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Abstract

Diffusion models (DMs) have become the dominant paradigm of generative mod-
eling in a variety of domains by learning stochastic processes from noise to data.
Recently, diffusion denoising bridge models (DDBMs), a new formulation of gener-
ative modeling that builds stochastic processes between fixed data endpoints based
on a reference diffusion process, have achieved empirical success across tasks with
coupled data distribution, such as image-to-image translation. However, DDBM’s
sampling process typically requires hundreds of network evaluations to achieve
decent performance, which may impede their practical deployment due to high
computational demands. In this work, inspired by the recent advance of consistency
models in DMs, we tackle this problem by learning the consistency function of
the probability-flow ordinary differential equation (PF-ODE) of DDBMs, which
directly predicts the solution at a starting step given any point on the ODE trajec-
tory. Based on a dedicated general-form ODE solver, we propose two paradigms:
consistency bridge distillation and consistency bridge training, which is flexible to
apply on DDBMs with broad design choices. Experimental results show that our
proposed method could sample 4× to 50× faster than the base DDBM and produce
better visual quality given the same step in various tasks with pixel resolution
ranging from 64× 64 to 256× 256, as well as supporting downstream tasks such
as semantic interpolation in the data space.

1 Introduction

Diffusion models (DMs) [53, 21, 60] have reached unprecedented levels as a family of generative
models in various areas, including image generation [10, 50, 48], audio synthesis [5, 45], video
generation [20], as well as image editing [41, 42], solving inverse problems [25, 56], and density
estimation [59, 28, 37, 71]. In the era of AI-generated content, the stable training, scalability &
state-of-the-art generation performance of DMs successfully make them serve as the fundamental
component of large-scale, high-performance text-to-image [14] and text-to-video [18, 2] models.

A critical characteristic of diffusion models is their iterative sampling procedure, which progressively
drives random noise into the data space. Although this paradigm yields a sample quality that
stands out from other generation models, such as VAEs [29, 46], GANs [17], and Normalizing
Flows [11, 12, 30], it also results in a notoriously lower sampling efficiency compared to other arts. In
response to this, consistency models [58] have emerged as an attractive family of generative models
by learning a consistency function that directly predicts the solution of a probability-flow ordinary
differential equation (PF-ODE) at a certain starting timestep given any points in the ODE trajectory,
designed to be a one-step generator that directly maps noise to data. Consistency models can be
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Figure 1: Illustration of consistency models (CMs) on PF-ODEs of diffusion models and our proposed
consistency diffusion bridge models (CDBMs) building on PF-ODEs of diffusion bridges. Different from
diffusion models, the PF-ODE of diffusion bridge is only well defined in t < T due to the singularity induced
by the fixed terminal endpoint. To this end, a valid input for CDBMs is some xt for t < T , which is typically
obtained by one-step posterior sampling with a coarse estimation of x0 with an initial network evaluation.

naturally integrated with diffusion models by adapting the score estimator of DMs to a consistency
function of their PF-ODE via distillation [58, 26] or fine-tuning [15], showing promising performance
for few-step generation in various applications like latent space [40] and video [64].

Despite the remarkable achievements in generation quality and better sampling efficiency, a fun-
damental limitation of diffusion models is that their prior distribution is usually restricted to a
non-informative Gaussian noise, due to the nature of their underlying data to noise stochastic pro-
cess. This characteristic may not always be desirable when adopting diffusion models in some
scenarios with an informative non-Gaussian prior, such as image-to-image translation. Alterna-
tively, an emergent family of generative models focuses on leveraging diffusion bridges, a series
of altered diffusion processes conditioned on given endpoints, to model transport between two
arbitrary distributions [44, 36, 33, 54, 51, 72, 7]. Among them, denoising diffusion bridge models
(DDBMs) [72] study the reverse-time diffusion bridge conditioned on the terminal endpoint, and
employ simulation-free, non-iterative training techniques for it, showing superior performance in
application with coupled data pairs such as distribution translation compared to diffusion models.
However, DDBMs generally require hundreds of network evaluations to produce samples with decent
quality, even using an advanced high-order hybrid sampler, potentially hindering their deployments
in real-world applications.

In this work, inspired by recent advances in consistency models with diffusion ODEs [58, 57, 15],
we introduce consistency diffusion bridge models (CDBMs) and develop systematical techniques to
learn the consistency function of the PF-ODEs in DDBMs for improved sampling efficiency. Firstly,
to facilitate flexible integration of consistency models in DDBMs, we present a unified perspective
on their design spaces, including noise schedule, prediction target, and network parameterizations,
termed the same as in diffusion models [28, 24]. Additionally, we derive a first-order ODE solver
based on the general-form noise schedule. This universal framework largely decouples the formulation
of DDBMs and the corresponding consistency models from highly practical design spaces, allowing
us to reuse the successful empirical choices of various diffusion bridges for CDBMs regardless of
their different theoretical premises. On top of this, we then propose two paradigms for training
CDBMs: consistency bridge distillation and consistency bridge training. This approach is free of
dependence on a restricted form of noise schedule and the corresponding Euler ODE solver as in
previous work [58], thus enhancing the practical versatility and extensibility of the CDBM framework.

We verify the effectiveness of CDBMs in two applications: image translation and image inpainting
by distilling or fine-tuning DDBMs with various design spaces. Experimental results demonstrate
that our approach can improve the sampling speed of DDBMs from 4× to 50×, in terms of the
Fréchet inception distance [19] (FID) evaluated with two-step generation. Meanwhile, given the
same computational budget, CDBMs have better performance trade-offs compared to DDBMs, both
quantitatively and qualitatively. CDBMs also retain the desirable properties of generative modeling,
such as sample diversity and the ability to perform semantic interpolation in the data space.
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2 Preliminaries

2.1 Diffusion Models

Given the data distribution pdata(x),x ∈ Rm, diffusion models [53, 21, 60] specify a forward-time
diffusion process from an initial data distribution p0 = pdata to a terminal distribution pT within a
finite time horizon t ∈ [0, T ], defined by a stochastic differential equation (SDE):

dxt = f(xt, t)dt+ g(t)dwt, x0 ∼ p0, (1)

where wt is a standard Wiener process, f : Rm × [0, T ] → Rm and g : [0, T ] → Rd are drift and
diffusion coefficients, respectively. The terminal distribution pT is usually designed to approximate
a tractable prior pprior (e.g., standard Gaussian) with the appropriate choice of f and g. The
corresponding reverse SDE and the probability flow ordinary differential equation (PF-ODE) of the
forward SDE in Eqn. (1) is given by [1, 60]:

dxt = [f(xt, t)− g2(t)∇ log pt(xt)]dt+ g(t)dw̄t, xT ∼ pT ≈ pprior, (2)

dxt =

[
f(xt, t)−

1

2
g2(t)∇ log pt(xt)

]
dt, xT ∼ pT ≈ pprior, (3)

where w̄t is a reverse-time standard Wiener process and pt(xt) is the marginal distribution of
xt. Both the reverse SDE and PF-ODE can act as a generative model by sampling xT ∼ pprior
and simulating the trajectory from xT to x0. The major difficulty here is that the score function
∇ log pt(xt) remains unknown, which can be approximated by a neural network sθ(xt, t) with
denoising score matching [63]:

Et∈U(0,T )Ep0(x0)pt|0(xt|x0)

[
λ(t)∥sθ(xt, t)−∇ log pt|0(xt|x0)∥22

]
, (4)

where U(0, T ) is uniform distribution, λ(t) > 0 is a weighting function, and pt|0(xt|x0) is the
transition kernel from x0 to xt. A common practice is to use a linear drift f(t)xt such that pt|0(xt|x0)

is an analytic Gaussian distribution N (αtx0, σ
2
t I), where αt = e

∫ t
0
f(τ)dτ , σ2

t = α2
t

∫ t

0
g2(τ)
α2

τ
dτ is

defined as the noise schedule [28]. The resulting score predictor sθ(xt, t) can replace the true score
function in Eqn. (2) and (3) to obtain the empirical diffusion SDE and ODE, which can be simulated
by various SDE or ODE solvers [55, 38, 39, 16, 70].

