Under review as a conference paper at ICLR 2026

SUPRA-TUNING: COMBINING OUTLIER AND LOW-
RANK ADAPTATION FOR SPARSE AND EFFICIENT LLLM
FINE-TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have demonstrated remarkable capabilities but
remain expensive to fine-tune due to their size. Recent parameter-efficient tuning
methods, such as Low-Rank Adaptation (LoRA), reduce the number of trainable
parameters while maintaining performance. In this work, we introduce Super,
a novel sparse adaptation technique that selects and trains only a small set of
influential weights—so-called super weights—identified via outlier metrics such
as WANDA. We show that fine-tuning these outlier weights yields strong per-
formance with minimal parameter updates. Building on this idea, we propose
Supra, a hybrid method that combines Super with LoRA, merging sparse and low-
rank adaptations into a unified tuning strategy. Our experiments on several LLMs
and downstream tasks demonstrate that both Super and Supra outperform exist-
ing sparse or low-rank methods alone in perplexity and task performance, while
reducing computational and memory overhead.

1 INTRODUCTION

Large Language Models (LLMs) have revolutionized the field of natural language processing,
achieving state-of-the-art results in a wide array of tasks including question answering, summa-
rization, code generation, and reasoning. However, their impressive capabilities come with a sub-
stantial cost: full fine-tuning of such models requires considerable computational resources, high
memory consumption, and significant storage for each downstream task. This inefficiency becomes
particularly problematic when deploying models in real-world settings with resource constraints or
personalization requirements.

To address these limitations, parameter-efficient fine-tuning (PEFT) methods have been proposed.
These approaches update only a small fraction of the model’s parameters, leaving the majority of
weights frozen. Among the most successful PEFT techniques is LoRA (Hu et al., |2021)), which in-
jects low-rank trainable matrices into existing layers. LORA enables tuning with minimal parameter
overhead and has been widely adopted for its balance of efficiency and performance.

Beyond low-rank adaptation, recent work has explored the use of sparse adaptation, where only a
small, selected subset of existing weights are updated. Methods such as SIFT (Song et al., 2023)
and RoSA (Nikdan et al.| 2024)) select salient weights for fine-tuning based on importance scores or
gradient signals. NeFT (Xu et al.,[2024) takes this further by identifying and training only the most
critical neurons. SpIEL (Ansell et al.,2024) introduces scalable sparse tuning with structured expert
layers, and SAT (Ma et al., 2024)) proposes sparsity-accelerated training with carefully selected
updates. SZFT (Yang et al.| 2024) combines sparsity with structured decomposition for efficient
and generalizable tuning, while GIFT-SW (Zhelnin et al.| [2024)) uses noise-injected fine-tuning on
salient weights to improve robustness.

While sparse tuning methods are promising, they often require multiple training phases, gradient
computations, or architectural modifications to identify important weights. At the same time, the
possibility of combining sparse and low-rank updates has remained underexplored. One exception
is SLTrain (Han et al., [2024), which unifies sparse and low-rank adaptation in a pretraining setting.
In the PEFT context, RoSA (Nikdan et al.| [2024) also integrates both types of updates. Notably,

Under review as a conference paper at ICLR 2026

our work arrives at this hybrid approach independently, based on a different set of motivations and
techniques.

In this paper, we introduce Super, a new sparse PEFT method based on the idea of outlier weights.
Inspired by pruning techniques such as WANDA (Sun et al., [2023), we identify and fine-tune only
a small set of super weights—outlier weights that have disproportionate impact on model behavior
and perplexity. Unlike previous sparse PEFT approaches, Super does not require additional gradient
computations or training stages for weight selection. Instead, it relies on a simple, interpretable,
training-free metric.

We further propose Supra, a hybrid method that combines Super with LoRA to jointly leverage
sparse and low-rank adaptation. Supra brings together the parameter efficiency of Super and the
representational power of LoRA, resulting in a flexible and effective fine-tuning strategy. Our ex-
tensive experiments on LLMs and downstream tasks demonstrate that both Super and Supra achieve
performance on par with or better than existing PEFT methods, with fewer trainable parameters and
lower memory consumption.

We summarize our key contributions as follows:

* We propose Super, a new outlier-based sparse fine-tuning method that updates only a small
set of important weights, selected without training or gradient statistics.

* We introduce Supra, a hybrid PEFT strategy that combines Super with LoRA, effectively
merging sparse and low-rank adaptation.

* We propose a simple yet efficient strategy of setting adaptive rank for LoRA by fixing the
number of trainable parameters for every linear layer.

* We demonstrate the effectiveness of our methods across multiple LLMs and downstream
tasks, showing that Super and Supra achieve comparable or superior performance to exist-
ing PEFT methods with significantly fewer trainable parameters.

Our findings show that outlier-aware sparse fine-tuning and hybrid adaptation offer promising
directions for scalable and effective LLM adaptation.

1.1 NOTATION

All key notation used in this paper is summarized in a tabular form in[Section A} see Table 3]

2 RELATED WORK

2.1 PARAMETER-EFFICIENT FINE-TUNING (PEFT)

The prohibitive compute and memory cost of updating all parameters of a large language
model (LLM) has motivated a rich literature on parameter—efficient fine-tuning (PEFT). Classi-
cal adapter-style methods insert small dense modules into each Transformer block (e.g., adapters,
prefix-tuning, and LoRA), but still back-propagate through the full network, limiting their scalabil-
ity. Recent work has therefore shifted towards sparse or otherwise structured updates that explicitly
select a subset of parameters to train.

2.2 SPARSE FINE-TUNING

Several papers demonstrate that high accuracy can be recovered—even on reasoning-heavy
tasks—when a model is updated on only a small fraction of its weights. (Song et al.}|2023)) analyse
the PAC-Bayesian generalisation bound of PEFT and propose SIFT, a gradient-based algorithm that
activates at most k parameters per layer during training. (Ansell et al.l 2024)) show that dynamically
grown—pruned sparse deltas scale to 13-B-parameter LLaMA-2 while retaining memory propor-
tional to the sparsity pattern rather than to model size. Orthogonally, (Ma et al., |2024) exploit the
observation that only a minority of neurons fire on any given example and skip the forward/backward
pass of inactive neurons to accelerate both continual pre-training and supervised fine-tuning by up to
45%. Building on structured sparsity, (Yang et al.,[2024) introduce S2FT, which selects a small set

Under review as a conference paper at ICLR 2026

of attention heads and MLP channels, then co-permutes weight matrices so the selected components
form dense sub-matrices that can be trained efficiently with ordinary GEMM kernels.

2.3 HYBRID LOW-RANK & SPARSE METHODS

A complementary line of work seeks to combine the representational benefits of low-rank adapta-
tion with the compactness of sparsity. (Nikdan et al.,[2024) decompose the update into a low-rank
adapter plus a very sparse residual and optimise both jointly, delivering full-fine-tuning accuracy
at LoRA-sized budgets. For the pre-training regime, (Han et al., [2024) factorise each linear layer
into a low-rank term and a fixed-support sparse term, achieving up to 73% memory savings while
matching full-rank performance.

