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Abstract
Generative models inspired by dynamical trans-
port of measure – such as flows and diffusions
– construct a continuous-time map between two
probability densities. Conventionally, one of these
is the target density, only accessible through sam-
ples, while the other is taken as a simple base
density that is data-agnostic. In this work, using
the framework of stochastic interpolants, we for-
malize how to couple the base and the target densi-
ties, whereby samples from the base are computed
conditionally given samples from the target in a
way that is different from (but does not preclude)
incorporating information about class labels or
continuous embeddings. This enables us to con-
struct dynamical transport maps that serve as con-
ditional generative models. We show that these
transport maps can be learned by solving a simple
square loss regression problem analogous to the
standard independent setting. We demonstrate
the usefulness of constructing dependent cou-
plings in practice through experiments in super-
resolution and in-painting. The code is available
at https://github.com/interpolants/couplings.

1. Introduction
Generative models such as normalizing flows and diffusions
sample from a target density ρ1 by continuously transform-
ing samples from a base density ρ0 into the target. This
transport is accomplished by means of an ordinary differ-
ential equation (ODE) or stochastic differential equation
(SDE), which takes as initial condition a sample from ρ0
and produces at time t = 1 an approximate sample from
ρ1. Typically, the base density is taken to be something
simple, analytically tractable, and easy to sample, such as
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Figure 1: Examples. Super-resolution and in-painting
results computed with our formalism.

a standard Gaussian. In some formulations, such as score-
based diffusion (Sohl-Dickstein et al., 2015; Song & Ermon,
2020; Ho et al., 2020b; Song et al., 2020; Singhal et al.,
2023), a Gaussian base density is intrinsically tied to the
process achieving the transport. In others, including flow
matching (Lipman et al., 2022a; Chen & Lipman, 2023),
rectified flow (Liu et al., 2022b; 2023b), and stochastic in-
terpolants (Albergo & Vanden-Eijnden, 2022; Albergo et al.,
2023), a Gaussian base is not required, but is often chosen
for convenience. In these cases, the choice of Gaussian base
represents an absence of prior knowledge about the problem
structure, and existing works have yet to fully explore the
strength of base densities adapted to the target.

In this work, we introduce a general formulation of stochas-
tic interpolants in which a base density is produced via
a coupling, whereby samples of this base are computed
conditionally given samples from the target. We construct
a continuous-time stochastic process that interpolates be-
tween the coupled base and target, and we characterize the
resulting transport by identification of a continuity equation
obeyed by the time-dependent density. We show that the
velocity field defining this transport can be estimated by so-
lution of an efficient, simulation-free square loss regression
problem analogous to standard, data-agnostic interpolant
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and flow matching algorithms.

In our formulation, we also allow for dependence on an
external, conditional source of information independent of
ρ1, which we call ξ. This extra source of conditioning
is standard, and can be used in the velocity field bt(x, ξ)
to accomplish class-conditional generation, or generation
conditioned on a continuous embedding such as a textual
representation or problem-specific geometric information.
As illustrated in Fig. 2, it is however different from the data-
dependent coupling that we propose. Below, we suggest
some generic ways to construct coupled, conditional base
and target densities, and we consider practical applications
to image super-resolution and in-painting, where we find im-
proved performance by incorporating both a data-dependent
coupling and the conditioning variable. Together, our main
contributions can be summarized as:

1. We define a broader way of constructing base and target
pairs in generative models based on dynamical trans-
port that adapts the base to the target. In addition, we
formalize the use of conditional information – both dis-
crete and continuous – in concert with this new form
of data coupling in the stochastic interpolant frame-
work. As special cases of our general formulation, we
obtain several recent variants of conditional generative
models that have appeared in the literature.

2. We provide a characterization of the transport that re-
sults from conditional, data-dependent generation, and
analyze theoretically how these factors influence the
resulting time-dependent density

3. We provide an empirical study on the effect of coupling
for stochastic interpolants, which have recently been
shown to be a promising, flexible class of generative
models. We demonstrate the utility of data-dependent
base densities and the use of conditional information in
two canonical applications, image inpainting and super-
resolution, which highlight the performance gains that
can be obtained through the application of the tools
developed here .

The rest of the paper is organized as follows. In Section 2,
we describe some related work in conditional generative
modeling. In Section 3, we introduce our theoretical frame-
work. We characterize the transport that results from the
use of data-dependent couplings, and discuss the difference
between this approach and conditional generative model-
ing. In Section 4, we apply the framework to numerical
experiments on ImageNet, focusing on image inpainting
and image super-resolution. We conclude with some re-
marks and discussion in Section 5.

2. Related Work
Couplings. Several works have studied the question of
how to build couplings, primarily from the viewpoint of
optimal transport theory. An initial perspective in this re-
gard comes from (Pooladian et al., 2023; Tong et al., 2023;
Klein et al., 2023), who state an unbiased means for build-
ing entropically-regularized optimal couplings from mini-
batches of training samples. This perspective is appealing
in that it may give probability flows that are straighter and
hence more easily computed using simple ODE solvers.
However, it relies on estimating an optimal coupling over
minibatches of the entire dataset, which, for large datasets,
may become uninformative as to the true coupling. In an
orthogonal perspective, (Lee et al., 2023) presented an algo-
rithm to learn a coupling between the base and the target by
building dependence on the target into the base. They argue
that this can reduce curvature of the underlying transport.
While this perspective empirically reduces the curvature
of the flow lines, it introduces a potential bias in that they
still sample from an independent base, possibly not equal
to the marginal of the learned conditional base. Learning a
coupling can also be achieved by solving the Schrödinger
bridge problem, as investigated e.g. in (De Bortoli et al.,
2021; Shi et al., 2023). This leads to iterative algorithms
that require solving pairs of SDEs until convergence, which
is costly in practice. More closely connected to our work are
the approaches proposed in (Liu et al., 2023a; Somnath et al.,
2023): by considering generative modeling through the lens
of diffusion bridges with known coupling, they arrive to a
formulation that is operationally similar to, but less general
than, ours. Our approach is simpler, and more flexible, as
it differentiates between the bridging of the densities and
the construction of the generative models. Table 1 summa-
rizes these couplings along with the standard independent
pairing.

