by analyzing the235

kernels associated with the path channels.236

5.1 Initializing the plan237

+L0O24 (up) -L0O24 (up) +L0O20 (down) -L0O20 (down) +L0O23 (left) -L0O23 (left) +L0O17 (right) -L0O17 (right)

Figure 4: Visualizations of combined kernels that map from the RGB input to the o-gate of the up,
down, left, and right box-movement channels of layer 0. The negative and positive RGB components
are visualized separately. The kernels activate squares along (for agent and box) and against (for
target) the channel’s direction to initialize the forward and backward plan chains, respectively. The
kernel for L0O17 (right) initializes plan chains only on the agent and box square.

Analysis of the combined encoder kernels mapping to box-movement channels (Figure 4) reveals238

structures that initiate planning. These kernels detect relevant features—such as targets, boxes or the239

agent’s position—a few squares away along (for box) or against (for target) the channel’s specified240

cardinal direction. This allows the network to activate initial plan segments, effectively starting the241

bidirectional search.242

5.2 The Transition Model243

Figure 5: The effect of convolving a movement
channel with the plan extension kernels. Both for-
ward and backward turns happen with the same
turn kernel. The up channel is spatially offset (1
square right and down) to place turn activation at
the correct square.

The DRC’s kernels contain convolutions analo-244

gous to the transition model of a classical plan-245

ning algorithm because they encode how the246

environment changes in response to the agent’s247

actions or how to reach a state. They strongly248

bias the plan expansion process towards valid249

state transitions.250

Plan Extension Kernels. While encoder ker-251

nels initiate plan fragments, connecting these252

forward and backward chains requires an ex-253

tension mechanism operating in the recurrent254

hidden state. This is accomplished by special-255

ized “plan-extension kernels” within the recur-256

rent weight matrices.257

Linear plan extension (LPE) kernels (see also258

Figure 1) propagate the plan linearly, extending259

it one square at a time along the channel direction label. Separate kernels exist to facilitate both260

forward chaining from boxes and backward chaining from targets. Turn Plan Extension (TPE)261

kernels (see also Figure 1) switch activations from one channel to another channel that represents a262

different direction. The LPE kernels have larger weight magnitudes compared to the TPE kernels,263

thus encoding agent’s preference to take turns only when linear plan extension stops expanding along264

a direction.In Appendix M, we demonstrate that weight steering based on our insights into the plan265

extension mechanism can help solve larger adversarial levels previously identified by Taufeeque et al.266

[62].267

These kernels constitute a transition model in the sense that they encode the dynamics of Sokoban. If268

the agent or box moves in a direction, then the adjacent square in that direction is activated, with a269

default of continuing in the same direction.270

7

Stopping Plan Extension. Plan extension does not continue indefinitely. It must stop at appropriate271

boundaries like targets, squares adjacent to boxes, or walls. We observe (Figure 6) that this stopping272

mechanism is implemented via negative contributions to the path channels at relevant locations.273

These stopping signals originate from either the encoder or hidden state channels that represent static274

environmental features (such as those in the ‘entity’ channel group, Table 7), effectively preventing275

the plan from extending beyond targets or into obstacles.This aspect of the transition model prevents276

the DRC from adding impossible transitions to its path.277

−4
−2
0
2

−4
−2
0
2

−4
−2
0
2

−4
−2
0
2

= + +

Observation L1O13 L0H17 Encoder Target from L0

Figure 6: Plan stopping mechanism demonstration
shown through o-gate contributions of the box-
right channel (L1H13). The direct effect shows
that convolving the forward and backward right-
plan-extension kernel on the converged box-right
channel (L0H17) spills into the squares of the box
and the target. The encoder and the target channels
from layer 0 add a negative contribution to coun-
teract the spillover and stop the plan extension.

State transitions. In Appendix G, we show278

the mechanisms that update the plan representa-279

tion on state transitions, solidifying the notion280

that the DRC has an internal transition model.281

5.3 The Valuation Mechanism282

The value function is a key component of classi-283

cal planning algorithms. We now argue that the284

activations of the path channels are used anal-285

ogously to a value function: aggregating and286

propagating reward information about a path,287

and being used to select high-value plans.288

Backtracking mechanism. The plan extension kernels are cleverly repurposed to allow the algo-289

rithm to backtrack from bad paths. As part of its bidirectional planning, the DRC has forward and290

backward plan extension kernels, so negative activations at the end of a path are propagated to the291

beginning by the backward kernel, and negative activations at the beginning of a path are propagated292

to the end by the forward kernel. This allows the DRC to propagate negative activations along a path,293

thus pruning unpromising path fragments. See Appendix I for an example.294

This is analogous to backward chaining in a classical game tree expansion algorithm, in that it295

propagates negative reward information backward from invalid or low-reward paths. However, it is296

somewhat more complex: rather than every path channel in a single plan having the same activation,297

the activation propagates forward and backward along the path using the plan extension kernels.298

Bidirectional planning. This allows the DRC to construct paths using something like a standard299

bidirectional search algorithm – plan fragments get extended by the transition model in the plan300

extension kernels, stopped by obstacles, and backtracked entirely to prune bad branches. But how301

does it stitch the fragments together into a consistent, high-value plan?302

0

0.5

1
L1H17

0

0.5

1
L1H13

Observation

O
rig

in
al

A
bl

at
ed

Step: 0 Step: 1 Step: 2

Figure 7: After zero-ablating the kernels connect-
ing the box-down and box-right channels, the WTA
mechanism cannot suppress the right-down plan.

Winner-takes-all mechanism. To select a sin-303

gle path for a box when multiple options ex-304

ist, the network employs a Winner-Takes-All305

(WTA) mechanism among short-term path chan-306

nels. Excluding the long-term path channels307

allows the DRC to maintain plans for later execu-308

tion without inhibiting them. Figure 1 (bottom-309

left) shows that weights connecting path chan-310

nels for various directions cause the path chan-311

nel activations to inhibit each other at the same312

square. The direction with the strongest activa-313

tion suppresses activations in alternative direc-314

tions which, combined with the sigmoid activation, ensures that only one direction’s path channels315

remain active for imminent execution. We construct a level with equally viable paths to causally316

demonstrate (Figure 7): initially, both paths have similar activations, but the slightly stronger one317

quickly dominates in steps 1 and 2 and deactivates the other via this inhibitory interaction. Zero-318

ablating the kernels between the channels of the two directions eliminates the WTA effect, leaving319

both potential paths simultaneously active. Thus, we conclude that kernels connecting various320

short-term box-movement path channels implement this crucial selection mechanism.321

8

Path channel activations as a value function analogue. These findings show that not only do the322

path channel activations represent the plan, they are analogues to the DRC’s value function. The plan323

extension kernels propagate and aggregate value information forward and backward along a path. The324

WTA mechanism ensures that the highest value plans are chosen, and cause the path to connect to325

higher value segments when connecting bidirectional plan segments. This distributed representation326

works with the DRC’s convolutional architecture and allows the repeated application of the same327

computations at each square to propagate value information through the constructed paths.328

6 Related work and discussion329

Mechanistic explanations. To the best of our knowledge, our work advances the Pareto frontier330

of the complexity of a neural network, versus the level of detail in the description of its mechanism.331

Much work focuses on the mechanisms of large language models. LLMs are more complex than the332

DRC, but the algorithms these papers explain are simpler as measured by the size of the abstract333

causal graph [19, 6]. Examples include work on GPT-2 small [65, 24, 15], Gemma 2-2B [34, 42],334

Claude 3.5 Haiku [33, 35], and others [70]. A possible exception is Lindsey et al. [33], which contains335

many simple explanations whose graphs together would add up to a graph larger than that of the336

present work. However, their explanations rely only on empirical causal effects and are local (only337

valid in their prompt), contrasting with weight-level analysis that applies to all inputs. Pioneering338

work in understanding vision models [43, 56, 64] is very thorough in labeling features but provides a339

weight-level explanation for only a small part of InceptionV1 [4]. Other work focuses on tiny toy340

models and explains their mechanisms very thoroughly, such as in modular addition [40, 8, 69, 50,341

20, 67], binary addition [49], small language transformers [44, 25], or a transformer that finds paths342

in small binary trees [1].343

DRC in Sokoban. Taufeeque et al. [62] and Bush et al. [3] find internal plan representations in the344

DRC by predicting future box and agent moves from its activations using logistic regression probes.345

Some of their probes are causal, others can be used to generalize the DRC to larger levels; however,346

further analysis is primarily based on qualitative probe and model behavior rather than mechanisms.347

Mesa-optimizers. Hubinger et al. [26] introduced the concept of a mesa-optimizer, an AI that learns348

to pursue goals via internal reasoning. Examples of mesa-optimizers did not exist at the time, so349

subsequent work studied the problem of whether the learned goal could differ from the training signal,350

reward misgeneralization [14, 58]. Oswald et al. [46] argued that transformers do in-context linear351

regression and are thus mesa-optimizing the linear regression loss, which is hardly agentic behavior.352

Modern AI agents appear to reason, but whether they internally optimize a goal is unresolved.353

The present work answers agentic mesa-optimizer existence in the affirmative. We present a mesa-354

optimizer, then point to its internal planning process and to its learned value function. The value355

function differs from what it should be from the training reward, in benign ways: the training reward356

has a −0.1 per-step term, but the value encoded in the path channels do not capture plan length at all.357

In fact, which path the DRC picks is a function of which one connects to the target first, encoding the358

preference for shorter paths purely in the LPE and TPE kernels (Appendix J). To compute the value359

head (critic), the DRC likely counts how many squares are active in the path channels.360

7 Conclusion361

This partial reverse-engineering shows that, while the DRC develops several analogues of components362

of classical planning such as a plan representation, transition function, and value function, its363

implementation is deeply influenced by its convolutional structure and is characterized by frequent364

reuse. The plan is represented as activations in path channels for each square, which are repurposed365

as a valuation mechanism. Plan extension kernels extend plan fragments bidirectionally, while366

propagating value information along the path. The winner-takes-all mechanism stabilizes the plan367

into taking single actions at a time at each square, and chooses the highest-value subplan segments.368

The DRC does everything everywhere all at once, implementing familiar mechanisms in alien ways.369

We were able to understand a planning algorithm, which was learned completely model-free, in370

familiar terms. This raises the hope that, if LLM agents are internally performing search, it is possible371

to find, audit, and correct their goals.372

9

References373

[1] Jannik Brinkmann, Abhay Sheshadri, Victor Levoso, Paul Swoboda, and Christian Bartelt. “A374

Mechanistic Analysis of a Transformer Trained on a Symbolic Multi-Step Reasoning Task.”375

In: arXiv (2024). arXiv: 2402.11917 [cs.LG]. URL: http://arxiv.org/abs/2402.376

11917v2.377

[2] Thomas Bush, Stephen Chung, Usman Anwar, Adrià Garriga-Alonso, and David Krueger.378

“Interpreting Emergent Planning in Model-Free Reinforcement Learning.” In: The Thirteenth379

International Conference on Learning Representations. 2025. URL: https://openreview.380

net/forum?id=DzGe40glxs.381

[3] Thomas Bush, Stephen Chung, Usman Anwar, Adrià Garriga-Alonso, and David Krueger.382

“Interpreting Emergent Planning in Model-Free Reinforcement Learning.” In: International383

Conference on Learning Representations (2025). URL: https://openreview.net/forum?384

id=DzGe40glxs.385

[4] Nick Cammarata, Gabriel Goh, Shan Carter, Chelsea Voss, Ludwig Schubert, and Chris Olah.386

“Curve Circuits.” In: Distill 6.1 (2021), e00024–006.387

[5] Shan Carter, Zan Armstrong, Ludwig Schubert, Ian Johnson, and Chris Olah. “Activation388

Atlas.” In: Distill (2019). https://distill.pub/2019/activation-atlas. DOI: 10.23915/distill.389

00015.390

[6] Lawrence Chan, Adrià Garriga-Alonso, Nicholas Goldowsky-Dill, Ryan Greenblatt, Jenny391

Nitishinskaya, Ansh Radhakrishnan, Buck Shlegeris, and Nate Thomas. “Causal Scrubbing: A392

Method for Rigorously Testing Interpretability Hypotheses.” In: Alignment Forum. 2022.393

[7] Chess Programming Wiki. Stockfish NNUE. Accessed: 2025-05-16. 2024. URL: https://394

www.chessprogramming.org/Stockfish_NNUE.395

[8] Bilal Chughtai, Lawrence Chan, and Neel Nanda. “A Toy Model of Universality: Reverse396

Engineering How Networks Learn Group Operations.” In: arXiv (2023). eprint: 2302.03025.397

URL: http://arxiv.org/abs/2302.03025v1.398

[9] Stephen Chung, Scott Niekum, and David Krueger. “Predicting Future Actions of Rein-399

forcement Learning Agents.” In: First Reinforcement Learning Safety Workshop. 2024. URL:400

https://openreview.net/forum?id=SohRnh7M8Q.401

[10] Arthur Conmy, Augustine N. Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià402

Garriga-Alonso. “Towards Automated Circuit Discovery for Mechanistic Interpretability.” In:403

Advances in Neural Information Processing Systems 36 (2023), pp. 16318–16352.404

[11] Rémi Coulom. “Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search.”405