2.4 FINE-TUNING AT THE NEURON OR WEIGHT LEVEL

Moving to finer granularity, (Xu et al.,|2024) supervise the updates at the level of individual neurons
(NEFT), explicitly identifying task-relevant neurons whose small subset updates suffice to outper-
form full-parameter fine-tuning. (Zhelnin et al., [2024) extend the idea of salient-weight selection
with GIFT-SW, which injects Gaussian noise into non-salient columns while learning only the
salient ones, closing the gap to full fine-tuning under the same compute budget.

2.5 CONNECTIONS TO PRUNING AND OUTLIER-AWARE UPDATES

Our method is inspired by pruning research that measures weight saliency Sy, for every weight W,
from a linear layer W € R¢*? before deleting parameters. The WANDA metric multiplies a weight’s
magnitude by the norm of its input activation:

Ska = ([Wikgl | Xe:l12)* (1)

where X,. € R1* is the ¢ row of the input matrix matrix X € R"*¢,

The metric Si4 is then used in order to approximate output-level importance and enables one-shot
pruning without weight updates (Sun et al., 2023)). Instead of discarding low-metric weights, we take
the complementary view: we retain and fine-tune only the outliers—the high-Wanda-score weights
that pruning finds indispensable. This choice is motivated by empirical evidence that perturbing or
removing these outliers dramatically degrades perplexity, implying that updating them should yield
the largest quality gains for a given parameter budget. In contrast to prior sparse PEFT work, which
selects parameters heuristically or grows them during training, our approach uses a pruning-derived
saliency signal that is (i) model-specific and (ii) computable in a single forward pass, making it
attractive for large-scale deployment.

3 ADAPTATION OF LARGE LANGUAGE MODELS

3.1 NOTATION

Let NV denote a pre-trained Large Language Model (LLM), and let W = {W;, W5, ..., Wy} be the
collection of all fully connected weight matrices in AV, including those within sub-attention layers,
with each W; € R¢*% for 1 < i < k. Let the vector @ € R represent the remaining parameters of
N, such as biases and normalization parameters, concatenated into a single vector. Given a dataset D
and a loss function £(D; W, w), the full fine-tuning (FFT) of N can be formulated as the following
optimization problem:

min £(D; W, w). 2

W

Due to the large scale of modern LLMs — often comprising billions of parameters-performing FFT
is computationally expensive and memory-intensive, making it impractical on standard GPUs. A
practical alternative is to apply lightweight modifications known as adapters, which we formalize
next.

Let A = {Aq, Ag, ..., A} denote perturbations applied to the fully connected weights, with A; €
R *% for all i. Define the adapted weights as W + A = {W; + Ay, Wa + Ag, ..., Wi + Agl,

Under review as a conference paper at ICLR 2026

and let § € R? represent perturbations to w. The adapted model is then obtained by solving:
min L(D; W+ A, w+0) st C(A,d), (3)
AS

where C(A, §) encodes constraints on the perturbations (e.g., low-rank or sparse structure) to reduce
memory and computational overhead. Notably, if no constraints are imposed, this setting reduces to
standard FFT.

In this work, we focus on the common scenario where § = 0, though in principle w can also be fine-
tuned, especially given its relatively small size compared to JV. Additionally, although we assume
adaptation of all fully connected weights, our method applies to partial adaptation as well.

LoRA: Low-Rank Adaptation. LoRA [Hu et al| (2021) constrains each perturbation A; to be
low-rank, specifically:

mAinE(D;W +A,w) st rank(A;) <r Vi 4)

This reduces the number of trainable parameters for each layer ¢ from ¢;b; to r(¢; + b;), making
fine-tuning more memory-efficient.

SpA: Sparse Adaptation. Sparse adaptation (SpA) Sung et al.| (2021) enforces sparsity in the
perturbations:
mAinﬁ(D;W +A @) st ||Alo <peb; Vi, (5)

where p € (0, 1] is the sparsity density and || - || denotes the £, pseudo-norm. It is common to fix
the sparse support during training, thereby reducing the number of trainable parameters by a factor
of p.

3.2 SUPER: MASK GENERATION ALGORITHM FOR SPA.

We introduce a mapping ¢x : R*? — {0,1}¢*? that takes a matrix of weights W and generates
a corresponding fine-tuning mask. For each weight W;, it evaluates the metric |W;;|||.X;.||2 and
selects the s entries with the highest scores. The output is a binary mask with ones at these selected
positions:
¥x (W, s) = mask selecting the s weights W;; with (6)
the highest |W;;||.X.|2 values.
Refer to for additional examples.

Our algorithm for generation of sparse masks involves the following procedure:

Algorithm 1 SpA mask generation by Wanda

1: Inmitialization: Input matrix X € Rb*a, weight matrix W € Re*? number of outliers to select
s€{0,---,cb}.
20 M+ ¢x(W,s)

Unlike many existing methods, our approach does not require a complex or computationally in-
tensive procedure for selecting the trainable parameters of the sparse adapter. Instead, we adopt a
simple and highly efficient strategy that can be executed within seconds, even for large-scale mod-
els and substantial batch sizes. We refer to this method as Super—short for Selective Update of
Parameters via Extreme Ranking.

The core idea behind Super is to leverage the Wanda metric, which estimates the importance of
each parameter by quantifying its impact on the layer-wise ¢ reconstruction loss upon removal.
Specifically, parameters associated with a high reconstruction error are deemed more critical to
the model’s performance. Thus, Wanda provides a cheap yet effective approximation of parameter
importance.

Our central hypothesis is that training should be concentrated on the most impactful parameters to
achieve efficient adaptation and rapid convergence. By selecting the top-ranked outlier parameters
according to the Wanda metric, Super provides a principled and scalable method for sparse fine-
tuning that aligns well with both theoretical intuition and empirical effectiveness.

Under review as a conference paper at ICLR 2026

Sparse Adapter (SpA) Low-Rank Adapter (LoRA)
b r

A

. — —
(Y) O o0 : \

0cec , |/eeececee
{® % ® eo0o0coo00
00000 ® o0

Skq = Wl?q”Xq:H%

4

. = Trainable parameter

= Fixed, non-trainable parameter

Figure 1: Supra combines a sparse adapter—based on Super weights with a low-rank adapter. To
select the parameters for training in the sparse adapter, we employ the WANDA metric (Equation|[T)).
The rank r of the low-rank adapter is determined dynamically using Equation m

3.3 SUPRA: ADAPTIVE LOW-RANK AND SPARSE ADAPTATION.

Supra is a hybrid fine-tuning strategy that combines two complementary approaches: a sparse
adapter selected via the Super strategy and a low-rank adapter based on LoRA. This unified frame-
work is designed to maximize the strengths of both methods: the stability and selectivity of sparse
adaptation, and the flexibility and expressiveness of low-rank adaptation.