Generative Modeling and Dynamical Transport. Gen-
erative models built upon dynamical transport of measure
go back at least to (Tabak & Vanden-Eijnden, 2010; Tabak
& Turner, 2013), and were further developed in (Rezende
& Mohamed, 2015; Dinh et al., 2017; Huang et al.,
2016; Durkan et al., 2019) using compositions of discrete
maps, while modern models are typically formulated via
a continuous-time transformation. In this context, a major
advance was the introduction of score-based diffusion (Song
et al., 2021b;a), which relates to denoising diffusion proba-
bilistic models (Ho et al., 2020a), and allows one to generate
samples by learning to reverse a stochastic differential equa-
tion that maps the data into samples from a Gaussian base
density. Methods such as flow matching (Lipman et al.,
2022b), rectified flow (Liu, 2022; Liu et al., 2022a), and
stochastic interpolants (Albergo & Vanden-Eijnden, 2022;
Albergo et al., 2023) expand on the idea of building stochas-
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Figure 2: Data-dependent couplings are different than conditioning. Delineating between constructing couplings versus
conditioning the velocity field, and their implications for the corresponding probability flow Xt. The transport problem is
flowing from a Gaussian Mixture Model (GMM) with 3 modes to another GMM with 3 modes. Left: The probability flow
Xt arising from the data-dependent coupling ρ(x0, x1) = ρ1(x1)ρ0(x0|x1). All samples follow simple trajectories. No
formation of auxiliary modes form in the intermediate density ρ(t), in juxtaposition to the independent case. Center: When
the velocity field is conditioned bt(x, ξ) on each class (mode), it factorizes, resulting in three separate probability flows
Xξ

t with ξ = 1, 2, 3. Right: The probability flow Xt when taking an unconditional velocity field bt(x) and an independent
coupling ρ(x0, x1) = ρ0(x0)ρ1(x1). Note the complexity of the underlying transport, which motivates us to consider
finding correlated base variables directly in the data.

Table 1: Couplings. Standard formulations of flows and diffusions construct generative models built upon an independent
coupling (Albergo & Vanden-Eijnden, 2022; Albergo et al., 2023; Lipman et al., 2022a; Liu et al., 2022b). (Lee et al.,
2023) learn qϕ(x0|x1) jointly with the velocity to define the coupling during training, but instead sample from ρ0 = N(0, Id)
for generation. (Tong et al., 2023) and (Pooladian et al., 2023) build couplings by running mini-batch optimal transport
algorithms (Cuturi, 2013). Here we focus on couplings enabled by our generic formalism, which bears similarities with (Liu
et al., 2023a; Somnath et al., 2023), and can be individualized to each generative task.

Coupling PDF ρ(x0, x1) Base PDF Description

ρ1(x1)ρ0(x0) x0 ∼ N(0, Id) Independent
ρ(x0|x1)ρ1(x1) x0 ∼ qϕ(x0|x1) Learned conditional
mb-OT(x1, x0) x0 ∼ N(0, Id) Minibatch OT

ρ1(x1)ρ0(x0|x1) x0 ∼ ρ0(x0|x1) Dependent-coupling (this work)

tic processes that connect a base density to the target, but
allow for bases that are more general than a Gaussian den-
sity. Typically, these constructions assume that the samples
from the base and the target are uncorrelated.

Conditional Diffusions and Flows for Images. (Saharia
et al., 2022; Ho et al., 2022a) build diffusions for super-
resolution, where low-resolution images are given as inputs
to a score model, which formally learns a conditional score
(Ho & Salimans, 2022). In-painting can be seen as a form
of conditioning where the conditioning set determines some
coordinates in the target space. In-painting diffusions have
been applied to video generation (Ho et al., 2022b) and
protein backbone generation (Trippe et al., 2022). In the
replacement method one directly inputs the clean values
of the known coordinates at each step of integration (Ho
et al., 2022b); (Schneuing et al., 2022) replace with draws

of the diffused state of the known coordinates. (Trippe
et al., 2022; Wu et al., 2023) discuss approximation error
in this approach and correct with sequential Monte-Carlo.
We revisit this problem framing from the velocity modeling
perspective in Section 4.1. Recent work has applied flows
to high-dimensional conditional modeling (Dao et al., 2023;
Hu et al., 2023). A Schrödinger bridge perspective on the
conditional generation problem was presented in (Shi et al.,
2022).

3. Stochastic interpolants with couplings
Suppose that we are given a dataset {xi

1}ni=1. The aim of a
generative model is to draw new samples assuming that the
data set comes from a probability density function (PDF)
ρ1(x1). Following the stochastic interpolant framework (Al-
bergo & Vanden-Eijnden, 2022; Albergo et al., 2023), we
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introduce a time-dependent stochastic process that interpo-
lates between samples from a simple base density ρ0(x0)
at time t = 0 and samples from the target ρ1(x1) at time
t = 1:

Definition 3.1 (Stochastic interpolant with coupling). The
stochastic interpolant It is the process defined as1

It = αtx0 + βtx1 + γtz t ∈ [0, 1], (1)

where

• αt, βt, and γ2
t are differentiable functions of time such

that α0 = β1 = 1, α1 = β0 = γ0 = γ1 = 0, and
α2
t + β2

t + γ2
t > 0 for all t ∈ [0, 1].

