
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SUPRA-TUNING: COMBINING OUTLIER AND LOW-
RANK ADAPTATION FOR SPARSE AND EFFICIENT LLM
FINE-TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have demonstrated remarkable capabilities but
remain expensive to fine-tune due to their size. Recent parameter-efficient tuning
methods, such as Low-Rank Adaptation (LoRA), reduce the number of trainable
parameters while maintaining performance. In this work, we introduce Super,
a novel sparse adaptation technique that selects and trains only a small set of
influential weights—so-called super weights—identified via outlier metrics such
as WANDA. We show that fine-tuning these outlier weights yields strong per-
formance with minimal parameter updates. Building on this idea, we propose
Supra, a hybrid method that combines Super with LoRA, merging sparse and low-
rank adaptations into a unified tuning strategy. Our experiments on several LLMs
and downstream tasks demonstrate that both Super and Supra outperform exist-
ing sparse or low-rank methods alone in perplexity and task performance, while
reducing computational and memory overhead.

1 INTRODUCTION

Large Language Models (LLMs) have revolutionized the field of natural language processing,
achieving state-of-the-art results in a wide array of tasks including question answering, summa-
rization, code generation, and reasoning. However, their impressive capabilities come with a sub-
stantial cost: full fine-tuning of such models requires considerable computational resources, high
memory consumption, and significant storage for each downstream task. This inefficiency becomes
particularly problematic when deploying models in real-world settings with resource constraints or
personalization requirements.

To address these limitations, parameter-efficient fine-tuning (PEFT) methods have been proposed.
These approaches update only a small fraction of the model’s parameters, leaving the majority of
weights frozen. Among the most successful PEFT techniques is LoRA (Hu et al., 2021), which in-
jects low-rank trainable matrices into existing layers. LoRA enables tuning with minimal parameter
overhead and has been widely adopted for its balance of efficiency and performance.

Beyond low-rank adaptation, recent work has explored the use of sparse adaptation, where only a
small, selected subset of existing weights are updated. Methods such as SIFT (Song et al., 2023)
and RoSA (Nikdan et al., 2024) select salient weights for fine-tuning based on importance scores or
gradient signals. NeFT (Xu et al., 2024) takes this further by identifying and training only the most
critical neurons. SpIEL (Ansell et al., 2024) introduces scalable sparse tuning with structured expert
layers, and SAT (Ma et al., 2024) proposes sparsity-accelerated training with carefully selected
updates. S2FT (Yang et al., 2024) combines sparsity with structured decomposition for efficient
and generalizable tuning, while GIFT-SW (Zhelnin et al., 2024) uses noise-injected fine-tuning on
salient weights to improve robustness.

While sparse tuning methods are promising, they often require multiple training phases, gradient
computations, or architectural modifications to identify important weights. At the same time, the
possibility of combining sparse and low-rank updates has remained underexplored. One exception
is SLTrain (Han et al., 2024), which unifies sparse and low-rank adaptation in a pretraining setting.
In the PEFT context, RoSA (Nikdan et al., 2024) also integrates both types of updates. Notably,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

our work arrives at this hybrid approach independently, based on a different set of motivations and
techniques.

In this paper, we introduce Super, a new sparse PEFT method based on the idea of outlier weights.
Inspired by pruning techniques such as WANDA (Sun et al., 2023), we identify and fine-tune only
a small set of super weights—outlier weights that have disproportionate impact on model behavior
and perplexity. Unlike previous sparse PEFT approaches, Super does not require additional gradient
computations or training stages for weight selection. Instead, it relies on a simple, interpretable,
training-free metric.

We further propose Supra, a hybrid method that combines Super with LoRA to jointly leverage
sparse and low-rank adaptation. Supra brings together the parameter efficiency of Super and the
representational power of LoRA, resulting in a flexible and effective fine-tuning strategy. Our ex-
tensive experiments on LLMs and downstream tasks demonstrate that both Super and Supra achieve
performance on par with or better than existing PEFT methods, with fewer trainable parameters and
lower memory consumption.

We summarize our key contributions as follows:

• We propose Super, a new outlier-based sparse fine-tuning method that updates only a small
set of important weights, selected without training or gradient statistics.

• We introduce Supra, a hybrid PEFT strategy that combines Super with LoRA, effectively
merging sparse and low-rank adaptation.

• We propose a simple yet efficient strategy of setting adaptive rank for LoRA by fixing the
number of trainable parameters for every linear layer.

• We demonstrate the effectiveness of our methods across multiple LLMs and downstream
tasks, showing that Super and Supra achieve comparable or superior performance to exist-
ing PEFT methods with significantly fewer trainable parameters.

Our findings show that outlier-aware sparse fine-tuning and hybrid adaptation offer promising
directions for scalable and effective LLM adaptation.

1.1 NOTATION

All key notation used in this paper is summarized in a tabular form in Section A; see Table 3.

2 RELATED WORK

2.1 PARAMETER–EFFICIENT FINE-TUNING (PEFT)

The prohibitive compute and memory cost of updating all parameters of a large language
model (LLM) has motivated a rich literature on parameter–efficient fine-tuning (PEFT). Classi-
cal adapter-style methods insert small dense modules into each Transformer block (e.g., adapters,
prefix-tuning, and LoRA), but still back-propagate through the full network, limiting their scalabil-
ity. Recent work has therefore shifted towards sparse or otherwise structured updates that explicitly
select a subset of parameters to train.

2.2 SPARSE FINE-TUNING

Several papers demonstrate that high accuracy can be recovered—even on reasoning-heavy
tasks—when a model is updated on only a small fraction of its weights. (Song et al., 2023) analyse
the PAC-Bayesian generalisation bound of PEFT and propose SIFT, a gradient-based algorithm that
activates at most k parameters per layer during training. (Ansell et al., 2024) show that dynamically
grown–pruned sparse deltas scale to 13-B-parameter LLaMA-2 while retaining memory propor-
tional to the sparsity pattern rather than to model size. Orthogonally, (Ma et al., 2024) exploit the
observation that only a minority of neurons fire on any given example and skip the forward/backward
pass of inactive neurons to accelerate both continual pre-training and supervised fine-tuning by up to
45%. Building on structured sparsity, (Yang et al., 2024) introduce S2FT, which selects a small set

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

of attention heads and MLP channels, then co-permutes weight matrices so the selected components
form dense sub-matrices that can be trained efficiently with ordinary GEMM kernels.

2.3 HYBRID LOW-RANK & SPARSE METHODS

A complementary line of work seeks to combine the representational benefits of low-rank adapta-
tion with the compactness of sparsity. (Nikdan et al., 2024) decompose the update into a low-rank
adapter plus a very sparse residual and optimise both jointly, delivering full-fine-tuning accuracy
at LoRA-sized budgets. For the pre-training regime, (Han et al., 2024) factorise each linear layer
into a low-rank term and a fixed-support sparse term, achieving up to 73% memory savings while
matching full-rank performance.

2.4 FINE-TUNING AT THE NEURON OR WEIGHT LEVEL

Moving to finer granularity, (Xu et al., 2024) supervise the updates at the level of individual neurons
(NEFT), explicitly identifying task-relevant neurons whose small subset updates suffice to outper-
form full-parameter fine-tuning. (Zhelnin et al., 2024) extend the idea of salient-weight selection
with GIFT-SW, which injects Gaussian noise into non-salient columns while learning only the
salient ones, closing the gap to full fine-tuning under the same compute budget.

2.5 CONNECTIONS TO PRUNING AND OUTLIER-AWARE UPDATES

Our method is inspired by pruning research that measures weight saliency Skq for every weightWkq

from a linear layerW ∈ Rc×b before deleting parameters. The WANDA metric multiplies a weight’s
magnitude by the norm of its input activation:

Skq = (|Wkq|∥Xq:∥2)2 , (1)

where Xq: ∈ R1×a is the qth row of the input matrix matrix X ∈ Rb×a.

The metric Skq is then used in order to approximate output-level importance and enables one-shot
pruning without weight updates (Sun et al., 2023). Instead of discarding low-metric weights, we take
the complementary view: we retain and fine-tune only the outliers—the high-Wanda-score weights
that pruning finds indispensable. This choice is motivated by empirical evidence that perturbing or
removing these outliers dramatically degrades perplexity, implying that updating them should yield
the largest quality gains for a given parameter budget. In contrast to prior sparse PEFT work, which
selects parameters heuristically or grows them during training, our approach uses a pruning-derived
saliency signal that is (i) model-specific and (ii) computable in a single forward pass, making it
attractive for large-scale deployment.

