
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

QUANTIFYING THE ACCURACY–INTERPRETABILITY
TRADE-OFF IN CONCEPT-BASED SIDECHANNEL
MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Concept Bottleneck Models (CBNMs) are deep learning models that provide inter-
pretability by enforcing a bottleneck layer where predictions are based exclusively
on human-understandable concepts. However, this constraint also restricts infor-
mation flow and often results in reduced predictive accuracy. Concept Sidechannel
Models (CSMs) address this limitation by introducing a sidechannel that bypasses
the bottleneck and carry additional task-relevant information. While this improves
accuracy, it simultaneously compromises interpretability, as predictions may rely
on uninterpretable representations transmitted through sidechannels. Currently,
there exists no principled technique to control this fundamental trade-off. In
this paper, we close this gap. First, we present a unified probabilistic concept
sidechannel meta-model that subsumes existing CSMs as special cases. Build-
ing on this framework, we introduce the Sidechannel Independence Score (SIS),
a metric that quantifies a CSM’s reliance on its sidechannel by contrasting predic-
tions made with and without sidechannel information. We propose SIS regular-
ization, which explicitly penalizes sidechannel reliance to improve interpretabil-
ity. Finally, we analyze how the expressivity of the predictor and the reliance
of sidechannel jointly shape interpretability, revealing inherent trade-offs across
different CSM architectures. Empirical results show that state-of-the-art CSMs,
when trained solely for accuracy, exhibit low representation interpretability, and
that SIS regularization substantially improves their interpretability, intervenabil-
ity, and the quality of learned interpretable task predictors. Our work provides
both theoretical and practical tools for developing CSMs that balance accuracy
and interpretability in a principled manner.

1 INTRODUCTION

Concept-based models (CBMs) have emerged as a promising direction for interpretable deep learn-
ing (Poeta et al., 2023; Koh et al., 2020; Espinosa Zarlenga et al., 2022; Mahinpei et al., 2021).
CBMs achieve interpretability by incorporating high-level, human-understandable concepts explic-
itly within their architecture. A well-known example CBM is the Concept Bottleneck Model (Koh
et al., 2020) (CBNM), which first predicts concepts (e.g. whiskers, tail) using a neural network, and
then maps these predicted concepts to the target task using a linear layer (e.g. cat). This architecture
makes predictions inherently explainable: one can trace decisions back to predicted concepts (e.g.
’the model predicted cat because it sees whiskers and a tail’), and the linear layer provides additional
transparency by revealing the influence of each concept on the final prediction.

Despite their appeal, early CBMs such as CBNMs suffered from a significant drop in task accuracy
compared to black-box models. This is because concepts in CBNMs form an information bottleneck:
the model must rely solely on concepts to perform the task. In practice, it is often infeasible to design
a concept set that fully captures all the information needed for accurate predictions, which makes a
performance gap inevitable.

To address this limitation, recent works have augmented CBMs with an additional sidechannel that
transmits extra information beyond concepts (Mahinpei et al., 2021; Espinosa Zarlenga et al., 2022;

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Barbiero et al., 2023; Sawada & Nakamura, 2022).1 This sidechannel can take different forms, such
as embeddings (Yuksekgonul et al., 2022) or one-hot masks (Debot et al., 2024), depending on the
CBM in question. By leveraging this sidechannel, CBMs can close the accuracy gap with black-box
models, often achieving similar performance irrespective of the used concept set.

However, this gain in accuracy comes at the cost of some interpretability. Unlike in CBNMs, predic-
tions in sidechannel CBMs are no longer solely determined by concepts, but also by uninterpretable
units of informations (e.g. an embedding). The more a model relies on information captured by its
sidechannel, the more accurate but less interpretable it becomes. In the extreme, the task predictor
could rely completely on the sidechannel, bypassing the concepts entirely.

While some works have acknowledged this tension in a limited way by designing techniques that try
to maximize concept usage (Kalampalikis et al., 2025; Havasi et al., 2022; Shang et al., 2024), we
show that this is a weaker criterion than minimizing sidechannel reliance. The interpretability cost
is never quantified or explicitly optimized, and most evaluations and training objectives still focus
on accuracy, leaving two key gaps in the literature: the lack of a metric to measure interpretability
cost in sidechannel CBMs, and the lack of a principled way to optimize for this cost during training.