2.2 Consistency Models

Given a trajectory {xt}Tt=ϵ with a fixed starting timestep ϵ of a PF-ODE, consistency models [58]
aim to learn the solution of the PF-ODE at t = ϵ, also known as the consistency function, defined
as h : (xt, t) 7→ xϵ. The optimization process for consistency models contains the online network
hθ and a reference target network hθ− , where θ− refers to θ with operation stopgrad, i.e., θ− =
stopgrad(θ). The networks are hand-designed to satisfy the boundary condition hθ(xϵ, ϵ) = xϵ,
which can be typically achieved with proper parameterization on the neural network. For PF-ODE
taking the form in Eqn. (3) with a linear drift f(t)xt, the overall learning objective of consistency
models can be described as:

Et∈U(ϵ,T ),r=r(t)Ep0(x0)pt|0(xt|x0) [λ(t)d (hθ(xt, t),hθ−(x̂r, r))] , (5)

where r(t) is a function that specifies another timestep r (usually with t > r), d denotes some
metric function with ∀x,y : d(x,y) ≥ 0 and d(x,y) = 0 iff. x = y. Here x̂r is a function that
estimates xr = xt +

∫ r

t
dxτ

dτ dτ , which can be done by simulating the empirical diffusion ODE with
a pre-trained score predictor sϕ(xt, t) or empirical score estimator −xt−αtx0

σ2
t

. The corresponding
learning paradigms are named consistency distillation and consistency training, respectively.

2.3 Denoising Diffusion Bridge Models

Given a data pair sampled from an arbitrary unknown joint distribution (x,y) ∼ qdata(x,y),x,y ∈
Rm and let x0 = x, denoising diffusion bridge models (DDBMs) [72] specify a stochastic process
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that ensures xT = y almost surly via applying Doob’s h-transform [13, 47] on a reference diffusion
process in Eqn. (1):
dxt =

[
f(xt, t) + g2(t)∇xt

log pT |t(xT = y|xt)
]
dt+ g(t)dwt, (x0,xT ) = (x,y) ∼ qdata,

(6)
where pT |t(xT = y|xt) is the transition kernel of the reference diffusion process from t to T ,
evaluated at xT = y. Denoting the marginal distribution of Eqn. (6) as {qt}Tt=0, it can be shown that
the forward bridge SDE in Eqn. (6) is characterized by the diffusion distribution conditioned on both
endpoints, that is, qt|0T (xt|x0,xT ) = pt|0T (xt|x0,xT ), which is an analytic Gaussian distribution.
A generative model can be obtained by modeling qt|T (xt|xT = y), whose reverse SDE and PF-ODE
are given by:
dxt =

[
f(xt, t)− g2(t)

(
∇xt log qt|T (xt|xT = y)−∇xt log pT |t(xT = y|xt)

)]
dt+ g(t)dw̄t,

(7)

dxt =

[
f(xt, t)− g2(t)

[
1

2
∇xt

log qt|T (xt|xT = y)−∇xt
log pT |t(xT = y|xt)

]]
dt. (8)

The only unknown term remains is the score function ∇xt log qt|T (xt|xT = y), which can be
estimated with a neural network sθ(xt, t,y) via denoising bridge score matching (DBSM):
Et∈U(0,T )Eqdata(x,y)qt|0T (xt|x0=x,xT=y)

[
λ(t)∥sθ(xt, t,y)−∇ log qt|0T (xt|x0 = x,xT = y)∥22

]
.

(9)
Replacing ∇xt log qt|T (xt|xT = y) in Eqn. (7) and (8) with the learned score predictor sθ(xt, t,y)
would yield the empirical bridge SDE and ODE that could be solved for generation purposes.

3 Consistency Diffusion Bridge Models

In this section, we introduce consistency diffusion bridge models, extending the techniques of
consistency models to DDBMs to further boost their performance and sample efficiency. Define
the consistency function of the bridge ODE in Eqn. (8) as h : (xt, t,y) 7→ xϵ with a given starting
timestep ϵ, our goal is to learn the consistency function using a neural network hθ(·, ·,y) with the
following high-level objective similar to Eqn. (5):

Et∈U(ϵ,T ),r=r(t)Eqdata(x,y)qt|0T (xt|x0=x,xT=y) [λ(t)d (hθ(xt, t,y),hθ−(x̂r, r,y))] . (10)
To begin with, we first present a unified view of the design spaces such as noise schedule, network
parameterization & precondition, as well as a general ODE solver for DDBMs. This allows us
to: (1) decouple the successful practical designs of previous diffusion bridges from their different
theoretical premises; (2) decouple the framework of consistency models from certain design choices
of the corresponding PF-ODE, such as the reliance on VE schedule with Euler ODE solver of the
original derivation of consistency models [58]. This would largely facilitate the development of
consistency models that utilize the rich design spaces of existing diffusion bridges on DDBMs in
a universal way. Then, we elaborate on two ways to train hθ based on different choices of x̂r,
consistency bridge distillation, and consistency bridge training, with the proposed unified design
spaces.

3.1 A Unified View on Design Spaces of DDBMs

Noise Schedule We consider the linear drift f(t)xt and define:

αt = e
∫ t
0
f(τ)dτ , ᾱt = e−

∫ T
t

f(τ)dτ , ρ2t =

∫ t

0

g2(τ)

α2
τ

dτ, ρ̄2t =

∫ T

t

g2(τ)

α2
τ

dτ, (11)

which aligns with the common notation of noise schedules used in diffusion models by denoting
σt = αtρt. Then we could express the analytic conditional distributions of DDBMs as follows:

qt|0T (xt|x0,xT ) = pt|0T (xt|x0,xT ) = N
(
atxT + btx0, c

2
tI
)
,

where at =
ᾱtρ

2
t

ρ2T
, bt =

αtρ̄
2
t

ρ2T
, c2t =

α2
t ρ̄

2
tρ

2
t

ρ2T
.

(12)

The form of qt|0T is consistent with the original formulation of DDBM in [72]. Here, inspired by [6],
we opt to adopt a more neat set of notations for enhanced compatibility. As shown in Table 1, with
such notations, we could easily unify the design choices for diffusion bridges [33, 72, 6] that have
shown effectiveness in various tasks and expeditiously employ consistency models on top of them.
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Table 1: Specifications of design spaces in different diffusion bridges. The details of network
parameterization are in Appendix B.4 due to space limit.

Brownian Bridge I2SB [33] DDBM [72] Bridge-TTS [6]
default default† VP‡ VE gmax VP

Schedule
T 1 1 1 T 1 1
f(t) 0 0 − 1

2β0 0 0 − 1
2β0 − 1

2βdt

g2(t) σ2 (η1 − η0|2t− 1|)2 β0 2t β0 + βdt β0 + βdt

αt 1 1 e−
1
2β0t 1 1 e−

1
2β0t− 1

4βdt
2

σ2
t σ2t

∫ t

0
g2(τ)dτ 1− e−β0t t2 β0t+

1
2βdt

2 1− e−β0t− 1
2βdt

2

ᾱt 1 1 e
1
2β0− 1

2β0t 1 1 αt/α1

ρ2t σ2t
∫ t

0
g2(τ)dτ eβ0t − 1 t2 β0t+

1
2βdt

2 eβ0t+
1
2βdt

2 − 1
ρ̄2t σ2(1− t) ρ21 − ρ2t eβ0 − eβ0t T 2 − t2 ρ21 − ρ2t ρ21 − ρ2t

Parameters σ η0 =
√
β1−

√
β0

2

η1 =
√
β1+

√
β0

2
β0 = 0.1

β1 = 0.3/1.0

β0 T = 80 β0 = 0.01
βd = 49.99

β0 = 0.01
βd = 19.99

Parameterization by Network Fθ

Data Predictor xθ Dependent on Training xt − σtFθ cskip(t)xt + cout(t)Fθ Fθ

† Though I2SB is built on a discrete-time schedule for T = 1000 timesteps, it can be converted to a continuous-time schedule
on t ∈ [0, 1] approximately by mapping t to t/(T − 1).
‡ The authors change to the same VP schedule as Bridge-TTS with parameters β0 = 0.1, βd = 2 in a revised version of their paper.

Network Parameterization & Precondition In practice, the neural network Fθ in DBMs does
not always directly regress to the target score function; instead, it can predict other equivalent
quantities, such as the data predictor xθ =

xt−atxT+c2tsθ

bt
for a Gaussian N (atxT + btx0, c

2
tI) like

qt|0T . Meanwhile, the inputs and outputs of the network Fθ could be rescaled for a better-behaved
optimization process, known as the network precondition. As shown in Table 1, we could consistently
use x0 as the prediction target with different choices of network precondition to unify the previous
practical designs for DBMs.