3 ADAPTATION OF LARGE LANGUAGE MODELS

3.1 NOTATION

LetN denote a pre-trained Large Language Model (LLM), and letW = {W1,W2, . . . ,Wk} be the
collection of all fully connected weight matrices in N , including those within sub-attention layers,
with each Wi ∈ Rci×bi for 1 ≤ i ≤ k. Let the vector w̄ ∈ Rd̄ represent the remaining parameters of
N , such as biases and normalization parameters, concatenated into a single vector. Given a datasetD
and a loss function L(D;W, w̄), the full fine-tuning (FFT) ofN can be formulated as the following
optimization problem:

min
W,w̄
L(D;W, w̄). (2)

Due to the large scale of modern LLMs – often comprising billions of parameters-performing FFT
is computationally expensive and memory-intensive, making it impractical on standard GPUs. A
practical alternative is to apply lightweight modifications known as adapters, which we formalize
next.

Let ∆ = {∆1,∆2, . . . ,∆k} denote perturbations applied to the fully connected weights, with ∆i ∈
Rci×bi for all i. Define the adapted weights asW + ∆ = {W1 + ∆1,W2 + ∆2, . . . ,Wk + ∆k},

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

and let δ̄ ∈ Rd̄ represent perturbations to w̄. The adapted model is then obtained by solving:
min
∆,δ̄
L(D;W +∆, w̄ + δ̄) s.t. C(∆, δ̄), (3)

where C(∆, δ̄) encodes constraints on the perturbations (e.g., low-rank or sparse structure) to reduce
memory and computational overhead. Notably, if no constraints are imposed, this setting reduces to
standard FFT.

In this work, we focus on the common scenario where δ̄ = 0, though in principle w̄ can also be fine-
tuned, especially given its relatively small size compared toW . Additionally, although we assume
adaptation of all fully connected weights, our method applies to partial adaptation as well.

LoRA: Low-Rank Adaptation. LoRA Hu et al. (2021) constrains each perturbation ∆i to be
low-rank, specifically:

min
∆
L(D;W +∆, w̄) s.t. rank(∆i) ≤ r ∀ i. (4)

This reduces the number of trainable parameters for each layer i from cibi to r(ci + bi), making
fine-tuning more memory-efficient.

SpA: Sparse Adaptation. Sparse adaptation (SpA) Sung et al. (2021) enforces sparsity in the
perturbations:

min
∆
L(D;W +∆, w̄) s.t. ∥∆i∥0 ≤ pcibi ∀ i, (5)

where p ∈ (0, 1] is the sparsity density and ∥ · ∥0 denotes the ℓ0 pseudo-norm. It is common to fix
the sparse support during training, thereby reducing the number of trainable parameters by a factor
of p.

3.2 SUPER: MASK GENERATION ALGORITHM FOR SPA.

We introduce a mapping ψX : Rc×b → {0, 1}c×b that takes a matrix of weights W and generates
a corresponding fine-tuning mask. For each weight Wij , it evaluates the metric |Wij |∥Xj:∥2 and
selects the s entries with the highest scores. The output is a binary mask with ones at these selected
positions:

ψX(W, s) := mask selecting the s weights Wij with (6)
the highest |Wij ||Xj:|2 values.

Refer to Section B for additional examples.

Our algorithm for generation of sparse masks involves the following procedure:

Algorithm 1 SpA mask generation by Wanda

1: Initialization: Input matrix X ∈ Rb×a, weight matrix W ∈ Rc×b, number of outliers to select
s ∈ {0, · · · , cb}.

2: M ← ψX(W, s)

Unlike many existing methods, our approach does not require a complex or computationally in-
tensive procedure for selecting the trainable parameters of the sparse adapter. Instead, we adopt a
simple and highly efficient strategy that can be executed within seconds, even for large-scale mod-
els and substantial batch sizes. We refer to this method as Super—short for Selective Update of
Parameters via Extreme Ranking.

The core idea behind Super is to leverage the Wanda metric, which estimates the importance of
each parameter by quantifying its impact on the layer-wise ℓ2 reconstruction loss upon removal.
Specifically, parameters associated with a high reconstruction error are deemed more critical to
the model’s performance. Thus, Wanda provides a cheap yet effective approximation of parameter
importance.

Our central hypothesis is that training should be concentrated on the most impactful parameters to
achieve efficient adaptation and rapid convergence. By selecting the top-ranked outlier parameters
according to the Wanda metric, Super provides a principled and scalable method for sparse fine-
tuning that aligns well with both theoretical intuition and empirical effectiveness.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Wanda metric

𝑘

𝑞

+

Sparse Adapter (SpA) Low-Rank Adapter (LoRA)

=
=

Trainable parameter
Fixed, non-trainable parameter

𝑟𝑏

𝑐

𝑏

𝑐

Figure 1: Supra combines a sparse adapter—based on Super weights with a low-rank adapter. To
select the parameters for training in the sparse adapter, we employ the WANDA metric (Equation 1).
The rank r of the low-rank adapter is determined dynamically using Equation 7.

3.3 SUPRA: ADAPTIVE LOW-RANK AND SPARSE ADAPTATION.

Supra is a hybrid fine-tuning strategy that combines two complementary approaches: a sparse
adapter selected via the Super strategy and a low-rank adapter based on LoRA. This unified frame-
work is designed to maximize the strengths of both methods: the stability and selectivity of sparse
adaptation, and the flexibility and expressiveness of low-rank adaptation.

The intuition behind this design stems from the observation that LoRA, by construction, learns
updates in a low-dimensional subspace. Specifically, although the LoRA adapter can be interpreted
as a full matrix when expanded, the effective number of degrees of freedom is limited by the chosen
rank. Consequently, LoRA dynamically explores and updates a low-rank subspace of parameters
throughout fine-tuning. This evolving subspace allows the model to gradually adjust its internal
representations and better align with the target task.

In contrast, sparse adaptation—particularly when guided by Super—selects a fixed subset of im-
portant parameters to train. These parameters are chosen based on their estimated influence on the
model’s output, as measured by the Wanda metric. Once selected, this subset remains constant
during training, resulting in updates restricted to a fixed subspace.

By combining these two adapters, Supra achieves a powerful balance: the sparse adapter ensures
that the most crucial parameters from the pre-trained model are retained and further optimized,
preserving core knowledge, while the LoRA component dynamically adapts to the target task by
learning task-specific directions in the parameter space. In essence:

• The sparse adapter captures and preserves essential knowledge embedded in the original
model, focusing on parameters that were previously influential.

• The low-rank adapter enables task-specific generalization by learning new subspaces of
importance in a structured and efficient manner.

This synergy allows Supra to fine-tune large language models both accurately and efficiently, achiev-
ing fast convergence while minimizing memory and compute overhead. Moreover, the explicit con-
trol over the parameter budget and its division between sparse and low-rank components enables
practitioners to tailor the method to different resource constraints or adaptation scenarios.

3.4 ADAPTIVE BUDGET ALLOCATION IN SUPRA

Supra employs an adaptive strategy to determine the rank ri of the Low-Rank adapter based on a
user-defined parameter p ∈ (0, 1], representing the overall sparsity density.

Rather than fixing the rank for each linear layer Wi, we fix the total number of trainable parameters
per layer. Specifically, for a linear layer Wi ∈ Rci×bi , we allocate a total budget of ⌊pcibi⌋ trainable

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

parameters. To divide this budget between the Low-Rank and Sparse adapters, we introduce a new
parameter α ∈ [0, 1], referred to as the Low-Rank parameters ratio.

• If α = 1, the entire budget is allocated to the Low-Rank adapter, recovering the standard
LoRA setup.

• If α = 0, the full budget is allocated to the Sparse adapter, resulting in standard Sparse
Adaptation.

• If α = 0.5, the budget is evenly split between Low-Rank and Sparse adapters.