In: Computers and Games. Ed. by H. Jaap van den Herik, Paolo Ciancarini, and406

H. H. L. M. (Jeroen) Donkers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 72–83.407

ISBN: 978-3-540-75538-8.408

[12] Joseph C. Culberson. “Sokoban is PSPACE-complete.” In: 1997. URL: https : / / api .409

semanticscholar.org/CorpusID:61114368.410

[13] DeepSeek-AI et al. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforce-411

ment Learning. 2025. arXiv: 2501.12948 [cs.CL]. URL: https://arxiv.org/abs/2501.412

12948.413

[14] Lauro Langosco Di Langosco, Jack Koch, Lee D Sharkey, Jacob Pfau, and David Krueger.414

“Goal misgeneralization in deep reinforcement learning.” In: International Conference on415

Machine Learning. PMLR. 2022, pp. 12004–12019. URL: https://proceedings.mlr.416

press/v162/langosco22a.html.417

[15] Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. “Transcoders find interpretable LLM418

feature circuits.” In: The Thirty-eighth Annual Conference on Neural Information Processing419

Systems. 2024. URL: https://openreview.net/forum?id=J6zHcScAo0.420

[16] Nelson Elhage, Robert Lasenby, and Christopher Olah. “Privileged bases in the transformer421

residual stream.” In: Transformer Circuits Thread (2023), p. 24.422

[17] Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,423

Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep424

Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,425

Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,426

and Chris Olah. A Mathematical Framework for Transformer Circuits. 2021. URL: https:427

//transformer-circuits.pub/2021/framework/index.html.428

10

https://arxiv.org/abs/2402.11917
http://arxiv.org/abs/2402.11917v2
http://arxiv.org/abs/2402.11917v2
http://arxiv.org/abs/2402.11917v2
https://openreview.net/forum?id=DzGe40glxs
https://openreview.net/forum?id=DzGe40glxs
https://openreview.net/forum?id=DzGe40glxs
https://openreview.net/forum?id=DzGe40glxs
https://openreview.net/forum?id=DzGe40glxs
https://openreview.net/forum?id=DzGe40glxs
https://doi.org/10.23915/distill.00015
https://doi.org/10.23915/distill.00015
https://doi.org/10.23915/distill.00015
https://www.chessprogramming.org/Stockfish_NNUE
https://www.chessprogramming.org/Stockfish_NNUE
https://www.chessprogramming.org/Stockfish_NNUE
2302.03025
http://arxiv.org/abs/2302.03025v1
https://openreview.net/forum?id=SohRnh7M8Q
https://api.semanticscholar.org/CorpusID:61114368
https://api.semanticscholar.org/CorpusID:61114368
https://api.semanticscholar.org/CorpusID:61114368
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://proceedings.mlr.press/v162/langosco22a.html
https://proceedings.mlr.press/v162/langosco22a.html
https://proceedings.mlr.press/v162/langosco22a.html
https://openreview.net/forum?id=J6zHcScAo0
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html

[18] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward,429

Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu.430

“IMPALA: Scalable Distributed Deep-RL With Importance Weighted Actor-Learner Architec-431

tures.” In: arXiv (2018). arXiv: 1802.01561v3 [cs.LG]. URL: http://arxiv.org/abs/432

1802.01561v3.433

[19] Atticus Geiger, Hanson Lu, Thomas Icard, and Christopher Potts. “Causal Abstractions434

of Neural Networks.” In: Advances in Neural Information Processing Systems 34 (2021),435

pp. 9574–9586.436

[20] Jason Gross, Rajashree Agrawal, Thomas Kwa, Euan Ong, Chun Hei Yip, Alex Gibson, Soufi-437

ane Noubir, and Lawrence Chan. “Compact Proofs of Model Performance Via Mechanistic438

Interpretability.” In: CoRR (2024). arXiv: 2406.11779 [cs.LG]. URL: http://arxiv.org/439

abs/2406.11779v14.440

[21] Arthur Guez, Mehdi Mirza, Karol Gregor, Rishabh Kabra, Sebastien Racaniere, Theophane441

Weber, David Raposo, Adam Santoro, Laurent Orseau, Tom Eccles, Greg Wayne, David Silver,442

Timothy Lillicrap, and Victor Valdes. An investigation of Model-free planning: boxoban levels.443

2018. URL: https://github.com/deepmind/boxoban-levels/.444

[22] Arthur Guez, Mehdi Mirza, Karol Gregor, Rishabh Kabra, Sébastien Racanière, Théophane445

Weber, David Raposo, Adam Santoro, Laurent Orseau, Tom Eccles, Greg Wayne, David Silver,446

and Timothy Lillicrap. “An Investigation of Model-Free Planning.” In: arXiv (2019). arXiv:447

1901.03559 [cs.LG]. URL: http://arxiv.org/abs/1901.03559v2.448

[23] Jessica B Hamrick, Abram L. Friesen, Feryal Behbahani, Arthur Guez, Fabio Viola, Sims449

Witherspoon, Thomas Anthony, Lars Holger Buesing, Petar Veličković, and Theophane Weber.450

“On the role of planning in model-based deep reinforcement learning.” In: International451

Conference on Learning Representations. 2021. URL: https://openreview.net/forum?452

id=IrM64DGB21.453

[24] Michael Hanna, Ollie Liu, and Alexandre Variengien. “How Does GPT-2 Compute Greater-454

Than.” In: Interpreting Mathematical Abilities in a Pre-Trained Language Model 2 (2023),455

p. 11.456

[25] Stefan Heimersheim and Jett Janiak. A Circuit for Python Docstrings in a 4-layer Attention-457

Only Transformer. Alignment Forum. https://www.alignmentforum.org/posts/458

u6KXXmKFbXfWzoAXn / acircuit - for - python - docstrings\ - in - a - 4 - layer -459

attention - only. 2023. URL: https : / / www . alignmentforum . org / posts /460

u6KXXmKFbXfWzoAXn/.461

[26] Evan Hubinger, Chris van Merwijk, Vladimir Mikulik, Joar Skalse, and Scott Garrabrant.462

“Risks from Learned Optimization in Advanced Machine Learning Systems.” In: arXiv (2019).463

arXiv: 1906.01820 [cs.AI]. URL: https://arxiv.org/abs/1906.01820.464

[27] Michael Ivanitskiy, Alexander F Spies, Tilman Räuker, Guillaume Corlouer, Christopher465

Mathwin, Lucia Quirke, Can Rager, Rusheb Shah, Dan Valentine, Cecilia Diniz Behn, Katsumi466

Inoue, and Samy Wu Fung. “Linearly Structured World Representations in Maze-Solving467

Transformers.” In: UniReps: the First Workshop on Unifying Representations in Neural Models.468

2023. URL: https://openreview.net/forum?id=pZakRK1QHU.469

[28] Erik Jenner, Shreyas Kapur, Vasil Georgiev, Cameron Allen, Scott Emmons, and Stuart Russell.470

“Evidence of Learned Look-Ahead in a Chess-Playing Neural Network.” In: CoRR (2024).471

arXiv: 2406.00877 [cs.LG]. URL: http://arxiv.org/abs/2406.00877v1.472

[29] Adam Karvonen. “Emergent World Models and Latent Variable Estimation in Chess-Playing473

Language Models.” In: CoRR (2024). arXiv: 2403.15498v2 [cs.LG]. URL: http://arxiv.474

org/abs/2403.15498v2.475

[30] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, et al.476

“Interpretability beyond Feature Attribution: Quantitative Testing with Concept Activation477

Vectors (TCAV).” In: International conference on machine learning. PMLR. 2018, pp. 2668–478

2677.479

[31] Brandon Knutson, Amandin Chyba Rabeendran, Michael Ivanitskiy, Jordan Pettyjohn, Cecilia480

Diniz-Behn, Samy Wu Fung, and Daniel McKenzie. “On Logical Extrapolation for Mazes481

With Recurrent and Implicit Networks.” In: CoRR (2024). arXiv: 2410.03020 [cs.LG]. URL:482

http://arxiv.org/abs/2410.03020v1.483

11

https://arxiv.org/abs/1802.01561v3
http://arxiv.org/abs/1802.01561v3
http://arxiv.org/abs/1802.01561v3
http://arxiv.org/abs/1802.01561v3
https://arxiv.org/abs/2406.11779
http://arxiv.org/abs/2406.11779v14
http://arxiv.org/abs/2406.11779v14
http://arxiv.org/abs/2406.11779v14
https://github.com/deepmind/boxoban-levels/
https://arxiv.org/abs/1901.03559
http://arxiv.org/abs/1901.03559v2
https://openreview.net/forum?id=IrM64DGB21
https://openreview.net/forum?id=IrM64DGB21
https://openreview.net/forum?id=IrM64DGB21
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/acircuit-for-python-docstrings\-in-a-4-layer-attention-only
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/acircuit-for-python-docstrings\-in-a-4-layer-attention-only
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/acircuit-for-python-docstrings\-in-a-4-layer-attention-only
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/acircuit-for-python-docstrings\-in-a-4-layer-attention-only
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/acircuit-for-python-docstrings\-in-a-4-layer-attention-only
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/
https://arxiv.org/abs/1906.01820
https://arxiv.org/abs/1906.01820
https://openreview.net/forum?id=pZakRK1QHU
https://arxiv.org/abs/2406.00877
http://arxiv.org/abs/2406.00877v1
https://arxiv.org/abs/2403.15498v2
http://arxiv.org/abs/2403.15498v2
http://arxiv.org/abs/2403.15498v2
http://arxiv.org/abs/2403.15498v2
https://arxiv.org/abs/2410.03020
http://arxiv.org/abs/2410.03020v1

[32] Kenneth Li, Aspen K Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfister, and Martin484

Wattenberg. “Emergent World Representations: Exploring a Sequence Model Trained on485

a Synthetic Task.” In: International Conference on Learning Representations. 2023. URL:486

https://openreview.net/forum?id=DeG07%5C_TcZvT.487

[33] Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen, Adam Pearce, Nicholas L.488

Turner, Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael489

Sklar, Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas490

Henighan, Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam491

Zimmerman, Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. “On the492

Biology of a Large Language Model.” In: Transformer Circuits Thread (2025). URL: https:493

//transformer-circuits.pub/2025/attribution-graphs/biology.html.494

[34] Samuel Marks, Can Rager, Eric J. Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.495

“Sparse Feature Circuits: Discovering and Editing Interpretable Causal Graphs in Language496

Models.” In: CoRR (2024). arXiv: 2403.19647 [cs.LG]. URL: http://arxiv.org/abs/497

2403.19647v3.498

[35] Samuel Marks, Johannes Treutlein, Trenton Bricken, Jack Lindsey, Jonathan Marcus, Siddharth499

Mishra-Sharma, Daniel Ziegler, Emmanuel Ameisen, Joshua Batson, Tim Belonax, Samuel R.500

Bowman, Shan Carter, Brian Chen, Hoagy Cunningham, Carson Denison, Florian Dietz, Satvik501

Golechha, Akbir Khan, Jan Kirchner, Jan Leike, Austin Meek, Kei Nishimura-Gasparian,502

Euan Ong, Christopher Olah, Adam Pearce, Fabien Roger, Jeanne Salle, Andy Shih, Meg503

Tong, Drake Thomas, Kelley Rivoire, Adam Jermyn, Monte MacDiarmid, Tom Henighan, and504

Evan Hubinger. “Auditing Language Models for Hidden Objectives.” In: CoRR (2025). arXiv:505

2503.10965 [cs.AI]. URL: http://arxiv.org/abs/2503.10965v2.506

[36] Thomas McGrath, Andrei Kapishnikov, Nenad Tomašev, Adam Pearce, Demis Hassabis, Been507

Kim, Ulrich Paquet, and Vladimir Kramnik. “Acquisition of chess knowledge in AlphaZero.”508

In: Proceedings of the National Academy of Sciences of the United States of America 119509

(2021).510

[37] Tianyi Men, Pengfei Cao, Zhuoran Jin, Yubo Chen, Kang Liu, and Jun Zhao. “Unlocking511

the Future: Exploring Look-Ahead Planning Mechanistic Interpretability in Large Language512

Models.” In: CoRR (2024). arXiv: 2406.16033 [cs.CL]. URL: http://arxiv.org/abs/513

2406.16033v1.514

[38] Richard Meyes, Melanie Lu, Constantin Waubert de Puiseau, and Tobias Meisen. Ablation515

Studies in Artificial Neural Networks. 2019. arXiv: 1901.08644 [cs.NE]. URL: https:516

//arxiv.org/abs/1901.08644.517

[39] Ulisse Mini, Peli Grietzer, Mrinank Sharma, Austin Meek, Monte MacDiarmid, and Alexander518

Matt Turner. “Understanding and Controlling a Maze-Solving Policy Network.” In: arXiv519

(2023). arXiv: 2310.08043 [cs.AI]. URL: http://arxiv.org/abs/2310.08043v1.520

[40] Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress521

measures for grokking via mechanistic interpretability. 2023. arXiv: 2301.05217 [cs.LG].522

URL: https://arxiv.org/abs/2301.05217.523

[41] Neel Nanda, Andrew Lee, and Martin Wattenberg. “Emergent Linear Representations in524

World Models of Self-Supervised Sequence Models.” In: CoRR (2023). arXiv: 2309.00941525

[cs.LG]. URL: http://arxiv.org/abs/2309.00941v2.526

[42] Neel Nanda, Senthooran Rajamanoharan, Janos Kramar, and Rohin Shah. “Fact finding:527