PF-ODE and ODE Solver The validity of a consistency model relies on an underlying PF-ODE
that shares the same marginal distribution with the forward process. In the original DDBM paper [72],
the marginal preserving property of the proposed ODE is justified following an analogous logic from
the derivation of the PF-ODE of diffusion models [60] with Kolmogorov forward equation. However,
its validity suffers from doubts as there is a singularity at the deterministic starting point xT . Here,
we provide a simple example to show that the ODE can indeed maintain the marginal distribution as
long as we use a valid stochastic step to skip the singular point and start from T − γ for any γ > 0.
Example 3.1. Assume T = 1 and consider a simple Brownian Bridge between two fixed points
(x0, x1):

dxt =
x1 − xt

1− t
dt+ dwt, (13)

with marginal distribution qt|01(xt|x0, x1) = N ((1− t)x0+ tx1, t(1− t)). The ground-truth reverse
SDE and PF-ODE are given by:

dxt =
xt − x0

t
dt+ dw̄t, (14)

dxt =

(
1− 2t

2t(1− t)
xt +

1

2(1− t)
x1 −

1

2t
x0

)
dt. (15)

Then first simulating the reverse SDE in Eqn. (14) from t = 1 to t = 1− γ for some γ ∈ (0, 1) and
then starting to simulate the PF-ODE in Eqn. (15) will preserve the marginal distribution.

The detailed derivation can be found in Appendix. B.2. Therefore, the time horizon of the consistency
model based on the bridge ODE needs to be set as t ∈ [ϵ, T − γ] for some pre-specified ϵ, γ > 0.
Additionally, the marginal preservation of the bridge ODE for more general diffusion bridges can be
strictly justified by considering non-Markovian variants, as done in DBIM [69].

Another crucial element for developing consistency models is the ODE solver, as a solver with a
lower local error would yield lower error for consistency distillation, as well as the corresponding
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consistency training objectives [58, 57]. Inspired by the successful practice of advanced ODE solvers
based on the Exponential Integrator (EI) [4, 22] in diffusion models, we present a first-order bridge
ODE solver in a similar fashion:

Proposition 3.1. Given an initial value xt at time t > 0, the first-order solver of the bridge ODE in
Eqn. (8) from t to r ∈ [0, t] with the noise schedule defined in Eqn. (11) is:

xr =
αrρrρ̄r
αtρtρ̄t

xt +
αr

ρ2T

[(
ρ̄2r −

ρ̄tρrρ̄r
ρt

)
xθ(xt, t,y) +

(
ρ2r −

ρtρrρ̄r
ρ̄t

)
y

αT

]
. (16)

We provide detailed derivation in the Appendix B.1. Typically, an EI-based solver enjoys a lower
discretization error and therefore has better empirical performance [16, 38, 39, 67, 70]. Another
notable advantage of this general form solver, as we will show in Section 3.3, is that it could naturally
establish the connection between consistency training and consistency distillation for any noise
schedules that take the form in Eqn. (11), eliminating the dependence of the VE schedule and the
corresponding Euler ODE solver in the common derivation [58].

3.2 Consistency Bridge Distillation

Analogous to consistency distillation with the empirical diffusion ODE, we could leverage a pre-
trained score predictor sϕ(xt, t,y) ≈ ∇xt log qt|T (xt|xT = y) to solve the empirical bridge ODE
to obtain x̂r, i.e., x̂r = x̂ϕ(xt, t, r,y), where x̂ϕ is the update function of a one-step ODE solver
with fixed sϕ. We define the consistency bridge distillation (CBD) loss as:

L∆tmax

CBD := (17)
Et∈U(ϵ,T−γ),r=r(t)Eqdata(x,y)qt|0T (xt|x0=x,xT=y) [λ(t)d (hθ(xt, t,y),hθ−(x̂ϕ(xt, t, r,y), r,y))] ,

where t is sampled from the uniform distribution over [ϵ, T − γ], r(t) is a function specifies another
timestep r such that ϵ ≤ r < t with ∆tmax := maxt{t− r(t)} and ∆tmin := mint{t− r(t)}, λ(t)
is a positive weighting function, d is some distance metric function with ∀x,y : d(x,y) ≥ 0 and
d(x,y) = 0 iff. x = y, and θ− = stopgrad(θ). Similarly to the case of consistency distillation in
empirical diffusion ODEs, we have the following asymptotic analysis of the CBD objective:

Proposition 3.2. Given ∆tmax = maxt{t− r(t)} and let hϕ(·, ·, ·) be the consistency function of
the empirical bridge ODE taking the form in Eqn. (8). Assume hθ is a Lipschitz function, i.e., there
exists L > 0, such that for all t ∈ [ϵ, T − γ],x1,x2,y, we have ∥hθ(x1, t,y)− hθ(x2, t,y)∥2 ≤
L∥x1 − x2∥2. Meanwhile, assume that for all t, r ∈ [ϵ, T − γ],y ∼ qdata(y) := Ex[qdata(x,y)],
the ODE solver x̂ϕ(·, t, r,y) has local error uniformly bounded by O((t− r)p+1) with p ≥ 1. Then,
if L∆tmax

CBD = 0, we have: supt,x,y ∥hθ(x, t,y)− hϕ(x, t,y)∥2 = O((∆tmax)
p).

The vast majority of the analysis can be done by directly following the proof in [58] with minor
differences between the overlapped timestep intervals {t, r(t)} for t ∈ [ϵ, T−γ] used in Eqn. (17) and
the fixed timestep intervals {tn}Nn=1 used in [58]. We include it in Appendix B.5 for completeness.
In this work, unless otherwise stated, we use the first-order ODE solver in Eqn. (16) as x̂ϕ.

3.3 Consistency Bridge Training

In addition to distilling from pre-trained score predictor sϕ, consistency models can be trained [58, 57]
or fine-tuned [15] by maintaining only one set of parameters θ. To accomplish this, we could leverage
the unbiased score estimator:

∇xt log qt|T (xt|xT = y) = Ex0 [∇xt log qt|0T (xt|x0,xT )|xt,xT = y], (18)

that is, with a single sample (x,y) ∼ qdata and xt ∼ qt|0T (xt|x0 = x,xT = y), the score
∇xt log qt|T (xt|xT = y) can be estimated with ∇xt log qt|0T (xt|x0,xT ). Substituting such an
estimation of sϕ into the one-step ODE solver x̂ϕ in Eqn. (17) with the transformation between data

and score predictor xϕ =
xt−atxT+c2tsϕ

bt
, we can obtain an alternative x̂r that does not rely on the

pre-trained sϕ for any noise schedule taking the form in Eqn. (11) as follows (detail in Appendix B.3):

x̂r = x̂(xt, t, r,x,y) = ary + brx+ crz, (19)
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where ar, br, cr are defined as in Eqn. (11), and z = xt−aty−btx
ct

∼ N (0, I). Based on this
instantiation of x̂r, we define the consistency bridge training (CBT) loss as:

L∆tmax

CBT := (20)
Et∈U(ϵ,T−γ),r=r(t)Eqdata(x,y) [λ(t)d (hθ(aty + btx+ ctz, t,y),hθ−(ary + brx+ crz, r,y))] ,

where t, r(·), λ(·),θ−1 are defined the same as in Eqn. (17), and z ∼ N (0, I) is a shared Gaussian
noise used in both hθ and hθ−1 . We have the following proposition demonstrating the connection
between L∆tmax

CBT and L∆tmax

CBD with the first-order one-step ODE solver:
Proposition 3.3. Given ∆tmax = maxt{t − r(t)} and assume d,hθ, f, g are twice continu-
ously differentiable with bounded second derivatives, the weighting function λ(·) is bounded, and
E[∥∇xt log qt|T (xt|xT )∥22] < ∞. Meanwhile, assume that L∆tmax

CBD employs the one-step ODE
solver in Eqn. (16) with ground truth pre-trained score model, i.e., ∀t ∈ [ϵ, T − γ],y ∼ qdata(y) :

sϕ(xt, t,y) ≡ ∇xt
log qt|T (xt|xT = y). Then, we have: L∆tmax

CBD = L∆tmax

CBT + o(∆tmax).

The core part of our analysis also follows [58], except the connection between the CBD & CBT
objective relies on the proposed first-order ODE solver and the estimated x̂r in Eqn. (19) with the
general noise schedule for DDBM. We include the details in Appendix B.6.

3.4 Network Precondition and Sampling

Network Precondition First, we focus on enforcing the boundary condition hθ(xϵ, ϵ,y) = xϵ

of our consistency bridge model, which can be done by designing a proper network precondition.
Usually, a variable substitution t̃ = t− ϵ could work in most cases. For example, for the precondition

for I2SB in Table 1, we have xϵ + σϵ̃Fθ = xϵ +
√∫ ϵ−ϵ

0
g2(τ)dτ = xϵ. Also, the common

“EDM” [24] style precondition used in DDBM also satisfies cskip(ϵ̃) = 1 and cout(ϵ̃) = 0. We also
give a universal precondition to satisfy the boundary conditions based on the form of the ODE solver
in Eqn. (16) in Appendix B.4 to cope with the case where the variable substitution is not applicable.