• The pair (x0, x1) is jointly drawn from a probability den-
sity ρ(x0, x1) with finite second moments and such that∫

Rd

ρ(x0, x1)dx1 = ρ0(x0), (2)∫
Rd

ρ(x0, x1)dx0 = ρ1(x1). (3)

• z ∼ N(0, Id), independent of (x0, x1).

A simple instance of (1) uses αt = 1 − t, βt = t, and
γt =

√
2t(1− t).

The stochastic interpolant framework uses information
about the process It to derive either an ODE or an SDE
whose solutions Xt push the law of x0 onto the law of It
for all times t ∈ [0, 1].

As shown in Section 3.1, the drift coefficients in these
ODEs/SDEs can be estimated by quadratic regression. They
can then be used as generative models, owing to the prop-
erty that the process xt specified in Definition 3.1 satis-
fies It=0 = x0 ∼ ρ0(x0) and It=1 = x1 ∼ ρ1(x1),
and hence samples the desired target density. By draw-
ing samples x0 ∼ ρ0(x0) and using them as initial data
Xt=0 = x0 in the ODEs/SDEs, we can then generate sam-
ples Xt=1 ∼ ρ1(x1) via numerical integration.

In the original stochastic interpolant papers, this construc-
tion was made using the choice ρ(x0, x1) = ρ0(x0)ρ1(x1),
so that x0 and x1 were drawn independently from the base
and the target.

Our aim here is to build generative models that are more
powerful and versatile by exploring and exploiting depen-
dent couplings between x0 and x1 via suitable definition of
ρ(x0, x1).

1More generally, we may set It = I(t, x0, x1) in (1), where
I satisfies some regularity properties in addition to the boundary
conditions I(t = 0, x0, x1) = x0 and I(t = 1, x0, x1) = x1 (Al-
bergo & Vanden-Eijnden, 2022; Albergo et al., 2023). For simplic-
ity, we will stick to the linear choice I(t, x0, x1) = αtx0 + βtx1.

Remark 3.1 (Incorporating conditioning). Our formalism
allows (but does not require) that each data point xi

1 ∈ Rd

comes with a label ξi ∈ D, such as a discrete class or a
continuous embedding like that of a text caption. In this
setup, our results can be straightforwardly generalized by
making all the quantities (PDF, velocities, etc.) conditional
on ξ. This is discussed in Appendix A and used in various
forms in our numerical examples.

3.1. Transport equations and conditional generative
models

In this section, we show that the probability distribution of
the process It defined in (1) has a time-dependent density
ρt(x) that interpolates between ρ0(x) and ρ1(x). We char-
acterize this density as the solution of a transport equation,
and we show that both the corresponding velocity field and
the score ∇ log ρt(x) are minimizers of simple quadratic
objective functions.

This result enables us to construct conditional generative
models by approximating the velocity (and possibly the
score) via minimization over a rich parametric class such as
neural networks. We first define the functions:

bt(x) = E(İt|It = x), gt(x) = E(z|It = x), (4)

where the dot denotes time-derivative and E(·|It = x) de-
notes the expectation over ρ(x0, x1) conditional on It = x.
We then have,

Theorem 3.1 (Transport equation with coupling). The prob-
ability distribution of the stochastic interpolant It defined
in (1) has a density ρt(x) that satisfies ρt=0(x) = ρ0(x)
and ρt=1(x) = ρ1(x), and solves the transport equation

∂tρt(x) +∇ · (bt(x)ρt(x)) = 0, (5)

where the velocity field bt(x) is defined in (4). Moreover,
for every t such that γt ̸= 0, the following identity for the
score holds

∇ log ρt(x) = −γ−1
t gt(x). (6)

Finally, the functions b and g are the unique minimizers of
the objectives

Lb(b̂) =

∫ 1

0

E
[
|b̂t(It)|2 − 2İt · b̂t(It)

]
dt,

Lg(ĝ) =

∫ 1

0

E
[
|ĝt(It)|2 − 2z · ĝt(It)

]
dt

(7)

where E denotes an expectation over (x0, x1) ∼ ρ(x0, x1)
and z ∼ N(0, Id) with (x0, x1) ⊥ z.

A more general version of this result with a conditioning
variable is proven in Appendix A. The objectives (7) can
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readily be estimated in practice from samples (x0, x1) ∼
ρ(x0, x1) and z ∼ N(0, 1), which will enable us to learn
approximations for use in a generative model.

The transport equation (5) can be used to derive generative
models, as we now show.

Corollary 3.1 (Probability flow and diffusions with cou-
pling). The solutions to the probability flow equation

Ẋt = bt(Xt) (8)

enjoy the property that

Xt=1 ∼ ρ1(x1) if Xt=0 ∼ ρ0(x0) (9)
Xt=0 ∼ ρ0(x0) if Xt=1 ∼ ρ1(x1) (10)

In addition, for any ϵt ≥ 0, solutions to the forward SDE

dXF
t = bt(X

F
t )dt− ϵtγ

−1
t gt(X

F
t )dt+

√
2ϵtdWt, (11)

enjoy the property that

XF
t=1 ∼ ρ1(x1) if XF

t=0 ∼ ρ0(x0), (12)

and solutions to the backward SDE

dXR
t = bt(X

R
t )dt+ ϵtγ

−1
t gt(X

R
t )dt+

√
2ϵtdWt, (13)

enjoy the property that

XR
t=0 ∼ ρ0(x0) if XR

t=1 ∼ ρ1(x1). (14)

A more general version of this result with conditioning is
also proven in Appendix A.