In this work, we aim to close these gaps. Our contributions are the following:

1. Unified view: We show that existing sidechannel CBMs can all be interpreted as different
parametrizations of a single meta-model, which we formalize as a high-level probabilistic
graphical model (PGM).

2. Interpretability metric: Using this PGM, we provide a natural evaluation method for
sidechannel CBMs by equipping them with a bottleneck mode, where predictions only de-
pend on the concepts. Based on bottleneck mode, we subsequently introduce the Sidechan-
nel Independence Score (SIS), which quantifies this interpretability cost.

3. Training objective: We propose SIS regularization, a method that explicitly optimizes
sidechannel CBMs for interpretability by penalizing reliance on the sidechannel.

4. Interpretability discussion: We discuss how different notions of interpretability in CSMs
arise when considering both the expressivity of the predictor and its reliance on the
sidechannel.

Through contributions (1), (2) and (4), we provide a clearer understanding of the structure and trade-
offs of sidechannel CBMs. Through (3), we introduce practical ways for developing models that are
not only accurate but also interpretable.

2 BACKGROUND

Concept Bottleneck Models. Concept Bottleneck Models (CBNMs) (Koh et al., 2020) are CBMs
that consist of two functions: a concept predictor (X → C) that maps some low-level input features
X (e.g. an image) to high-level, human-understandable concepts C (e.g. whiskers, tail), and a task
predictor (C → Y) that maps the concepts to some target task Y (e.g. cat). CBNMs are trained
by directly supervising both concepts and task with the goal of aligning each concept to a human
interpretation and obtaining high task performance. This supervision comes either from concept and
task labels in the dataset or from vision-language models, the latter removing the need for expensive
human annotations (Oikarinen et al., 2023). Typically, CBNMs use a neural network as concept
predictor and a linear layer or neural network as task predictor. A key downside of CBNMs is that
their accuracy for predicting the task Y is limited by the employed concepts C, as they form an
information bottleneck.

Concept Sidechannel Models. Concept Sidechannel Models (CSMs) are CBMs that address the
information bottleneck issue by predicting Y not only using C but also using some additional in-
formation (Espinosa Zarlenga et al., 2022; Sawada & Nakamura, 2022; Yuksekgonul et al., 2022;
Barbiero et al., 2023). This additional information comes in different forms for different CSMs.
Some examples of this are an embedding predicted from X (Mahinpei et al., 2021) and a one-hot
mask predicted from X (Debot et al., 2024). The central idea behind CSMs is primarily to achieve
(near) black-box accuracy, and secondarily to be as interpretable as possible.

1In the literature, this sidechannel is also often referred to as a ”residual” or ”sidepath”.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Notation. We write random variables in upper case (e.g. p(X)) and their assignments in lower
case (e.g. p(X = x)). When it is clear from the context, we will abbreviate assignments (e.g.
p(x) means p(X = x)). Conditional distributions are written using a vertical bar (e.g. p(Y |X) or
p(Y = y|X = x)).

3 METHOD

In this section, we present our proposed method. We begin by clarifying the distinction between
representation interpretability, which refers to the interpretability of the model’s intermediate rep-
resentations, and functional interpretability, which refers to the interpretability of the prediction
process (Section 3.1). Subsequently, we introduce a probabilistic CSM meta-model, which provides
a unified framework for representing all CSMs (Section 3.2). We then demonstrate how this meta-
model enables two modes of inference: the default mode and the bottleneck mode, in which the
sidechannel is deactivated (Section 3.3). The delineation of these two modes naturally motivates
the introduction of a novel metric, the Sidechannel Independence Score (SIS), which quantifies the
distance between the modes and, consequently, the dependence of the original CSM on its sidechan-
nel (Section 3.4). We then show how this distance can be employed as a regularization criterion for
CSMs, providing explicit control over the accuracy–interpretability trade-off in CSMs. Finally, in
Section 3.5, we discuss how the sidechannel not only supplements task-relevant information miss-
ing in the concepts, but also enhances concept-to-task expressivity for some CSMs, highlighting a
trade-off between representation interpretability and functional interpretability.

3.1 REPRESENTATION INTERPRETABILITY VS FUNCTIONAL INTERPRETABILITY

Based on existing informal notions within the CBM community (Barbiero et al., 2025), we make
two distinctions in interpretability for CBMs: representation interpretability and functional inter-
pretability. We first consider the classical form of interpretability used in machine learning.