Attempting to reverse-engineer factual recall on the neuron level.” In: Alignment Forum. 2023,528

p. 6.529

[43] Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.530

“Zoom In: An Introduction to Circuits.” In: Distill (2020). https://distill.pub/2020/circuits/zoom-531

in. DOI: 10.23915/distill.00024.001.532

[44] Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom533

Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. “In-Context Learning534

and Induction Heads.” In: arXiv preprint arXiv:2209.11895 (2022).535

[45] OpenAI. Introducing OpenAI o1-preview. 2024. URL: https://openai.com/index/536

introducing-openai-o1-preview/.537

12

https://openreview.net/forum?id=DeG07%5C_TcZvT
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://arxiv.org/abs/2403.19647
http://arxiv.org/abs/2403.19647v3
http://arxiv.org/abs/2403.19647v3
http://arxiv.org/abs/2403.19647v3
https://arxiv.org/abs/2503.10965
http://arxiv.org/abs/2503.10965v2
https://arxiv.org/abs/2406.16033
http://arxiv.org/abs/2406.16033v1
http://arxiv.org/abs/2406.16033v1
http://arxiv.org/abs/2406.16033v1
https://arxiv.org/abs/1901.08644
https://arxiv.org/abs/1901.08644
https://arxiv.org/abs/1901.08644
https://arxiv.org/abs/1901.08644
https://arxiv.org/abs/2310.08043
http://arxiv.org/abs/2310.08043v1
https://arxiv.org/abs/2301.05217
https://arxiv.org/abs/2301.05217
https://arxiv.org/abs/2309.00941
https://arxiv.org/abs/2309.00941
https://arxiv.org/abs/2309.00941
http://arxiv.org/abs/2309.00941v2
https://doi.org/10.23915/distill.00024.001
https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/

[46] Johannes von Oswald, Maximilian Schlegel, Alexander Meulemans, Seijin Kobayashi, Eyvind538

Niklasson, Nicolas Zucchet, Nino Scherrer, Nolan Miller, Mark Sandler, Blaise Agüera y Arcas,539

Max Vladymyrov, Razvan Pascanu, and João Sacramento. “Uncovering Mesa-Optimization540

Algorithms in Transformers.” In: CoRR (2023). arXiv: 2309.05858 [cs.LG]. URL: http:541

//arxiv.org/abs/2309.05858v2.542

[47] Koyena Pal, Jiuding Sun, Andrew Yuan, Byron Wallace, and David Bau. “Future Lens:543

Anticipating Subsequent Tokens from a Single Hidden State.” In: Proceedings of the 27th544

Conference on Computational Natural Language Learning (CoNLL). Ed. by Jing Jiang, David545

Reitter, and Shumin Deng. Singapore: Association for Computational Linguistics, Dec. 2023,546

pp. 548–560. DOI: 10.18653/v1/2023.conll-1.37. URL: https://aclanthology.547

org/2023.conll-1.37/.548

[48] Niklas Sandhu Peters, Marc Alexa, and Special Field Neurotechnology. Solving Sokoban549

efficiently: Search tree pruning techniques and other enhancements. 2023. URL: https:550

//doc.neuro.tu-berlin.de/bachelor/2023-BA-NiklasPeters.pdf.551

[49] Casey Primozic. Reverse Engineering a Neural Network’s Clever Solution to Binary Addition.552

https://cprimozic.net/blog/reverse-engineering-a-small-neural-network/.553

Accessed: 2025-05-15. 2023.554

[50] Philip Quirke and Fazl Barez. “Understanding addition in transformers.” In: arXiv preprint555

arXiv:2310.13121 (2023). arXiv: 2310.13121 [cs.LG]. URL: http://arxiv.org/abs/556

2310.13121v9.557

[51] Sébastien Racanière, Theophane Weber, David Reichert, Lars Buesing, Arthur Guez,558

Danilo Jimenez Rezende, Adrià Puigdomènech Badia, Oriol Vinyals, Nicolas Heess, Yu-559

jia Li, Razvan Pascanu, Peter Battaglia, Demis Hassabis, David Silver, and Daan Wier-560

stra. “Imagination-Augmented Agents for Deep Reinforcement Learning.” In: Advances561

in Neural Information Processing Systems. Ed. by I. Guyon, U. Von Luxburg, S. Bengio,562

H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Vol. 30. Curran Associates, Inc.,563

2017. URL: https://proceedings.neurips.cc/paper_files/paper/2017/file/564

9e82757e9a1c12cb710ad680db11f6f1-Paper.pdf.565

[52] Nina Rimsky, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Matt566

Turner. “Steering Llama 2 via Contrastive Activation Addition.” In: arXiv (2023). eprint:567

2312.06681. URL: https://arxiv.org/abs/2312.06681.568

[53] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. 3rd. Prentice Hall Press,569

Upper Saddle River, NJ, USA, 2009. ISBN: 9780136042594.570

[54] Max-Philipp B. Schrader. gym-sokoban. 2018. URL: https://github.com/mpSchrader/571

gym-sokoban.572

[55] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre,573

Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy574

Lillicrap, and David Silver. “Mastering Atari, Go, Chess and Shogi By Planning With a575

Learned Model.” In: (2019). arXiv: 1911.08265 [cs.LG]. URL: http://arxiv.org/abs/576

1911.08265v1.577

[56] Ludwig Schubert, Chelsea Voss, Nick Cammarata, Gabriel Goh, and Chris Olah. “High-Low578

Frequency Detectors.” In: Distill (2021). https://distill.pub/2020/circuits/frequency-edges. DOI:579

10.23915/distill.00024.005.580

[57] Lisa Schut, Nenad Tomasev, Tom McGrath, Demis Hassabis, Ulrich Paquet, and Been Kim.581

“Bridging the Human-Ai Knowledge Gap: Concept Discovery and Transfer in Alphazero.”582

In: CoRR (2023). arXiv: 2310.16410 [cs.AI]. URL: http://arxiv.org/abs/2310.583

16410v1.584

[58] Rohin Shah, Vikrant Varma, Ramana Kumar, Mary Phuong, Victoria Krakovna, Jonathan585

Uesato, and Zac Kenton. “Goal misgeneralization: why correct specifications aren’t enough586

for correct goals.” In: arXiv preprint arXiv:2210.01790 (2022). URL: https://arxiv.org/587

abs/2210.01790.588

[59] Lee Sharkey, Bilal Chughtai, Joshua Batson, Jack Lindsey, Jeff Wu, Lucius Bushnaq, Nicholas589

Goldowsky-Dill, Stefan Heimersheim, Alejandro Ortega, Joseph Bloom, Stella Biderman,590

Adria Garriga-Alonso, Arthur Conmy, Neel Nanda, Jessica Rumbelow, Martin Wattenberg,591

Nandi Schoots, Joseph Miller, Eric J. Michaud, Stephen Casper, Max Tegmark, William592

Saunders, David Bau, Eric Todd, Atticus Geiger, Mor Geva, Jesse Hoogland, Daniel Murfet,593

13

https://arxiv.org/abs/2309.05858
http://arxiv.org/abs/2309.05858v2
http://arxiv.org/abs/2309.05858v2
http://arxiv.org/abs/2309.05858v2
https://doi.org/10.18653/v1/2023.conll-1.37
https://aclanthology.org/2023.conll-1.37/
https://aclanthology.org/2023.conll-1.37/
https://aclanthology.org/2023.conll-1.37/
https://doc.neuro.tu-berlin.de/bachelor/2023-BA-NiklasPeters.pdf
https://doc.neuro.tu-berlin.de/bachelor/2023-BA-NiklasPeters.pdf
https://doc.neuro.tu-berlin.de/bachelor/2023-BA-NiklasPeters.pdf
https://cprimozic.net/blog/reverse-engineering-a-small-neural-network/
https://arxiv.org/abs/2310.13121
http://arxiv.org/abs/2310.13121v9
http://arxiv.org/abs/2310.13121v9
http://arxiv.org/abs/2310.13121v9
https://proceedings.neurips.cc/paper_files/paper/2017/file/9e82757e9a1c12cb710ad680db11f6f1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/9e82757e9a1c12cb710ad680db11f6f1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/9e82757e9a1c12cb710ad680db11f6f1-Paper.pdf
2312.06681
https://arxiv.org/abs/2312.06681
https://github.com/mpSchrader/gym-sokoban
https://github.com/mpSchrader/gym-sokoban
https://github.com/mpSchrader/gym-sokoban
https://arxiv.org/abs/1911.08265
http://arxiv.org/abs/1911.08265v1
http://arxiv.org/abs/1911.08265v1
http://arxiv.org/abs/1911.08265v1
https://doi.org/10.23915/distill.00024.005
https://arxiv.org/abs/2310.16410
http://arxiv.org/abs/2310.16410v1
http://arxiv.org/abs/2310.16410v1
http://arxiv.org/abs/2310.16410v1
https://arxiv.org/abs/2210.01790
https://arxiv.org/abs/2210.01790
https://arxiv.org/abs/2210.01790

and Tom McGrath. “Open Problems in Mechanistic Interpretability.” In: CoRR (2025). arXiv:594

2501.16496 [cs.LG]. URL: http://arxiv.org/abs/2501.16496v1.595

[60] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den596

Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot,597

Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timo-598

thy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis.599

“Mastering the game of Go with deep neural networks and tree search.” In: Nature 529.7587600

(2016), pp. 484–489. DOI: 10.1038/nature16961. URL: https://doi.org/10.1038/601

nature16961.602

[61] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur603

Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap,604

Karen Simonyan, and Demis Hassabis. “A general reinforcement learning algorithm that605

masters chess, shogi, and Go through self-play.” In: Science 362.6419 (2018), pp. 1140–1144.606

DOI: 10.1126/science.aar6404. eprint: https://www.science.org/doi/pdf/10.607

1126/science.aar6404. URL: https://www.science.org/doi/abs/10.1126/608

science.aar6404.609

[62] Mohammad Taufeeque, Philip Quirke, Maximilian Li, Chris Cundy, Aaron David Tucker,610

Adam Gleave, and Adrià Garriga-Alonso. “Planning in a recurrent neural network that plays611

Sokoban.” In: arXiv (2024). arXiv: 2407.15421 [cs.LG]. URL: https://arxiv.org/abs/612

2407.15421.613

[63] Alex Turner, Lisa Thiergart, David Udell, Gavin Leech, Ulisse Mini, and Monte MacDiarmid.614

“Activation Addition: Steering Language Models Without Optimization.” In: arXiv e-prints615

(2023), arXiv–2308.616

[64] Chelsea Voss, Nick Cammarata, Gabriel Goh, Michael Petrov, Ludwig Schubert, Ben617

Egan, Swee Kiat Lim, and Chris Olah. “Visualizing Weights.” In: Distill (2021).618

https://distill.pub/2020/circuits/visualizing-weights. DOI: 10.23915/distill.00024.007.619

[65] Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Stein-620

hardt. “Interpretability in the Wild: a Circuit for Indirect Object Identification in GPT-2621

Small.” In: International Conference on Learning Representations. 2023. URL: https://api.622

semanticscholar.org/CorpusID:260445038.623

[66] Erik Wijmans, Manolis Savva, Irfan Essa, Stefan Lee, Ari S. Morcos, and Dhruv Batra.624

“Emergence of Maps in the Memories of Blind Navigation Agents.” In: International Con-625

ference on Learning Representations. 2023. URL: https://openreview.net/forum?id=626

lTt4KjHSsyl.627

[67] Chun Hei Yip, Rajashree Agrawal, Lawrence Chan, and Jason Gross. Modular addition without628

black-boxes: Compressing explanations of MLPs that compute numerical integration. 2025.629

URL: https://openreview.net/forum?id=yBhSORdXqq.630

[68] Fred Zhang and Neel Nanda. “Towards Best Practices of Activation Patching in Language631

Models: Metrics and Methods.” In: The Twelfth International Conference on Learning Repre-632

sentations. 2024. URL: https://openreview.net/forum?id=Hf17y6u9BC.633

[69] Ziqian Zhong, Ziming Liu, Max Tegmark, and Jacob Andreas. “The Clock and the Pizza: Two634

Stories in Mechanistic Explanation of Neural Networks.” In: Thirty-seventh Conference on635

Neural Information Processing Systems. 2023. URL: https://openreview.net/forum?636

id=S5wmbQc1We.637

[70] Tianyi Zhou, Deqing Fu, Vatsal Sharan, and Robin Jia. “Pre-trained Large Language Models638

Use Fourier Features to Compute Addition.” In: The Thirty-eighth Annual Conference on639

Neural Information Processing Systems. 2024. URL: https://openreview.net/forum?640

id=i4MutM2TZb.641

14

https://arxiv.org/abs/2501.16496
http://arxiv.org/abs/2501.16496v1
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1126/science.aar6404
https://www.science.org/doi/pdf/10.1126/science.aar6404
https://www.science.org/doi/pdf/10.1126/science.aar6404
https://www.science.org/doi/pdf/10.1126/science.aar6404
https://www.science.org/doi/abs/10.1126/science.aar6404
https://www.science.org/doi/abs/10.1126/science.aar6404
https://www.science.org/doi/abs/10.1126/science.aar6404
https://arxiv.org/abs/2407.15421
https://arxiv.org/abs/2407.15421
https://arxiv.org/abs/2407.15421
https://arxiv.org/abs/2407.15421
https://doi.org/10.23915/distill.00024.007
https://api.semanticscholar.org/CorpusID:260445038
https://api.semanticscholar.org/CorpusID:260445038
https://api.semanticscholar.org/CorpusID:260445038
https://openreview.net/forum?id=lTt4KjHSsyl
https://openreview.net/forum?id=lTt4KjHSsyl
https://openreview.net/forum?id=lTt4KjHSsyl
https://openreview.net/forum?id=yBhSORdXqq
https://openreview.net/forum?id=Hf17y6u9BC
https://openreview.net/forum?id=S5wmbQc1We
https://openreview.net/forum?id=S5wmbQc1We
https://openreview.net/forum?id=S5wmbQc1We
https://openreview.net/forum?id=i4MutM2TZb
https://openreview.net/forum?id=i4MutM2TZb
https://openreview.net/forum?id=i4MutM2TZb