The intuition behind this design stems from the observation that LoRA, by construction, learns
updates in a low-dimensional subspace. Specifically, although the LoRA adapter can be interpreted
as a full matrix when expanded, the effective number of degrees of freedom is limited by the chosen
rank. Consequently, LoORA dynamically explores and updates a low-rank subspace of parameters
throughout fine-tuning. This evolving subspace allows the model to gradually adjust its internal
representations and better align with the target task.

In contrast, sparse adaptation—particularly when guided by Super—selects a fixed subset of im-
portant parameters to train. These parameters are chosen based on their estimated influence on the
model’s output, as measured by the Wanda metric. Once selected, this subset remains constant
during training, resulting in updates restricted to a fixed subspace.

By combining these two adapters, Supra achieves a powerful balance: the sparse adapter ensures
that the most crucial parameters from the pre-trained model are retained and further optimized,
preserving core knowledge, while the LoRA component dynamically adapts to the target task by
learning task-specific directions in the parameter space. In essence:

» The sparse adapter captures and preserves essential knowledge embedded in the original
model, focusing on parameters that were previously influential.

* The low-rank adapter enables fask-specific generalization by learning new subspaces of
importance in a structured and efficient manner.

This synergy allows Supra to fine-tune large language models both accurately and efficiently, achiev-
ing fast convergence while minimizing memory and compute overhead. Moreover, the explicit con-
trol over the parameter budget and its division between sparse and low-rank components enables
practitioners to tailor the method to different resource constraints or adaptation scenarios.

3.4 ADAPTIVE BUDGET ALLOCATION IN SUPRA

Supra employs an adaptive strategy to determine the rank r; of the Low-Rank adapter based on a
user-defined parameter p € (0, 1], representing the overall sparsity density.

Rather than fixing the rank for each linear layer W;, we fix the total number of trainable parameters
per layer. Specifically, for a linear layer W; € R¢ > we allocate a total budget of |pc;b; | trainable

Under review as a conference paper at ICLR 2026

parameters. To divide this budget between the Low-Rank and Sparse adapters, we introduce a new
parameter « € [0, 1], referred to as the Low-Rank parameters ratio.

* If @ = 1, the entire budget is allocated to the Low-Rank adapter, recovering the standard
LoRA setup.

e If a = 0, the full budget is allocated to the Sparse adapter, resulting in standard Sparse
Adaptation.

* If a = 0.5, the budget is evenly split between Low-Rank and Sparse adapters.

Under this scheme, the Low-Rank adapter receives | apc;b; | trainable parameters, while the Sparse
adapter is assigned | (1 — a)pe;b; |.
Unlike sparse adaptation, which directly operates on a fixed number of parameters, Low-Rank adap-
tation requires specifying a rank r;. To bridge this gap, we define the following adaptive rule for

selecting r; based on o and p:
ri = F‘p%bﬂ :)

C; +b1

This formulation ensures that the Low-Rank adapter uses I; = r;(c; + b;) = [%1 (¢; + bi)

parameters, and the Sparse adapter is assigned the remaining s; = |pc;b;| — l; parameters, so the
total number of trainable parameters remains consistent: s; + I; = |pc;b;].

We note that due to rounding in equation[7] the actual ratio of Low-Rank to total trainable parameters
may deviate slightly from the target value «. In particular, li_l;'si # «. This discrepancy arises from
the ceiling operation in equation[7] which ensures that r; remains an integer. However, we find that
such deviations are minor in practice, and the value of « can be adjusted to compensate for rounding

effects during empirical tuning.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets All experiments in this work are conducted on the Math10K dataset, originally intro-
duced in the LLM-Adapters study by |[Hu et al.| (2023). This dataset is specifically curated for fine-
tuning and evaluating language models on math reasoning tasks.

The Math10K dataset consists of 10,000 high-quality arithmetic reasoning problems drawn from
multiple publicly available benchmarks, including GSM8K (Cobbe et al.,2021), AQuA (Ling et al.,
2017), MAWPS and MAWPS-Single (Koncel-Kedziorski et al.L|2016)). The dataset was constructed
by selecting high-quality samples that provide both equations and answers, and then augmenting
them with step-by-step rationales generated by ChatGPT using zero-shot chain-of-thought prompt-
ing. Only samples with correct answers were retained to ensure data quality.

For evaluation, we follow the protocol of |Hu et al.| (2023) and report accuracy scores on six arith-
metic reasoning benchmarks:

* GSMBSK (Cobbe et al., [2021): Grade-school math word problems with diverse linguistic
structure.

* SVAMP (Patel et al. [2021): One-variable arithmetic problems derived via minimal
changes from an existing dataset.

* MultiArith (Roy & Roth,|2016): Multi-step arithmetic problems requiring multiple oper-
ations.

* AddSub (Hosseini et al., |2014): Basic addition and subtraction problems.

* AQuA (Ling et al.| |2017): Algebraic word problems with answer options and natural lan-
guage rationales.

 SingleEq (Koncel-Kedziorski et al., 2015): Algebra word problems that map to single-
variable equations of varying complexity.

Under review as a conference paper at ICLR 2026

These datasets collectively assess the model’s ability to reason over arithmetic structures and solve
problems requiring symbolic manipulation and multi-step inference.

Training Details All models are fine-tuned using adapter-based methods, where only a small sub-
set of parameters is trained while the rest of the model remains frozen. We compare several adapta-
tion strategies, including LoRA, SIFT and our proposed methods Super and Supra.

Parameter Budgets. We conduct experiments under two different parameter budgets, defined by
the LoRA rank: lora_r = 8 (moderate budget) and Lora_r = 4 (low budget). For Supra, we vary
the parameter split ratio € {0.3,0.55, 0.8} to evaluate the trade-off between sparse and low-rank
adaptation. All methods use the same underlying backbone model - LLaMA-3 (1B/3B/8B) (Dubey
et al.,[2024)), and all hyperparameters are kept consistent across runs for fair comparison.

Evaluation Metric. We report average accuracy along with standard deviation across multiple
random seeds. Each dataset is evaluated independently, and the overall average accuracy is used as
a summary metric to compare different methods.

Reproducibility. Following the LLM-Adapters setup, all experiments are conducted using pub-
licly available datasets and reproducible fine-tuning pipelines. The Math10K dataset and associated
prompt templates used to generate rationales with ChatGPT are detailed in Hu et al.| (2023), Ap-
pendix A.

For all our experiments we used a single Nvidia A100 GPU (Choquette et al., 2021).

4.2 COMPARISON WITH OTHER FINE-TUNING METHODS

We evaluate Supra and other baselines on six mathematical reasoning benchmarks: MultiArith,
GSMSK, AddSub, AQuA, SingleEq, and SVAMP. The results under two different fine-tuning bud-
gets—defined by the LoRA rank r € {8,4} — are shown in [Tables 1|and

High Budget Setting (Lora_r = 8). Under a relatively generous parameter budget, the hybrid
Supra method consistently achieves the best or near-best results across most tasks. In particular,
Supra with o« = 0.8, which dedicates the majority of its budget to the Low-Rank adapter, achieves
the highest average accuracy of 60.6%, outperforming all baselines including LoRA (58.7%) and
Super (59.2%). This highlights the advantage of combining dynamic low-rank updates with a fixed
set of high-importance sparse parameters. Interestingly, LORA performs well in this setting, reflect-
ing the benefits of learning a task-specific subspace when sufficient capacity is available.