Definition 3.1 (Functional Interpretability of CBMs). A CBM is functionally interpretable if and
only if the mapping from the CBM’s concepts (and sidechannel) to the task is an interpretable
function.

What one considers an interpretable function is subjective to the human user. According to Rudin
et al. (2022), standard cases of interpretable functions include linear layers, logic rules and small
decision trees. For CSMs, only considering this form of interpretability is insufficient as CSMs also
make their task prediction using uninterpretable representations (i.e. the sidechannel). Therefore,
we must also consider a form of interpretability that depends on the use of such uninterpretable
representations: representation interpretability.

Definition 3.2 (Representation Interpretability of CBMs). A prediction is said to be representation
interpretable if and only if it is derived exclusively from units of information that are themselves
interpretable. A concept-based model is more representation interpretable if a larger fraction of its
task-level predictions are representation-interpretable.

We make the following assumption regarding interpretable units:

Assumption 3.1 (Interpretable Units of Information in CBMs). In a CBM, the conceptsC constitute
the only interpretable units, since they are explicitly supervised to align with some human under-
standing.2 All other internal variables are uninterpretable, irrespective of their form, as they lack
explicit human alignment (e.g. sidechannels).

Proposition 3.1 (Representation Interpretability of CBNMs and CSMs). Under Assumption 3.1:

1. A CBNM is fully representation-interpretable irrespective of the used task predictor (e.g.
linear layer or neural network): every prediction ŷ depends only on the concepts.

2. A CSM is partially representation-interpretable: a prediction ŷ is representation-
interpretable if and only if ŷ does not depend on the sidechannel.

2This assumes appropriate measures have been taken to prevent concept leakage (Marconato et al., 2022),
which may otherwise misalign the concepts.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Example 3.1. Consider a CSM with a single sidechannel neuron and a linear layer mapping the
concepts and neuron to the task. If the class label y is directly encoded in the sidechannel neuron, the
model can predict y by relying solely on this neuron. This model is not representation interpretable
(since predictions only use the sidechannel) but functionally interpretable (since the linear layer
clearly shows how y is obtained). Conversely, if the sidechannel neuron carries no information (a
dummy value), but the model uses a neural network on the concepts and neuron, then predictions are
representation interpretable (since they depend only on concepts) but not functionally interpretable
(due to the black-box predictor).

Current CSMs focus on achieving functional interpretability while maintaining high accuracy, and
do not consider representation interpretability, despite its importance as illustrated above. There-
fore, our focus lies on evaluating and improving representation interpretability in CSMs.

3.2 THE META-MODEL OF CSMS

A wide range of CSMs have been developed in recent years. While they differ in many ways, their
high-level structure is very similar. These models can be understood as different instantiations of
a common underlying high-level model, which we call the CSM meta-model. This CSM meta-
model consists of three functions: a concept predictor ϕc : X → C, a sidechannel predictor ϕz :
X → Z, and a task predictor ϕy : C,Z → Y . Both the functions (ϕc, ϕz, ϕy) and the variables
(C,Z, Y) can differ across CSMs. For example, concepts may be continuous (C = RnC) or discrete
(C ∈ {0, 1}nC). Sidechannels also vary in form, with examples including embeddings (Z ∈ R|Z|)
(Mahinpei et al., 2021) and a one-hot mask (Z ∈ {0, 1}|Z|) (Debot et al., 2024).

X C

Z

Y

Figure 1: CSM Meta-model

Without loss of generality, the meta-model can be expressed as
a probabilistic graphical model (PGM) (Figure 1). The PGM
factorizes the joint distribution as:

p(y, c, z, x) = p(x) · p(c|x) · p(z|x) · p(y|c, z) (1)

with general task inference defined as

p(y|x) =
∑
c,z

p(c|x) · p(z|x) · p(y|c, z) (2)

Here, the summation is taken over all possible assignments of the concepts c and the sidechannel z.
For continuous variables, the summations are replaced with integrals.