Corollary 3.1 shows that the coupling can be incorporated
both in deterministic and stochastic generative models de-
rived within the stochastic interpolant framework. In what
follows, for simplicity we will focus on the deterministic
probability flow ODE (8).

An important observation is that the transport cost of the
generative model based on the probability flow ODE (8),
which impacts the numerical stability of solving this ODE,
is controlled by the time dynamics of the interpolant, as
shown by our next result:

Proposition 3.1 (Control of transport cost). Let Xt(x0) be
the solution to the probability flow ODE (8) for the initial
condition Xt=0(x0) = x0 ∼ ρ0. Then

Ex0∼ρ0

[
|Xt=1(x0)− x0|2

]
≤

∫ 1

0

E[|İt|2]dt < ∞ (15)

The proof of this proposition is given in Appendix A. Min-
imizing the left hand-side of (15) would achieve optimal
transport in the sense of Benamou-Brenier (Benamou & Bre-
nier, 2000), and the minimum would give the Wasserstein-2

distance between ρ0 and ρ1. Various works seek to minimize
this distance procedurally either by adapting the coupling
(Pooladian et al., 2023; Tong et al., 2023) or by optimizing
ρt(x) (Albergo & Vanden-Eijnden, 2022), at additional cost.
Here we introduce designed couplings at no extra cost that
can lower the upper bound in (15). This will allow us to
show how different couplings enable stricter control of the
transport cost in various applications. Let us now discuss a
generic instantiation of our formalism involving a specific
choice of ρ(x0, x1).

3.2. Designing data-dependent couplings

One natural way to allow for a data-dependent coupling
between the base and the target is to set

ρ(x0, x1) = ρ1(x1)ρ0(x0|x1) with (16)∫
Rd

ρ0(x0|x1)ρ1(x1)dx1 = ρ0(x0). (17)

There are many ways to construct the conditional ρ0(x0|x1).
In the numerical experiments in Section 4.1 & Section 4.2,
we consider base densities of a variable x0 of the generic
form

x0 = m(x1) + σζ, (18)

where m(x1) ∈ Rd is some function of x1, possibly random
even if conditioned on x1, σ ∈ Rd×d, and ζ ∼ N(0, Id) with
ζ ⊥ m(x1). In this set-up, the corrupted observation m(x1)
(a noisy, partial, or low-resolution image) is determined
by the task at hand and available to us, but we are free
to choose the design of the term σζ in (18) in ways that
can be exploited differently in various applications (and
is allowed to depend on any conditional info ξ). Note in
particular that, given m(x1), (18) is easy to generate at
sampling time. Note also that, if the corrupted observation
m(x1) is deterministic given x1, the conditional probability
density of (18) is the Gaussian density with mean m(x1)
and covariance C = σσ⊤:

ρ0(x0|x1) = N(x0;m(x1), C), (19)

We stress that, even in this case, ρ(x0, x1) =
ρ1(x1)ρ0(x0|x1) and ρ0(x0) = ρ0(x0|x1) are non-
Gaussian densities in general. In this context, we can use
the interpolant from (1) with γt = 0, which reduces to:

It = αt(m(x1) + σζ) + βtx1 (20)

Note that the score associated to (20) is still available be-
cause of the factor of σζ, so long as σ is invertible.

3.3. Reducing transport costs via coupling

In the numerical experiments, we will highlight how the
construction of a data-dependent coupling enables us to
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Algorithm 1 Training

Input: Interpolant coefficients αt, βt; velocity model b̂;
batch size nb;
repeat

for i = 1, . . . , nb do
Draw xi

1 ∼ ρ1(x1), ζi ∼ N (0, Id), ti ∼ U(0, 1).
Compute xi

0 = m(xi
1) + σζi.

Compute Iti = αtix
i
0 + βtix

i
1.

end for
Compute empirical loss
L̂b(b̂) = n−1

b
∑nb

i=1[|b̂ti(Iti)|2 − 2İti · b̂ti(Iti)].
Take gradient step on L̂b(b̂) to update b̂.

until converged
Return: Velocity b̂.

Algorithm 2 Sampling (via forward Euler method)

Input: model b̂, corrupted sample m(x1), N ∈ N.
Draw noise ζ ∼ N (0, Id)
Initialize X̂0 = m(x1) + σζ
for n = 0, . . . , N − 1 do
X̂i+1 = X̂i +N−1b̂i/N (X̂i)

end for
Return: clean sample X̂N .

perform various downstream tasks. An additional appeal is
that data-dependent couplings facilitate the design of more
efficient transport than standard generation from a Gaussian,
as we now show.

The bound on the transportation cost in (15) may be more
tightly controlled by the construction of data-dependent
couplings and their associated interpolants. In this case, we
seek couplings such that E[|İt|2] is smaller with coupling
than without, i.e. such that∫

R3d

|İt|2ρ(x0, x1)ρz(z)dx0dx1dz

≤
∫
R3d

|İt|2ρ0(x0)ρ1(x1)ρz(z)dx0dx1dz,

(21)

where İt = α̇tx0+ β̇tx1+ γ̇tz is a function of x0, x1 and z.
A simple way to design such a coupling is to consider (19)
with m(x1) = x1 and C = σ2Id for some σ > 0, which
sets the base distribution to be a noisy version of the target.
In the case of data-decorruption (which we explore in the
numerical experiments), this interpolant directly connects
the corrupted conditional density and the uncorrupted den-
sity. If we choose αt = 1 − t and βt = t, and set γt = 0,
then İt = x1 − x0, and the left hand-side of (21) reduces
to E[|σz|2] = dσ2, which is less than the right hand-side
given by 2E[|x1|2] + dσ2.