Under this scheme, the Low-Rank adapter receives ⌊αpcibi⌋ trainable parameters, while the Sparse
adapter is assigned ⌊(1− α)pcibi⌋.
Unlike sparse adaptation, which directly operates on a fixed number of parameters, Low-Rank adap-
tation requires specifying a rank ri. To bridge this gap, we define the following adaptive rule for
selecting ri based on α and p:

ri =

⌈
αpcibi
ci + bi

⌉
. (7)

This formulation ensures that the Low-Rank adapter uses li = ri(ci + bi) =
⌈
αpcibi
ci+bi

⌉
(ci + bi)

parameters, and the Sparse adapter is assigned the remaining si = ⌊pcibi⌋ − li parameters, so the
total number of trainable parameters remains consistent: si + li = ⌊pcibi⌋.
We note that due to rounding in equation 7, the actual ratio of Low-Rank to total trainable parameters
may deviate slightly from the target value α. In particular, li

li+si
̸= α. This discrepancy arises from

the ceiling operation in equation 7, which ensures that ri remains an integer. However, we find that
such deviations are minor in practice, and the value of α can be adjusted to compensate for rounding
effects during empirical tuning.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets All experiments in this work are conducted on the Math10K dataset, originally intro-
duced in the LLM-Adapters study by Hu et al. (2023). This dataset is specifically curated for fine-
tuning and evaluating language models on math reasoning tasks.

The Math10K dataset consists of 10,000 high-quality arithmetic reasoning problems drawn from
multiple publicly available benchmarks, including GSM8K (Cobbe et al., 2021), AQuA (Ling et al.,
2017), MAWPS and MAWPS-Single (Koncel-Kedziorski et al., 2016). The dataset was constructed
by selecting high-quality samples that provide both equations and answers, and then augmenting
them with step-by-step rationales generated by ChatGPT using zero-shot chain-of-thought prompt-
ing. Only samples with correct answers were retained to ensure data quality.

For evaluation, we follow the protocol of Hu et al. (2023) and report accuracy scores on six arith-
metic reasoning benchmarks:

• GSM8K (Cobbe et al., 2021): Grade-school math word problems with diverse linguistic
structure.

• SVAMP (Patel et al., 2021): One-variable arithmetic problems derived via minimal
changes from an existing dataset.

• MultiArith (Roy & Roth, 2016): Multi-step arithmetic problems requiring multiple oper-
ations.

• AddSub (Hosseini et al., 2014): Basic addition and subtraction problems.
• AQuA (Ling et al., 2017): Algebraic word problems with answer options and natural lan-

guage rationales.
• SingleEq (Koncel-Kedziorski et al., 2015): Algebra word problems that map to single-

variable equations of varying complexity.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

These datasets collectively assess the model’s ability to reason over arithmetic structures and solve
problems requiring symbolic manipulation and multi-step inference.

Training Details All models are fine-tuned using adapter-based methods, where only a small sub-
set of parameters is trained while the rest of the model remains frozen. We compare several adapta-
tion strategies, including LoRA, SIFT and our proposed methods Super and Supra.

Parameter Budgets. We conduct experiments under two different parameter budgets, defined by
the LoRA rank: lora r = 8 (moderate budget) and lora r = 4 (low budget). For Supra, we vary
the parameter split ratio α ∈ {0.3, 0.55, 0.8} to evaluate the trade-off between sparse and low-rank
adaptation. All methods use the same underlying backbone model - LLaMA-3 (1B/3B/8B) (Dubey
et al., 2024), and all hyperparameters are kept consistent across runs for fair comparison.

Evaluation Metric. We report average accuracy along with standard deviation across multiple
random seeds. Each dataset is evaluated independently, and the overall average accuracy is used as
a summary metric to compare different methods.

Reproducibility. Following the LLM-Adapters setup, all experiments are conducted using pub-
licly available datasets and reproducible fine-tuning pipelines. The Math10K dataset and associated
prompt templates used to generate rationales with ChatGPT are detailed in Hu et al. (2023), Ap-
pendix A.

For all our experiments we used a single Nvidia A100 GPU (Choquette et al., 2021).

4.2 COMPARISON WITH OTHER FINE-TUNING METHODS

We evaluate Supra and other baselines on six mathematical reasoning benchmarks: MultiArith,
GSM8K, AddSub, AQuA, SingleEq, and SVAMP. The results under two different fine-tuning bud-
gets—defined by the LoRA rank r ∈ {8, 4} – are shown in Tables 1 and 2.

High Budget Setting (lora r = 8). Under a relatively generous parameter budget, the hybrid
Supra method consistently achieves the best or near-best results across most tasks. In particular,
Supra with α = 0.8, which dedicates the majority of its budget to the Low-Rank adapter, achieves
the highest average accuracy of 60.6%, outperforming all baselines including LoRA (58.7%) and
Super (59.2%). This highlights the advantage of combining dynamic low-rank updates with a fixed
set of high-importance sparse parameters. Interestingly, LoRA performs well in this setting, reflect-
ing the benefits of learning a task-specific subspace when sufficient capacity is available.

Low Budget Setting (lora r = 4). When the rank is reduced to 4, the overall number of train-
able parameters drops substantially, making the selection of which parameters to train far more crit-
ical. In this constrained regime, the Super method – using only the sparse adapter based on outlier
parameter selection achieves the best average accuracy of 58.2%, outperforming all other methods,
including Supra variants and LoRA. This suggests that when budget is tight, focusing on the most
influential parameters (as estimated by the Wanda metric) is more beneficial than attempting to learn
a low-rank subspace.

Supra remains competitive in this regime, with the best-performing variant (α = 0.3) reaching
58.0% average accuracy, slightly below Super but still ahead of LoRA (57.0%) and SIFT (55.3%).
However, as the value of α increases (i.e., shifting more budget to LoRA), performance tends to
degrade, confirming that low-rank updates alone are insufficient when the parameter budget is too
limited.

These findings offer several important insights:

• Importance of parameter selection under constraints. In low-budget settings, it is cru-
cial to carefully select which parameters to train. The Super adapter achieves this via a
principled selection of outlier weights, leading to robust performance even with minimal
updates.

• Subspace adaptivity vs. parameter criticality. LoRA excels when there is enough capac-
ity to explore new subspaces dynamically. However, in low-capacity regimes, maintaining
a fixed set of critical parameters as in Super is more effective.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

• Supra as a unifying strategy. Supra benefits from both perspectives: it preserves essential
knowledge from the pre-trained model via sparse adaptation, and simultaneously adapts
to the target task by learning a low-rank subspace. The ability to balance these via the α
parameter allows Supra to operate effectively across a range of parameter budgets.

Overall, these results validate our design of Supra as a flexible and powerful fine-tuning method,
capable of adapting to both high and low training budgets by interpolating between sparse and low-
rank regimes.

Table 1: Comparison of methods with lora r = 8. Results are accuracy (%)± standard deviation.

Method MultiArith GSM8K AddSub AQuA SingleEq SVAMP Average

LoRA 92.4 ± 3.3 23.4 ± 2.1 86.5 ± 2.6 25.5 ± 1.6 83.5 ± 2.1 45.6 ± 2.4 58.7 ± 1.3
SIFT 92.2 ± 1.7 23.1 ± 1.2 83.1 ± 1.0 23.1 ± 1.9 82.0 ± 1.2 44.2 ± 0.7 57.1 ± 0.5
SIFT (rand) 87.8 ± 1.8 23.9 ± 1.0 84.0 ± 4.3 21.8 ± 0.8 83.5 ± 1.9 48.1 ± 2.3 57.4 ± 0.3
Rosa 91.7 ± 0.8 23.5 ± 1.1 84.0 ± 0.9 21.3 ± 0.4 82.4 ± 1.3 44.6 ± 1.7 57.9 ± 0.2
Super 91.6 ± 1.1 25.4 ± 0.9 86.3 ± 3.2 22.9 ± 1.0 84.6 ± 1.7 46.7 ± 0.9 59.2 ± 0.3
Supra (0.3) 93.6 ± 0.5 25.8 ± 0.7 87.0 ± 0.5 25.1 ± 1.8 85.7 ± 0.7 47.5 ± 1.4 60.4 ± 0.6
Supra (0.55) 94.8 ± 1.8 25.9 ± 1.4 87.1 ± 1.2 23.8 ± 0.9 86.5 ± 0.7 47.1 ± 3.6 60.6 ± 1.2
Supra (0.8) 95.1 ± 1.5 26.0 ± 0.6 88.5 ± 1.0 22.7 ± 1.1 87.2 ± 0.9 48.3 ± 1.5 60.6 ± 0.3

Table 2: Comparison of methods with lora r = 4. Results are accuracy (%)± standard deviation.