Appendix642

A Common components of search algorithmns643

A search algorithm requires three key components:644

1. A representation of states645

2. A transition model that defines which nodes (states) are reachable from a currently expanded646

node when taking a certain action647

3. A heuristic function that determines which nodes to expand648

The heuristic varies by algorithm:649

• For A*, it is distance(n) + heuristic(n) [53]650

• For iterative-deepening alpha-beta search (as used in Stockfish), the heuristic comprises651

move ordering and pruning criteria [7]652

• For AlphaZero/MuZero MCTS, it uses the UCT formula pre-rollout, incorporating backed-653

up value functions and a policy with Dirichlet noise [61, 55]654

In all cases, the expansion process influences the relative evaluation of actions in the starting state.655

The final action selection relies on a value function:656

• A*: Uses the actual path distance when plans have been fully expanded [53]657

• AlphaZero/MuZero MCTS: Employs backpropagated estimated values combining rollout658

and final score [61, 55]659

• Stockfish 16+: Utilizes the machine-learned evaluation function at leaf nodes [7]660

B Network architecture661

The DRC architecture consists of an convolutional encoder without any non-linearities, followed by662

D ConvLSTM layers that are repeated N times per environment step, and an MLP block that maps663

the final layer’s hidden state to the value function and action policy.664

For all d > 1, the ConvLSTM layer updates the hidden state at each tick n using the following665

equations:666

et := E(xt) = WE2
∗ (WE2

∗ xt + bE1
) + bE2

(1)
667

cnd , h
n
d := ConvLSTMd(et, h

n
d−1, c

n−1
d , hn−1

d) (2)
668

ind := tanh(Wii ∗ et +Wih1 ∗ hn
d−1 +Wih2 ∗ hn−1

d + bi) (3)

jnd := σ(Wji ∗ et +Wjh1
∗ hn

d−1 +Wjh2
∗ hn−1

d + bj) (4)

fn
d := σ(Wfi ∗ et +Wfh1

∗ hn
d−1 +Wfh2

∗ hn−1
d + bf) (5)

ond := tanh(Woi ∗ et +Woh1
∗ hn

d−1 +Woh2
∗ hn−1

d + bo) (6)

cnd := fn
d ⊙ cn−1

d + ind ⊙ jnd (7)
hn
d := ond ⊙ tanh(cnd) (8)

Here ∗ denotes the convolution operator, and ⊙ denotes point-wise multiplication. Note that θd =669

(Wi·,Wj·,Wf ·,Wo·, bi, bj , bf , bo)d parameterizes the computation of the i, j, f, o gates. For the first670

ConvLSTM layer, the hidden state of the final ConvLSTM layer is used as the previous layer’s hidden671

state.672

A linear combination of the mean- and max-pooled ConvLSTM activations is injected into the next673

step, enabling quick communication across the receptive field, known as pool-and-inject. A boundary674

15

Observation
Agent | Boxes | Targets

| Adjacent squares
L0O9 | L0O16 | L0O6 | L0O24 ...

§5.1 Initialize plan &
§G Transition update

Encoder

Action

§F Map to agent plan
L1H29, L1H18, L2H31, L1H21

§F Next action in grid
L2H28, L2H4, L2H23, L2H26

§F Pooled next action
L2H29, L2H8, L2H27, L2H3

L2
 o

nl
y:

 A
ct

io
n

 S
el

ec
tio

n

A
dd

tu
rn

s

Ex
te

nd
lin

ea
rly

Stop plan extension

§5.2 Plan extension
(expanded)

H
eu

ris
tic

s

§4 Long term plan
L0H24, L0H14, L0H23, L1H15

§4 Short term plan
L0H13, L0H2, L0H31, L0H9

§5.2 Plan extension

§5.2 Plan extension

§4 Long term plan
L0H24, L0H14, L0H23, L1H15

§4 Short term plan
L0H13, L0H2, L0H31, L0H9

step n-1 step n

§5.3 Winner-takes-
all mechanism

§5.3 Backtrack
invalid plan

Decay & remove
(Fig. 5, left)

Legend

Plan channels (U,D,L,R)
Non-plan channels (U.D,L,R)
Previous step hidden state

Mechanism / Transfer
Intermediate mechanism
Input / Output

Figure 8: The planning algorithm learned by DRC(3, 3). While the plan nodes are present and
updated across all the layers, this circuit only shows the plan in the first layer’s hidden state (L0HX)
with a channel X for each direction up, down, left, and right. Mechanisms are annotated with the
sub-section they are studied in Section 5.

feature channel with ones at the boundary of the input and zeros inside is also appended to the input.675

These are ignored in the above equations for brevity.676

Finally, an MLP with 256 hidden units transforms the flattened ConvLSTM outputs hN
D into the677

policy (actor) and value function (critic) heads. In our setup, D = N = 3 and C = 32 matching Guez678

et al. [22]’s original hyperparameters. An illustration of the full architecture is shown in Figure 10.679

Encoder Simplification To interpret the weights of the encoder, we use the associativity of linear680

operations to combine the convolution operation of the encoder and the convolution kernels that map681

the encoder output et to the hidden state hn
d into a single convolutional layer. For all d > 0 and682

c ∈ {i, j, f, o}, we define the combined kernel W d
ce and bias bdce as:683

W d
ce := W d

ii ∗We2 ∗We1 (9)

bdce := W d
ii ∗ (be2 +We2 ∗ be1) (10)

W d
ii ∗ et = W d

ce ∗ xt + bdce (up to edge effects) (11)

C Network training details684

The network was trained using the IMPALA V-trace actor-critic [18] reinforcement learning (RL)685

algorithm for 2 · 109 environment steps with Guez et al.’s Deep Repeating ConvLSTM (DRC)686

recurrent architecture consisting of three layers repeated three times per environment step, as shown687

in Figure 10.688

The observations are H×W RGB images with height H and width W . The agent, boxes, and targets689

are represented by the green , brown , and red pixels respectively [54], as illustrated in Figure 9.690

The environment has -0.1 reward per step, +10 for solving a level, +1 for putting a box on a target691

and -1 for removing it.692

Dataset The network was trained on 900k levels from the unfiltered train set of the Boxoban693

dataset [21]. Boxoban separates levels into train, validation, and test sets with three difficulty levels:694

16

Figure 9: High resolution visualization of a Sokoban level along with the corresponding symbolic
representation that the network observes. The agent, boxes, and targets are represented by the green

, brown , and red squares respectively.

MLP

Figure 10: DRC(3, 3)architecture. Blocks parametrized by θ represent the ConvLSTM module shown
in Figure 2. There are three layers of ConvLSTM modules with all the layers repeated applied three
times before predicting the next action.

unfiltered, medium, and hard. The hard set is a single set with no splitting. Guez et al. [22] generated695

these sets by filtering levels unsolvable by progressively better-trained DRC networks. So easier sets696

occasionally contain difficult levels. Each level in Boxoban has 4 boxes in a grid size of H = W = 10.697

The H ×W observations are normalized by dividing each pixel component by 255. The edge tiles in698

the levels from the dataset are always walls, so the playable area is 8× 8. The player has four actions699

available to move in cardinal directions (Up, Down, Left, Right). The reward is -0.1 per step, +1700

for placing a box on a target, -1 for removing it, and +10 for finishing the level by placing all of the701

boxes. In this paper, we evaluate the network on the validation-medium and hard sets of the Boxoban702

dataset. We also often evaluate the network on custom levels with different grid sizes and number of703

boxes to clearly demonstrate certain mechanisms in isolation.704

Action probe for evaluation on larger grid sizes The DRC(3, 3)network is trained on a fixed705

H ×W grid size with the hidden state channels flattened to a H ×W ×C tensor before passing it to706

the MLP layer for predicting action. Due to this limitation, the network cannot be directly evaluated707

on larger grid sizes. Taufeeque et al. [62] trained a probe using logitic regression with 135 parameters708

on the hidden state h of the final ConvLSTM layer to predict the next action. They found that the709

probe can replace the 0.8M parameter MLP layer to predict the next action with a 77.9% accuracy.710

They used this probe to show that the algorithm learned by the DRC backbone generalizes to grid711

sizes 2-3 times larger in area than the training grid size of 10× 10. We use these action probes to run712

the same network on larger grid sizes in this paper.713

17

Figure 11: 16× 16 zig-zag level that the original DRC(3, 3) network fails to solve. Steering W d
ch1

and W d
ch2

by a factor of 1.2 solves this level and similar zig-zag levels for sizes upto 25× 25.

Table 3: Comparison of network intervened with single-step cache across different channel groups.
We report the percentage drop of solve rate compared to the original network (%) on medium-difficulty
levels.

Group # Channels Performance Drop
Non-planning 37 10.5
Planning 59 57.6
Random planning subset 37 41.3

D Gate importance714

We identify here the components that are important and others which can be ignored. We noticed715

that our analysis can be simplified by ignoring components like the previous cell-state c and forget716

gate f that don’t have much effect. On mean-ablating the cell-state c at the first tick n = 0 of every717

step for all the layers, we find that the network’s performance drops by 21.28%± 0.04%. The same718

ablation on the forget gate f results in a drop of 2.66%±0.03%. On the other hand, the same ablation719

procedure on any of the other gates i, j, o, or the hidden state h breaks the network and results in a720

drop of 100.00% with no levels solved at all. This shows that the forget gate is not as important as721

other gates in regulating the information in the cell-state, and the information in the cell-state itself is722

not relevant for solving most levels. The only place we found the forget gates to be important is for723

accumulating the next-action in the GNA channels (Appendix F).724

The mean-ablation experiment shows that the network computation from previous to the current step725

can be simplified to the following:726

cnd ≈ E[fn
d]⊙ E[cn−1

d] + ind ⊙ jnd = µ+ ind ⊙ jnd (12)
hn
d = ond ⊙ tanh(cnd) ≈ ond ⊙ tanh(µ+ ind ⊙ jnd) (13)

We therefore focus more on the i, j, o gates and the hidden state h in our analysis in this paper.727

Qualitatively, it also looks like the cell-state c is very similar to the hidden state h. Note that the cell728

state c not being much relevant doesn’t imply that the network is not using information from previous729

hidden states, since most of the information from the previous hidden states hn−1
d flows through the730

W d
ch2

kernels.731

E Label verification and offset computation732

We see from Table 8 that most channels can be represented with some combination of features that733

can be derived from observation image (base feature) and future box or agent movements (future734

18

−1

−0.5

0

0.5

1

N
or
m
al
iz
ed

A
ct
iv
at
io
n

Agent right
(L2H5)

Agent up
(L1H29)

GNA
(L2H26)

PNA
(L2H3)

Target
(L0H6)

Combined plan
(L2H14)

No-label
(L0H3)

Observation Box left
(L1H27)

Box down
(L1H17)

Box right
(L0H17)

Box up
(L0H24)

Agent left
(L2H31)

Agent down
(L1H18)

Figure 12: A toy observation with demonstrations of a single channel from every channel group in
Table 7.

features). We compute the following 5 base features: agent, floor, boxes not on target, boxes on735

target, and empty targets. For future features, we get 3 features for each direction: box-movement,736

agent-movement, and a next-action feature that activates positively on all squares if that action is737

taken by the network at the current step. We perform a linear regression on the 5 base and 12 future738

features to predict the activations of each channel in the hidden state h.739

Offset computation On visualizing the channels of the DRC(3, 3)network, we found that the740

channels are not aligned with the actual layout of the level. The channels are spatially-offset by741

a few squares in the cardinal directions. To automatically compute the offsets, we perform linear742

regression on the base and future features to predict the channel activation by shifting the features743

along x, y ∈ {−2,−1, 0, 1, 2} and selecting the offset regression model with the lowest loss. The744

channels offsets are available in Table 4. We manually inspected all the channels and the offset and745

found that this approach accurately produces the correct offset for all the 96 channels in the network.746

All channel visualization in the paper are shown after correcting the offset.747

Correlation The correlation between the predicted and actual activations of the channels is provided748

in the Tables 5 and 6. We find that box-movement, agent-movement, combined-plan, and target749

channels have a correlation of 66.4%, 50.8%, 48.0%, and 76.7%. As expected, the unlabeled channels750

do not align with our feature set and have the lowest correlation of 40.2%. Crucially, a baseline751

regression using only base features yielded correlations below 20% for all channels, confirming that752

the channels are indeed computing plans using future movement directions. These correlations should753

be treated as lower bounds, as this simple linear approach on the binary features cannot capture754

many activation dynamics like continuous development, representation of rejected alternative plans755

(Section 5.3), or the distinct encoding of short- vs. long-term plans.756

F Plan Representation to Action Policy757

The plan formed by the box movement channels are transferred to the agent movement channels.758

For example, Figure 21b shows that the agent down movement channel L1H18 copies the box down759

movement channel L1H17 by shifting it one square up, corresponding to where the agent will push760

the box. The kernels also help in picking a single path if the box can go down through multiple paths.761

Once the box-plan transfers to the agent-movement channels, these channels are involved in their762

own agent-path extension mechanism. Figure 21a show that the agent-movement channels have763

their own linear-plan-extension kernels. These channels also have stopping conditions that stop the764

plan-extension at the box squares and agent square. Thus, as a whole, the box-movement channels765

find box to target paths and the agent-movement channels copy those paths and also find agent to box766

paths.767

Finally, the network needs to find the next action to take from the complete agent action plan768

represented in agent-movement channels. We find that the network dedicates separate channels that769

19

extract the next agent action. We term these channels as the grid-next-action (GNA) channels (Table 7).770

There exists one GNA channel for each of the four action directions. A max-pooling operation on771

these channels transfers the high activation of an action to the entire grid of the corresponding agent772

action channel. We term these as the pooled-next-action (PNA) channels (Table 7). Lastly, the MLP773

layer aggregates the flattened neurons of the PNA channels to predict the next action. We verify that774

the PNA and GNA channels are completely responsible for predicting the next action by performing775

causal intervention that edits the activation of the channel based on our understanding to cause the776

agent to take a random action at any step in a level. Table 2 shows that both the PNA and GNA777

channels are highly accurate in modifying the next action. We now describe how the network extracts778

only the next agent move into the GNA channels.779

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

Observation Agent
(L2H27)

Box-down
(L1H17)

Agent-down
(L1H18)

L2
F4

L2
F2

6

+

+

+

+

Figure 13: Left: Observation at step 3 where the
agent moves down.Right: The GNA channels,
which represent the direction that the agent will
move in at the next step, predict the agent mov-
ing down primarily through f -gate. The box- and
agent-down channels are offset and subtracted to
get the action at the agent square. The checkered
agent location pattern from L2H27 also helps in
isolating the action on the agent square. The active
f -gate square accumulates activation in the cell-
state c which after max-pooling and MLP layer
decodes to the down action being performed.