Low Budget Setting (Llora_r = 4). When the rank is reduced to 4, the overall number of train-
able parameters drops substantially, making the selection of which parameters to train far more crit-
ical. In this constrained regime, the Super method — using only the sparse adapter based on outlier
parameter selection achieves the best average accuracy of 58.2 %, outperforming all other methods,
including Supra variants and LoRA. This suggests that when budget is tight, focusing on the most
influential parameters (as estimated by the Wanda metric) is more beneficial than attempting to learn
a low-rank subspace.

Supra remains competitive in this regime, with the best-performing variant (o« = 0.3) reaching
58.0% average accuracy, slightly below Super but still ahead of LoRA (57.0%) and SIFT (55.3%).
However, as the value of « increases (i.e., shifting more budget to LoRA), performance tends to
degrade, confirming that low-rank updates alone are insufficient when the parameter budget is too
limited.

These findings offer several important insights:

» Importance of parameter selection under constraints. In low-budget settings, it is cru-
cial to carefully select which parameters to train. The Super adapter achieves this via a
principled selection of outlier weights, leading to robust performance even with minimal
updates.

» Subspace adaptivity vs. parameter criticality. LoRA excels when there is enough capac-
ity to explore new subspaces dynamically. However, in low-capacity regimes, maintaining
a fixed set of critical parameters as in Super is more effective.

Under review as a conference paper at ICLR 2026

* Supra as a unifying strategy. Supra benefits from both perspectives: it preserves essential
knowledge from the pre-trained model via sparse adaptation, and simultaneously adapts
to the target task by learning a low-rank subspace. The ability to balance these via the «
parameter allows Supra to operate effectively across a range of parameter budgets.

Overall, these results validate our design of Supra as a flexible and powerful fine-tuning method,
capable of adapting to both high and low training budgets by interpolating between sparse and low-

rank regimes.

Table 1: Comparison of methods with 1ora_r = 8. Results are accuracy (%) + standard deviation.

Method MultiArith GSMSK AddSub AQuA SingleEq SVAMP Average

LoRA 924433 234+21 865+26 255+1.6 835+£21 456+£24 587+13
SIFT 922+ 17 231+12 831410 231+£19 82.0x+12 442407 571=£05
SIFT (rand) 878 +£18 2394+10 840+43 21.8+08 835+19 481+£23 574+03
Rosa 91.7+08 235+1.1 840+09 213+£04 824+13 446+17 579£02
Super 916+ 1.1 254+09 863+32 229+1.0 846+£17 467+£09 592403
Supra (0.3) 93.6+05 258+07 87.0+05 251+£18 857+07 475+14 604=+0.6
Supra (0.55) 948+18 259+14 871+£12 238+09 8654+0.7 47.1+3.6 60.6+1.2
Supra (0.8) 951+15 260+06 885+10 227+1.1 872+09 483+15 60.6=+0.3

Table 2: Comparison of methods with lora_r = 4.

Results are accuracy (%) =+ standard deviation.

Method MultiArith GSMSK AddSub AQuA SingleEq SVAMP Average

LoRA 90.1 £29 244+14 837+33 231427 813+29 43.6+44 570+1.7
SIFT 883+22 21.14+18 809+17 222+22 789+14 415+12 553+1.1
Super 889+09 235+15 855+20 243+18 843+12 445+18 582405
SIFT (rand) 87.1+32 234406 838+20 21.1+15 822+1.1 468+24 5744+0.7
Rosa 83.7+26 2194+03 8l1.6+33 212+£14 789+1.1 463+21 556+13
Supra (0.3) 9254+30 248+1.1 824421 2364+10 8274+1.1 4274+16 58.0+0.7
Supra (0.55) 93.1+18 241+05 829428 227+28 835+09 438+13 57.8+1.1
Supra (0.8) 91.7+07 222+18 81.64+3.0 248+28 825+14 432+1.1 572406

Additional experiments and more comparisons with other methods can be found in

5 DISCUSSION

Our work demonstrates that fine-tuning large language models can be significantly improved through
careful selection and allocation of trainable parameters. In particular, we introduced two key inno-
vations: (1) an adaptive strategy for setting the rank of Low-Rank adapters by fixing the number of
trainable parameters per layer, and (2) a simple yet effective method for selecting sparse adaptation
parameters based on outlier scores derived from the WANDA metric. These contributions enabled
us to design Super, a sparse fine-tuning method that requires no additional training or gradient in-
formation, and Supra, a hybrid strategy that combines sparse and low-rank adaptation into a unified
framework. The adaptive rank strategy ensures that the low-rank component scales naturally with
the layer size, while the use of WANDA outliers provides an interpretable and training-free mech-
anism to identify impactful weights for sparse updates. Together, these methods achieve strong
performance with minimal parameter overhead across multiple LLMs and tasks. Importantly, our
approach remains simple to implement and incurs little computational overhead, making it well-
suited for scalable and practical deployment in real-world scenarios. This highlights the potential of
combining principled, interpretable metrics with efficient parameter allocation to push the bound-
aries of parameter-efficient fine-tuning.

6 LIMITATIONS

Despite the empirical gains documented in our study has several limitations that we hope
future work will address.

Under review as a conference paper at ICLR 2026

Scope of evaluation. All experiments are confined to the Math10K benchmark and six arith-
metic—reasoning test suites. While this domain is attractive for its controlled difficulty and clear
accuracy metric, it represents a narrow slice of the broad application space of LLMs. In particular,
language—generation tasks that hinge on open-ended semantics (e.g., summarisation, dialogue, or
code synthesis) may stress different model components than symbolic math reasoning; the relative
benefits of sparse, low-rank, and hybrid updates could therefore shift in other settings. A more
comprehensive assessment across diverse modalities, instruction-following tasks, and safety-critical
benchmarks is necessary before drawing general conclusions.

Dependence on the WANDA saliency proxy. SUPER (and hence SUPRA) selects trainable
weights using an activation-weighted magnitude heuristic inherited from the WANDA pruning met-
ric. Although this choice is fast and training-free, it is still an approximation of true importance;
weights that appear non-salient under the proxy may in fact become critical once the task distri-
bution shifts or once other parameters are updated. We do not study how sensitive performance is
to mis-rankings, nor whether more expressive but costlier criteria (e.g. curvature-aware saliency or
gradient-flow statistics) would yield better sparse masks.

Fixed sparse support. The sparse component of SUPRA is static throughout fine-tuning: once a
weight is deemed non-trainable, it can never be activated. Dynamic sparsity—allowing the mask to
grow, prune, or re-allocate budget during training—has shown promise in other contexts and may
close the gap to full fine-tuning in edge cases where the initial selection is sub-optimal.