Method MultiArith GSM8K AddSub AQuA SingleEq SVAMP Average

LoRA 90.1 ± 2.9 24.4 ± 1.4 83.7 ± 3.3 23.1 ± 2.7 81.3 ± 2.9 43.6 ± 4.4 57.0 ± 1.7
SIFT 88.3 ± 2.2 21.1 ± 1.8 80.9 ± 1.7 22.2 ± 2.2 78.9 ± 1.4 41.5 ± 1.2 55.3 ± 1.1
Super 88.9 ± 0.9 23.5 ± 1.5 85.5 ± 2.0 24.3 ± 1.8 84.3 ± 1.2 44.5 ± 1.8 58.2 ± 0.5
SIFT (rand) 87.1 ± 3.2 23.4 ± 0.6 83.8 ± 2.0 21.1 ± 1.5 82.2 ± 1.1 46.8 ± 2.4 57.4 ± 0.7
Rosa 83.7 ± 2.6 21.9 ± 0.3 81.6 ± 3.3 21.2 ± 1.4 78.9 ± 1.1 46.3 ± 2.1 55.6 ± 1.3
Supra (0.3) 92.5 ± 3.0 24.8 ± 1.1 82.4 ± 2.1 23.6 ± 1.0 82.7 ± 1.1 42.7 ± 1.6 58.0 ± 0.7
Supra (0.55) 93.1 ± 1.8 24.1 ± 0.5 82.9 ± 2.8 22.7 ± 2.8 83.5 ± 0.9 43.8 ± 1.3 57.8 ± 1.1
Supra (0.8) 91.7 ± 0.7 22.2 ± 1.8 81.6 ± 3.0 24.8 ± 2.8 82.5 ± 1.4 43.2 ± 1.1 57.2 ± 0.6

Additional experiments and more comparisons with other methods can be found in Section C.

5 DISCUSSION

Our work demonstrates that fine-tuning large language models can be significantly improved through
careful selection and allocation of trainable parameters. In particular, we introduced two key inno-
vations: (1) an adaptive strategy for setting the rank of Low-Rank adapters by fixing the number of
trainable parameters per layer, and (2) a simple yet effective method for selecting sparse adaptation
parameters based on outlier scores derived from the WANDA metric. These contributions enabled
us to design Super, a sparse fine-tuning method that requires no additional training or gradient in-
formation, and Supra, a hybrid strategy that combines sparse and low-rank adaptation into a unified
framework. The adaptive rank strategy ensures that the low-rank component scales naturally with
the layer size, while the use of WANDA outliers provides an interpretable and training-free mech-
anism to identify impactful weights for sparse updates. Together, these methods achieve strong
performance with minimal parameter overhead across multiple LLMs and tasks. Importantly, our
approach remains simple to implement and incurs little computational overhead, making it well-
suited for scalable and practical deployment in real-world scenarios. This highlights the potential of
combining principled, interpretable metrics with efficient parameter allocation to push the bound-
aries of parameter-efficient fine-tuning.

6 LIMITATIONS

Despite the empirical gains documented in Section 4, our study has several limitations that we hope
future work will address.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Scope of evaluation. All experiments are confined to the Math10K benchmark and six arith-
metic–reasoning test suites. While this domain is attractive for its controlled difficulty and clear
accuracy metric, it represents a narrow slice of the broad application space of LLMs. In particular,
language–generation tasks that hinge on open-ended semantics (e.g., summarisation, dialogue, or
code synthesis) may stress different model components than symbolic math reasoning; the relative
benefits of sparse, low-rank, and hybrid updates could therefore shift in other settings. A more
comprehensive assessment across diverse modalities, instruction-following tasks, and safety-critical
benchmarks is necessary before drawing general conclusions.

Dependence on the WANDA saliency proxy. SUPER (and hence SUPRA) selects trainable
weights using an activation-weighted magnitude heuristic inherited from the WANDA pruning met-
ric. Although this choice is fast and training-free, it is still an approximation of true importance;
weights that appear non-salient under the proxy may in fact become critical once the task distri-
bution shifts or once other parameters are updated. We do not study how sensitive performance is
to mis-rankings, nor whether more expressive but costlier criteria (e.g. curvature-aware saliency or
gradient-flow statistics) would yield better sparse masks.

Fixed sparse support. The sparse component of SUPRA is static throughout fine-tuning: once a
weight is deemed non-trainable, it can never be activated. Dynamic sparsity—allowing the mask to
grow, prune, or re-allocate budget during training—has shown promise in other contexts and may
close the gap to full fine-tuning in edge cases where the initial selection is sub-optimal.

Layer-local parameter budgets. Our adaptive rank rule (Equation (7)) allocates the same fraction
of parameters to every linear layer. In practice, different layers contribute unequally to downstream
task performance; early attention blocks, for example, often admit more aggressive compression
than middle MLP layers. A global, data-driven re-allocation of the parameter budget—akin to neural
architecture search—might improve efficiency further.

REFERENCES

Alan Ansell, Ivan Vulić, Hannah Sterz, Anna Korhonen, and Edoardo M Ponti. Scaling sparse
fine-tuning to large language models. arXiv preprint arXiv:2401.16405, 2024.

Jack Choquette, Wishwesh Gandhi, Olivier Giroux, Nick Stam, and Ronny Krashinsky. Nvidia a100
tensor core gpu: Performance and innovation. IEEE Micro, 41(2):29–35, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Andi Han, Jiaxiang Li, Wei Huang, Mingyi Hong, Akiko Takeda, Pratik Jawanpuria, and Bamdev
Mishra. Sltrain: a sparse plus low-rank approach for parameter and memory efficient pretraining.
arXiv preprint arXiv:2406.02214, 2024.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, and Nate Kushman. Learning to
solve arithmetic word problems with verb categorization. In Proceedings of the 2014 conference
on empirical methods in natural language processing (EMNLP), pp. 523–533, 2014.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Ka-Wei Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning
of large language models. arXiv preprint arXiv:2304.01933, 2023.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni, and Siena Dumas
Ang. Parsing algebraic word problems into equations. Transactions of the Association for Com-
putational Linguistics, 3:585–597, 2015.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Hajishirzi.
Mawps: A math word problem repository. In Proceedings of the 2016 conference of the north
american chapter of the association for computational linguistics: human language technologies,
pp. 1152–1157, 2016.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale gener-
ation: Learning to solve and explain algebraic word problems. arXiv preprint arXiv:1705.04146,
2017.

Da Ma, Lu Chen, Pengyu Wang, Hongshen Xu, Hanqi Li, Liangtai Sun, Su Zhu, Shuai Fan, and Kai
Yu. Sparsity-accelerated training for large language models. arXiv preprint arXiv:2406.01392,
2024.

Mahdi Nikdan, Soroush Tabesh, Elvir Crnčević, and Dan Alistarh. Rosa: Accurate parameter-
efficient fine-tuning via robust adaptation. arXiv preprint arXiv:2401.04679, 2024.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math
word problems? arXiv preprint arXiv:2103.07191, 2021.

Subhro Roy and Dan Roth. Solving general arithmetic word problems. arXiv preprint
arXiv:1608.01413, 2016.

Weixi Song, Zuchao Li, Lefei Zhang, Hai Zhao, and Bo Du. Sparse is enough in fine-tuning pre-
trained large language models. arXiv preprint arXiv:2312.11875, 2023.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023.

Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse masks.
Advances in Neural Information Processing Systems, 34:24193–24205, 2021.

Haoyun Xu, Runzhe Zhan, Derek F Wong, and Lidia S Chao. Let’s focus on neuron: Neuron-level
supervised fine-tuning for large language model. arXiv preprint arXiv:2403.11621, 2024.

Xinyu Yang, Jixuan Leng, Geyang Guo, Jiawei Zhao, Ryumei Nakada, Linjun Zhang, Huaxiu Yao,
and Beidi Chen. S2ft: Efficient, scalable and generalizable llm fine-tuning by structured sparsity.
arXiv preprint arXiv:2412.06289, 2024.

Maxim Zhelnin, Viktor Moskvoretskii, Egor Shvetsov, Egor Venediktov, Mariya Krylova, Aleksandr
Zuev, and Evgeny Burnaev. Gift-sw: Gaussian noise injected fine-tuning of salient weights for
llms. arXiv preprint arXiv:2408.15300, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

A TABLE OF FREQUENTLY USED NOTATION

Table 3: Notation table

W – One linear layer (matrix) of LLM, W ∈ Rc×b.
p – Sparsity density. Represents the ratio of parameters for fine-tuning. p ∈ (0, 1].
α – Low-Rank parameters ratio. The ratio of Low-Rank parameters (for Supra). α ∈ [0, 1].
l – Number of Low-Rank trainable parameters. l ∈ {0, · · · , cb}.
s – Number of Sparse Adapter trainable parameters. s ∈ {0, · · · , cb}.

i, j – Matrix indexes for rows and columns respectively.
k, q – Matrix indexes for row and column for pruning respectively.
xj – jth element of the vector x.
ej – Unit vector with 1 at the jth position and 0 everywhere else. ej ∈ Rb×1.