The individual gates of the GNA channels copy780

activations of the agent-movement channels.781

Some gates perform subtraction of the agent and782

box movement channels to get agent-exclusive783

moves and the next agent box push. Figure 13784

(top-right) shows one such example where the785

agent and box movement channels from layer 1786

are subtracted resulting in an activation exclu-787

sively at the agent square. The GNA gates also788

receive positive activation on the agent square789

through L2H27 which detects agent at the first790

tick n = 0 of a step. Figure 13 shows that the791

f -gate of all GNA channels receives a positive792

contribution from the agent square. To counter-793

act this, the agent-movement channels of one794

direction contribute negatively to the GNA chan-795

nels of all other directions. All of this results796

in the agent square of the GNA channel of the797

next move activating strongly at the second tick798

n = 1.799

Thus we have shown that the complete plan is filtered through the GNA channels to extract the next800

action which activates the PNA channel for the next action to be taken.801

G State Transition Update802

We have understood how the plan representation is formed and mapped to the next action to be803

taken. However, once an action is taken, the network needs to update the plan representation to804

reflect the new state of the world. We saw in Figure 3 that the plan representation is updated by805

deactivating the square that represented the last action in the plan. This allowed a different future806

action to be represented at the same square in the short-term channel which was earlier stored only in807

the long-term channel. We now show how a square is deactivated in the plan representation.808

After an action is taken, the network receives the updated observation on the first tick n = 0 with the809

new agent or box positions. The combined W d
ce kernels for each layer that map to the path channels810

contain filters that detect only the agent, box, or target, often with the opposite sign of activation of811

the plan in the channel (Figure 22). Hence, when the observation updates with the agent in a new812

position, the agent kernels activates with the opposite sign of the plan activation that deletes the last813

move from the plan activation in the hidden state. The activation contributions in Figure 6 shows814

the negative contribution from the encoder kernels on the agent and the square to the left of the box.815

Therefore, the agent and the boxes moving through the level iteratively remove squares from the plan816

when they are executed with the plan-stopping mechanism ensuring that the plan doesn’t over-extend817

beyond the new positions from the latest observation.818

H Activation transfer mechanism from long to short term channels819

Consider a scenario where two different actions, A1 and A2 (A1 ̸= A2), are planned for the same820

location ("square") at different timesteps, t1 and t2, with t1 < t2. As illustrated in Section 5.3,821

20

0 20 40

40

60

80

100
Agent up

L0H18
L1H5
L1H29
L2H28
L2H29

0 20 40

Agent down

L0H10
L1H18
L2H4
L2H8

0 20 40

Agent left

L2H23
L2H27
L2H31

0 20 40

Agent right

L1H21
L1H28
L2H3
L2H5
L2H26
L2H21

Steps

A
U

C
 (%

)

0 20 40

40

60

80

100

Box up

L0H13
L0H24
L2H6

0 20 40

Box down

L0H2
L0H14
L0H20
L1H14
L1H17
L1H19

0 20 40

Box left

L0H23
L0H31
L1H11
L1H27
L2H20

0 20 40

Box right

L0H9
L0H17
L1H13
L1H15
L2H9
L2H15

Steps

A
U

C
 (%

)

Figure 14: AUC scores of agent and boxes for all directions. The two channels in agent directions
that quickly fall are the GNA/PNA channel which have a high AUC (100%) only for the next action.
Short-term channel show a high AUC for predicting actions 10 steps in advance whereas the long-term
channels show a high AUC for predicting agent’s actions beyond 10 steps until the end of the episode.

20 0 20
Centered time steps (t)

0.0

0.2

0.4

0.6

Av
er

ag
e

ac
tiv

at
io

n

Up long term
Up short term

20 0 20
Centered time steps (t)

0.0

0.2

0.4

Av
er

ag
e

ac
tiv

at
io

n

Down long term
Down short term

20 0 20
Centered time steps (t)

0.2

0.4

Av
er

ag
e

ac
tiv

at
io

n

Left long term
Left short term

20 0 20
Centered time steps (t)

0.0

0.2

0.4

Av
er

ag
e

ac
tiv

at
io

n

Right long term
Right short term

Figure 15: Activations of the long- and short-term channels for all directions when a different
direction action takes place at t = 0. All direction except the up direction shows the long-term
channel activations decreasing after the other action takes place at t = 0. The mechanism of this
transfer of activation from long to short-term is shown in Figure 16.

Figure 3 (right) and further detailed in Figure 15, the later action (A2 at t2) is initially stored in the822

long-term channel for timesteps t < t1. This information is transferred to the short-term channel823

only after the earlier action (A1) is executed at t = t1. We now describe the specific mechanism824

responsible for this transfer of activation from the long-term to the short-term channel.825

In Figure 16, the activations transfer into L1H17 (short-term-down) from L0H14 (long-term-down)826

and L0H2 (short-term-down) channels when a right action is taken at t = 0 represented in L0H9827

(short-term-right). The short-term-right channel L0H9 imposes a large negative contribution via the828

j-gate to inhibit L1H17, keeping it inactive even as the long-term-down channel tries to transfer a829

signal through the j and o-gates for t < 0. Once the first move completes (t = 0), short-term-right is830

no longer active and so the inhibition ceases. The removal of the negative input allows the j-gate’s831

activation to rise, enabling the long-term-down activation transfer through o-gate, making it the new832

active short-term action at the square. This demonstrates how long-term channels hold future plans,833

insulated from immediate execution conflicts by the winner takes all (WTA) mechanism (Section 5.3834

and Figure 1) acting on short-term channels.835

I Case study: Backtracking mechanism836

Consider the level depicted in Figure 17 (a). The network begins by chaining forward from the box837

and backward from the target(Figure 17, b). Upon reaching the square marked D1, the plan can838

continue upwards or turn left. Here, the turn and linear plan-extension kernels activate the box-right839

and the box-down channels respectively. However, box-down activation is much higher because the840

21

50 0 50
Centered time steps (t)

 j

1

0

1

Av
g

ac
tiv

at
io

n
(L

1H
17

)

50 0 50
Centered time steps (t)

 o

50 0 50
Centered time steps (t)

 h≈ σ(j) · tanh(o)

H2: short-term H9: short-term H14: long-term Sum

Figure 16: Transfer mechanism from long to short-term channel shown through contributions into
the gates of the short-term-down (L1H17) channel averaged across squares where a right box-push
happens at t = 0 and down box-push later on. The long-term-down channel L0H14 contributes to the
o-gate at all steps t. However, L0H9 (short-term-right) activates negatively in the sigmoid j-gate, thus
deactivating L1H17. As the right move gets played at t = 0, L0H9’s negative contribution vanishes,
enabling the transfer of L0H14 and L0H2 into L1H17.

(a) Observation

D1

D2D3

(b) All box channels
step 1 tick 0

(c) L2H9 (right)
step 5 tick 1

(d) L2I9 (right)
step 5 tick 1

(e) L2O9 (right)
step 5 tick 1

(f) L2H9 (right)
step 9 tick 1

(g) L2H9 (right)
Abl. step 9 tick 1

Figure 17: (a) 20 × 20 level we term as the “backtrack level” with key decision nodes D1-D3 for
backward chaining. (b) The sum of box-movement channels at step 1 tick 0 indicates forward (from
box) and backward (from target) chaining. (c-e) Activation of the box-right channel L2H9 involved
in backward chaining at step 5 tick 1. Backward chaining moved up from D1 to D2 and then hitting a
wall at D3, which initiates backtracking towards D2 through negative plan extension. The negative
wall activation comes from the o-gate of L2H9. (f) Successful pathfinding at T28 after backtracking
redirected the search. (g) Ablation: Forcing positive activation at D3 (by setting it to its absolute
value) prevents backtracking, hindering correct solution finding (L2H9 Abl., T28).
In particular, the forced positive ablation at D3 results in an incorrect plan (g) which seemingly goes
right all the way through the wall, as opposed to the correct plan (f) which goes right on a valid path.

weights of the linear extension kernels are much larger than the turn kernels (as seen in Figure 1).841

Due to this, the winner-takes-all mechanism leads to the search continuing upwards in the box-down842

channel. Upon hitting a wall at D2, the chain turns right along the ‘box-right channel‘ (L2H9) and843

continues until it collides with another wall at D3. (Figure 17, c).844

This triggers backtracking. While both i-gate and o-gate activations contribute to plan extension,845

the o-gate also activates strongly negatively on wall squares like D3 (Figure 17d, e). This leads to a846

dominant negative activation in the ‘box-right‘ channel, which then propagates backward along the847

explored path (from D3 towards D2) via the forward plan-extension kernels of L2H9.848

This weakens the dominant ‘box-down‘ activation at D1, allowing the alternative ‘box-right‘ path849

from D1 to activate. The search then proceeds along this new route, allowing the backward chain to850

connect with the forward chain, resulting in the correct solution (Figure 17, f).851

To verify this mechanism, we performed an intevention by forcing the activation at the wall squares852

near D3 to be positive (by taking their absolute values). This blocked backtracking, and the network853

22

Figure 18: A level with two paths, one longer than the other. We initialize the starting hidden state
with the two paths shown such that they both have two squares left to reach the target. We find that
the expands both paths and picks the left (longer) path through the winner-takes-all mechanism since
it reaches there with higher activation through linear-plan-extension.

incorrectly attempted to connect the chains through the wall (Figure 17, g). This confirms that854

negative activation generated at obstacles is the key driver for backtracking, and is what allows the855

network to discard failed paths and explore alternatives. We quantitatively test this claim further by856

performing the same intervention on transitions from 512 levels where a plan’s activation is reduced857

by more than half in a single step which was preceded by a neighboring square having negative858

activation in the path channel. We define the intervention successful if forcing the negative square859

to an absolute value doesn’t reduce the activation of the adjacent plan square. The intervention860

results in a success rate with 95% confidence intervals of 85.1% ± 5.0% and 48.9% ± 3.3% for861

long- and short-term channels, respectively. This checks out with the fact that long-term channels862

represent plans not in the immediate future which would get backtracked through negative path863

activations. On the other hand, negative activations in the short-term channels are also useful during864

the winner-takes-all (WTA) mechanism and deadlock prevention heuristics. Filtering such activations865

for short-term channels from the intervention dataset would improve the numbers.866

J Case study: making the network take the longer path867

The network usually computes the shortest paths from a box to a target by forward (from box) and868

backward (from target) chaining linear segments until they connect at some square as illustrated869

in Figure 1. As soon as a valid plan is found for a box along one direction, the winner-takes-all870

mechanism stabilizes that plan through its stronger activations and deletes any other plans being871

searched for the box. From this observation, we hypothesize that the network values finding valid872

plans in least number of steps than picking the shorter one. We verify this value preference of the873

network by testing the network with on the level shown in Figure 18 with the starting state initialized874

with the two paths shown. The left path (length=13) is longer than the right path (length=7) for875

reaching from the box to target. Both paths are initialized in the starting hidden state to have two876

arrow left to complete the path. We find that in this case, both the paths reach the target, but the left877

one is stronger due to linear plan extension kernels reaching with higher activation. This makes the878

network pick the left path and prune out the shorter right path. If we modify the starting state such879

that left and right paths have 3 and 2 square left to the reach the target, then the right path wins and880

the left path is pruned out. This confirms that the network’s true value in this case is to pick a valid881

plan closer to target than to pick a shorter plan. However, since convolution moves plan one square882

per operation, the network usually seems to have the value of picking the shorter plan.883

23

Figure 19: Sum of activations of box-movement channels on the 40× 40 backtrack level with the
network weights W d

ch1 and W d
ch2

steered by a factor of 1.4. The planning representation gets stuck in
the loop shown, unable to backtrack and explore other paths. The activations of other squares become
chaotic, changing rapidly and randomly on each step.