3.4. Learning and Sampling

To learn in this setup, we can evaluate the objective func-
tions (7) over a minibatch of nb < n data points xi

0, x
i
1

by using an additional nb samples zi ∼ N(0, Id) and
ti ∼ U([0, 1]). This leads to the empirical approximation
L̂b of Lb given by

L̂b(b̂) =
1

nb

nb∑
i=1

[
|b̂ti(Iti)|2 − 2İti · b̂ti(Iti)

]
, (22)

with a similar empirical variant for Lz . We approximate
the functions bt(x) and gt(x) with neural networks and
minimize these empirical objectives with stochastic gradient
descent. This leads to an approximation of the velocity bt(x)
via (4) and of the score via (6).

Generating data requires sampling an Xt=0 ∼ ρ0(x0) as
an initial condition to be evolved via the probability flow
ODE (8) or the forward SDE (11) to respectively produce a
sample Xt=1 ∼ ρ1(x1) or XF

t=1 ∼ ρ1(x1). Sampling an x0

can be performed by picking data point x1 either from the
data set or from some online data acquisition procedure and
using it in (18), or using the assumption that one directly
observes x0 ∼ ρ0(x0) at inference time (e.g. one receives
a partial image). The generated samples from either the
probability flow ODE or forward SDE will be different from
x1, even with the choices m(x1) = x1 and C = σ2Id. The
probability flow ODE necessarily produces a single sample
of x1 for each x0, while the SDE produces a collection of
samples whose spread can be controlled by the diffusion
coefficient ϵt. Algorithms 1 and 2 depict these training and
sampling procedures, respectively.

4. Numerical experiments
We now explore the interpolants with data-dependent cou-
plings on conditional image generation tasks; we find that
the framework is straightforward to scale to high resolution
images directly in pixel space.

4.1. In-painting

We consider an in-painting task, whereby x1 ∈ RC×W×H

denotes an image with C channels, width W , and height H .
Given a pre-specified mask, the goal is to fill the pixels in
the masked region with new values that are consistent with
the entirety of the image. We set the conditioning variable
ξ ∈ {0, 1}C×W×H and additionally provide the model with
any potential class labels. For simplicity, the mask takes
the same value for all channels in a given spatial location
in the image. We define the base density by the relation
x0 = ξ ◦ x1 + (1− ξ) ◦ ζ, where ◦ denotes the Hadamard
(elementwise) product and ζ ∈ RC×W×H , ζ ∼ N(0, Id)
denotes random noise used to initialize the pixels within the
masked region (separate noise for each channel). During
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training, the mask is drawn randomly by tiling the image
into 64 tiles; each tile is selected to enter the mask with
probability p = 0.3. In our experiments, we set ρ1(x1)
to correspond to ImageNet (either 256 or 512). This cor-
responds to using ρ(x0, x1|ξ) = ρ1(x1)ρ0(x0|x1, ξ). The
model sees the mask; we note that we do not need to addi-
tionally input the partial image as extra conditioning because
it is present, uncorrupted, in xt for each t because the values
are present in x0 and x1. In the interpolant (20), we set
αt = t and βt = 1 − t. In this setup, the velocity field
bt(x, ξ) is such that bt(x, ξ) = 0 except in the masked re-
gions. This follows because ξ ◦ It = ξ ◦ x1 for every t, i.e.,
the unmasked pixels in It are always those of x1 for which
İt = 0. To take this structural information into account, we
can build this property into our neural network model, and
mask the output of the approximate velocity field to enforce
that the unmasked pixels remain fixed. We note that this
method does not necessitate any inference time corrections,
such as the replacement method or MCMC.

Results. For implementation, we parameterize bt(x, ξ)
using the basic U-Net architecture from (Ho et al., 2020b),
where ξ is given to the model as appended channels of the
image x. Additional specific experimental details may be
found in Appendix B. Samples are shown in Figure 3, as
well as Section 1. FIDs are reported in Table 2. As discussed,
the missing areas of the image are defined at time zero as
independent normal random variables, depicted as colorful
static in the images. In each image triple, the left panel is the
base distribution sample x0, the middle is the model sample
of Xt=1 obtained by integrating the probability flow ODE
(8), and the right panel is the ground truth. The generated
textures, though different from the full sample, correspond
to realistic samples from the conditional densities given
the observed content. This is an advantage of probabilistic
generative models such as ours over models optimized to fit
a mean-square error to a ground truth image.

4.2. Super-resolution on Imagenet

We now consider image super-resolution, in which we would
like to produce an image with the same content as a given
image but at higher resolution. To this end, we let x1 ∈
RC×W×H correspond to a high-resolution image, as in Sec-

Table 2: FID for Inpainting Task. FID comparison be-
tween under two paradigms: a baseline, where ρ0 is a
Gaussian with independent coupling to ρ1, and our data-
dependent coupling detailed in Section 4.1.

Model FID-50k

Uncoupled Interpolant (Baseline) 1.35
Dependent Coupling (Ours) 1.13

Table 3: FID-50k for Super-resolution, 64x64 to 256x256.
FIDs for baselines taken from (Saharia et al., 2022; Ho et al.,
2022a; Liu et al., 2023a).