Wij – one entry of the matrix W on the intersection of the ith row and jth column.
Wi: – ith row of the matrix W , Wi: is a row-vector.
W:j – jth column of the matrix W , W:j is a column-vector.

Wi,j1:j2 := (Wij1 · · ·Wij2) ∈ R1×(j2−j1), 1 ≤ j1 ≤ j2 ≤ b.
Wi1:i2,j := (Wi1j · · ·Wi2j)

⊤ ∈ R(i2−i1)×1, 1 ≤ i1 ≤ i2 ≤ c.
Wi1:i2,j1:j2 := (Wi1:i2,j1 · · ·Wi1:i2,j2) ∈ R(i2−i1)×(j2−j1), 1 ≤ j1 ≤ j2 ≤ b, 1 ≤ i1 ≤ i2 ≤ c.

Wi:,j: := (Wi:c,j · · ·Wi:c,b) ∈ R(c−i)×(b−j), 1 ≤ j ≤ b, 1 ≤ i ≤ c.
X – Input matrix for a linear layer W , X ∈ Rb×a.
Ŵ – One linear layer after fine tuning weights from W , Ŵ ∈ Rc×b.
∆ := Ŵ −W – change of the weight matrix (before and after fine tuning), ∆ ∈ Rc×b.
p := 1

cb∥M∥
2
F – sparsity ratio p ∈ [0, 1).

X l – lth calibration sample, X l ∈ Rb×a.
1 ∈ Rc×b – The matrix with size c× b, all entries of which are equal to 1.
0 ∈ Rc×b – The matrix with size c× b, all entries of which are equal to 0.
∥x∥2 :=

√∑
i=1 |xi|2 – l2-norm of vector.

∥A∥F :=
√∑

i=1

∑
j=1 |Aij |2 – Frobenius norm of the matrix.

ψX(W, r) := mask of the r weights Wij with the smallest |Wij |∥Xj:∥2 values.
ϕ(h) := vector of indices of non-zero elements from h.
M – Fine tuning mask. Equal to one only for entries of W that should be trained while fine tuning.
⊙ – Element-wise product of two matrices (Hadamard product).
⊗ – Outer product of two vectors.
⌊x⌋ := max {n ∈ Z | n ≤ x} – floor function.
⌈x⌉ := min {n ∈ Z | n ≥ x} – ceiling function.

B WANDA METRIC FOR GENERATING FINE-TUNING MASK

We introduce a mapping ψX : Rc×b → {0, 1}c×b that takes a matrix of weights W and generates
a corresponding fine-tuning mask. For each weight Wij , it evaluates the metric |Wij |∥Xj:∥2 and
selects the r entries with the highest scores. The output is a binary mask with ones at these selected
positions:

ψX(W, r) := mask selecting the r weights Wij with (8)
the highest |Wij ||Xj:|2 values.

For example, let us have a weight matrix

W =

(
3 −2
−2 4
1 −6

)
,

and an input matrix

X =

(
4 3
0 1

)
,

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

now we compute the metric |Wij |∥Xj:∥2 for every entry of W :(|W11|∥X1:∥2 |W12|∥X2:∥2
|W21|∥X1:∥2 |W22|∥X2:∥2
|W31|∥X1:∥2 |W32|∥X2:∥2

)
=

(
3 · 5 2 · 1
2 · 5 4 · 1
1 · 5 6 · 1

)
=

(
15 2
10 4
5 6

)
,

then

ψX(W, 1) =

(
1 0
0 0
0 0

)
, ψX(W, 2) =

(
1 0
1 0
0 0

)
, ψX(W, 4) =

(
1 0
1 0
1 1

)
.

C ADDITIONAL EXPERIMENTS

D EXPERIMENTS WITH DIFFERENT LEARNING RATES

D.1 LORA

Table 4: Performance of LoRA with lora r = 4 across different learning rates. Results are
accuracy (%) ± standard deviation.

Learning Rate MultiArith GSM8K AddSub AQuA SingleEq SVAMP Average

2e−5 – – – – – – –
5e−5 – – – – – – –
1e−4 – – – – – – –
2e−4 89.5 ± 2.4 21.6 ± 1.4 69.3 ± 3.3 23.1 ± 2.7 74.1 ± 1.4 39.9 ± 4.5 52.9 ± 0.9
5e−4 90.1 ± 2.9 24.4 ± 1.4 78.4 ± 3.5 22.5 ± 3.0 78.6 ± 4.3 40.8 ± 4.2 55.8 ± 2.0
1e−3 89.6 ± 3.1 22.5 ± 1.3 83.7 ± 3.3 22.1 ± 2.3 81.3 ± 2.9 43.0 ± 2.6 57.0 ± 1.7
2e−3 87.7 ± 2.8 21.3 ± 1.5 82.8 ± 3.1 22.8 ± 0.6 80.5 ± 2.4 43.6 ± 4.4 56.5 ± 1.6

Best LR 5e−4 5e−4 1e−3 2e−4 1e−3 2e−3 1e−3

Table 5: Performance of LoRA with lora r = 8 across different learning rates. Results are
accuracy (%) ± standard deviation.

Learning Rate MultiArith GSM8K AddSub AQuA SingleEq SVAMP Average

2e−5 51.6 ± 1.8 14.5 ± 0.2 61.5 ± 0.0 19.2 ± 0.6 61.4 ± 1.4 37.4 ± 0.2 40.9 ± 0.3
5e−5 70.3 ± 2.8 18.4 ± 0.3 59.7 ± 2.9 21.8 ± 0.5 64.8 ± 1.6 35.7 ± 1.1 45.1 ± 0.2
1e−4 78.9 ± 4.0 20.2 ± 2.5 58.8 ± 1.4 25.3 ± 2.0 69.0 ± 5.6 37.0 ± 4.6 48.2 ± 1.6
2e−4 86.9 ± 3.6 23.4 ± 2.1 70.0 ± 3.0 22.7 ± 0.9 75.4 ± 3.8 40.3 ± 4.4 53.1 ± 1.3
5e−4 90.3 ± 9.0 22.0 ± 5.6 68.2 ± 24.0 25.5 ± 1.6 68.8 ± 26.3 37.0 ± 15.7 52.0 ± 13.2
1e−3 92.4 ± 3.3 20.9 ± 1.4 77.3 ± 9.9 23.2 ± 1.7 71.8 ± 15.3 39.3 ± 11.3 54.1 ± 6.2
2e−3 92.3 ± 1.4 21.6 ± 0.5 86.5 ± 2.6 22.6 ± 1.3 83.5 ± 2.1 45.6 ± 2.4 58.7 ± 1.3

Best LR 1e−3 2e−4 2e−3 5e−4 2e−3 2e−3 2e−3

Table 6: Performance of LoRA with lora r = 16 across different learning rates. Results are
accuracy (%) ± standard deviation.

Learning Rate MultiArith GSM8K AddSub AQuA SingleEq SVAMP Average

2e−5 50.4 ± 2.5 15.0 ± 0.1 60.1 ± 0.8 21.0 ± 2.6 61.5 ± 0.6 37.8 ± 1.3 41.0 ± 0.7
5e−5 68.3 ± 2.1 19.0 ± 0.6 61.5 ± 2.2 21.3 ± 1.6 65.0 ± 3.3 35.7 ± 1.5 45.1 ± 1.2
1e−4 74.6 ± 1.9 20.8 ± 0.7 60.9 ± 3.5 23.5 ± 2.2 69.2 ± 5.6 36.8 ± 3.2 47.6 ± 2.0
2e−4 90.4 ± 2.2 23.2 ± 0.7 66.3 ± 8.6 22.8 ± 1.7 72.7 ± 4.7 41.1 ± 3.3 52.8 ± 3.3
5e−4 93.3 ± 1.6 24.8 ± 1.8 80.5 ± 2.4 22.8 ± 2.9 81.0 ± 2.2 45.8 ± 4.0 58.0 ± 1.1
1e−3 91.4 ± 2.8 24.4 ± 4.7 84.7 ± 5.5 22.0 ± 1.4 82.1 ± 5.7 43.7 ± 7.9 58.1 ± 4.0
2e−3 – – – – – – –

Best LR 5e−4 5e−4 1e−3 1e−4 1e−3 5e−4 1e−3

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

D.2 SIFT

Table 7: Performance of SIFT with lora r = 4 across different learning rates. Results are accuracy
(%) ± standard deviation.