K Unsuccessful methods884

Section 3 describes the methods we found useful to understand the learned algorithm of the DRC(3, 3)885

network. We also tried the following popular interpretability methods but found them to not work886

well for our network: Network Pruning, Automated Circuit Discovery, explicitly coding the causal887

abstract graph [6], and Sparse Autoencoders.888

L Channel Redundancy889

We see from Table 7 that the network represents many channels per box-movement and agent-890

movement direction. We find at least two reasons for why this redundancy is useful.891

First, it facilitates faster spatial propagation of the plan. Since the network uses 3 × 3 kernels892

in the ConvLSTM block, information can only move 1 square in each direction per convolution893

operation. By using redundant channels across multiple layers, the network can effectively move894

plan information several squares within a single time step’s forward pass (one square per relevant895

layer). Evidence for this rapid propagation is visible in Figure 17(b), where plan activations extend896

7-10 squares from from the target and the box within the first four steps on a 20× 20 level.897

Second, the network dedicates separate channels to represent the plan at different time horizons. We898

identified distinct short-term (approximately 0-10 steps ahead) and long-term (approximately 10-50899

steps ahead) channels within the box and agent-movement categories.900

This allows the network to handle scenarios requiring the same location to be traversed at different901

future times. For example, if a box must pass through the same square at time t1 and later at time902

t2, the network can use the short-term channel to represent the first push at t1 and the long-term903

channel to represent the second push at t2. Figure 3 (right) illustrates this concept, showing activation904

transferring from a long-term to a short-term box-down-movement channel once the earlier action at905

that square is taken by the agent.906

M Weight steering fixes failure on larger levels907

Previous work [62] showed that, although the DRC(3, 3) network can solve much bigger levels than908

10×10 grid size on which it was trained, it is easy to contruct simple and natural adversarial examples909

which the network fails to solve. For example, the n× n zig-zag level in Figure 11 that can be scaled910

arbitrarily by adding more alleys and making them longer, is only solved for n ≤ 15 and fails on all911

n > 15. The big level shown in Figure 17 (a) is solved by the network on the 20× 20 grid size but912

fails on 30× 30 or 40× 40 grid size.913

24

Figure 20 (a) visualizes the sum of activations of the box-movement channels on a 40× 40 variant of914

the backtrack level in which we see the reason why larger levels fail: the channel activations decay915

as the plan gets extended further and further. This makes sense as the network only saw 10 × 10916

levels during training and hence the kernel weights were learned to only be strong enough to solve917

levels where targets and boxes are not too far apart. We find that multiplying the weights of W d
ch1918

and W d
ch2

, the kernels that update and maintain the hidden state, by a factor of 1.2 helps the network919

extend the plan further. This weight steering procedure is able to solve the zig-zag levels for sizes up920

to n = 25 and the backtrack level for sizes up to 40× 40. Figure 20 (b, c) show that upon weight921

steering, the box-movement channels are able to maintain their activations for longer, enabling the922

network to solve the level. However, for much larger levels, weightsteered networks also fall into the923

same trap of decaying activations, failing to extend the plan. Further weight steering with a larger924

factor can help but we find that it can become brittle, as the planning representation gets stuck in925

wrong paths, unable to backtrack, with the activations becoming chaotic (Figure 19). We also tried926

other weight steering approaches such as multiplying all the weights of the network by a factor or927

a subset such as the kernels of path channels, but find that they do not work as well as the weight928

steering of W d
ch1 and W d

ch2
.929

N Limitations930

Our paper has several limitations. First, we only reverse-engineer one DRC(3, 3) network in this931

paper. We are fairly confident that our results generalize to any DRC(3, 3) network trained on932

Sokoban using model-free reinforcement learning, but can’t prove it. The network having similar933

performance and capabilities such as utilizing extra test-time compute across multiple papers who934

trained it independently suggests that the learned algorithm is a pretty stable minima [22, 62, 3].935

Second, we only reverse-engineer DRC and no other networks. It is possible that the inductive biases936

of other networks such as transformer, Conv-ResNet, or 1D-LSTM may end up learning an algorithm937

that is different from what we found. Our results are also only on Sokoban and it is possible that938

the learned algorithm for other game-playing network looks very different from the one learned for939

Sokoban.940

We also do not fully reverse-engineer the network. We have observed the following behaviors that941

cannot be explained yet with our current understanding of the learned algorithm:942

• Agent sometimes does a bit of box 1, then box 2, then back to box 1, to minimize distance.943

Our explanation doesn’t account for how and when the network switches between boxes.944

• Sometimes the heuristics inexplicably choose where to go based on seemingly irrelevant945

things. Slightly changing the shape or an obstacle or moving the agent’s position by 1 can946

sometimes change which plan gets chosen, in a manner that doesn’t correspond to optimal947

plan.948

O Societal Impact949

This research into interpretability can make models more transparent, which helps in making models950

predictable, easier to debug and ensure they conform to specifications.951

Specifically, we analyze a model organism which is planning. We hope that this will catalyze further952

research on identifying, evaluating and understanding what goal a model has. We hope that directly953

identifying a model’s goal lets us monitor for and correct goal misgeneralization [14].954

Table 7: Grouped channels and their descriptions. * indicates long-term channels.

Group Description Channels

Box up Activates on squares from where a box would
be pushed up

L0H13, L0H24*, L2H6

Continued on next page

25

Table 7: Grouped channels and their descriptions. * indicates long-term channels.

Group Description Channels

Box down Activates on squares from where a box would
be pushed down

L0H2, L0H14*, L0H20*, L1H14*,
L1H17, L1H19

Box left Activates on squares from where a box would
be pushed left

L0H23*, L0H31, L1H11, L1H27,
L2H20

Box right Activates on squares from where a box would
be pushed right

L0H9, L0H17, L1H13, L1H15*,
L2H9*, L2H15

Agent up Activates on squares from where an agent
would move up

L0H18, L1H5, L1H29, L2H28,
L2H29

Agent down Activates on squares from where an agent
would move down

L0H10, L1H18, L2H4, L2H8

Agent left Activates on squares from where an agent
would move left

L2H23, L2H27, L2H31

Agent right Activates on squares from where an agent
would move right

L1H21, L1H28, L2H3, L2H5,
L2H21*, L2H26

Combined
Plan

Channels that combine plan information from
multiple directions

L0H15, L0H16, L0H28, L0H30,
L1H0, L1H4, L1H8, L1H9, L1H20,
L1H25, L2H0, L2H1, L2H13,
L2H14, L2H17, L2H18, L0H7,
L0H1, L0H21, L1H2, L1H23,
L2H11, L2H22, L2H24, L2H25,
L2H12, L2H16, L0H19, L2H30

Entity Highly activate on target tiles. Some also
activate on agent or box tiles

L0H6, L0H26, L1H6, L1H10,
L1H22, L1H31, L2H2, L2H7

No label Uninterpreted channels. These channels do
not have a clear meaning but they are also not
very useful

L0H0, L0H3, L0H4, L0H5, L0H8,
L0H22, L0H25, L0H27, L0H29,
L1H1, L1H3, L1H12, L1H16,
L1H26, L1H30, L2H10, L2H19,
L0H11, L0H12, L1H7, L1H24

Grid-Next-
Action
(GNA)

Channels that activate on squares that the
agent will move in the next few moves. One
separate channel for each direction

L2H28 (up), L2H4 (down), L2H23
(left), L2H26 (right)

Pooled-
Next-
Action
(PNA)

A channel for each action that activates highly
across all squares at the last tick (n = 2) to
predict the action

L2H29 (up), L2H8 (down), L2H27
(left), L2H3 (right)

Table 8: Informal description of all channels

Channel Long-
term

Description

L0H0 No some box-left-moves?
L0H1 No box-to-target-lines which light up when agent comes close to the box.
L0H2 No H/-C/-I/J/-O: +future box down moves [1sq left]
L0H5 No [1sq left]
L0H6 No H/-C: +target -box -agent . F: +agent +agent future pos. I: +agent. O: -agent

future pos. J: +target -agent[same sq]
L0H7 No (0.37 corr across i,j,f,o).
L0H9 No -H/-C/-O/I/J/F: +agent +future box right moves -box. -H/J/F: +agent-near-

future-down-moves [on sq]
L0H10 No H: -agent-exclusive-down-moves [1sq left,down]. Positively activates on

agent-exclusive-up-moves.
L0H11 No H: CO. O: box-right moves C/I: -box future pos [1sq up (left-right noisy)]

Continued on next page

26

Table 8: Informal description of all channels

Channel Long-
term

Description

L0H12 No H: very very faint horizontal moves (could be long-term?). I/O: future box
horizontal moves (left/right). [on sq]

L0H13 No H/C/I/J/O: +future box up moves [1sq up]
L0H14 Yes H/-I/O/C/H: -future-box-down-moves. Is more future-looking than other

channels in this group. Box down moves fade away as other channels also
start representing them. Sometimes also activates on -agent-right-moves [on
sq]

L0H15 No H/I/J/-F/-O: +box-future-moves. More specifically, +box-down-moves +box-
left-moves. searchy (positive field around target). (0.42 corr across i,j,f,o).

L0H16 No H +box-right-moves (not all). High negative square when agent has to perform
DRU actions. [1sq up,left]

L0H17 No H/I/J/F/O: +box-future-right moves. O: +agent [1sq up]
L0H18 No H: -agent-exclusive-up-moves
L0H20 Yes H: box down moves. Upper right corner positively activates (0.47 start -> 0.6

in a few steps -> 0.7 very later on). I: -box down moves. O: +box down moves
-box horizontal moves. [1sq up]

L0H21 No -box-left-moves. +up-box-moves
L0H23 Yes H/C/I/J/O: box future left moves [1sq up,left]
L0H24 Yes H/C/I/J/O: -future box up moves. long-term because it doesn’t fade away after

short-term also starts firing [1sq up,left]
L0H26 No H: -agent . I/C/-O: all agent future positions. J/F: agent + target + BRwalls,

[1sq up]
L0H28 No H/C/I/J/F/-O: -future box down moves (follower?) [on sq]. Also represents

agent up,right,left directions (but not down).
L0H30 No H/I: future positions (0.47 corr across i,j,f,o).
L1H0 No H: -agent -agent near-future-(d/l/r)-moves + box-future-pos [on sq]
L1H2 No -box-left-moves
L1H4 No +box-left moves -box-right moves [1sq up].
L1H5 No H: +agent-exclusive-future-up moves [2sq up, 1sq left]
L1H6 No J: player (with fainted target)
L1H7 No H: - some left box moves or right box moves (ones that end at a target)?

Sometimes down moves? (unclear)
L1H8 No box-near-future-down-moves(-0.4),agent-down-moves(+0.3),box-near-

future-up-moves(+0.25) [on sq]
L1H9 Yes O/I/H: future pos (mostly down?) (seems to have alternate paths as well. Abla-

tion results in sligthly longer sols on some levels). Fence walls monotonically
increase in activation across steps (tracking time). [on sq]

L1H10 No J/H/C: -box + target +agent future pos. (neglible in H) O,-I: +agent +box
-agent future pos [1sq up] (very important feature – 18/20 levels changed after
ablation)

L1H11 No -box-left-moves (-0.6).
L1H13 No H: box-right-moves(+0.75),agent-future-pos(+0.02) [1sq left]
L1H14 Yes H: longer-term down moves? [1sq up]
L1H15 Yes H/-O: box-right-moves-that-end-on-target (with high activations towards tar-

get). Activates highly when box is on the left side of target [on sq].
L1H17 No H/C/I/-J/-F/O: -box-future down moves [on sq]
L1H18 No H/-O: +agent future down moves (stores alternate down moves as well?) [on

sq]
L1H19 No H/-F/-J: -box-down-moves (follower?) [1sq up]
L1H20 No +near-future-all-box-moves [1sq up].
L1H21 No H: agent-right-moves(-0.5) (includes box-right-pushes as well)
L1H22 No -target
L1H23 No -box-left-moves.