Layer-local parameter budgets. Our adaptive rank rule (Equation (7)) allocates the same fraction
of parameters to every linear layer. In practice, different layers contribute unequally to downstream
task performance; early attention blocks, for example, often admit more aggressive compression
than middle MLP layers. A global, data-driven re-allocation of the parameter budget—akin to neural
architecture search—might improve efficiency further.

REFERENCES

Alan Ansell, Ivan Vuli¢, Hannah Sterz, Anna Korhonen, and Edoardo M Ponti. Scaling sparse
fine-tuning to large language models. arXiv preprint arXiv:2401.16405, 2024.

Jack Choquette, Wishwesh Gandhi, Olivier Giroux, Nick Stam, and Ronny Krashinsky. Nvidia al100
tensor core gpu: Performance and innovation. IEEE Micro, 41(2):29-35, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Andi Han, Jiaxiang Li, Wei Huang, Mingyi Hong, Akiko Takeda, Pratik Jawanpuria, and Bamdev
Mishra. Sltrain: a sparse plus low-rank approach for parameter and memory efficient pretraining.
arXiv preprint arXiv:2406.02214, 2024.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, and Nate Kushman. Learning to
solve arithmetic word problems with verb categorization. In Proceedings of the 2014 conference
on empirical methods in natural language processing (EMNLP), pp. 523-533, 2014.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Zhiqgiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Ka-Wei Lee. LIm-adapters: An adapter family for parameter-efficient fine-tuning
of large language models. arXiv preprint arXiv:2304.01933, 2023.

Under review as a conference paper at ICLR 2026

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni, and Siena Dumas
Ang. Parsing algebraic word problems into equations. Transactions of the Association for Com-
putational Linguistics, 3:585-597, 2015.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Hajishirzi.
Mawps: A math word problem repository. In Proceedings of the 2016 conference of the north

american chapter of the association for computational linguistics: human language technologies,
pp. 1152-1157, 2016.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale gener-
ation: Learning to solve and explain algebraic word problems. arXiv preprint arXiv:1705.04146,
2017.

Da Ma, Lu Chen, Pengyu Wang, Hongshen Xu, Hangqi Li, Liangtai Sun, Su Zhu, Shuai Fan, and Kai
Yu. Sparsity-accelerated training for large language models. arXiv preprint arXiv:2406.01392,
2024.

Mahdi Nikdan, Soroush Tabesh, Elvir Crncevi¢, and Dan Alistarh. Rosa: Accurate parameter-
efficient fine-tuning via robust adaptation. arXiv preprint arXiv:2401.04679, 2024.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math
word problems? arXiv preprint arXiv:2103.07191, 2021.

Subhro Roy and Dan Roth. Solving general arithmetic word problems. arXiv preprint
arXiv:1608.01413, 2016.

Weixi Song, Zuchao Li, Lefei Zhang, Hai Zhao, and Bo Du. Sparse is enough in fine-tuning pre-
trained large language models. arXiv preprint arXiv:2312.11875, 2023.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023.

Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse masks.
Advances in Neural Information Processing Systems, 34:24193-24205, 2021.

Haoyun Xu, Runzhe Zhan, Derek F Wong, and Lidia S Chao. Let’s focus on neuron: Neuron-level
supervised fine-tuning for large language model. arXiv preprint arXiv:2403.11621, 2024.

Xinyu Yang, Jixuan Leng, Geyang Guo, Jiawei Zhao, Ryumei Nakada, Linjun Zhang, Huaxiu Yao,
and Beidi Chen. S2ft: Efficient, scalable and generalizable Ilm fine-tuning by structured sparsity.
arXiv preprint arXiv:2412.06289, 2024.

Maxim Zhelnin, Viktor Moskvoretskii, Egor Shvetsov, Egor Venediktov, Mariya Krylova, Aleksandr
Zuev, and Evgeny Burnaev. Gift-sw: Gaussian noise injected fine-tuning of salient weights for
llms. arXiv preprint arXiv:2408.15300, 2024.

10

Under review as a conference paper at ICLR 2026

A TABLE OF FREQUENTLY USED NOTATION

Table 3: Notation table

W — One linear layer (matrix) of LLM, W € R°*?,
p — Sparsity density. Represents the ratio of parameters for fine-tuning. p € (0, 1].
a - Low-Rank parameters ratio. The ratio of Low-Rank parameters (for Supra). a € [0, 1].
I — Number of Low-Rank trainable parameters. [€ {0, --- ,cb}.
s = Number of Sparse Adapter trainable parameters. s € {0, - -, cb}.
i,7 — Matrix indexes for rows and columns respectively.
k,q — Matrix indexes for row and column for pruning respectively.
z; — j"element of the vector .
e/ — Unit vector with 1 at the j" position and 0 everywhere else. e/ € R?*1.
W,;; — one entry of the matrix W on the intersection of the i row and j™ column.
Wi, - ™ row of the matrix W, W;. is a row-vector.
W, - 4™ column of the matrix W, W, ; 1s a column-vector.
Wigige = (Wijy - Wi,) € RIXU27I0, 01 <y < jp <D
Wil:ig,j = (Wilj"'Win)T ER(hiil)Xl, 1< <9 <ec.
Wisiggiis = (Wissiggy -+ Wigiig,jp) € RUZTXGm0) 01 <) <y <b, 1<4y <ip<ec
Wiy = (Wicj - Wiep) €RETIXC=D 1 <5 <h 1<i<e
X - Input matrix for a linear layer W, X € Rb*¢,
W — One linear layer after fine tuning weights from W, W e Rex,
A = W-W- change of the weight matrix (before and after fine tuning), A € R*?,
p = (}EHMH%—sparsity ratiop € [0, 1).
X! — ™ calibration sample, X! € RV*@,
1 e Re*b _ The matrix with size ¢ x b, all entries of which are equal to 1.
0 € R _ The matrix with size ¢ x b, all entries of which are equal to 0.
lzll2 = /> ;- |i[? = (*-norm of vector.
IAllr = \/Zi:l >_j=1 [4ij|?> — Frobenius norm of the matrix.
Yx(W,r) = mask of the r weights W;; with the smallest |W;;|[|X.||> values.
¢(h) = vector of indices of non-zero elements from h.
— Fine tuning mask. Equal to one only for entries of W that should be trained while fine tuning.
® - Element-wise product of two matrices (Hadamard product).
® - Outer product of two vectors.

| = max{n €Z|n <z} -floor function.
[x] = min{n €Z|n >z} ceiling function.

B WANDA METRIC FOR GENERATING FINE-TUNING MASK

We introduce a mapping 1y : R°*? — {0, 1}¢¥? that takes a matrix of weights TV and generates
a corresponding fine-tuning mask. For each weight W;;, it evaluates the metric |WW;;|||X.||2 and
selects the r entries with the highest scores. The output is a binary mask with ones at these selected
positions:

¥x (W, r) = mask selecting the r weights W;; with ®)
the highest |W;;||.X.|2 values.