Learning Rate MultiArith GSM8K AddSub AQuA SingleEq SVAMP Average

2e−5 – – – – – – –
5e−5 – – – – – – –
1e−4 – – – – – – –
2e−4 74.1 ± 2.5 19.6 ± 1.0 69.9 ± 3.0 21.2 ± 0.9 75.0 ± 2.0 40.6 ± 2.1 50.1 ± 1.3
5e−4 80.9 ± 2.7 21.1 ± 1.8 78.5 ± 0.7 22.2 ± 2.2 78.2 ± 1.6 41.5 ± 1.2 53.7 ± 0.8
1e−3 88.1 ± 0.8 20.6 ± 0.9 80.9 ± 1.7 22.0 ± 3.3 78.9 ± 1.4 41.4 ± 1.6 55.3 ± 1.1
2e−3 88.3 ± 2.2 17.0 ± 0.9 80.6 ± 2.2 20.4 ± 2.4 77.5 ± 3.0 40.1 ± 2.8 54.0 ± 1.5

Best LR 2e−3 5e−4 1e−3 5e−4 1e−3 5e−4 1e−3

Table 8: Performance of SIFT with lora r = 8 across different learning rates. Results are accuracy
(%) ± standard deviation.

Learning Rate MultiArith GSM8K AddSub AQuA SingleEq SVAMP Average

2e−5 49.4 ± 1.1 15.5 ± 0.3 59.8 ± 1.7 20.9 ± 0.7 62.9 ± 0.7 35.1 ± 0.7 40.6 ± 0.6
5e−5 62.1 ± 5.4 18.4 ± 0.3 60.9 ± 2.3 22.0 ± 1.4 68.2 ± 1.1 36.8 ± 2.0 44.8 ± 0.8
1e−4 71.3 ± 7.7 21.3 ± 0.6 64.3 ± 0.3 19.6 ± 1.3 71.3 ± 3.5 37.7 ± 1.4 47.6 ± 0.6
2e−4 81.9 ± 1.8 20.4 ± 1.2 74.5 ± 3.3 21.4 ± 0.6 77.8 ± 0.3 44.2 ± 0.7 53.4 ± 0.2
5e−4 88.1 ± 1.5 23.1 ± 1.2 83.1 ± 2.1 23.1 ± 1.9 82.0 ± 1.2 43.2 ± 1.1 57.1 ± 0.5
1e−3 92.2 ± 1.7 20.9 ± 0.7 83.1 ± 1.0 21.3 ± 0.7 82.0 ± 0.3 42.6 ± 1.2 57.0 ± 0.3
2e−3 – – – – – – –

Best LR 1e−3 5e−4 1e−3 5e−4 5e−4 2e−4 5e−4

Table 9: Performance of SIFT with lora r = 16 across different learning rates. Results are
accuracy (%) ± standard deviation.

Learning Rate MultiArith GSM8K AddSub AQuA SingleEq SVAMP Average

2e−5 56.4 ± 4.9 17.6 ± 0.3 63.5 ± 1.9 21.7 ± 1.0 67.8 ± 1.3 38.3 ± 1.0 44.2 ± 0.7
5e−5 74.7 ± 2.9 20.9 ± 0.9 68.9 ± 2.8 19.6 ± 1.5 74.7 ± 1.2 41.2 ± 1.3 50.0 ± 0.5
1e−4 80.3 ± 1.8 22.1 ± 1.0 74.6 ± 0.5 20.2 ± 1.1 78.0 ± 1.4 43.3 ± 1.6 53.1 ± 0.3
2e−4 84.7 ± 5.8 24.0 ± 0.8 83.2 ± 1.3 24.3 ± 0.8 83.3 ± 0.3 44.8 ± 1.6 57.4 ± 0.9
5e−4 92.8 ± 2.1 23.5 ± 1.5 85.7 ± 2.1 23.9 ± 1.5 83.5 ± 1.7 44.4 ± 1.5 59.0 ± 1.1
1e−3 93.5 ± 1.4 20.8 ± 0.5 87.0 ± 0.7 21.1 ± 0.5 84.1 ± 1.2 42.0 ± 1.1 58.1 ± 0.1
2e−3 – – – – – – –

Best LR 1e−3 2e−4 1e−3 2e−4 1e−3 2e−4 5e−4

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

D.3 SIFT RANDOM

Table 10: Performance of SIFT random with lora r = 4 across different learning rates. Results
are accuracy (%) ± standard deviation.

Learning Rate MultiArith GSM8K AddSub AQuA SingleEq SVAMP Average

2e−5 – – – – – – –
5e−5 – – – – – – –
1e−4 – – – – – – –
2e−4 56.4 ± 3.2 16.5 ± 0.8 67.9 ± 1.5 20.0 ± 3.0 66.7 ± 2.0 36.7 ± 1.7 44.1 ± 0.8
5e−4 76.3 ± 3.1 20.4 ± 0.8 74.2 ± 1.2 20.8 ± 1.7 75.6 ± 0.9 41.0 ± 1.8 51.4 ± 1.0
1e−3 86.7 ± 2.6 23.4 ± 0.6 82.2 ± 3.0 20.6 ± 1.7 81.2 ± 1.1 44.9 ± 2.7 56.5 ± 0.7
2e−3 87.1 ± 3.2 23.2 ± 1.8 83.8 ± 2.0 21.1 ± 1.5 82.2 ± 1.1 46.8 ± 2.4 57.4 ± 0.7

Best LR 2e−3 1e−3 2e−3 2e−3 2e−3 2e−3 2e−3

Table 11: Performance of SIFT random with lora r = 8 across different learning rates. Results
are accuracy (%) ± standard deviation.

Learning Rate MultiArith GSM8K AddSub AQuA SingleEq SVAMP Average

2e−5 – – – – – – –
5e−5 – – – – – – –
1e−4 58.3 ± 3.8 16.7 ± 1.4 66.3 ± 0.9 20.1 ± 2.0 69.1 ± 0.9 36.5 ± 2.7 44.5 ± 0.5
2e−4 73.5 ± 1.5 19.2 ± 1.2 70.7 ± 0.4 21.8 ± 0.8 75.7 ± 0.9 41.5 ± 1.6 50.4 ± 0.1
5e−4 87.8 ± 1.8 23.9 ± 1.0 82.9 ± 1.4 21.7 ± 1.9 83.1 ± 1.2 45.1 ± 0.8 57.4 ± 0.3
1e−3 85.5 ± 2.3 23.5 ± 2.1 84.0 ± 4.3 18.4 ± 1.6 83.5 ± 1.9 48.1 ± 2.3 57.2 ± 1.0
2e−3 – – – – – – –

Best LR 5e−4 5e−4 1e−3 2e−4 1e−3 1e−3 5e−4

Table 12: Performance of SIFT random with lora r = 16 across different learning rates. Results
are accuracy (%) ± standard deviation.

Learning Rate MultiArith GSM8K AddSub AQuA SingleEq SVAMP Average

2e−5 – – – – – – –
5e−5 – – – – – – –
1e−4 74.8 ± 2.0 21.1 ± 1.2 72.0 ± 1.1 23.4 ± 1.9 75.9 ± 1.0 42.5 ± 0.8 51.6 ± 0.2
2e−4 85.2 ± 0.8 23.9 ± 1.3 81.4 ± 3.2 22.8 ± 2.0 82.2 ± 0.7 45.4 ± 1.9 56.8 ± 0.8
5e−4 87.1 ± 4.1 25.4 ± 0.7 84.6 ± 1.6 22.0 ± 1.6 84.6 ± 0.9 48.7 ± 3.3 58.8 ± 0.7
1e−3 92.0 ± 1.7 26.1 ± 1.9 86.0 ± 1.7 22.3 ± 1.6 85.6 ± 1.4 46.2 ± 2.9 59.7 ± 0.8
2e−3 – – – – – – –

Best LR 1e−3 1e−3 1e−3 1e−4 1e−3 5e−4 1e−3

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

D.4 SUPER

Table 13: Performance of Super with lora r = 4 across different learning rates. Results are
accuracy (%) ± standard deviation.