Model Train Valid

Improved DDPM (Nichol & Dhariwal, 2021) 12.26 –
SR3 (Saharia et al., 2022) 11.30 5.20
ADM (Dhariwal & Nichol, 2021) 7.49 3.10
Cascaded Diffusion (Ho et al., 2022a) 4.88 4.63
I2SB (Liu et al., 2023a) – 2.70
Dependent Coupling (Ours) 2.13 2.05

tion 4.1. We denote by D : RC×W×H → RC×Wlow×Hlow

and U : RC×Wlow×Hlow → RC×W×H image downsampling
and upsampling operations, where Wlow and Hlow denote
the width and height of a low-resolution image. To define
the base density, we then set x0 = U (D (x1)) + σζ with
ζ ∈ RC×W×H , ζ ∼ N(0, Id), and σ > 0. Defining x0 in
this way frames the transport problem such that each starting
pixel is proximal to its intended target. Notice in particular
that, with σ = 0, each x0 would correspond to a lower-
dimensional sample embedded in a higher-dimensional
space, and the corresponding distribution would be con-
centrated on a lower-dimensional manifold. Working with
σ > 0 alleviates the associated singularities by adding a
small amount of Gaussian noise to smooth the base density
so it is well-defined over the entire higher-dimensional ambi-
ent space. In addition, we give the model access to the low-
resolution image at all times; this problem setting then cor-
responds to using ρ(x0, x1|ξ) = ρ1(x1)ρ0(x0|x1, ξ) with
ξ = U (D (x1)). In the experiments, we set ρ1 to correspond
to ImageNet (256 or 512), following prior work (Saharia
et al., 2022; Ho et al., 2022a).

Results. Similarly to the previous experiment, we append
the upsampled low-resolution images ξ to the channel di-
mension of the input x of the velocity model, and likewise
include the ImageNet class labels. Samples are displayed
in Fig. 4, as well as Section 1. Similar in layout to the
previous experiment, the left panel of each triplet is the
low-resolution image, the middle panel is the model sample
Xt=1, and the right panel is the high-resolution image. The
differences are easiest to see when zoomed-in. While the
increased resolution of the model sample is very noticeable
for 64 to 256, the differences even in ground truth images
between 256 and 512 are more subtle. We also display FIDs
for the 64x64 to 256x256 task, which has been studied in
other works, in Table 3.

5. Discussion, challenges, and future work
In this work, we introduced a general framework for con-
structing data-dependent couplings between base and tar-
get densities within the stochastic interpolant formalism.
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Figure 3: Image inpainting: ImageNet-256×256 and ImageNet-512×512. Top panels: Six examples of image in-filling
at resolution 256× 256, where the left columns display masked images, the center corresponds to in-filled model samples,
and the right shows full reference images. The aims are not to recover the precise content of the reference image, but instead,
to provide a conditionally valid in-filling. Bottom panels: Four examples at resolution 512× 512.

Figure 4: Super-resolution: Top four rows: Super-resolved images from resolution 64 × 64 7→ 256 × 256, where the
left-most image is the lower resolution version, the middle is the model output, and the right is the ground truth. Examples
for 256× 256 7→ 512× 512 are given in Fig. 6.

We provide some suggestions for specific forms of data-
dependent coupling, such as choosing for ρ0 a Gaussian
distribution with mean and covariance adapted to samples
from the target, and showed how they can be used in prac-
tical problem settings such as image inpainting and super-

resolution. There are many interesting generative modeling
problems that stand to benefit from the incorporation of
data-dependent structure. In the sciences, one potential ap-
plication is in molecule generation, where we can imagine
using data-dependent base distributions to fix a chemical

8
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backbone and vary functional groups. The dependency and
conditioning structure needed to accomplish a task like this
is similar to image inpainting. In machine learning, one
potential application is in correcting autoencoding errors
produced by an architecture such as a variational autoen-
coder (Kingma & Welling, 2013), where we could take the
target density to be inputs to the autoencoder and the base
density to be the output of the autoencoder.
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A. Omitted proofs with conditioning variables incorporated
In this Appendix we give the proofs of Theorem 3.1 and Corollary 3.1 in a more general setup in which we incorporate
conditioning variables in the definition of the stochastic interpolant.

To this end, suppose that each data point xi
1 ∈ Rd in the data set comes with a label ξi ∈ D, such as a discrete class

or a continuous embedding like a text caption, and let us assume that this data set comes from a PDF decomposed as
ρ1(x1|ξ)η(ξ), where ρ1(x1|ξ) is the density of the data x1 conditioned on their label ξ, and η(ξ) is the density of the label.
In the following, we will somewhat abuse notation and use η(ξ) even when ξ is discrete (in which case, η(ξ) is a sum of
Dirac measures); we will however assume that ρ1(x1|ξ) is a proper density. In this setup we can generalize Definition 3.1 as

Definition A.1 (Stochastic interpolant with coupling and conditioning). The stochastic interpolant It is the stochastic
process defined as

It = αtx0 + βtx1 + γtz t ∈ [0, 1], (23)

where

• αt, βt, and γ2
t are differentiable functions of time such that α0 = β1 = 1, α1 = β0 = γ0 = γ1 = 0, and α2

t +β2
t +γ2

t > 0
for all t ∈ [0, 1].

• The pair (x0, x1) are jointly drawn from a conditional probability density ρ(x0, x1|ξ) such that∫
Rd

ρ(x0, x1|ξ)dx1 = ρ0(x0|ξ), (24)∫
Rd

ρ(x0, x1|ξ)dx0 = ρ1(x1|ξ). (25)

• z ∼ N(0, Id), independent of (x0, x1, ξ).