Specific CSMs then correspond to particular parametrizations of this PGM. Even models without
explicit probabilistic semantics can be cast into this framework (such as Concept Embedding Models
(Espinosa Zarlenga et al., 2022)).3 Two examples that we will work out in detail are CRM and CMR.
Example 3.2 (Concept Residual Model (CRM) (Mahinpei et al., 2021)). In CRM, concepts are
represented as delta distributions: p(c|x) = δ(ĉ − c) where ĉ = g(x) with g a neural network.
The sidechannel z is an embedding also represented by a delta distribution, i.e. p(z|x) = δ(ẑ − z)
where ẑ = f(x) with f a neural network. The task predictor p(y|c, z) is a neural network. Due to
the sifting property of the Dirac delta, the inference expression simplifies to a single evaluation of
the task predictor: p(y|x) = p(y|ĉ, ẑ). CRM is not functionally interpretable due to the neural task
predictor.
Example 3.3 (Concept Memory Reasoner (CMR) (Debot et al., 2024)). In CMR, concepts are
modelled as Bernoulli random variables: p(c|x) = g(x) with g a neural network with sigmoid
activation. The sidechannel z is a categorical distribution representing a one-hot mask: p(z|x) =
f(x) with f a neural network with softmax activation. The task predictor p(y|c, z) possesses a set
of learned logic rules. At inference time, it evaluates only the rule indicated by the sidechannel
z on the concepts. The resulting inference expression is: p(y|x) =

∑
c∈{0,1}nC

∑nR

z=1 p(c|x) ·
p(z|x) · p(y|c, z), where nR is a hyperparameter signalling CMR’s number of learned rules. CMR
is functionally interpretable due to its rule-based task predictor.

In Appendix A, we explain additionally for the following CSMs how they parametrize our meta-
model: Concept Embedding Models (Espinosa Zarlenga et al., 2022), Concept Bottleneck Models

3Concepts and sidechannels can be represented as delta distributions, so that the summation in Equation 2
reduces to a single evaluation due to the Dirac delta’s sifting property.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

with Additional Unsupervised Concepts (Sawada & Nakamura, 2022), Hybrid Post-Hoc Concept
Bottleneck Models (Yuksekgonul et al., 2022), and Deep Concept Reasoner (Barbiero et al., 2023).

3.3 DEFAULT AND BOTTLENECK MODES FOR CSMS

Consider a CSM where the sidechannel z is replaced with a value independent of the input x. In
this case, the task prediction depends only on x through the concepts, i.e. p(y|c, x) = p(y|c). This
effectively disables the sidechannel, ensuring that predictions are fully representation interpretable.
This can be achieved by replacing the distribution p(z|x) with a distribution p(z).

We can therefore define two operation modes of a CSM:

Default Mode: pθ,ϕ,ψ(y|x) =
∑
c,z

pθ(c|x) · pϕ(z|x) · pψ(y|c, z) (3)

Bottleneck Mode: pθ,γ,ψ(ȳ|x) =
∑
c,z

pθ(c|x) · pγ(z) · pψ(y|c, z) (4)

where the subscripts {θ, ϕ, ψ, γ} indicate learnable parameters. Notice that the two modes differ
exclusively on whether their predictions use pϕ(z|x) or pγ(z), We can always make predictions
using either mode, with bottleneck mode guaranteeing full representation interpretability. Note that
default mode corresponds to the standard inference of CSMs (Equation 2).

A natural question is how to obtain p(z). A simple approach is to marginalize over the input dis-
tribution and approximate this using the training dataset D, since the true data distribution p(X)
is typically unknown: pγ(z) =

∑
x p(x) · pϕ(z|x) ≈

1
|D|

∑
x∈D pϕ(z|x). Here, bottleneck mode

has the same parameters as default mode (so γ ≡ ϕ). We will discuss an alternative approach in
Appendix B where instead a prior p(z) is explicitly learned.

3.4 MEASURING AND OPTIMIZING FOR REPRESENTATION INTERPRETABILITY

The definition of the two modes defined in the previous section allows use to devise a metric to
measure how often a CSM relies on its sidechannel by checking the agreement between predictions
from default and bottleneck mode.
Definition 3.3 (Sidechannel Independence Score - SIS). Let yx and ȳx denote predictions from
default and bottleneck mode, respectively, obtained by thresholding the corresponding distributions
p(y|x) and p(ȳ|x) at a given threshold probability. We define the Sidechannel Independence Score
(SIS) as:

SIS = Ex∼p(X)[1[yx = ȳx]]

The SIS measures the frequency with which the model’s prediction changes when the sidechannel is
removed, i.e. how dependent it is on the sidechannel rather than concepts. In practice, the SIS cannot
be computed exactly since the true data distribution p(X) is unknown. Instead, we approximate it
empirically using a dataset D: ŜIS = 1

|D|
∑
x∈D 1[yx = ȳx]. Assuming the dataset is i.i.d.,

we can use Hoeffding’s inequality to provide formal guarantees about the model’s SIS (and thus
representation interpretability) on unseen data. In particular, p(|ŜIS − SIS| ≥ ϵ) ≤ 2e−2|D|ϵ2 .
For instance, if we find an empirical ŜIS = 60% on a test set with size |D| = 1000, then the
95% confidence interval of SIS is [58%, 62%]. This metric is pragmatic in the sense that a human
can easily interpret it and decide on whether they consider the model representation-interpretable
enough to trust it.