Continued on next page

27

Table 8: Informal description of all channels

Channel Long-
term

Description

L1H24 No H: -box -agent-future-pos -agent, [1sq left]
L1H25 No all-possible-paths-leading-to-targets(-0.4),agent-near-future-pos(-

0.07),walls-and-out-of-plan-sqs(+0.1),boxes(+0.6). H: +box -agent
-empty -agent-future-pos | O/-C: -agent +future sqs (probably doing search in
init steps) | I: box + agent + walls | F: -agent future pos | J: +box +wall -agent
near-future pos [1sq up,left]

L1H27 No H: box future left moves [1sq left]
L1H28 No some-agent-exclusive-right-moves(+0.3),box-up-moves-sometimes-

unclear(-0.1)
L1H29 No agent-near-future-up-moves(+0.5) (~5-10steps, includes box-up-pushes as

well). I: future up moves (~almost all moves) + agent sq [1sq up]
L1H31 No H: squares above and below target (mainly above) [1sq left & maybe up]
L2H0 No -box-all-moves.
L2H1 No H/O: future-down/right-sqs [1sq up]
L2H2 No H: high activation when agent is below a box on target and similar positions.

walls at the bottom also activate negatively in those positions.
L2H3 No H: +right action (PNA) + future box -down -right moves + future box +left

moves
L2H4 No O: +near-future agent down moves (GNA). I: +agent/box future pos [1sq left]
L2H5 No H/C/I/J: +agent-future-right-incoming-sqs, O: agent-future-sqs [1sq up, left]
L2H6 No H: +box-up-moves (~5-10 steps). -agent-up-moves. next-target (not always)

[1q left]
L2H7 No +unsolved box/target
L2H8 No down action (PNA).
L2H9 Yes H/C/I/J/O: +future box right moves [1sq up]
L2H11 No -box-left-moves(-0.15),-box-right-moves(-0.05)
L2H13 No H: +box-future-left -box-long-term-future-right(fades 5-10moves before tak-

ing right moves) moves. Sometimes blurry future box up/down moves [1sq
up]

L2H14 No H: all-other-sqs(-0.4) agent-future-pos(+0.01) O: -agent-future-pos. I: +box-
future-pos

L2H15 No -box-right-moves [1sq up,left]
L2H17 No H/C: target(+0.75) box-future-pos(-0.3). O: target. J: +target -agent +agent

future pos. I/F: target. [1sq up]
L2H18 No box-down/left-moves(-0.2). Very noisy/unclear at the start and converges later

than other box-down channels.
L2H19 No H: future agent down/right/left sqs (unclear) [1sq up]
L2H20 No H: -box future left moves [1sq left]
L2H21 Yes H: -far-future-agent-right-moves. Negatively contributes to L2H26 to remove

far-future-sqs. Also represents -agent/box-down-moves. [1sq up]
L2H22 No H: box-right-moves(+0.3),box-down-moves(0.15). O future sqs???
L2H23 No H: future left moves (does O store alternate left moves?) (GNA). [1sq left]
L2H24 No box-right/up-moves (long-term)
L2H25 No unclear but (8, 9) square tracks value or timesteps (it is a constant negative in

the 1st half episode and steadily increases in the 2nd half)?
L2H26 No H/O: near-future right moves (GNA). [on sq]
L2H27 No left action (PNA). T0: negative agent sq with positive sqs up/left.
L2H28 No near-future up moves (GNA). O: future up moves (not perfectly though) [1sq

up]
L2H29 No Max-pooled Up action channel (PNA).
L2H31 No some +agent-left-moves (includes box-left-pushes).

28

Figure 20: The sum of activations of the box-movement channels on a 40×40 variant of the backtrack
level from Figure 17 for (a) the original network at step 50, and the weight-steered network at (b)
step 50 and (c) step 100 when the agent reaches halfway through. The original network fails to solve
the level as the plan decays and cannot be extended beyond 10− 15 squares. Upon weight steering,
the plan activations travel farther without decaying thus solving the level.

0.5

1

1.5

2

Up Down Left Right

Fo
rw

ar
d

B
ac

kw
ar

d

(a) Forward and backward plan extension kernels
averaged over agent-movement channels. Agent-
movement channels also extend the agent moves for-
ward and backward similar to the box-plan extension.

−0.5
0
0.5
1

i j f o

(b) The kernels that map L1H17 (box-down) to L1H18
(agent-down) by shifting the activation one square up.
L1H17 activates negatively, therefore the j and f ker-
nels are negative since they use the sigmoid activation
function. The i and o kernels are positive which results
in negatively activating i and o-gates, which after mul-
tiplication results in L1H18 activating positively. The
opposite signed weights on the lower-corner squares
of the kernel help in picking a single path out of mul-
tiple parallel paths.

Figure 21: Plan extension and box path to agent path kernels.

29

Table 4: Activation offset along (row, column) in the grid for each layer and channel
Layer 0 Layer 1 Layer 2

Channel 0 (1, 0) (0, 0) (-1, 0)
Channel 1 (0, 0) (-1, -1) (-1, -1)
Channel 2 (0, -1) (-1, 0) (0, 0)
Channel 3 (0, 0) (-1, 0) (0, 0)
Channel 4 (-1, -1) (-1, -1) (0, -1)
Channel 5 (0, -1) (-2, -1) (-1, 0)
Channel 6 (0, 0) (-1, -1) (-1, -1)
Channel 7 (-1, 0) (-1, 0) (0, 0)
Channel 8 (0, -1) (0, 0) (-1, 0)
Channel 9 (0, 0) (0, 0) (-1, 0)
Channel 10 (-1, -1) (-1, 0) (-1, 0)
Channel 11 (-1, 0) (0, -1) (0, -1)
Channel 12 (0, -1) (0, -1) (0, -1)
Channel 13 (-1, 0) (-1, 0) (-1, 0)
Channel 14 (0, 0) (0, -1) (-1, -1)
Channel 15 (0, 0) (0, 0) (-1, -1)
Channel 16 (-1, -1) (0, 0) (-1, -1)
Channel 17 (-1, 0) (0, 0) (-1, 0)
Channel 18 (-1, 0) (0, 0) (-1, 0)
Channel 19 (-1, -1) (-1, 0) (-1, -1)
Channel 20 (-1, 0) (0, -1) (0, -1)
Channel 21 (-1, 0) (-1, 0) (0, 0)
Channel 22 (0, 0) (0, 0) (-1, 0)
Channel 23 (-1, -1) (-1, 0) (0, -1)
Channel 24 (-1, -1) (0, -1) (-1, 0)
Channel 25 (-1, 0) (-1, -1) (-1, -1)
Channel 26 (-1, 0) (0, -1) (0, 0)
Channel 27 (-1, -1) (-1, -1) (0, 0)
Channel 28 (0, 0) (0, 0) (-1, 0)
Channel 29 (0, 0) (-1, 0) (0, -1)
Channel 30 (-1, 0) (0, 0) (-1, -1)
Channel 31 (-1, -1) (0, -1) (0, -1)

30

Table 5: Correlation of linear regression model’s predictions with the original activations for each
channel.

Layer 0 Layer 1 Layer 2

Channel 0 33.15 79.48 70.03
Channel 1 50.76 48.77 38.37
Channel 2 73.15 28.90 39.17
Channel 3 31.73 68.30 55.72
Channel 4 45.06 50.10 45.64
Channel 5 63.91 42.95 55.27
Channel 6 96.57 87.47 53.90
Channel 7 51.98 36.88 95.63
Channel 8 46.64 41.58 55.04
Channel 9 70.52 37.44 71.47
Channel 10 37.68 99.01 53.91
Channel 11 52.09 61.55 42.26
Channel 12 41.54 43.86 27.19
Channel 13 79.54 73.35 54.40
Channel 14 72.17 48.12 56.54
Channel 15 44.09 65.72 36.37
Channel 16 63.49 26.56 38.24
Channel 17 76.70 73.94 94.78
Channel 18 61.51 66.11 34.18
Channel 19 46.05 44.01 33.48
Channel 20 65.00 58.94 64.92
Channel 21 22.05 57.36 60.21
Channel 22 26.51 63.73 24.32
Channel 23 74.39 31.32 44.64
Channel 24 83.64 58.56 59.94
Channel 25 17.10 82.43 28.29
Channel 26 75.48 44.26 45.17
Channel 27 9.24 85.84 49.92
Channel 28 46.87 42.65 15.38
Channel 29 28.60 64.77 54.68
Channel 30 47.70 35.00 40.15
Channel 31 53.12 56.81 59.63

Table 6: Correlation of linear regression model’s predictions with the original activations averaged
over channels for each group. Includes correlation using only base features for comparison. The (all
dir) group is the average of the four directions. NGA and PNA are included in the Agent groups.

Group Correlation Base correlation

Box up 72.36 21.01
Box down 62.73 13.93
Box left 67.96 21.10
Box right 65.69 27.40
Box (all dir) 66.37 20.83
Agent up 47.86 12.69
Agent down 51.12 15.85
Agent left 51.40 7.85
Agent right 52.73 14.92
Agent (all dir) 50.80 13.33
Combined path 48.00 23.35
Entity 76.73 70.66
No label 40.25 15.53

31

+L0O28 -L0O28 +L0O29 -L0O29 +L0O30 -L0O30 +L0O31 -L0O31

+L0O24 -L0O24 +L0O25 -L0O25 +L0O26 -L0O26 +L0O27 -L0O27

+L0O20 -L0O20 +L0O21 -L0O21 +L0O22 -L0O22 +L0O23 -L0O23

+L0O16 -L0O16 +L0O17 -L0O17 +L0O18 -L0O18 +L0O19 -L0O19

+L0O12 -L0O12 +L0O13 -L0O13 +L0O14 -L0O14 +L0O15 -L0O15

+L0O8 -L0O8 +L0O9 -L0O9 +L0O10 -L0O10 +L0O11 -L0O11

+L0O4 -L0O4 +L0O5 -L0O5 +L0O6 -L0O6 +L0O7 -L0O7

+L0O0 -L0O0 +L0O1 -L0O1 +L0O2 -L0O2 +L0O3 -L0O3

Figure 22: 9× 9 combined convolutional filters W 0
oe that map the RGB observation image to the O

gate in layer 0. The positive and negative components of each channel filters are separated visualized
by computing max(0,W 0

oe) and max(0,−W 0
oe) respectively. The green, red, and brown colors in

the filters detect the agent, target, and box squares respectively. The blue component is high only in
empty tiles, so the blue color can detect empty tiles. We find that many filters are responsible for
detecting the agent and the target like L0O5 and L0O6. A use case of such agent and box detecting
filters in the encoder is shown in Figure 6. Many filters detect whether the agent or the target are
some squares away in a particular direction like L0O20 and L0O23. Filters for other layers and gates
can be visualized using our codebase.

Table 9: Solve rate (%) of different models without and with 6 thinking steps on held out sets of
varying difficulty.

Model No Thinking Thinking
Hard Med Unfil Hard Med Unfil

DRC(3, 3) 42.8 76.6 99.3 49.7 81.3 99.7
DRC(1, 1) 7.8 28.1 89.4 9.8 33.9 92.6
ResNet 26.2 59.4 97.9 - - -

32

NeurIPS Paper Checklist955

The checklist is designed to encourage best practices for responsible machine learning research,956

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove957

the checklist: The papers not including the checklist will be desk rejected. The checklist should958

follow the references and follow the (optional) supplemental material. The checklist does NOT count959

towards the page limit.960

Please read the checklist guidelines carefully for information on how to answer these questions. For961

each question in the checklist:962

• You should answer [Yes] , [No] , or [NA] .963

• [NA] means either that the question is Not Applicable for that particular paper or the964

relevant information is Not Available.965

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).966

The checklist answers are an integral part of your paper submission. They are visible to the967

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it968

(after eventual revisions) with the final version of your paper, and its final version will be published969

with the paper.970

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.971

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a972

proper justification is given (e.g., "error bars are not reported because it would be too computationally973

expensive" or "we were unable to find the license for the dataset we used"). In general, answering974

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we975

acknowledge that the true answer is often more nuanced, so please just use your best judgment and976

write a justification to elaborate. All supporting evidence can appear either in the main paper or the977

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification978

please point to the section(s) where related material for the question can be found.979

IMPORTANT, please:980

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",981

• Keep the checklist subsection headings, questions/answers and guidelines below.982

• Do not modify the questions and only use the provided macros for your answers.983

1. Claims984

Question: Do the main claims made in the abstract and introduction accurately reflect the985

paper’s contributions and scope?986

Answer: [Yes]987

Justification: We justify all the claims made in the paper with proper empirical evidence988

through experiments.989

Guidelines:990

• The answer NA means that the abstract and introduction do not include the claims991

made in the paper.992

• The abstract and/or introduction should clearly state the claims made, including the993

contributions made in the paper and important assumptions and limitations. A No or994

NA answer to this question will not be perceived well by the reviewers.995

• The claims made should match theoretical and experimental results, and reflect how996

much the results can be expected to generalize to other settings.997

• It is fine to include aspirational goals as motivation as long as it is clear that these goals998

are not attained by the paper.999

2. Limitations1000

Question: Does the paper discuss the limitations of the work performed by the authors?1001

Answer: [Yes]1002

33

Justification: We discuss some limitations in the discussion section and in the limitation1003

section in Appendix N.1004

Guidelines:1005

• The answer NA means that the paper has no limitation while the answer No means that1006

the paper has limitations, but those are not discussed in the paper.1007

• The authors are encouraged to create a separate "Limitations" section in their paper.1008

• The paper should point out any strong assumptions and how robust the results are to1009

violations of these assumptions (e.g., independence assumptions, noiseless settings,1010

model well-specification, asymptotic approximations only holding locally). The authors1011

should reflect on how these assumptions might be violated in practice and what the1012

implications would be.1013

• The authors should reflect on the scope of the claims made, e.g., if the approach was1014

only tested on a few datasets or with a few runs. In general, empirical results often1015

depend on implicit assumptions, which should be articulated.1016

• The authors should reflect on the factors that influence the performance of the approach.1017

For example, a facial recognition algorithm may perform poorly when image resolution1018

is low or images are taken in low lighting. Or a speech-to-text system might not be1019

used reliably to provide closed captions for online lectures because it fails to handle1020

technical jargon.1021

• The authors should discuss the computational efficiency of the proposed algorithms1022

and how they scale with dataset size.1023

• If applicable, the authors should discuss possible limitations of their approach to1024

address problems of privacy and fairness.1025

• While the authors might fear that complete honesty about limitations might be used by1026

reviewers as grounds for rejection, a worse outcome might be that reviewers discover1027

limitations that aren’t acknowledged in the paper. The authors should use their best1028

judgment and recognize that individual actions in favor of transparency play an impor-1029

tant role in developing norms that preserve the integrity of the community. Reviewers1030

will be specifically instructed to not penalize honesty concerning limitations.1031

3. Theory assumptions and proofs1032

Question: For each theoretical result, does the paper provide the full set of assumptions and1033

a complete (and correct) proof?1034

Answer: [NA]1035

Justification: NA1036

Guidelines:1037

• The answer NA means that the paper does not include theoretical results.1038

• All the theorems, formulas, and proofs in the paper should be numbered and cross-1039

referenced.1040

• All assumptions should be clearly stated or referenced in the statement of any theorems.1041