Sampling As explained in Section 3.1, the PF-ODE is only well-defined within the time horizon
0 ≤ t ≤ T − γ for some γ ∈ (0, T ). Hence, the sampling of CDBMs should start with xT−γ ∼
qT−γ|T (xT−γ |xT = y), which can be obtained by simulating the reverse SDE in Eqn. (7) from
T to T − γ. Here we opt to use one first-order stochastic step, which is equivalent to performing
posterior sampling, i.e., xT−γ ∼ qT−γ|0T (xT−γ |x0 = hθ(xT , T,y),xT = y). This sampling
approach defaults to two NFEs (Number of Function Evaluations), which is aligned with the practical
guideline that employing two-step sampling in CM allows for a better trade-off between quality and
computation compared to other treatments such as scaling up models [15]. We could also alternate
a forward noising step and a backward consistency step multiple times to further improve sample
quality as consistency models do.

4 Experiments

4.1 Experimental Setup

Task, Datasets, and Metrics In this work, we conduct experiments for CDBM on image-to-image
translation and image inpainting tasks with various image resolutions and scales of the data set. For
image-to-image translation, we use the Edges→Handbags [23] with 64 × 64 pixel resolution and
DIODE-Outdoor [62] with 256×256 pixel resolution. For image inpainting, we choose ImageNet [9]
256 × 256 with a center mask of size 128 × 128. Regarding the evaluation metrics, we report the
Fréchet inception distance (FID) [19] for all datasets. Furthermore, following previous works [33, 72],
we measure Inception Scores (IS) [3], LPIPS [68] and Mean Square Error (MSE) for image-to-image
translation and Classifier Accuracy (CA) of a pre-trained ResNet50 for image-inpainting. The metrics
are computed using the complete training set for Edges→Handbags and DIODE-Outdoor, and a
validation subset of 10,000 images for ImageNet.

Training Configurations We train CDBM in two ways: distill pre-trained DDBM with CBD or fine-
tuning DDBM with CBT. We keep the noise schedule and prediction target of the pre-trained DDBM

7



unchanged and modify the network precondition to satisfy the boundary condition. Specifically, we
adopt the design space of DDBM-VP and I2SB in Table 1 on image-to-image translation and image
inpainting, respectively. We specify complete training details in Appendix C.

Specification of Design Choices We illustrate the specific design choices for CDBM. In this work,
we use t ∈ [ϵ, 1 − γ] and set ϵ = 0.0001, γ = 0.001 and sample t uniformly during training. We
employ two different sets of the timestep function r(t) and the loss weighting λ(t), also named the
training schedule for CDBM. The first, following [58], specifies a constant quantity for ∆t = t− r(t)
with a simple loss weighting of λ(t) = 1. The constant gap ∆t is treated as a hyperparameter and
we search it among {1/9, 1/18, 1/36, 1/60, 1/80, 1/120}. The other employs r(t) that gradually
shrinks t− r(t) during the training process and a loss weighting of λ(t) = 1

t−r(t) , which enjoys a
better trade-off between faster convergence and performance [58, 57, 15]. Following [15], we use
a sigmoid-style function r(t) = t(1− 1

q⌊iters/s⌋
)(1 + k

1+ebt
), where iters is the number of training

iterations, q, s, k, b are hyperparameters. We use q = 2, k = 8, and tune b ∈ {1, 2, 5, 10, 20, 50} and
s ∈ {5000, 10000}.

Table 2: Quantitative Results on the Image-to-Image Translation Task
Edges→Handbags (64× 64) DIODE-Outdoor (256× 256)

FID ↓ IS ↑ LPIPS ↓ MSE ↓ FID ↓ IS ↑ LPIPS ↓ MSE ↓
Pix2Pix [23] 74.8 4.24 0.356 0.209 82.4 4.22 0.556 0.133
DDIB [61] 186.84 2.04 0.869 1.05 242.3 4.22 0.798 0.794
SDEdit [41] 26.5 3.58 0.271 0.510 31.14 5.70 0.714 0.534
Rectified Flow [35] 25.3 2.80 0.241 0.088 77.18 5.87 0.534 0.157
I2SB [33] 7.43 3.40 0.244 0.191 9.34 5.77 0.373 0.145
DDBM [72] (NFE=118) 1.83 3.73 0.142 0.0402 4.43 6.21 0.244 0.0839

DDBM (ODE-1, NFE=2) 6.70 3.71 0.0968 0.0037 73.08 6.67 0.318 0.0118
DDBM (ODE-1, NFE=50) 1.14 3.62 0.0979 0.0054 3.20 6.08 0.198 0.0179
DDBM (ODE-1, NFE=100) 0.89 3.62 0.0995 0.0056 2.57 6.06 0.198 0.0183

CBD (Ours, NFE=2) 1.30 3.62 0.128 0.0124 3.66 6.02 0.224 0.0216
CBT (Ours, NFE=2) 0.80 3.65 0.106 0.0068 2.93 6.06 0.205 0.0181
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Figure 2: NFE-FID plot of CDBM and DDBM on
ImageNet 256× 256
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Figure 3: Ablation for hyperparameters of CDBM

Table 3: Quantitative Results on the Image
Inpainting Task

ImageNet (256× 256)
Center mask 128× 128

FID ↓ CA ↑

DDRM [25] 24.4 62.1
ΠGDM [56] 7.3 72.6
DDNM [65] 15.1 55.9
Palette [49] 6.1 63.0
CDSB [52] 50.5 49.6
I2SB [33] 4.9 66.1

DDBM (ODE-1, NFE=2) 17.17 59.6
DDBM (ODE-1, NFE=10) 4.81 70.7

CBD (Ours, NFE=2) 5.65 69.6
CBD (Ours, NFE=4) 5.34 69.6
CBT (Ours, NFE=2) 5.34 69.8
CBT (Ours, NFE=4) 4.77 70.3

4.2 Results for Few-step Generation

We present the quantitative results of CDBM on image-to-image translation and image inpainting
tasks in Table 2 and Table 3. We adopt DDBM on the same noise schedule and network architecture,
with the first-order ODE solver in Eqn. (16) as our main baseline (i.e., “DDBM (ODE-1)”). We report
the performance of the baseline DDBM under different Number of Function Evaluations (NFE) as a
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Condition DDBM, NFE=100 Condition DDBM, NFE=100 Condition DDBM, NFE=8 DDBM, NFE=10
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Figure 4: Qualitative demonstration between DDBM and CDBM.

Figure 5: Example semantic interpolation result with CDBMs

reference for the sampling acceleration ratio (Reduction factor of NFE to achieve the same FID) of
CDBM. Following [72, 33], we report the result of other baselines with NFE ≥ 40, which consists of
diffusion-based methods, diffusion bridges with different formulations, or samplers. We mainly focus
on the two-step generation scenario for CDBM, which is the minimal NFEs required for CDBM
using the sampling procedure described in Section 3.4.

For image-to-image translation, as shown in Table. 2, we first observed that our proposed first-
order ODE solver has superior performance compared to the hybrid high-order sampler used in
DDBM [72]. On top of that, CDBM’s FID at NFE = 2 is close to or even better than DDBM’s at
NFE around 100 with the advanced ODE solver, achieving a sampling speed-up around 50×. This
can be corroborated by the qualitative demonstration in Fig. 4, where CDBMs drastically reduce the
blurring effect on DDBMs under few-step generation settings while enjoying realistic and faithful
translation performance.

For image inpainting, as shown in Table. 3, the baseline ODE solver for DDBM achieves decent
sample quality at NFE = 10. For CDBM, as shown in Fig. 2, the acceleration ratio is relatively
modest in such a large-scale and challenging dataset, achieving close to a 4× increase in sampling
speed. Notably, CBT’s FID at NFE = 4 matches DDBM at NFE = 10. Moreover, we find that
CDBMs have better visual quality than DDBM given the same computation budget, as shown in
Fig. 4 and Appendix D, which illustrates that CDBM yields a better quality-efficiency trade-off.

Meanwhile, we observe that fine-tuning DDBMs with CBT generally produces better results than CBD
in all three data sets, demonstrating fine-tuning a pre-trained score model to a consistency function is
a more promising solution with less computational and memory cost compared to distillation, which
is consistent with recent findings [15]. We also conducted an ablation study for CBD and CBT under
different training schedules (i.e., the combination of the timestep function r(t) and the loss weighting
λ(t)) on ImageNet 256 × 256. As shown in Fig. 3, for a small timestep interval t − r(t), e.g., a
small ∆t in Fig. 3a or a large b in Fig. 3b (detail in Appendix C.2), the performance is generally
better but also suffers from training instability, indicated by the sharp increase in FID during training
when ∆t = 1/120 and b = 50. While for a large timestep interval, the performance at convergence
is usually worse. In practice, we found that adopting the training schedule that gradually shrinks
r(t)− t with b = 20 or 50 with CBT could work across all tasks, whereas CBD generally needs a
meticulous design for ∆t or b to ensure stable training and satisfactory performance.