Most CSMs are currently trained to maximize accuracy (see Section 4). Our meta-model enables
explicit optimization for representation interpretability by introducing a loss term that penalizes
discrepancies between predictions from default mode (p(y|x)) and bottleneck mode (p(ȳ|x)). Any
suitable divergence, such as total variation distance or symmetric Kullback-Leibler divergence, can
be used. This approach integrates seamlessly into any CSM. For example, when maximizing the
likelihood of training data, the objective becomes:

argmax
ϕ,ψ,γ,θ

 ∑
(x,c,y)∈D

(log pϕ,ψ(y|c, x) + α · log pθ(c|x)− β · DIV(pϕ,ψ(y|c, x)||pγ,ψ(ȳ|c, x)))


5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where α and β are hyperparameters, and DIV(·||·) denotes a chosen divergence measure. We refer
to this additional term as SIS regularization. It can also be incorporated into alternative training
schemes, such as sequential or joint CBM training (Koh et al., 2020).

Furthermore, instead of marginalizing over the input x to obtain a prior p(z), one can introduce
a learnable prior. This reduces computational cost, simplifies optimization, and in some cases in-
creases the expressivity of the model in bottleneck mode. For more details, we refer to Appendix
B. Importantly, this method is applicable to any CSM, regardless of its parametrization within our
meta-model PGM (e.g. choice of sidechannel z or form of p(y|c, z)).

3.5 EXPRESSIVITY OF CSMS IN BOTTLENECK MODE

In default mode, CSMs are typically universal classifiers: they are as expressive as neural networks
for classification. This universality comes from the sidechannel, which allows them to learn any
mapping from input to task (X → Y), irrespective of the employed concept set.

When in bottleneck mode, however, their ability to learn input-to-task mappings is limited by the
quality of the concept set. Because the concept set is dependent on the dataset, a general comparison
between CSMs cannot be made. Instead, we can analyze their expressivity in learning mappings
from concepts to task (C → Y). Some CSMs are more expressive than others in this regard, for
instance:

• CRM (Mahinpei et al., 2021) applies a neural network to the concepts. This is fully expres-
sive but not functionally interpretable.

• CBM-AUC (Sawada & Nakamura, 2022) applies a linear layer to the concepts, which is
functionally interpretable but not expressive.

• CMR (Debot et al., 2024) falls in between, as it applies a set of learned logic rules to the
concepts. Its expressivity depends on the number of learned rules, and increases with this
capacity.

For more examples, we refer to Appendix A.

This difference inC → Y expressivity between default and bottleneck mode for some CSMs implies
that they do not only use the sidepath to use information related to Y that cannot be found in C but
also to improve their C → Y expressivity.

This yields two important insights. First, for achieving the same accuracy on expressive tasks Y ,
a functionally interpretable but inexpressive CSM (e.g. CBM-AUC) must rely more heavily on its
sidechannel than a non-functionally interpretable but expressive CSM (e.g. CRM). Thus, the former
may achieve higher functional interpretability but lower representation interpretability than the lat-
ter. Second, even if the concepts are sufficient for the task (i.e. a perfect predictor exists given a
sufficiently expressive model), a functionally interpretable but inexpressive CSM will still need to
use its sidechannel to achieve high accuracy. We show this empirically in Section 5, and illustrate it
with the following simple example.

Example 3.4. Consider two binary concepts c1 and c2 and a task defined as their logical XOR
(y := c1⊕ c2). Suppose a CSM uses a linear layer to map the concepts c and a sidechannel z (some
neurons) to the task y. In bottleneck mode, the CSM cannot predict y accurately, since it is not
linearly separable. In default mode, the model can encode features such as c1 ∧ ¬c2 and ¬c1 ∧ c2
into the sidechannel. The linear layer can then compute the logical OR of these neurons, thereby
solving the XOR task. In this way, the sidechannel effectively extends the concept bottleneck with
combinations of concepts to increase the model’s expressivity.