Similarly, the functions (4) become

bt(x, ξ) = E(İt|It = x, ξ), gt(x, ξ) = E(z|It = x, ξ) (26)

where E(·|It = x) denotes the expectation over ρ(x0, x1|ξ) conditional on It = x, and Theorem 3.1 becomes:

Theorem A.1 (Transport equation with coupling and conditioning). The probability distribution of the stochastic inter-
polant It specified by Definition A.1 has a density ρt(x|ξ) that satisfies ρt=0(x|ξ) = ρ0(x|ξ) and ρt=1(x|ξ) = ρ1(x|ξ), and
solves the transport equation

∂tρt(x|ξ) +∇ · (bt(x, ξ)ρt(x|ξ)) = 0, (27)

where the velocity field is given in (26). Moreover, for every t such that γt ̸= 0, the following identity for the score holds

∇ log ρt(x|ξ) = −γ−1
t gt(x, ξ). (28)

The functions b and g are the unique minimizers of the objective

Lb(b̂) =

∫ 1

0

E
[
|b̂t(It, ξ)|2 − 2İt · b̂t(It, ξ)

]
dt,

Lg(ĝ) =

∫ 1

0

E
[
|ĝt(It, ξ)|2 − 2z · ĝt(It, ξ)

]
dt,

(29)

where E denotes an expectation over (x0, x1) ∼ ρ(x0, x1|ξ), ξ ∼ η(ξ), and z ∼ N(0, Id).

Note that the objectives (29) can readily be estimated in practice from samples (x0, x1) ∼ ρ(x0, x1|ξ), z ∼ N(0, 1), and
ξ ∼ η(ξ), which will enable us to learn approximations for use in a generative model.
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Proof. By definition of the stochastic interpolant given in (23), its characteristic function is given by

E[eik·It ] =
∫
Rd×Rd

eik·(αtx0+βtx1)ρ(x0, x1|ξ)dx0dx1e
− 1

2γ
2
t |k|

2

, (30)

where we used z ⊥ (x0, x1) and z ∼ N(0, Id). The smoothness in k of (30) guarantees that the distribution of It has a
density ρt(x|ξ) > 0 globally. By definition of It, this density ρt(x|ξ) satisfies, for any suitable test function ϕ : Rd → R,∫

Rd

ϕ(x)ρt(x|ξ)dx =

∫
Rd×Rd×Rd

ϕ (It) ρ(x0, x1|ξ)(2π)−d/2e−
1
2 |z|

2

dx0dx1dz. (31)

Above, It = αtx0 + βtx1 + γtz. Taking the time derivative of both sides∫
Rd

ϕ(x)∂tρt(x|ξ)dx

=

∫
Rd×Rd×Rd

(
α̇tx0 + β̇tx1 + γ̇tz

)
· ∇ϕ (It) ρ(x0, x1|ξ)(2π)−d/2e−

1
2 |z|

2

dx0dx1dz

=

∫
Rd

E
[(
α̇tx0 + β̇tx1 + γ̇tz

)
· ∇ϕ(It)

]∣∣It = x
]
ρt(x|ξ)dx

=

∫
Rd

E
[
α̇tx0 + β̇tx1 + γ̇tz

∣∣It = x
]
· ∇ϕ(x)ρt(x|ξ)dx

(32)

where we used the chain rule to get the first equality, the definition of the conditional expectation to get the second, and the
tower property ϕ(It) = ϕ(x) conditioned on It = x to get the third. Since

E
[
α̇tx0 + β̇tx1 + γ̇tz

∣∣It = x
]
= bt(x) (33)

by the definition of b in (26), we can therefore write (32) as∫
Rd

ϕ(x)∂tρt(x|ξ)dx =

∫
Rd

bt(x, ξ) · ∇ϕ(x)ρt(x|ξ)dx. (34)

This equation is (27) written in weak form.

To establish (28), note that if γt > 0, we have

E
[
zeiγtk·z

]
= −γ−1

t (i∂k)E
[
eiγtk·z

]
,

= −γ−1
t (i∂k)e

− 1
2γ

2
t |k|

2

,

= iγtke
− 1

2γ
2
t |k|

2

.

(35)

As a result, using z ⊥ (x0, x1), we have
E
[
zeik·It

]
= iγtkE

[
eik·It

]
. (36)

Using the properties of the conditional expectation, the left-hand side of this equation can be written

E
[
zeik·It

]
=

∫
Rd

E
[
zeik·It

∣∣It = x
]
ρt(x|ξ)dx,

=

∫
Rd

E[z|It = x]eik·xρt(x, ξ)dx,

=

∫
Rd

gt(x, ξ)e
ik·xρt(x, ξ)dx,

(37)

where we used the definition of g in (26) to get the last equality. Since the right-hand side of (36) is the Fourier transform of
−γt∇ρt(x|ξ), we deduce that

gt(x, ξ)ρt(x|ξ) = −γt∇ρt(x|ξ) = −γt∇ log ρt(x|ξ) ρt(x|ξ). (38)

13



Stochastic Interpolants with Data-Dependent Couplings

Since ρt(x|ξ) > 0, this implies (28) when γt > 0.

Finally, to derive (29), notice that we can write

Lb(b̂) =

∫ 1

0

E
[
|b̂t(It, ξ)|2 − 2İt · b̂t(It, ξ)

]
dt,

=

∫ 1

0

∫
Rd

E
[
|b̂t(It, ξ)|2 − 2İt · b̂t(It, ξ)|It = x

]
ρt(x|ξ)dxdt

=

∫ 1

0

∫
Rd

[
|b̂t(x, ξ)|2 − 2E[İt|It = x] · b̂t(x, ξ)

]
ρt(x|ξ)dxdt

=

∫ 1

0

∫
Rd

[
|b̂t(x, ξ)|2 − 2bt(x, ξ) · b̂t(x, ξ)

]
ρt(x|ξ)dxdt

(39)

where we used the definition of b in (26). The unique minimizer of this objective function is b̂t(x, ξ) = bt(x, ξ), and we can
proceed similarly to show that the unique minimizers of Lg(ĝ) is ĝt(x, ξ) = gt(x, ξ), respectively.