4.3 Semantic Interpolation

We show that CDBMs support performing downstream tasks, such as semantic interpolation, similar
to diffusion models [55]. Recall that the sampling process for CDBM alternates between consistency
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function evaluation and forward sampling, we could track all noises and the corresponding timesteps
to re-generate the same sample. By interpolating the noises of two sampling trajectories, we can
obtain a series of samples lying between the semantics of two source samples, as shown in Fig. 5,
which demonstrates that CDBMs have a wide range of generative modeling capabilities, such as
sample diversity and semantic interpolation.

5 Conclusion

In this work, we introduce consistency diffusion bridge models (CDBMs) to address the sampling
inefficiency of DDBMs and present two frameworks, consistency bridge distillation and consistency
bridge training, to learn the consistency function of the DDBM’s PF-ODE. Building on a unified
view of design spaces and the corresponding general-form ODE solver, CDBM exhibits significant
flexibility and adaptability, allowing for straightforward integration with previously established
successful designs for diffusion bridges. Experimental evaluations across three datasets show that
CDBM can effectively boost the sampling speed of DDBM by 4× to 50×. Furthermore, it achieves
the saturated performance of DDBMs with less than five NFEs and possesses the broad capacity of
generative models, such as sample diversity and semantic interpolation.

Limitations and Broader Impact While significantly improving the sampling efficiency in the
datasets we used, it remains to be explored how the proposed CDBM, along with the DDBM
formulation, performs in datasets with larger-scale or more complex characteristics. Furthermore, the
consistency model paradigm typically suffers from numerical instability and it would be a promising
research direction to keep improving CDBM’s performance from an optimization perspective. With
enhanced sampling efficiency, CDBMs could contribute to more energy-efficient deployment of
generative models, aligning with broader goals of sustainable AI development. However, it could
also lower the cost associated with the potential misuse for creating deceptive content. We hope that
our work will be enforced with certain ethical guidelines to prevent any form of harm.
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A Related Works

Diffusion Bridges Diffusion bridges [44, 36, 33, 54, 51, 72, 7, 6] are an emerging class of gen-
erative models with attractive flexibility in modeling the stochastic process between two arbitrary
distributions. The flow matching [32], and its stochastic counterpart, bridge matching [44] assume
the access of a joint distribution and an interpolation, or a forward process, between the samples, then,
another SDE/ODE is learned to estimate the dynamics of the pre-defined interpolation, which can be
used for generative modeling from non-Gaussian priors [33, 6, 72, 69, 66]. In particular, the forward
process can be constructed via Doob’s h-transform [44, 36, 72]. Among them, DDBM [72] focuses
on learning the reverse-time diffusion bridge conditioned on a particular terminal endpoint with
denoising score matching, which has been shown to be equivalent to conducting a conditioned bridge
matching that preserves the initial joint distribution [7]. Other works tackle solving the diffuion
Schrödinger Bridge problem, such as using iterative algorithms [8, 51, 43]. In this work, we use a
unified view of design spaces on existing diffusion bridges, in particular, bridge matching methods,
to decouple empirical choices from their different theoretical premises and properties and focus on
developing the techniques of learning the consistency function of DDBM’s PF-ODE with various
established design choices for diffusion bridges.

Consistency Models Recent studies have continued to explore the effectiveness of consistency
models [58]. For example, CTM [26] proposes to augment the prediction target from the starting
point to the intermediate points along the PF-ODE trajectory from the input to this starting point.
BCM [31] additionally expands the model to allow direct mapping at the PF-ODE trajectory points
in both forward and reverse time. Beyond different formulations, several works aim to improve the
performance of consistency training with theoretical and practical insights. iCT [57] systematically
examines the design choices of consistency training and presents improved training schedule, loss
weighting, distance metrics, etc. ECT [15] further leverages the insights to propose novel practical
designs and show fine-tuning pre-trained diffusion models for learning consistency models yields
decent performance with much lower computation compared to distillation. Unlike these works, we
focus on constructing consistency models on top of the formulation of DDBMs with specialized
design spaces and a sophisticated ODE solver for them.

B Additional Details for CDBM Formulation, CBD, and CBT

B.1 Derivation of First-Order Bridge ODE Solver

We first review the first-order ODE solver in Section 3.1:
Proposition 3.1. Given an initial value xt at time t > 0, the first-order solver of the bridge ODE in
Eqn. (8) from t to r ∈ [0, t] with the noise schedule defined in Eqn. (11) is:

xr =
αrρrρ̄r
αtρtρ̄t

xt +
αr

ρ2T

[(
ρ̄2r −

ρ̄tρrρ̄r
ρt

)
xθ(xt, t,y) +

(
ρ2r −

ρtρrρ̄r
ρ̄t

)
y

αT

]
. (16)

Recall the PF-ODE of DDBM in Eqn. (8) with a linear drift f(t)xt:

dxt =

[
f(t)xt − g2(t) [

1

2
∇xt

log qt|T (xt|xT = y)−∇xt
log pT |t(xT = y|xt) ]

]
dt. (21)

Also recall the noise schedule in Eqn. (11) and the analytic form of pt|0 and pT |t in diffusion models:

pt|0(xt|x0) = N
(
αtx0, α

2
tρ

2
tI
)
, pT |t(xT |xt) = N

(
αT

αt
xt, α

2
T (ρ

2
T − ρ2t )I

)
,

qt|0T (xt|x0,xT ) = pt|0T (xt|x0,xT ) = N
(
atxT + btx0, c

2
tI
)
,

where at =
ᾱtρ

2
t

ρ2T
, bt =

αtρ̄
2
t

ρ2T
, c2t =

α2
t ρ̄

2
tρ

2
t

ρ2T
.

(22)

We thus have the corresponding score functions and the score-data transformation for sθ that predicts
∇xt log qt|0T :

∇xt log pT |t(xT = y|xt) = −xt − ᾱty

α2
t ρ̄

2
t

, (23)
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∇xt
log qt|0T (xt|x0,xT = y) = −xt − (αtρ̄

2
tx0 + ᾱtρ

2
txT )/ρ

2
T

α2
t ρ̄

2
tρ

2
t/ρ

2
T

, (24)

sθ(xt, t,y) = −xt − (αtρ̄
2
txθ(xt, t,y) + ᾱtρ

2
txT )/ρ

2
T

α2
t ρ̄

2
tρ

2
t/ρ

2
T

. (25)

We use the data parameterization xθ(xt, t,y) in following discussions. For PF-ODE in Eqn. (21),
substituting ∇xt log qt|T (xt|xT = y) with Eqn. (25) and substituting pT |t(xT |xt) in with Eqn. (23),
we have the following after some simplification:

dxt =

[
f(t)xt −

1

2
g2(t)

xt − ᾱty

α2
t ρ̄

2
t

+
1

2
g2(t)

xt − αtxθ(xt, t,y)

α2
tρ

2
t

]
dt. (26)

which shares the same form as the ODE in Bridge-TTS [6]. In the next discussions, we present
an overview of deriving the first-order ODE solver and refer the reader to Appendix A.2 in [6] for
details.

We begin by reviewing exponential integrators [4, 22], a key technique for developing advanced
diffusion ODE solvers [16, 38, 39, 70]. Consider the following ODE:

dxt = [a(t)xt + b(t)Fθ(xt, t)]dt, (27)

where Fθ is a n-th differentiable parameterized function. By leveraging the “variation-of-constant”
formula, we could obtain a specific form of the solution of the ODE in Eqn. (27) (assume r < t):

xr = e
∫ r
t
a(τ)dτxt +

∫ r

t

e
∫ r
τ
a(s)dsb(τ)Fθ(xτ , τ)dτ, (28)

The integral in Eqn. (28) only involves the function Fθ, which helps reduce discretization errors.