4 RELATED WORK

While explicitly measuring and optimizing representation interpretability has not been studied di-
rectly, several related research directions pursue overlapping but distinct goals. Most of these works
focus on encouraging models to use concepts extensively, whereas our focus lies in minimizing
reliance on the sidechannel. Note that the latter entails the former, but goes even further.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

A major line of research in CBMs emphasizes intervenability (Espinosa Zarlenga et al., 2022; 2023;
Havasi et al., 2022): when concept predictions are replaced with their ground truth, downstream task
accuracy should improve as much as possible. Such interventions are designed to simulate human
expert interaction at decision time. However, intervenability is influenced by many factors, for in-
stance: (1) the extent to which concepts are used, (2) whether interventions remain in-distribution,
and (3) architectural design choices. Of these, only (1) partially relates to representation inter-
pretability. Importantly, a model may achieve high intervenability by heavily relying on concepts
while still encoding substantial task-relevant information in the sidechannel. In this case, interven-
ability remains high even though representation interpretability may be low.

Some works attempt to disentangle the sidechannel from the concepts (Zabounidis et al., 2023):
make it complementary to the concepts, not re-encode the same information. This approach im-
proves representation interpretability to some degree by preventing concept-related information
from being in the sidechannel, but does not reduce sidechannel usage beyond this. Moreover, enforc-
ing disentanglement substantially harms accuracy in CSMs that rely on sidechannels for expressivity
(Barbiero et al., 2023; Debot et al., 2024; Sawada & Nakamura, 2022), even though disentanglement
is not strictly necessary for achieving representation interpretability (see Appendix C).

Other works introduce methods to maximize concept utilization during prediction (Kalampalikis
et al., 2025; Shang et al., 2024). These approaches encourage reliance on concepts but do not
directly address sidechannel reduction (see Section 5). Furthermore, they are tailored to CSMs with
embedding-based sidechannels, leaving open how they might generalize to alternative architectures.
Finally, they may require structural modifications to the model (e.g. a factorizable task predictor
(Shang et al., 2024)), whereas our approach does not require this. Similarly, Zhang et al. (2024)
introduce an embedding-based CSM with a factorized task predictor and a regularization approach,
which does encourage sidechannel reduction, but is specific to their task predictor.

Finally, Havasi et al. (2022) propose a metric known as the completeness score, which estimates
how fully concepts capture predictive information for the task. This is computed by learning a
distribution q(z|c) after training and relies on mutual information. While informative, it suffers
from two limitations. First, mutual-information–based quantities are less intuitive for humans than
accuracy-based metrics like SIS. Second, it is not a measure for representation interpretability, as
it may be high even though representation interpretability is poor (see Appendix C for an in-depth
discussion and a comparison between their q(z|c) and our p(z)). Zhang et al. (2024) also introduce
a metric for interpretability, but this can be only be computed for factorizable task predictors and
similarly does not measure representation interpretability.

5 EXPERIMENTS

5.1 SETUP

This section provides essential information about the experiments (see Appendix D for details). We
report results averaged over three seeds, and we give standard-deviations as shaded areas. For pareto
curves, we only give the results for the first seed (see Appendix D for the remaining ones).

Datasets. We use three standard concept-based datasets: CelebA (Liu et al., 2015), with 200k
celebrity faces annotated with facial attribute concepts (e.g. blond hair, beard); CUB (Welinder
et al., 2010), where the task is to classify birds; and MNIST-Addition (Manhaeve et al., 2018),
where the task is to predict the sum of two digit images. CelebA’s concepts are insufficient for the
task; MNIST-Addition’s are sufficient but has an expressive task. CUB’s concepts are sufficient,
has an inexpressive task, but has difficult concept prediction. For the results on CUB, we refer to
Appendix D.2.