Learning Rate MultiArith GSM8K AddSub AQuA SingleEq SVAMP Average

2e−5 – – – – – – –
5e−5 – – – – – – –
1e−4 – – – – – – –
2e−4 70.1 ± 2.7 20.2 ± 0.8 71.2 ± 1.1 23.2 ± 1.6 74.8 ± 0.9 41.7 ± 0.9 50.2 ± 0.9
5e−4 84.1 ± 2.9 22.2 ± 0.4 82.7 ± 0.7 22.4 ± 1.3 82.8 ± 1.0 43.7 ± 1.7 56.3 ± 0.3
1e−3 88.0 ± 1.9 23.5 ± 1.5 85.2 ± 1.4 23.9 ± 2.1 84.3 ± 1.2 44.3 ± 1.2 58.2 ± 0.5
2e−3 88.9 ± 0.9 22.3 ± 0.4 85.5 ± 2.0 24.3 ± 1.8 82.7 ± 0.2 44.5 ± 1.8 58.0 ± 0.4

Best LR 2e−3 1e−3 2e−3 2e−3 1e−3 2e−3 1e−3

Table 14: Performance of Super with lora r = 8 across different learning rates. Results are
accuracy (%) ± standard deviation.

Learning Rate MultiArith GSM8K AddSub AQuA SingleEq SVAMP Average

2e−5 38.9 ± 0.7 14.4 ± 0.4 63.0 ± 2.4 21.0 ± 1.5 66.7 ± 0.3 36.0 ± 1.5 40.0 ± 0.8
5e−5 57.2 ± 6.4 17.9 ± 0.2 67.4 ± 1.5 22.7 ± 0.5 67.1 ± 0.4 37.3 ± 0.5 44.9 ± 1.0
1e−4 69.2 ± 4.4 20.4 ± 0.6 70.2 ± 1.7 22.2 ± 1.4 74.5 ± 0.3 40.2 ± 1.5 49.5 ± 1.2
2e−4 82.2 ± 2.0 21.6 ± 0.8 77.7 ± 0.5 22.4 ± 0.4 80.9 ± 0.8 43.0 ± 1.8 54.6 ± 0.5
5e−4 90.9 ± 1.5 25.4 ± 0.9 85.1 ± 0.8 22.9 ± 1.0 84.4 ± 1.3 46.7 ± 0.9 59.2 ± 0.3
1e−3 91.6 ± 1.1 24.2 ± 2.8 86.3 ± 3.2 22.0 ± 2.0 84.6 ± 1.7 44.0 ± 2.1 58.8 ± 2.1
2e−3 – – – – – – –

Best LR 1e−3 5e−4 1e−3 5e−4 1e−3 5e−4 5e−4

Table 15: Performance of Super with lora r = 16 across different learning rates. Results are
accuracy (%) ± standard deviation.

Learning Rate MultiArith GSM8K AddSub AQuA SingleEq SVAMP Average

2e−5 49.2 ± 1.7 16.8 ± 0.9 64.9 ± 1.2 22.7 ± 1.0 67.9 ± 0.5 37.6 ± 0.3 43.2 ± 0.4
5e−5 66.3 ± 4.2 20.3 ± 0.3 70.0 ± 1.1 23.5 ± 2.5 72.7 ± 0.7 40.3 ± 1.6 48.8 ± 1.4
1e−4 83.1 ± 1.7 22.5 ± 0.3 78.2 ± 0.7 22.8 ± 0.8 79.1 ± 0.4 43.9 ± 0.9 54.9 ± 0.5
2e−4 87.6 ± 2.0 24.7 ± 0.8 85.2 ± 0.9 23.7 ± 3.7 85.0 ± 0.4 47.1 ± 1.0 58.9 ± 0.5
5e−4 88.4 ± 3.8 24.1 ± 0.6 85.7 ± 1.7 23.4 ± 0.6 83.7 ± 0.9 44.1 ± 2.1 58.2 ± 0.8
1e−3 88.3 ± 5.8 23.6 ± 1.6 84.6 ± 1.9 21.5 ± 1.9 82.7 ± 0.9 44.3 ± 0.2 57.5 ± 0.7
2e−3 – – – – – – –

Best LR 5e−4 2e−4 5e−4 2e−4 2e−4 2e−4 2e−4

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D.5 SUPER (MATH CALIBRATED)

Table 16: Performance of Super math calibr with lora r = 4 across different learning rates.
Results are accuracy (%) ± standard deviation.

Learning Rate MultiArith GSM8K AddSub AQuA SingleEq SVAMP Average

2e−5 – – – – – – –
5e−5 – – – – – – –
1e−4 – – – – – – –
2e−4 72.2 ± 2.0 20.5 ± 1.0 71.6 ± 1.8 23.3 ± 1.2 76.3 ± 1.7 41.3 ± 1.3 50.9 ± 0.7
5e−4 82.4 ± 2.5 23.1 ± 0.5 80.8 ± 1.8 23.1 ± 1.5 82.4 ± 1.4 45.4 ± 0.9 56.2 ± 0.6
1e−3 86.8 ± 3.8 24.9 ± 1.4 82.4 ± 1.2 23.0 ± 2.7 82.1 ± 0.9 42.8 ± 1.5 57.0 ± 0.9
2e−3 91.2 ± 1.3 24.2 ± 0.7 83.2 ± 2.6 22.3 ± 1.9 83.1 ± 1.8 41.4 ± 2.8 57.6 ± 1.0

Best LR 2e−3 1e−3 2e−3 2e−4 2e−3 5e−4 2e−3

Table 17: Performance of Super math calibr with lora r = 8 across different learning rates.
Results are accuracy (%) ± standard deviation.

Learning Rate MultiArith GSM8K AddSub AQuA SingleEq SVAMP Average

2e−5 – – – – – – –
5e−5 – – – – – – –
1e−4 70.1 ± 2.6 21.4 ± 0.1 71.7 ± 1.4 22.7 ± 0.6 75.5 ± 1.3 40.6 ± 1.1 50.3 ± 0.8
2e−4 79.1 ± 1.1 22.4 ± 0.2 77.6 ± 2.4 24.0 ± 1.6 81.6 ± 0.6 44.4 ± 0.3 54.8 ± 0.7
5e−4 88.1 ± 1.5 25.2 ± 0.9 84.5 ± 1.9 23.3 ± 1.4 85.9 ± 0.8 46.3 ± 1.0 58.7 ± 0.6
1e−3 88.8 ± 2.7 23.7 ± 0.8 83.1 ± 1.6 21.8 ± 0.8 82.7 ± 1.9 43.5 ± 3.3 57.3 ± 0.8
2e−3 – – – – – – –

Best LR 1e−3 5e−4 5e−4 2e−4 5e−4 5e−4 5e−4

Table 18: Performance of Super math calibr with lora r = 16 across different learning rates.
Results are accuracy (%) ± standard deviation.

Learning Rate MultiArith GSM8K AddSub AQuA SingleEq SVAMP Average

2e−5 – – – – – – –
5e−5 – – – – – – –
1e−4 81.9 ± 2.9 23.2 ± 0.2 76.6 ± 1.9 22.2 ± 0.9 80.5 ± 0.8 43.8 ± 2.0 54.7 ± 1.0
2e−4 88.1 ± 2.1 25.0 ± 0.7 83.8 ± 1.9 23.5 ± 1.9 85.4 ± 0.8 47.8 ± 1.2 59.0 ± 1.1
5e−4 89.6 ± 2.5 24.4 ± 0.8 82.8 ± 4.3 21.4 ± 3.0 83.9 ± 1.8 44.9 ± 4.0 57.8 ± 1.8
1e−3 92.7 ± 0.1 22.5 ± 1.4 84.3 ± 2.8 21.9 ± 0.6 82.5 ± 2.8 42.1 ± 2.3 57.7 ± 1.5
2e−3 – – – – – – –

Best LR 1e−3 2e−4 1e−3 2e−4 2e−4 2e−4 2e−4

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D.6 SUPRA (0.3)

Table 19: Performance of Supra 0.3 with lora r = 4 across different learning rates. Results are
accuracy (%) ± standard deviation.

Learning Rate MultiArith GSM8K AddSub AQuA SingleEq SVAMP Average

2e−5 – – – – – – –
5e−5 – – – – – – –
1e−4 – – – – – – –
2e−4 – – – – – – –
5e−4 92.1 ± 2.0 23.2 ± 1.2 81.4 ± 1.1 23.4 ± 2.9 82.2 ± 1.7 42.7 ± 1.6 57.5 ± 1.0
1e−3 92.5 ± 3.0 24.8 ± 1.1 82.4 ± 1.8 23.6 ± 1.0 82.7 ± 1.1 42.2 ± 3.2 58.0 ± 0.7
2e−3 90.4 ± 2.5 22.9 ± 1.2 82.4 ± 2.1 21.7 ± 1.4 80.8 ± 2.4 41.9 ± 2.6 56.7 ± 0.7

Best LR 1e−3 1e−3 2e−3 1e−3 1e−3 5e−4 1e−3

Table 20: Performance of Supra 0.3 with lora r = 8 across different learning rates. Results are
accuracy (%) ± standard deviation.