For example, let us have a weight matrix

3 -2
W(—z 4>,

1 -6

4 3
(o)

and an input matrix

Under review as a conference paper at ICLR 2026

now we compute the metric |W;;||| X.||2 for every entry of W:

then

<

Yx(W,1) = <

Wi ||| X1 |2
[War ||| X1 |2
[Wi ||| X1:]]2

10
0 0
0 0

[Wal|| X2:]2 3.5 2.1
[Woal||Xa:|l2] = (25 4-1
[Wa|| Xa: |2 1-5 6-1

1
) » Yx(W,2) = (1
0

C ADDITIONAL EXPERIMENTS

0

15 2
5 6

0 1
0>, Yx (W, 4) = (1

1

D EXPERIMENTS WITH DIFFERENT LEARNING RATES

D.1 LoRA

0
0>.
1

Table 4: Performance of LoRA with lora_.r = 4 across different learning rates. Results are
accuracy (%) =+ standard deviation.

Learning Rate MultiArith GSMSK AddSub AQuA SingleEq SVAMP Average
2e—5 - - - - - - -
5e—5 - - - - - - -
le—4 - - - - - - -
2e—4 805+24 216£14 693+33 231+27 741£14 399+45 529409
5e—4 90.1£29 244+14 784+£35 2254+30 786+43 408+42 558+2.0
le—3 80.6£3.1 225+13 837+33 221423 813£29 430+26 57.0+17
2e—3 87.7+28 213+£15 828+31 228+06 805+24 43.6+44 565+£1.6
Best LR 5e—4 5e—4 le—3 2e—4 le—3 2e—3 le—3

Table 5: Performance of LoRA with lora_r = 8 across different learning rates. Results are
accuracy (%) + standard deviation.

Learning Rate MultiArith GSMSK AddSub AQuA SingleEq SVAMP Average
2e—b5 516 +18 1454+02 615+£00 1924+06 614+14 3744+ 0.2 409+03
5e—b 70.3 £ 2.8 184+03 59.7+£29 218+05 648+1.6 3574+ 1.1 45.1+0.2
le—4 789+40 202+25 588+14 253+20 69.0+£5.6 37.0 + 4.6 482+ 1.6
2e—4 869+36 234+21 700+£3.0 2274+09 754438 403+ 44 531+ 1.3
5e—4 90.3+9.0 220456 682+£240 255+1.6 688+263 37.0+£157 520+£13.2
le—3 924+33 209+14 773499 232417 71.8+153 393+113 541+62
2e—3 923+14 216+05 865+26 226+13 83.5+2.1 45.6 + 24 587+13
Best LR le—3 2e—4 2e—3 S5e—4 2e—3 2e—3 2e—3
Table 6: Performance of LoRA with lora_r = 16 across different learning rates. Results are
accuracy (%) + standard deviation.
Learning Rate MultiArith GSMS8K AddSub AQuA SingleEq SVAMP Average
2e—5 504+25 150+0.1 60.1£08 21.0+26 61.5+06 37.8+13 41.0+0.7
5e—b 68.3 + 2.1 190+£06 615+£22 2134+16 650+£33 357+15 451+£1.2
le—4 746+19 208+0.7 609+35 235+£22 692£56 368+32 47.6+20
2e—4 904+22 232407 663£86 228+17 727+47 41.1+£33 528433
5e—4 93.3+16 248+18 805+24 228+29 81.0£22 458+£40 58.0=£1.1
le—3 914+28 244447 847+£55 220+14 821457 43779 58.1+4.0
2e—3 - - - - - - -
Best LR 5e—4 5e—4 le—3 le—4 le—3 5e—4 le—3

12

Under review as a conference paper at ICLR 2026

D.2 SIFT

Table 7: Performance of SIFT with lora_r

(%) =+ standard deviation.

= 4 across different learning rates. Results are accuracy

Learning Rate MultiArith GSMS8K AddSub AQuA SingleEq SVAMP Average
2e—5 - - - - - - -
5e—5 - - - - - - -
le—4 - - - - - - -
2e—4 741+£25 19610 699+3.0 21.2+£09 750£20 406=£21 501=+13
5e—4 809+27 211+£18 7854+07 222422 782+16 415+12 53.7+0.8
le—3 88.1+0.8 206£09 809+17 220+33 789+14 414+16 553+1.1
2e—3 883+22 17.0+09 80.6+22 204+24 775+£30 401+£28 540+15
Best LR 2e—3 5e—4 le—3 5e—4 le—3 5e—4 le—3

Table 8: Performance of SIFT with 1ora_r = 8 across different learning rates. Results are accuracy
(%) =+ standard deviation.

Learning Rate MultiArith GSMSK AddSub AQuA SingleEq SVAMP Average
2e—5 4944+ 1.1 155+03 598+17 209+£07 629+£0.7 351+£07 40.6=+0.6
5e—5 62.1+£54 184+03 609+23 220+14 682411 368+£20 448+0.38
le—4 713+£77 213+06 643+£03 196+13 713+£35 37714 476+06
2e—4 819+18 204+£12 745+33 2144+06 77.8+£03 442+0.7 534+02
5e—4 88.1+15 231+£12 831421 231+19 820+12 432+1.1 571+05
le—3 922+17 209+07 831+10 213+£07 82.0+03 426+12 570£03
2e—3 - - - - - - -
Best LR le—3 5e—4 le—3 5e—4 5e—4 2e—4 5e—4

Table 9: Performance of SIFT with lora_.r = 16 across different learning
accuracy (%) + standard deviation.

rates. Results are

Learning Rate MultiArith GSMS8K AddSub AQuA SingleEq SVAMP Average
2e—5 564+49 176+03 635+19 21.7+1.0 67.8+13 383+£1.0 442+0.7
5e—5 747429 209+09 689+28 196+15 747+12 412+13 500405
le—4 803+18 221+£10 746+05 202+1.1 780+14 433+£16 53.1+03
2e—4 84.7+58 240+08 832+13 243+08 833+03 448+1.6 574+09
5e—4 928 +£21 235415 857421 239+1.5 835+£17 444+£15 59.0+1.1
le—3 93.5+14 208+05 87.0+0.7 21.1+05 841+12 420+1.1 581+0.1
2e—3 - - - - - - -
Best LR le—3 2e—4 le—3 2e—4 le—3 2e—4 5e—4

13

Under review as a conference paper at ICLR 2026

D.3 SIFT RANDOM

Table 10: Performance of SIFT_random with lora_r = 4 across different learning rates. Results
are accuracy (%) =+ standard deviation.

Learning Rate MultiArith GSMS8K AddSub AQuA SingleEq SVAMP Average
2e—5 - - - - - - -
5e—5 - - - - - - -
le—4 - - - - - - -
2e—4 564+£32 1654+08 679+15 200+£3.0 66720 367+£17 441+£08
5e—4 763 +31 204+08 742+12 208+17 756+£09 41.0+18 514410
le—3 86.7+26 234+£06 822+£30 206+17 812+1.1 449427 565+0.7
2e—3 871+32 232+18 838+20 211+15 822+11 468+24 574+0.7
Best LR 2e—3 le—3 2e—3 2e—3 2e—3 2e—3 2e—3

Table 11: Performance of SIFT_random with lora_r = 8 across different learning rates. Results
are accuracy (%) =+ standard deviation.