With such a key methodology, we could derive the first-order solver for Eqn. (26). First, collecting
the coefficients for xt,y,xθ, we have:

dxt =

[(
f(t)− g2(t)

2α2
t ρ̄

2
t

+
g2(t)

2α2
tρ

2
t

)
xt +

g2(t)ᾱt

2α2
t ρ̄

2
t

y − g2(t)

2αtρ2t
xθ(xt, t,y)

]
dt. (29)

By setting:

a(t) =

(
f(t)− g2(t)

2α2
t ρ̄

2
t

+
g2(t)

2α2
tρ

2
t

)
, b1(t) =

g2(t)ᾱt

2α2
t ρ̄

2
t

, b2(t) =
g2(t)

2αtρ2t
.

with correspondence to Eqn. (28), the exponential terms could be analytically given by:

e
∫ r
t
a(τ)dτ =

αrσrσ̄r

αtσtσ̄t
, e

∫ r
τ
a(s)ds =

αrσrσ̄r

ατστ σ̄τ
. (30)

The exact solution for Eqn. (29) is thus given by:

xr =
αrρrρ̄r
αtρρ̄t

xt +
ᾱrρrρ̄r

2

∫ r

t

g2(τ)

α2
τρτ ρ̄

3
τ

ydτ − αrρrρ̄r
2

∫ r

t

g2(τ)

α2
τρ

3
τ ρ̄τ

xθ(xτ , τ)dτ (31)

The integrals in Eqn. (31) (without considering xθ) can be calculated as:∫ r

t

g2(τ)

α2
τρτ ρ̄

3
τ

dτ =
2

ρ2T

(
ρr
ρ̄r

− ρt
ρ̄t

)
,

∫ r

t

g2(τ)

α2
τσ

3
τ σ̄τ

dτ =
2

ρ2T

(
ρ̄t
ρt

− ρ̄r
ρr

)
Then, with the first order approximation xθ(xτ , τ) ≈ xθ(xs, s), we could obtain the first order
solver in Eqn. (16).

B.2 An Illustration Example of the Validity of the Bridge ODE

Recall the provided example in Section 3.1:
Example 3.1. Assume T = 1 and consider a simple Brownian Bridge between two fixed points
(x0, x1):

dxt =
x1 − xt

1− t
dt+ dwt, (13)
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with marginal distribution qt|01(xt|x0, x1) = N ((1− t)x0+ tx1, t(1− t)). The ground-truth reverse
SDE and PF-ODE are given by:

dxt =
xt − x0

t
dt+ dw̄t, (14)

dxt =

(
1− 2t

2t(1− t)
xt +

1

2(1− t)
x1 −

1

2t
x0

)
dt. (15)

Then first simulating the reverse SDE in Eqn. (14) from t = 1 to t = 1− γ for some γ ∈ (0, 1) and
then starting to simulate the PF-ODE in Eqn. (15) will preserve the marginal distribution.

Proof. We first demonstrate the effect of the initial SDE step, according to Table 1 and the expression
of the relevant score terms in Eqn. (23) and Eqn. (25), the ground-truth reverse SDE can be derived
as:

dxt =
xt − x0

t
dt+ dw̄t.

Then, the analytic solution of the reverse SDE in Eqn. (7) from time t to time s < t can be derived as:

dxt −
1

t
xtdt = −1

t
x0 + dw̄t

⇐⇒ d

(
1

t
xt

)
= − 1

t2
x0 +

1

t
dw̄t

⇐⇒ 1

s
xs −

1

t
xt =

(
1

s
− 1

t

)
x0 +

√
1

s
− 1

t
ϵ, ϵ ∼ N (0, 1).

Let t = 1, we have:
xs = (1− s)x0 + sx1 +

√
s(1− s)ϵ,

i.e., xs has the same marginal as the forward process at time s. Similarly, the ground-truth PF-ODE
can be derived as:

dxt =

(
1− 2t

2t(1− t)
xt +

1

2(1− t)
x1 −

1

2t
x0

)
dt,

whose analytic solution from time t to time s < t can be derived as:

dxt −
1− 2t

2t(1− t)
xtdt =

1

2(1− t)
x1dt−

1

2t
x0dt

⇐⇒ d

(
1√

t(1− t)
xt

)
=

t

2[t(1− t)]3/2
x1dt−

1− t

2[t(1− t)]3/2
x0dt

⇐⇒ 1√
s(1− s)

xs −
1√

t(1− t)
xt =

(
s√

s(1− s)
− t√

t(1− t)

)
x1 +

(
1− s√
s(1− s)

− 1− t√
t(1− t)

)
x0

⇐⇒ xs =

√
s(1− s)√
t(1− t)

xt +

(
s−

√
s(1− s)√
t(1− t)

t

)
x1 +

(
1− s−

√
s(1− s)√
t(1− t)

(1− t)

)
x0.

When xt ∼ N ((1− t)x0 + tx1, t(1− t)), we have:

xs =

√
s(1− s)√
t(1− t)

(
(1− t)x0 + tx1 +

√
t(1− t)ϵ

)
+

(
s−

√
s(1− s)√
t(1− t)

t

)
x1

+

(
1− s−

√
s(1− s)√
t(1− t)

(1− t)

)
x0

= (1− s)x0 + sx1 +
√
s(1− s)ϵ.

Hence, once the singularity is skipped by a stochastic step, following the PF-ODE reversely will
preserve the marginals in this case.
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B.3 Derivation of the CBT Objective

Given (x,y) ∼ qdata(x,y),xt ∼ qt|0T (xt|x0 = x,xT = y) and an estimate of x̂r = x̂ϕ(xt, t,y)
based on the pre-trained score predictor sϕ with the first-order ODE solver in Eqn. (16), our goal is
to derive the alternative estimation of x̂r = x̂(xt, t, r,x,y) = ary+ brx+ crz used in CBT, where
z = xt−aty−bty

ct
∼ N (0, I) and ar, br, cr are defined in Eqn. (11). We begin with the estimator

with pre-trained score model and first-order ODE solver:

xr =
αrρrρ̄r
αtρtρ̄t

xt +
αr

ρ2T

[(
ρ̄2r −

ρ̄tρrρ̄r
ρt

)
xϕ(xt, t,y) +

(
ρ2r −

ρtρrρ̄r
ρ̄t

)
y

αT

]
, (32)

where xϕ is the equivalent data predictor of the score predictor sϕ. By the transformation between

data and score predictor xϕ =
xt−atxT+c2tsϕ

bt
and substituting the score predictor sϕ with the score

estimator ∇xt
qt|0T (xt|x0 = x,xT = y), we have:

xr =
αrρrρ̄r
αtρtρ̄t

xt +
αr

ρ2T

[(
ρ̄2r −

ρ̄tρrρ̄r
ρt

)
x+

(
ρ2r −

ρtρrρ̄r
ρ̄t

)
y

αT

]
, (33)

By expressing xt = aty + btx+ ctz, we could derive the corresponding coefficients for x,y, z on
the right-hand side.

For y:

αrρrρ̄r
αtρtρ̄t

at +
αr

αT ρ2T

(
ρ2r −

ρtρrρ̄r
ρ̄t

)
=

αrρrρ̄r
αtρtρ̄t

ᾱtρ
2
t

ρ2T
+

αr

αT ρ2T

(
ρ2r −

ρtρrρ̄r
ρ̄t

)
(i)
=
αrρrρ̄r
αT ρ̄t

ρt
ρ2T

+
αr

αT ρ2T

(
ρ2r −

ρtρrρ̄r
ρ̄t

)
=

ᾱrρ
2
r

ρ2T
= ar, (34)

where (i) is due to the fact ᾱt =
αt

αT
.

For x:
αrρrρ̄r
αtρtρ̄t

bt +
αr

ρ2T

(
ρ̄2r −

ρ̄tρrρ̄r
ρt

)
=

αrρrρ̄r
αtρtρ̄t

αtρ̄
2
t

ρ2T
+

αr

ρ2T

(
ρ̄2r −

ρ̄tρrρ̄r
ρt

)
=

αrρ̄
2
r

ρ2T
= br. (35)

For z:
αrρrρ̄r
αtρtρ̄t

ct =
αrρrρ̄r
αtρtρ̄t

αtρ̄tρt
ρT

=
αrρ̄rρr
ρT

= cr. (36)

Hence, we have the alternative model-free estimator x̂r = x̂(xt, t, r,x,y) = ary + brx + crz,
where z ∼ N (0, I) is the same Gaussian noise used in sampling xt = aty+ btx+ ctz. Substituting
x̂ϕ(xt, t, r,y) in the CBD objective in Eqn. (17) with x̂(xt, t, r,x,y) gives the CBT objective in
Eqn. (20).

B.4 Network Parameterization

First, we show the detailed network parameterization for DDBM in Table. 1. Denote the neural
network as Fθ, the data predictor xθ(x, t,y) is given by:

xθ(xt, t,y) = cskip(t)xt + cout(t)Fθ(cin(t)xt, cnoise(t),y), (37)

where

cin(t) =
1√

a2tσ
2
T + b2tσ

2
0 + 2atbtσ0T + ct

, cout(t) =
√
a2t (σ

2
Tσ

2
0 − σ2

0T ) + σ2
0ctcin(t),

cskip(t) = (btσ
2
0 + atσ0T )c

2
in(t), cnoise(t) =

1

4
log t.