Learning Rate MultiArith GSM8K AddSub AQuA SingleEq SVAMP Average

2e−5 – – – – – – –
5e−5 – – – – – – –
1e−4 – – – – – – –
2e−4 – – – – – – –
5e−4 91.8 ± 1.1 25.8 ± 0.7 86.4 ± 0.6 25.1 ± 1.8 85.7 ± 0.7 47.5 ± 1.4 60.4 ± 0.6
1e−3 93.6 ± 0.5 24.9 ± 1.2 87.0 ± 0.5 23.9 ± 1.1 85.6 ± 2.2 46.9 ± 1.2 60.3 ± 0.5
2e−3 92.1 ± 0.5 21.9 ± 0.6 82.0 ± 4.6 23.1 ± 0.8 81.3 ± 2.4 39.1 ± 3.0 56.6 ± 1.5

Best LR 1e−3 5e−4 1e−3 5e−4 5e−4 5e−4 5e−4

D.7 SUPRA (0.3) (MATH CALIBRATED)

Table 21: Performance of Supra 0.3 math calibr with lora r = 4 across different learning rates.
Results are accuracy (%) where only one learning rate was tested.

Learning Rate MultiArith GSM8K AddSub AQuA SingleEq SVAMP Average

2e−5 – – – – – – –
5e−5 – – – – – – –
1e−4 – – – – – – –
2e−4 – – – – – – –
5e−4 86.8 24.1 82.3 20.9 83.7 44.4 57.0
1e−3 – – – – – – –
2e−3 – – – – – – –

Best LR 5e−4 5e−4 5e−4 5e−4 5e−4 5e−4 5e−4

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D.8 SUPRA (0.55)

Table 22: Performance of Supra 0.55 with lora r = 4 across different learning rates. Results are
accuracy (%) ± standard deviation.

Learning Rate MultiArith GSM8K AddSub AQuA SingleEq SVAMP Average

2e−5 – – – – – – –
5e−5 – – – – – – –
1e−4 – – – – – – –
2e−4 – – – – – – –
5e−4 90.9 ± 1.4 22.3 ± 1.2 81.9 ± 0.8 21.8 ± 0.9 81.5 ± 0.7 43.8 ± 1.3 57.1 ± 0.2
1e−3 93.1 ± 1.8 24.1 ± 0.5 82.4 ± 4.0 22.7 ± 2.8 83.5 ± 0.9 41.3 ± 1.3 57.8 ± 1.1
2e−3 92.9 ± 1.8 22.7 ± 0.5 82.9 ± 2.8 22.2 ± 3.9 82.2 ± 0.6 43.1 ± 1.0 57.7 ± 0.8

Best LR 1e−3 1e−3 2e−3 1e−3 1e−3 5e−4 1e−3

Table 23: Performance of Supra 0.55 with lora r = 8 across different learning rates. Results are
accuracy (%) ± standard deviation.

Learning Rate MultiArith GSM8K AddSub AQuA SingleEq SVAMP Average

2e−5 – – – – – – –
5e−5 – – – – – – –
1e−4 – – – – – – –
2e−4 – – – – – – –
5e−4 94.8 ± 1.8 25.9 ± 1.4 85.6 ± 2.5 23.8 ± 0.9 86.5 ± 0.7 47.1 ± 3.6 60.6 ± 1.2
1e−3 93.0 ± 2.3 24.9 ± 0.7 87.1 ± 1.2 22.2 ± 1.6 84.9 ± 0.5 43.2 ± 3.8 59.2 ± 0.4
2e−3 92.5 ± 0.9 21.2 ± 0.9 84.2 ± 1.4 23.2 ± 1.8 82.1 ± 2.6 42.3 ± 1.7 57.6 ± 0.8

Best LR 5e−4 5e−4 1e−3 5e−4 5e−4 5e−4 5e−4

D.9 SUPRA (0.8)

Table 24: Performance of Supra 0.8 with lora r = 4 across different learning rates. Results are
accuracy (%) ± standard deviation.

Learning Rate MultiArith GSM8K AddSub AQuA SingleEq SVAMP Average

2e−5 – – – – – – –
5e−5 – – – – – – –
1e−4 – – – – – – –
2e−4 – – – – – – –
5e−4 90.7 ± 1.4 22.2 ± 1.8 81.4 ± 1.4 23.1 ± 0.6 82.5 ± 1.4 43.1 ± 1.6 57.2 ± 0.6
1e−3 91.7 ± 0.7 21.6 ± 1.6 81.5 ± 3.3 24.8 ± 2.8 81.1 ± 5.3 41.7 ± 4.7 57.1 ± 2.2
2e−3 90.2 ± 1.9 21.6 ± 1.1 81.6 ± 3.0 20.7 ± 3.0 82.3 ± 1.4 43.2 ± 1.1 56.6 ± 0.8

Best LR 1e−3 5e−4 2e−3 1e−3 5e−4 2e−3 5e−4

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 25: Performance of Supra 0.8 with lora r = 8 across different learning rates. Results are
accuracy (%) ± standard deviation.

Learning Rate MultiArith GSM8K AddSub AQuA SingleEq SVAMP Average

2e−5 – – – – – – –
5e−5 – – – – – – –
1e−4 – – – – – – –
2e−4 – – – – – – –
5e−4 95.1 ± 1.5 26.0 ± 0.6 85.6 ± 2.7 22.7 ± 1.1 84.8 ± 1.1 45.5 ± 2.3 59.9 ± 0.9
1e−3 93.2 ± 0.8 25.1 ± 0.7 88.5 ± 1.0 21.4 ± 1.8 87.2 ± 0.9 48.3 ± 1.5 60.6 ± 0.3
2e−3 92.5 ± 1.8 21.4 ± 1.2 82.2 ± 2.2 20.2 ± 4.1 82.5 ± 1.3 42.0 ± 2.5 56.8 ± 1.5

Best LR 5e−4 5e−4 1e−3 5e−4 1e−3 1e−3 1e−3

D.10 HIGHER RANK: r = 16

Table 26: Comparison of methods with lora r = 16. Results are accuracy (%) ± standard devia-
tion.

Method MultiArith GSM8K AddSub AQuA SingleEq SVAMP Average

LoRA 93.3 ± 1.6 24.8 ± 1.8 84.7 ± 5.5 23.5 ± 2.2 82.1 ± 5.7 45.8 ± 4.0 58.1 ± 4.0
SIFT 93.5 ± 1.4 24.0 ± 0.8 87.0 ± 0.7 24.3 ± 0.8 84.1 ± 1.2 44.8 ± 1.6 59.0 ± 1.1
SUPER 88.4 ± 3.8 24.7 ± 0.8 85.7 ± 1.7 23.7 ± 3.7 85.0 ± 0.4 47.1 ± 1.0 58.9 ± 0.5
SIFT Random 92.0 ± 1.7 26.1 ± 1.9 86.0 ± 1.7 23.4 ± 1.9 85.6 ± 1.4 48.7 ± 3.3 59.7 ± 0.8
SUPER Math Calibr 92.7 ± 0.1 25.0 ± 0.7 84.3 ± 2.8 23.5 ± 1.9 85.4 ± 0.8 47.8 ± 1.2 59.0 ± 1.1
Supra 0.3 – – – – – – –
Supra 0.3 Math Calibr – – – – – – –
Supra 0.55 – – – – – – –
Supra 0.8 – – – – – – –

19

	Introduction
	Notation

	Related Work
	Parameter–Efficient Fine‑Tuning (PEFT)
	Sparse fine‑tuning
	Hybrid low‑rank & sparse methods
	Fine‑tuning at the neuron or weight level
	Connections to pruning and outlier‑aware updates

	Adaptation of Large Language Models
	Notation
	Super: Mask Generation Algorithm for SpA.
	Supra: Adaptive Low-Rank and Sparse Adaptation.
	Adaptive Budget Allocation in Supra

	Experiments
	Experimental Setup
	Comparison with other fine-tuning methods

	Discussion
	Limitations
	Table of Frequently Used Notation
	Wanda metric for generating fine-tuning mask
	Additional experiments
	Experiments with different Learning Rates
	LoRa
	SIFT
	SIFT random
	Super
	Super (math calibrated)
	Supra (0.3)
	Supra (0.3) (math calibrated)
	Supra (0.55)
	Supra (0.8)
	Higher rank: r=16