Learning Rate MultiArith GSMSK AddSub AQuA SingleEq SVAMP Average
2e—5 - - - - - - -
5e—5 - - - - - - -
le—4 5834+38 16714 663+£09 201£20 691409 365+27 445+05
2e—4 735+15 192+12 707+04 21.8+08 757+09 415£16 504+0.1
5e—4 878+18 239+1.0 829+14 217419 83.14+12 4514+08 574103
le—3 8554+23 235+21 840+43 184+1.6 835+19 481+23 572+1.0
2e—3 - - - - - - -
Best LR 5e—4 Se—4 le—3 2e—4 le—3 le—3 5e—4

Table 12: Performance of SIFT _random with Lora_r = 16 across different learning rates. Results
are accuracy (%) =+ standard deviation.

Learning Rate MultiArith GSMS8K AddSub AQuA SingleEq SVAMP Average
2e—5 - - - - - - -
5e—5 - - - - - - -
le—4 748+20 21.1+12 720+£11 234+£19 759£10 425+£08 51.6+02
2e—4 852+0.8 239+13 8144+32 228+20 822407 454+19 56.8+0.8
5e—4 87.1+4.1 254+£07 846+16 220+16 846+09 487+33 588=+0.7
le—3 920+17 26.1+19 86.0+17 223+16 85.6+14 462+29 59.7+0.8
2e—3 - - - - - - -
Best LR le—3 le—3 le—3 le—4 le—3 5e—4 le—3

14

Under review as a conference paper at ICLR 2026

D.4 SUPER

Table 13: Performance of Super with lora_r = 4 across different learning rates. Results are
accuracy (%) =+ standard deviation.

Learning Rate MultiArith GSMS8K AddSub AQuA SingleEq SVAMP Average
2e—5 - - - - - - -
5e—5 - - - - - - -
le—4 - - - - - - -
2e—4 70.1+£27 202+08 712+11 232+£16 748£09 41709 502+09
5e—4 84.1+29 222+04 8274+07 2244+13 828+10 437+1.7 563+03
le—3 88019 235+£15 852+14 2394+21 843+12 443+12 58.2=+0.5
2e—3 889+09 223+04 85.5+20 243+18 827+02 445+18 580404
Best LR 2e—3 le—3 2e—3 2e—3 le—3 2e—3 le—3

Table 14: Performance of Super with lora_r = 8 across different learning rates. Results are
accuracy (%) + standard deviation.

Learning Rate MultiArith GSMSK AddSub AQuA SingleEq SVAMP Average
2e—5 389+£0.7 1444+04 630+24 21.0+15 667+£03 360+£15 40.0+£08
5e—5 5724+64 179+02 674+£15 227+05 67.1+04 373+£05 449+1.0
le—4 692+44 2044+06 702+1.7 222+14 745+£03 402+15 495+1.2
2e—4 822+£20 21.6£08 77.7+£05 2244+04 809+08 43.0£18 546+£05
5e—4 909+15 254409 8514+08 229+1.0 844+13 467+09 59.2-+03
le—3 91.6+11 242+28 863+32 220+£20 84.6+17 440+2.1 588+2.1
2e—3 - - - - - - -
Best LR le—3 5e—4 le—3 5e—4 le—3 5e—4 5e—4

Table 15: Performance of Super with lora_r = 16 across different learning rates. Results are
accuracy (%) + standard deviation.

Learning Rate MultiArith GSMS8K AddSub AQuA SingleEq SVAMP Average
2e—5 4924+17 16809 649+12 227+£10 679£05 376403 4324+04
5e—5 66.3+42 203+03 700£1.1 235+25 7274+07 403+1.6 488+14
le—4 83.1+1.7 225+£03 782+£07 228+08 79.14+04 4394+09 549+05
2e—4 87.6+20 247+08 8524+09 237+37 850+04 471+1.0 589+ 0.5
5e—4 884+38 241+06 857+17 234+£06 837£09 441+£21 582408
le—3 883£58 236+£16 84619 215+19 827+£09 443+02 575407
2e—3 - - - - - - -
Best LR 5e—4 2e—4 5e—4 2e—4 2e—4 2e—4 2e—4

15

Under review as a conference paper at ICLR 2026

D.5 SUPER (MATH CALIBRATED)

Table 16: Performance of Super_math_calibr with lora_r 4

Results are accuracy (%) =+ standard deviation.

across different learning rates.

Learning Rate MultiArith GSMSK AddSub AQuA SingleEq SVAMP Average
2e—5 - - - - - - -
5e—5 - - - - - - -
le—4 - - - - - - -
2e—4 7224+£20 20510 71.6+£18 233+12 763£17 413£13 509+0.7
5e—4 824+25 231+£05 808418 231415 824+14 454+09 562+0.6
le—3 86.8+3.8 249+14 8244+12 23.0+27 8214+09 428+15 57.0x09
2e—3 91.2+13 242+0.7 832+26 223+19 831+18 414+28 57.6+1.0
Best LR 2e—3 le—3 2e—3 2e—4 2e—3 5e—4 2e—3

Table 17: Performance of Super_math_calibr with lora.r = 8
Results are accuracy (%) =+ standard deviation.

across different learning rates.

Learning Rate MultiArith GSMSK AddSub AQuA SingleEq SVAMP Average
2e—5 - - - - - - -
5e—5 - - - - - - -
le—4 70.1 +£26 214+0.1 71714 227+06 755+13 406+1.1 503408
2e—4 791+ 1.1 224402 776+24 240+16 81.6+06 444403 548407
He—4 88.1+£15 252+09 845+19 233+14 859+08 463+1.0 58.7+0.6
le—3 88.8+27 237+08 831416 21.8+£08 82.7+19 4354+33 573408
2e—3 - - - - - - -
Best LR le—3 5e—4 5e—4 2e—4 5e—4 5e—4 5e—4

Table 18: Performance of Super_math_calibr with lora.r = 16
Results are accuracy (%) + standard deviation.

across different learning rates.

Learning Rate MultiArith GSMS8K AddSub AQuA SingleEq SVAMP Average
2e—5 - - - - - - -
5e—5 - - - - - - -
le—4 819+29 232+£02 766+£19 222409 805+0.8 438+20 547+1.0
2e—4 88.1+2.1 250+0.7 838+19 235+19 854+08 478+12 59.0+1.1
5e—4 89.6 +25 244+£08 828+43 2144+30 839418 449+40 57.8=x1.8
le—3 9274+01 225+14 843+28 219+06 825+28 421+£23 577415
2e—3 - - - - - - -
Best LR le—3 2e—4 le—3 2e—4 2e—4 2e—4 2e—4

16

Under review as a conference paper at ICLR 2026

D.6 SUPRA (0.3)

Table 19: Performance of Supra_0.3 with lora_r = 4 across different learning rates. Results are
accuracy (%) =+ standard deviation.