(38)

and

at =
ᾱtρ

2
t

ρ2T
, bt =

αtρ̄
2
t

ρ2T
, ct =

α2
t ρ̄

2
tρ

2
t

ρ2T
, σ2

0 = Var[x0], σ
2
T = Var[xT ], σ0T = Cov[x0,xT ].

(39)
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It can be verified that, with the variable substitution t̃ = t− ϵ, we have aϵ̃ = 0, bϵ̃ = 1, cϵ̃ = 0 and
thus have cskip(ϵ̃) = 1 and cout(ϵ̃) = 0.

Meanwhile, we could generally parameterize the data predictor xθ with the one-step first-order solver
from t to ϵ, i.e.:

fθ(xt, t,y) =
αϵρϵρ̄ϵ
αtρtρ̄t

xt +
αϵ

ρ2T

[(
ρ̄2ϵ −

ρ̄tρϵρ̄ϵ
ρt

)
xθ(xt, t,y) +

(
ρ2ϵ −

ρtρϵρ̄ϵ
ρ̄t

)
y

αT

]
, (40)

which naturally satisfies f(xϵ, ϵ,y) = xϵ.

B.5 Asymptotic Analysis of CBD

Proposition 3.2. Given ∆tmax = maxt{t− r(t)} and let hϕ(·, ·, ·) be the consistency function of
the empirical bridge ODE taking the form in Eqn. (8). Assume hθ is a Lipschitz function, i.e., there
exists L > 0, such that for all t ∈ [ϵ, T − γ],x1,x2,y, we have ∥hθ(x1, t,y)− hθ(x2, t,y)∥2 ≤
L∥x1 − x2∥2. Meanwhile, assume that for all t, r ∈ [ϵ, T − γ],y ∼ qdata(y) := Ex[qdata(x,y)],
the ODE solver x̂ϕ(·, t, r,y) has local error uniformly bounded by O((t− r)p+1) with p ≥ 1. Then,
if L∆tmax

CBD = 0, we have: supt,x,y ∥hθ(x, t,y)− hϕ(x, t,y)∥2 = O((∆tmax)
p).

Most of the proof directly follows the original consistency models analysis [58], with minor differ-
ences in the discrete timestep intervals (i.e., non-overlapped in [58] and overlapped in ours) and the
form of marginal distribution between pt(xt) for the diffusion ODE and qt|T (xt|xT = y) for the
bridge ODE.

Proof. Given L∆tmax

CBD = 0, we have:

Eqdata(x,y)qt|0T (xt|x0=x,xT=y)Et,r [λ(t)d (hθ(xt, t,y)− hθ−(x̂ϕ(xt, t, r,y), r,y))] = 0 (41)

Since λ(t) > 0, and for t ∈ [ϵ, T − γ], qt|0T (xt|x0 = x,y0 = y) takes the form of
N (atxT + btx0, ctI) with ct > 0, which entails for any xt, t ∈ [ϵ, T − γ], qt|T (xt|xT = y) =
Ex[qt|0T (xt|x0 = x,xT = y)] > 0. Hence, Eqn. (41) implies that for all t ∈ [ϵ, T − γ], (x,y) ∼
qdata(x,y),xt ∼ qt|0T (xt|x0 = x,xT = y), we have:

d (hθ(xt, t,y)− hθ−(x̂ϕ(xt, t, r(t),y), r(t),y)) ≡ 0, (42)

By the nature of the distance metric function d and the stopgrad operator, we then have:

hθ(xt, t,y) ≡ hθ−(x̂ϕ(xt, t, r(t),y), r(t),y) ≡ hθ(x̂ϕ(xt, t, r(t),y), r(t),y). (43)

Define the error term at timestep t ∈ [ϵ, T − γ] as:

et := hθ(xt, t,y)− hϕ(xt, t,y). (44)

We have:

et = hθ(xt, t,y)− hϕ(xt, t,y)

= hθ(x̂ϕ(xt, t, r(t),y), r(t),y)− hϕ(xr(t), r(t),y)

= hθ(x̂ϕ(xt, t, r(t),y), r(t),y)− hθ(xr(t), r(t),y)

+ hθ(xr(t), r(t),y)− hϕ(xr(t), r(t),y)

= hθ(x̂ϕ(xt, t, r(t),y), r(t),y)− hθ(xr(t), r(t),y) + er(t).

Since hθ is Lipschitz with constant L and the ODE solver x̂ϕ(·, t, r,y) is bounded by O((t− r)p+1)
with p ≥ 1, we have:

∥et∥2 ≤ ∥er(t)∥2 + L∥x̂ϕ(xt, t, r(t),y)− xr(t)∥2
= ∥er(t)∥2 + L ·O((t− r(t))p+1)

= ∥er(t)∥2 +O((t− r(t))p+1).

From the boundary condition of the consistency function, we have:

eϵ = hθ(xϵ, ϵ,y)− hϕ(xϵ, ϵ,y) = xϵ − xϵ = 0.
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Denote rm(t) as applying r on t for m times, since ∆tmin = mint{t− r(t)} exists, there exists N
such that rn(t) = ϵ for n ≥ N . We thus have:

∥et∥2 ≤ ∥eϵ∥2 +
N∑

k=1

O((rk−1(t)− rk(t))
p+1)

=

N∑
k=1

O((rk−1(t)− rk(t))
p+1)

=

N∑
k=1

(rk−1(t)− rk(t))O((rk−1(t)− rk(t))
p)

≤
N∑

k=1

(rk−1(t)− rk(t))O((∆tmax)
p)

= O((∆tmax)
p)

N∑
k=1

(rk−1(t)− rk(t))

= O((∆tmax)
p)(t− ϵ)

≤ O((∆tmax)
p)(T − ϵ)

= O((∆tmax)
p).

B.6 Connection between CBD & CBT

Proposition 3.3. Given ∆tmax = maxt{t − r(t)} and assume d,hθ, f, g are twice continu-
ously differentiable with bounded second derivatives, the weighting function λ(·) is bounded, and
E[∥∇xt

log qt|T (xt|xT )∥22] < ∞. Meanwhile, assume that L∆tmax

CBD employs the one-step ODE
solver in Eqn. (16) with ground truth pre-trained score model, i.e., ∀t ∈ [ϵ, T − γ],y ∼ qdata(y) :

sϕ(xt, t,y) ≡ ∇xt log qt|T (xt|xT = y). Then, we have: L∆tmax

CBD = L∆tmax

CBT + o(∆tmax).

The core technique for building the connection between consistency distillation and consistency
training with Taylor Expansion also directly follows [58]. The major difference lies in the form of the
bridge ODE and the general noise schedule & the first-order ODE solver studied in our work.

Proof. First, for a twice continuously differentiable, multivariate, vector-valued function h(x, t,y),
denote ∂kh(x, t,y) as the Jacobian of h over the k-th variable. Consider the CBD objective with
first-order ODE solver in Eqn. (16) (ignore terms taking expectation for notation simplicity):

L∆tmax

CBD = E [λ(t)d (hθ(xt, t,y),hθ−(k1(t, r)xt + k2(t, r)xϕ + k3(t, r)y, r,y))] , (45)

where k1(t, r) =
αrρr ρ̄r

αtρtρ̄t
, k2(t, r) =

αr

ρ2
T

(
ρ̄2r −

ρ̄tρr ρ̄r

ρt

)
, k3(t, r) =

αr

αT ρ2
T

(
ρ2r −

ρtρr ρ̄r

ρ̄t

)
are coeffi-

cients of xt,xϕ,y in the first-order ODE solver in Eqn. (16), xϕ is pre-trained data predictor. By
applying first-order Taylor expansion on Eqn. (45), we have:

L∆tmax

CBD

=E [λ(t)d (hθ(xt, t,y),hθ−(xt + (k1(t, r)− 1)xt + k2(t, r)xϕ + k3(t, r)y, t+ (r − t),y))]

=E [λ(t)d (hθ(xt, t,y),hθ−(xt, t,y) + ∂1hθ−(xt, t,y)[(k1(t, r)− 1)xt + k2(t, r)xϕ + k3(t, r)y]

+∂2hθ−(xt, t,y)(r − t) + o(|t− r|))] .

Here the error term w.r.t. the first variable can be obtained by applying Taylor expansion on k(t, r) =
k(t, t) + ∂2k(t, t)(r − t) + o(|t − r|) with k1(t, t) − 1 = 0, k2(t, t) = k3(t, t) = 0. By applying
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Taylor expansion on d, we have:

L∆tmax

CBD

=E{λ(t)d(hθ(xt, t,y),hθ−(xt, t,y)) + λ(t)∂2d(hθ(xt, t,y),hθ−(xt, t,y))[

∂1hθ−(xt, t,y)[(k1(t, r)− 1)xt + k2(t, r)xϕ + k3(t, r)y] + ∂2hθ−(xt, t,y)(r − t) + o(|t− r|)]}
=E{λ(t)d(hθ(xt, t,y),hθ−(xt, t,y))}
+ E{λ(t)∂2d(hθ(xt, t,y),hθ−(xt, t,y))[∂1hθ−(xt, t,y)[(k1(t, r)− 1)xt + k2(t, r)xϕ + k3(t, r)y]]}
+ E{λ(t)∂2d(hθ(xt, t,y),hθ−(xt, t,y))∂2hθ−(xt, t,y)(r − t)}+ E{o(|t− r|)}.