• The proofs can either appear in the main paper or the supplemental material, but if1042

they appear in the supplemental material, the authors are encouraged to provide a short1043

proof sketch to provide intuition.1044

• Inversely, any informal proof provided in the core of the paper should be complemented1045

by formal proofs provided in appendix or supplemental material.1046

• Theorems and Lemmas that the proof relies upon should be properly referenced.1047

4. Experimental result reproducibility1048

Question: Does the paper fully disclose all the information needed to reproduce the main ex-1049

perimental results of the paper to the extent that it affects the main claims and/or conclusions1050

of the paper (regardless of whether the code and data are provided or not)?1051

Answer: [Yes]1052

Justification: We have open-sourced the code, model, and data to reproduce our experiments.1053

Guidelines:1054

34

• The answer NA means that the paper does not include experiments.1055

• If the paper includes experiments, a No answer to this question will not be perceived1056

well by the reviewers: Making the paper reproducible is important, regardless of1057

whether the code and data are provided or not.1058

• If the contribution is a dataset and/or model, the authors should describe the steps taken1059

to make their results reproducible or verifiable.1060

• Depending on the contribution, reproducibility can be accomplished in various ways.1061

For example, if the contribution is a novel architecture, describing the architecture fully1062

might suffice, or if the contribution is a specific model and empirical evaluation, it may1063

be necessary to either make it possible for others to replicate the model with the same1064

dataset, or provide access to the model. In general. releasing code and data is often1065

one good way to accomplish this, but reproducibility can also be provided via detailed1066

instructions for how to replicate the results, access to a hosted model (e.g., in the case1067

of a large language model), releasing of a model checkpoint, or other means that are1068

appropriate to the research performed.1069

• While NeurIPS does not require releasing code, the conference does require all submis-1070

sions to provide some reasonable avenue for reproducibility, which may depend on the1071

nature of the contribution. For example1072

(a) If the contribution is primarily a new algorithm, the paper should make it clear how1073

to reproduce that algorithm.1074

(b) If the contribution is primarily a new model architecture, the paper should describe1075

the architecture clearly and fully.1076

(c) If the contribution is a new model (e.g., a large language model), then there should1077

either be a way to access this model for reproducing the results or a way to reproduce1078

the model (e.g., with an open-source dataset or instructions for how to construct1079

the dataset).1080

(d) We recognize that reproducibility may be tricky in some cases, in which case1081

authors are welcome to describe the particular way they provide for reproducibility.1082

In the case of closed-source models, it may be that access to the model is limited in1083

some way (e.g., to registered users), but it should be possible for other researchers1084

to have some path to reproducing or verifying the results.1085

5. Open access to data and code1086

Question: Does the paper provide open access to the data and code, with sufficient instruc-1087

tions to faithfully reproduce the main experimental results, as described in supplemental1088

material?1089

Answer: [Yes]1090

Justification: Yes, the code, model, data is open-sourced and also provided in the supple-1091

mentary material.1092

Guidelines:1093

• The answer NA means that paper does not include experiments requiring code.1094

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/1095

public/guides/CodeSubmissionPolicy) for more details.1096

• While we encourage the release of code and data, we understand that this might not be1097

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not1098

including code, unless this is central to the contribution (e.g., for a new open-source1099

benchmark).1100

• The instructions should contain the exact command and environment needed to run to1101

reproduce the results. See the NeurIPS code and data submission guidelines (https:1102

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.1103

• The authors should provide instructions on data access and preparation, including how1104

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1105

• The authors should provide scripts to reproduce all experimental results for the new1106

proposed method and baselines. If only a subset of experiments are reproducible, they1107

should state which ones are omitted from the script and why.1108

35

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• At submission time, to preserve anonymity, the authors should release anonymized1109

versions (if applicable).1110

• Providing as much information as possible in supplemental material (appended to the1111

paper) is recommended, but including URLs to data and code is permitted.1112

6. Experimental setting/details1113

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1114

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1115

results?1116

Answer: [Yes]1117

Justification: See Appendices B and C.1118

Guidelines:1119

• The answer NA means that the paper does not include experiments.1120

• The experimental setting should be presented in the core of the paper to a level of detail1121

that is necessary to appreciate the results and make sense of them.1122

• The full details can be provided either with the code, in appendix, or as supplemental1123

material.1124

7. Experiment statistical significance1125

Question: Does the paper report error bars suitably and correctly defined or other appropriate1126

information about the statistical significance of the experiments?1127

Answer: [Yes]1128

Justification: We include error bars in all our tables and plots. We compute the 95%1129

confidence interval using the bootstrap method from the sklearn library on a 1000 resamples1130

from the dataset.1131

Guidelines:1132

• The answer NA means that the paper does not include experiments.1133

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1134

dence intervals, or statistical significance tests, at least for the experiments that support1135

the main claims of the paper.1136

• The factors of variability that the error bars are capturing should be clearly stated (for1137

example, train/test split, initialization, random drawing of some parameter, or overall1138

run with given experimental conditions).1139

• The method for calculating the error bars should be explained (closed form formula,1140

call to a library function, bootstrap, etc.)1141

• The assumptions made should be given (e.g., Normally distributed errors).1142

• It should be clear whether the error bar is the standard deviation or the standard error1143

of the mean.1144

• It is OK to report 1-sigma error bars, but one should state it. The authors should1145

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1146

of Normality of errors is not verified.1147

• For asymmetric distributions, the authors should be careful not to show in tables or1148

figures symmetric error bars that would yield results that are out of range (e.g. negative1149

error rates).1150

• If error bars are reported in tables or plots, The authors should explain in the text how1151

they were calculated and reference the corresponding figures or tables in the text.1152

8. Experiments compute resources1153

Question: For each experiment, does the paper provide sufficient information on the com-1154

puter resources (type of compute workers, memory, time of execution) needed to reproduce1155

the experiments?1156

Answer: [Yes]1157

Justification: The DRC(3, 3)network is small enough that all our experiments can run on1158

CPU.1159

36

Guidelines:1160

• The answer NA means that the paper does not include experiments.1161

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1162

or cloud provider, including relevant memory and storage.1163

• The paper should provide the amount of compute required for each of the individual1164

experimental runs as well as estimate the total compute.1165

• The paper should disclose whether the full research project required more compute1166

than the experiments reported in the paper (e.g., preliminary or failed experiments that1167

didn’t make it into the paper).1168

9. Code of ethics1169

Question: Does the research conducted in the paper conform, in every respect, with the1170

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1171

Answer: [Yes]1172

Justification: We have read and followed the Code of Ethics.1173

Guidelines:1174

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1175

• If the authors answer No, they should explain the special circumstances that require a1176

deviation from the Code of Ethics.1177

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1178

eration due to laws or regulations in their jurisdiction).1179

10. Broader impacts1180

Question: Does the paper discuss both potential positive societal impacts and negative1181

societal impacts of the work performed?1182

Answer: [Yes]1183

Justification: We discuss some impact of our work in Appendix O.1184

Guidelines:1185

• The answer NA means that there is no societal impact of the work performed.1186

• If the authors answer NA or No, they should explain why their work has no societal1187

impact or why the paper does not address societal impact.1188

• Examples of negative societal impacts include potential malicious or unintended uses1189

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1190

(e.g., deployment of technologies that could make decisions that unfairly impact specific1191

groups), privacy considerations, and security considerations.1192

• The conference expects that many papers will be foundational research and not tied1193

to particular applications, let alone deployments. However, if there is a direct path to1194

any negative applications, the authors should point it out. For example, it is legitimate1195

to point out that an improvement in the quality of generative models could be used to1196

generate deepfakes for disinformation. On the other hand, it is not needed to point out1197

that a generic algorithm for optimizing neural networks could enable people to train1198

models that generate Deepfakes faster.1199

• The authors should consider possible harms that could arise when the technology is1200

being used as intended and functioning correctly, harms that could arise when the1201

technology is being used as intended but gives incorrect results, and harms following1202

from (intentional or unintentional) misuse of the technology.1203

• If there are negative societal impacts, the authors could also discuss possible mitigation1204

strategies (e.g., gated release of models, providing defenses in addition to attacks,1205

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1206

feedback over time, improving the efficiency and accessibility of ML).1207

11. Safeguards1208

Question: Does the paper describe safeguards that have been put in place for responsible1209

release of data or models that have a high risk for misuse (e.g., pretrained language models,1210

image generators, or scraped datasets)?1211

37

https://neurips.cc/public/EthicsGuidelines

Answer: [NA]1212

Justification: NA.1213

Guidelines:1214

• The answer NA means that the paper poses no such risks.1215

• Released models that have a high risk for misuse or dual-use should be released with1216

necessary safeguards to allow for controlled use of the model, for example by requiring1217

that users adhere to usage guidelines or restrictions to access the model or implementing1218

safety filters.1219

• Datasets that have been scraped from the Internet could pose safety risks. The authors1220

should describe how they avoided releasing unsafe images.1221

• We recognize that providing effective safeguards is challenging, and many papers do1222

not require this, but we encourage authors to take this into account and make a best1223

faith effort.1224

12. Licenses for existing assets1225

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1226

the paper, properly credited and are the license and terms of use explicitly mentioned and1227

properly respected?1228

Answer: [Yes]1229

Justification: We properly cite the works from where we get the model and the dataset.1230

Guidelines:1231

• The answer NA means that the paper does not use existing assets.1232

• The authors should cite the original paper that produced the code package or dataset.1233

• The authors should state which version of the asset is used and, if possible, include a1234

URL.1235

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1236

• For scraped data from a particular source (e.g., website), the copyright and terms of1237

service of that source should be provided.1238

• If assets are released, the license, copyright information, and terms of use in the1239

package should be provided. For popular datasets, paperswithcode.com/datasets1240

has curated licenses for some datasets. Their licensing guide can help determine the1241

license of a dataset.1242

• For existing datasets that are re-packaged, both the original license and the license of1243

the derived asset (if it has changed) should be provided.1244

• If this information is not available online, the authors are encouraged to reach out to1245

the asset’s creators.1246

13. New assets1247

Question: Are new assets introduced in the paper well documented and is the documentation1248

provided alongside the assets?1249

Answer: [Yes]1250

Justification: We open-source our code and also provide it in the supplementary material1251

and document the scripts to reproduce the experiments in the README file.1252

Guidelines:1253

• The answer NA means that the paper does not release new assets.1254

• Researchers should communicate the details of the dataset/code/model as part of their1255

submissions via structured templates. This includes details about training, license,1256

limitations, etc.1257

• The paper should discuss whether and how consent was obtained from people whose1258

asset is used.1259

• At submission time, remember to anonymize your assets (if applicable). You can either1260

create an anonymized URL or include an anonymized zip file.1261

14. Crowdsourcing and research with human subjects1262

38

paperswithcode.com/datasets

Question: For crowdsourcing experiments and research with human subjects, does the paper1263

include the full text of instructions given to participants and screenshots, if applicable, as1264

well as details about compensation (if any)?1265

Answer: [NA]1266

Justification: NA1267

Guidelines:1268

• The answer NA means that the paper does not involve crowdsourcing nor research with1269

human subjects.1270

• Including this information in the supplemental material is fine, but if the main contribu-1271

tion of the paper involves human subjects, then as much detail as possible should be1272

included in the main paper.1273

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1274

or other labor should be paid at least the minimum wage in the country of the data1275

collector.1276

15. Institutional review board (IRB) approvals or equivalent for research with human1277

subjects1278

Question: Does the paper describe potential risks incurred by study participants, whether1279

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1280

approvals (or an equivalent approval/review based on the requirements of your country or1281

institution) were obtained?1282

Answer: [NA]1283

Justification: NA1284

Guidelines:1285

• The answer NA means that the paper does not involve crowdsourcing nor research with1286

human subjects.1287

• Depending on the country in which research is conducted, IRB approval (or equivalent)1288

may be required for any human subjects research. If you obtained IRB approval, you1289

should clearly state this in the paper.1290

• We recognize that the procedures for this may vary significantly between institutions1291

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1292

guidelines for their institution.1293

• For initial submissions, do not include any information that would break anonymity (if1294

applicable), such as the institution conducting the review.1295

16. Declaration of LLM usage1296

Question: Does the paper describe the usage of LLMs if it is an important, original, or1297

non-standard component of the core methods in this research? Note that if the LLM is used1298

only for writing, editing, or formatting purposes and does not impact the core methodology,1299

scientific rigorousness, or originality of the research, declaration is not required.1300

Answer: [NA]1301

Justification: LLMs were used for writing and editing the paper, and visualizing the plots.1302

Guidelines:1303

• The answer NA means that the core method development in this research does not1304

involve LLMs as any important, original, or non-standard components.1305

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1306

for what should or should not be described.1307

39

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Methodology
	Network architecture
	Interpretability Techniques

	The Plan Representation
	The Planning Algorithm
	Initializing the plan
	The Transition Model
	The Valuation Mechanism

	Related work and discussion
	Conclusion
	Common components of search algorithmns
	Network architecture
	Network training details
	Gate importance
	Label verification and offset computation
	Plan Representation to Action Policy
	State Transition Update
	Activation transfer mechanism from long to short term channels
	Case study: Backtracking mechanism
	Case study: making the network take the longer path
	Unsuccessful methods
	Channel Redundancy
	Weight steering fixes failure on larger levels
	Limitations
	Societal Impact