Learning Rate MultiArith GSMSK AddSub AQuA SingleEq SVAMP Average

2e—5 - - - - - - -
5e—5 - - - - - - -
le—4 - - - - - - -
2e—4 - - - - - - -
5e—4 92.14+20 232+12 8l4+1.1 234+£29 822+17 427+16 575+1.0
le—3 925+30 248+11 824418 23.6+1.0 827+11 422+32 58.0+0.7
2e—3 904 4+25 229+12 824+21 21714 808+£24 419426 56.7+0.7
Best LR le—3 le—3 2e—3 le—3 le—3 5e—4 le—3

Table 20: Performance of Supra_0.3 with lora_r = 8 across different learning rates. Results are
accuracy (%) =+ standard deviation.

Learning Rate MultiArith GSMSK AddSub AQuA SingleEq SVAMP Average

2e—5 - - - - - - -
5e—5 - - - - - - -
le—4 - - - - - - -
2e—4 - - - - - - -
5e—4 91.8+1.1 258+0.7 864+06 251+18 857+0.7 475+14 604+ 0.6
le—3 936 +05 249+12 87.0+05 239+1.1 856+22 469412 603+05
2e—3 921405 219+£06 820+46 23.1+£08 813+24 391430 56.6+15
Best LR le—3 5e—4 le—3 5e—4 5e—4 5e—4 5e—4

D.7 SUPRA (0.3) (MATH CALIBRATED)

Table 21: Performance of Supra_0.3_math_calibr with lora_r = 4 across different learning rates.
Results are accuracy (%) where only one learning rate was tested.

Learning Rate MultiArith GSMS8K AddSub AQuA SingleEq SVAMP Average

2e—b - - - - - - -
5e—b - - - - - - -
le—4 - - - - - - -
2e—4 - - - - - - -
5e—4 86.8 24.1 82.3 20.9 83.7 44.4 57.0
le—3 - - - - - - -
2e—3 - - - - - - -

Best LR 5e—4 5e—4 S5e—4 5e—4 5e—4 5e—4 5e—4

17

Under review as a conference paper at ICLR 2026

D.8 SUPRA (0.55)

Table 22: Performance of Supra_0.55 with lora_r = 4 across different learning rates. Results are

accuracy (%) =+ standard deviation.

Learning Rate MultiArith GSMSK AddSub AQuA SingleEq SVAMP Average
2e—5 - - - - - - -
5e—5 - - - - - - -
le—4 - - - - - — —
2e—4 - - - - - - -
5e—4 909+14 2234+12 8194+08 21.8+09 81.5+0.7 438+13 57.1+02
le—3 93.1+18 241+05 824+40 227+28 835£09 413+£13 578+1.1
2e—3 929+18 227405 829+28 222+39 822+06 43.1+£1.0 57.7+£08
Best LR le—3 le—3 2e—3 le—3 le—3 5e—4 le—3

Table 23: Performance of Supra_0.55 with lora_r = 8 across different learning rates. Results are

accuracy (%) =+ standard deviation.

Learning Rate MultiArith GSMSK AddSub AQuA SingleEq SVAMP Average
2e—5 - - - - - - -
5e—5 - - - - - - -
le—4 - - - - - - -
2e—4 - - - - - - -
H5e—4 948+18 259+14 856+25 238+£09 865+0.7 471+3.6 60.6+1.2
le—3 93.0+23 249+4+0.7 871+12 222+16 849+05 432+38 592+04
2e—3 9254+09 212+09 842+14 232+1.8 8214+26 423+£17 576+038
Best LR 5e—4 5e—4 le—3 5e—4 5e—4 5e—4 5e—4

D.9 Supra (0.8)

Table 24: Performance of Supra_0.8 with lora_r = 4 across different learning rates. Results are

accuracy (%) + standard deviation.

Learning Rate MultiArith GSMS8K AddSub AQuA SingleEq SVAMP Average
2e—5 - - - - - - -
5e—5 - - - - - - -
le—4 - - - - - - -
2e—4 - - - - - - -
5e—4 90.7+14 2224+18 814+14 231+06 825+14 431+£16 57.2+0.6
le—3 91.74+0.7 216+1.6 81.5+33 248+28 81.1+53 41.74+47 571+22
2e—3 902+19 2164+1.1 81.6+3.0 207+3.0 823+14 432+11 566=£08
Best LR le—3 5e—4 2e—3 le—3 5e—4 2e—3 5e—4

18

Under review as a conference paper at ICLR 2026

Table 25: Performance of Supra_0.8 with lora_r = § across different learning rates. Results are
accuracy (%) =+ standard deviation.

Learning Rate MultiArith GSMSK AddSub AQuA SingleEq SVAMP Average
2e—5 - - - - - -
5e—5 - - - - - -
le—4 - - - - - -
2e—4 - - - - - - -
H5e—4 951+15 26.0+06 856+£27 227+11 848+£11 455+23 599+09
le—3 932+08 251+07 885+1.0 214+18 872+09 483+15 60.6+0.3
2e—3 925+18 214+12 822+22 202+41 825+13 420+£25 568+£15
Best LR H5e—4 5e—4 le—3 5e—4 le—3 le—3 le—3

D.10 HIGHER RANK: r = 16

Table 26: Comparison of methods with lora_r = 16. Results are accuracy (%) =+ standard devia-

tion.

Method MultiArith GSMSK AddSub AQuA SingleEq SVAMP Average
LoRA 933+16 248+18 847+55 235+£22 821+57 458+40 581+40
SIFT 935+14 240+08 87.0+0.7 243+08 841+12 448+£16 59.0%1.1
SUPER 88.4+38 2474+08 857+17 237+37 85.0%£04 471+£10 589405
SIFT_Random 920+17 261+19 8.0+17 234+19 856+14 48.7+33 59.7+0.8
SUPER _Math_Calibr 927+01 250+07 843+28 235+19 854+08 478=+12 590=%1.1
Supra_0.3 - - - - - - -

Supra_0.3_Math_Calibr
Supra_0.55
Supra_0.8

19

	Introduction
	Notation

	Related Work
	Parameter–Efficient Fine‑Tuning (PEFT)
	Sparse fine‑tuning
	Hybrid low‑rank & sparse methods
	Fine‑tuning at the neuron or weight level
	Connections to pruning and outlier‑aware updates

	Adaptation of Large Language Models
	Notation
	Super: Mask Generation Algorithm for SpA.
	Supra: Adaptive Low-Rank and Sparse Adaptation.
	Adaptive Budget Allocation in Supra

	Experiments
	Experimental Setup
	Comparison with other fine-tuning methods

	Discussion
	Limitations
	Table of Frequently Used Notation
	Wanda metric for generating fine-tuning mask
	Additional experiments
	Experiments with different Learning Rates
	LoRa
	SIFT
	SIFT random
	Super
	Super (math calibrated)
	Supra (0.3)
	Supra (0.3) (math calibrated)
	Supra (0.55)
	Supra (0.8)
	Higher rank: r=16