Then we focus on the term related to the first-order ODE solver:

(k1(t, r)− 1)xt + k2(t, r)xϕ + k3(t, r)y.

By the transformation between data and score predictor xϕ =
xt−atxT+c2tsϕ

bt
, and substitute

sϕ(xt, t,y) with ∇xt
log qt|T (xt|xT = y), we have:

(k1(t, r)− 1)xt + k2(t, r)
xt − atxT + c2t∇xt

log qt|T (xt|xT = y)

bt
+ k3(t, r)y.

Next, substituting the score ∇xt log qt|T (xt|xT = y) with the unbiased estimator:

E[∇xt
log qt|0T (xt|x0,xT )|xt,xT = y] = E

[
−xt − (atxT + btx0)

c2t
|xt,xT = y

]
We then have:

E{λ(t)∂2d(hθ(xt, t,y),hθ−(xt, t,y))[∂1hθ−(xt, t,y)[(k1(t, r)− 1)xt + k2(t, r)xϕ + k3(t, r)y]]}
=E{λ(t)∂2d(hθ(xt, t,y),hθ−(xt, t,y))[∂1hθ−(xt, t,y)[

(k1(t, r)− 1)xt + k2(t, r)
xt − atxT + c2tE

[
−xt−(atxT+btx0)

c2t
|xt,xT = y

]
bt

+ k3(t, r)y

(i)
=E{λ(t)∂2d(hθ(xt, t,y),hθ−(xt, t,y))[∂1hθ−(xt, t,y)[

(k1(t, r)− 1)xt + k2(t, r)
xt − atxT − c2t

xt−(atxT+btx0)
c2t

bt
+ k3(t, r)y]

=E{λ(t)∂2d(hθ(xt, t,y),hθ−(xt, t,y))[∂1hθ−(xt, t,y)[k1(t, r)xt + k2(t, r)x+ k3(t, r)y − xt],

where (i) comes from the law of total expectation. Then we apply Taylor expansion in the reverse
direction:

L∆tmax

CBD

=E{λ(t)d(hθ(xt, t,y),hθ−(xt, t,y))}
+ E{λ(t)∂2d(hθ(xt, t,y),hθ−(xt, t,y))[∂1hθ−(xt, t,y)[k1(t, r)xt + k2(t, r)x+ k3(t, r)y − xt]]}
+ E{λ(t)∂2d(hθ(xt, t,y),hθ−(xt, t,y))∂2hθ−(xt, t,y)(r − t)}+ E{o(|t− r|)}.

=E{λ(t)[d(hθ(xt, t,y),hθ−(xt, t,y))

+ ∂2d(hθ(xt, t,y),hθ−(xt, t,y))[∂1hθ−(xt, t,y)[k1(t, r)xt + k2(t, r)x+ k3(t, r)y − xt]]

+ ∂2d(hθ(xt, t,y),hθ−(xt, t,y))∂2hθ−(xt, t,y)(r − t)]}+ E{o(|t− r|)}
=E{λ(t)[d(hθ(xt, t,y),hθ−(xt, t,y) + ∂1hθ−(xt, t,y)[k1(t, r)xt + k2(t, r)x+ k3(t, r)y − xt]

+ ∂2hθ−(xt, t,y)(r − t))]}+ E{o(|t− r|)}
=E{λ(t)[d(hθ(xt, t,y),hθ−(k1(t, r)xt + k2(t, r)x+ k3(t, r)y, r,y))]}+ E{o(|t− r|)}

(ii)
= E{λ(t)[d(hθ(aty + btx+ ctz, t,y),hθ−(ary + brx+ crz, r,y)]}+ o(|t− r|)
=L∆tmax

CBT + o(|t− r|),

where (ii) follows the derivation in Eqn. (33) – Eqn. (36), and z ∼ N (0, I).
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C Additional Experimental Details

C.1 Details of Training and Sampling Configurations

We train CDBMs based on a series of pre-trained DDBMs. For two image-to-image translation tasks,
we directly use the pre-trained checkpoints provided by DDBM’s [72] official repository.2 For image
inpainting, we re-train a model with the same I2SB style noise schedule, network parameterization,
and timestep scheme in Table. 1, as well as the overall network architecture. Unlike the training setup
in I2SB, our network is conditioned on xT = y following DDBM and takes the class information of
ImageNet as input, which we refer to as the base DDBM model for image inpainting on ImageNet. The
model is initialized with the class-conditional version on ImageNet 256×256 of guided diffusion [10].
We used a global batch size of 256 and a constant learning rate of 1e-5 with mixed precision (fp16)
to train the model for 200k steps. We train the model with 8 NVIDIA A800 80G GPUs for 9.5 days,
achieving the FID reported in Table. 3 with the first-order ODE solver in Eqn. (16).

For training CDBMs, we use a global batch size of 128 and a learning rate of 1e-5 with mixed
precision (fp16) for all datasets using 8 NVIDIA A800 80G GPUs. For the constant training schedule
r(t) = t−∆t, we train the model for 50k steps, while for the sigmoid-style training schedule, we
train the model for 6s steps, e.g., 30k or 60k steps, due to numerical instability when t − r(t) is
small. For CBD, training a model for 50k steps on a dataset with 256× 256 resolution takes ∼2.5
days, while CBT takes ∼1.5 days. In this work, we normalize all images within [−1, 1] and adopt the
RAdam [27, 34] optimizer.

For sampling, we use a uniform timestep for all baselines with the ODE solver and CDBM on two
image-to-image translation tasks with ϵ = 0.0001, T = 1.0. For CDBM on image inpainting on
ImageNet, we manually assign the second timestep to T − 0.1 and make other timesteps uniformly
distributed between [ϵ, T − 0.1), which we find yields better empirical performance on this task.

C.2 Details of Training Schedule for CDBM

We illustrate the effect of the hyperparamter b in the sigmoid-like training schedule r(t) = t(1 −
1

q⌊iters/s⌋
)(1 + k

1+ebt
). Note that we further manually enforce r(t) to satisfy ∆tmax and ∆tmin.
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Figure 6: Illustration of the effect of the parameter b on the sigmoid-style training schedule.

C.3 License

We list the used datasets, codes, and their licenses in Table 4.

Table 4: The used datasets, codes and their licenses.

Name URL Citation License

Edges→Handbags https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix [23] BSD
DIODE-Outdoor https://diode-dataset.org/ [62] MIT
ImageNet https://www.image-net.org [9] \
Guided-Diffusion https://github.com/openai/guided-diffusion [10] MIT
I2SB https://github.com/NVlabs/I2SB [33] CC-BY-NC-SA-4.0
DDBM https://github.com/alexzhou907/DDBM [72] \

2https://github.com/alexzhou907/DDBM
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Figure 7: Additional Samples for Edges → Handbags.

23



Condition

Ground Truth

DDBM, NFE=2

DDBM, NFE=100

CDBM, NFE=2

Condition

Ground Truth

DDBM, NFE=2

DDBM, NFE=100

CDBM, NFE=2

Figure 8: Additional Samples for DIODE-Outdoor.
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Figure 9: Additional Samples for ImageNet 256× 256.
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Condition Different samples starts from qT−γ|T (xT−γ |xT = y)

Figure 10: Demonstration of sample diversity of the deterministic ODE sampler.
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Figure 11: Qualitative comparison between CDBM and I2SB baseline on ImageNet 256× 256. Note
that here the base model of CDBM is different from the officially released checkpoint of I2SB we
used for evaluation.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The discussion is located in the “Limitations and Broad Impact” section after
the main paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Assumptions are provided with the propositions and the detailed derivation
and proof is in Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experimental configurations are included in Section 4 and Appendix C.
The information we provided is sufficient to reproduce the results that support our claims.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The release of the code needs an official procedure related to the authors’
affiliation, which is not approved yet.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experiment configuration and details are included in Section 4 and Ap-
pendix C, which is sufficient to understand the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The metrics for evaluating generative models are typically stable and do not
require error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provided the information in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The discussion is located in the “Limitations and Broad Impact” section after
the main paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This work is conducted with common academic image datasets with model
capability restricted with specific tasks. There is little chance posing risks for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Licenses for existing assets are listed in Appendix C.3.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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