Theorem A.1 implies the following generalization of Corollary 3.1:

Corollary A.1 (Probability flow and diffusions with coupling and conditioning). The solutions to the probability flow
equation

Ẋt = bt(Xt, ξ) (40)

enjoy the property that

Xt=1 ∼ ρ1(x1|ξ) if Xt=0 ∼ ρ0(x0|ξ) (41)
Xt=0 ∼ ρ0(x0|ξ) if Xt=1 ∼ ρ1(x1|ξ) (42)

In addition, for any ϵt ≥ 0, solutions to the forward SDE

dXF
t = bt(X

F
t , ξ)dt− ϵtγ

−1
t gt(X

F
t , ξ)dt+

√
2ϵtdWt, (43)

enjoy the property that

XF
t=1 ∼ ρ1(x1|ξ) if XF

t=0 ∼ ρ0(x0|ξ), (44)

and solutions to the backward SDE

dXR
t = bt(X

R
t , ξ)dt+ ϵtγ

−1
t gt(X

R
t , ξ)dt+

√
2ϵtdWt, (45)

enjoy the property that

XR
t=0 ∼ ρ0(x0|ξ) if XR

t=1 ∼ ρ1(x1|ξ). (46)

Note that if we additionally draw ξ marginally from η(ξ) when we generate the solution to these equations, we can also
generate samples from the unconditional ρ0(x0) =

∫
D
ρ0(x0|ξ)η(ξ)dξ and ρ1(x1) =

∫
D
ρ1(x1|ξ)η(ξ)dξ.

Proof. The probability flow ODE is the characteristic equation of the transport equation (27), which proves the statement
about its solutions Xt. To establish the statement about the solution of the forward SDE (43), use expression (28) for
∇ log ρt(x, ξ) together with the identity ∆ρt(x, ξ) = ∇·(∇ log ρt(x, ξ) ρt(x, ξ)) to write (27) as the forward Fokker-Planck
equation

∂tρt(x|ξ) +∇ ·
(
(bt(x, ξ)− ϵtγ

−1
t gt(x, ξ))ρt(x|ξ)

)
= ϵt∆ρt(x|ξ) (47)

to be solved forward in time since ϵt > 0. To establish the statement about the solution of the reversed SDE (45), proceed
similarly to write (27) as the backward Fokker-Planck equation

∂tρt(x|ξ) +∇ ·
(
(bt(x, ξ) + ϵtγ

−1
t gt(x, ξ))ρt(x|ξ)

)
= −ϵt∆ρt(x|ξ) (48)

to be solved backward in time since ϵt > 0.

14
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The generative model arising from Corollary 3.1 has an associated transport cost which is the subject of Corollary 3.1:

Proposition 3.1 (Control of transport cost). Let Xt(x0) be the solution to the probability flow ODE (8) for the initial
condition Xt=0(x0) = x0 ∼ ρ0. Then

Ex0∼ρ0

[
|Xt=1(x0)− x0|2

]
≤

∫ 1

0

E[|İt|2]dt < ∞ (15)

Proof. We have

Ex0∼ρ0

[
|Xt=1(x0)− x0|2

]
= Ex0∼ρ0

[∣∣∣ ∫ 1

0

bt(Xt(x0))dt
∣∣∣2]

≤
∫ 1

0

Ex0∼ρ0

[
|bt(Xt(x0))|2

]
dt

= E
[
|bt(It)|2

]
(49)

where we used the probability flow equation (8) for Xt and the property that the law of Xt(x0) with x0 ∼ ρ0 and It coincide.
Using the definition of bt(x) in (4) and Jensen’s inequality we have that

E
[
|bt(It)|2

]
= E

[∣∣E[İt|It]∣∣2] ≤ E
[
E
[
|İt|2

∣∣It]] = E[|İt|2] (50)

where the last line is true by the tower property of the conditional expectation. Combining (49) and (50) establishes the
bound in (15).

B. Further experimental details
Architecture For the velocity model we use the U-net from (Ho et al., 2020b) as implemented in lucidrain’s denoising-
diffusion-pytorch repository; this variant of the architecture includes embeddings to condition on class labels. We use the
following hyperparameters:

• Dim Mults: (1,1,2,3,4)

• Dim (channels): 256

• Resnet block groups: 8

• Leanred Sinusoidal Cond: True

• Learned Sinusoidal Dim: 32

• Attention Dim Head: 64

• Attention Heads: 4

• Random Fourier Features: False

Image-shaped conditioning in the Unet. For image-shaped conditioning, we follow (Ho et al., 2022a) and append
upsampled low-resolution images to the input xt at each time step to the velocity model. We also condition on the
missingness masks for in-painting by appending them to xt.

Optimization. We use Adam optimizer (Kingma & Ba, 2014), starting at learning rate 2e-4 with the StepLR scheduler
which scales the learning rate by γ = .99 every N = 1000 steps. We use no weight decay. We clip gradient norms at 10, 000
(this is the norm of the entire set of parameters taken as a vector, the default type of norm clipping in PyTorch library).

Integration for sampling We use the Dopri solver from the torchdiffeq library (Chen, 2018).

Miscellaneous We use Pytorch library along with Lightning Fabric to handle parallelism.

Below we include additional experimental illustrations in the flavor of the figures in the main text.
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Figure 5: Additional examples of in-filling on the 256× 256 resolution images, with temporal slices of the probability flow.
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Figure 6: Super-resolution: Top four rows: Super-resolved images from resolution 256× 256 7→ 512× 512, where the
left-most image is the lower resolution version, the middle is the model output, and the right is the ground truth.
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