Models. We use the following CSMs in our experiments: Concept Residual Models (CRM) (Mahin-
pei et al., 2021), Concept Embedding Models (CEM) (Espinosa Zarlenga et al., 2022), Deep Concept
Reasoner (DCR) (Barbiero et al., 2023), and Concept Memory Reasoner (CMR) (Debot et al., 2024).
We also define Linear Residual Model (LRM) as CRM but with a linear layer as task predictor. DCR,
CMR, and LRM are functionally interpretable but inexpressive in bottleneck mode (see Section 3.5);
CRM and CEM are not functionally interpretable but expressive in bottleneck mode. As baselines,
we consider approaches that maximize concept usage (Shang et al., 2024; Kalampalikis et al., 2025).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.82 0.84
Accuracy

0.5

1.0

SI
S

DCR
LRM
CMR

(a) FI CSMs, CelebA

0.825 0.840
Accuracy

0.5

1.0

SI
S

CRM
CEM

(b) Non-FI CSMs, CelebA

0.82 0.84
Accuracy

0.5

1.0

SI
S

DCR
CRM
CEM
LRM
CMR

(c) All CSMs, CelebA

0.0 0.4 0.8
Accuracy

0.0

1.0

SI
S

CMR
DCR
LRM

(d) FI CSMs, MNIST-Add.

0.960 0.966
Accuracy

0.0

1.0

SI
S

CEM
CRM

(e) Non-FI CSMs, MNIST-Add.

0.0 0.4 0.8
Accuracy

0.0

1.0

SI
S

CMR
DCR
LRM
CEM
CRM

(f) All CSMs, MNIST-Add.

Figure 2: Accuracy vs representation interpretability trade-off in CSMs. Each point is a hyperparam-
eter configuration, keeping only pareto-efficient points. Crosses are the most accurate configuration
trained without SIS regularization (not in (c) and (f)). FI means ”functionally interpretable”.

5.2 RESULTS AND DISCUSSION

We consider the following research questions: (Interpretability) How representation interpretable
are state-of-the-art CSMs? How much does SIS regularization improve their representation inter-
pretability? What is the trade-off w.r.t. accuracy? How do current methods encouraging concept us-
age for CRM-like models (Section 4) fare regarding representation interpretability? (Side-effects)
Does SIS regularization improve intervenability? Does SIS regularization improve the quality of
learned interpretable task predictors?

0.825 0.840
Accuracy

0.5

1.0

SI
S

Dropout
Detach
Ours

Figure 3: Accuracy vs SIS for
CRM on CelebA, comparing with
concept usage approaches. The
cross is the most accurate CRM
trained without any approach.

Current optimization of CSMs results in uninterpretable
models (Figure 2, crosses), contrary to when using SIS reg-
ularization (Figure 2, circles). Models that are optimized only
for accuracy have a low SIS score, meaning they significantly
use the sidechannel. Notably, this is even the case when the
sidechannel is completely unnecessary, e.g. when training ex-
pressive CSMs on datasets where the concepts are sufficient for
the task (Figure 2e). Conversely, when using our SIS regular-
ization, CSMs become significantly more representation inter-
pretable, and the human can choose how much accuracy to trade
for how much interpretability.

When using the sidechannel is unnecessary, SIS regulariza-
tion ensures CSMs avoid it (Figure 2e). With sufficient con-
cept sets, expressive CSMs can reach high accuracy without
relying on the sidechannel, effectively functioning as concept
bottleneck models with the same interpretability.

Inexpressive CSMs require the sidechannel for expressive tasks (Figure 2d). Despite MNIST-
Addition having sufficient concepts, the linear expressivity of these CSMs’ bottleneck mode makes
them either very accurate but completely not representation interpretable, or completely representa-
tion interpretable but very inaccurate. Interestingly, our analysis shows that CMR seems unable to
exploit its non-linear expressivity. In Appendix D, we address this by replacing its rule learner with
an existing alternative, enabling near-perfect accuracy and interpretability on this task.

Existing concept usage approaches yield smaller gains in representation interpretability (Fig-
ure 3). While approaches that encourage higher concept usage for CRM-like CSMs also increase
representation interpretability, their improvements are smaller than those achieved with SIS regular-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 10 15 20
Number of interventions

96

97

98

99

100

Ac
cu

ra
cy

 (%
)

w=0.0
w=0.01
w=0.1
w=1.0

(a) CRM on MNIST-Addition

5 10 15 20
Number of interventions

96

97

98

99

100

Ac
cu

ra
cy

 (%
)

w=0.0
w=0.01
w=0.1
w=2.0

(b) CEM on MNIST-Addition

0 10 20 30
Number of interventions

85.0

85.5

86.0

Ac
cu

ra
cy

 (%
)

w=0.0
w=0.01

(c) LRM on CelebA

Figure 4: Intervenability in CSMs with (w > 0) and without (w = 0) SIS regularization for different
regularization weights w. The y-axis denotes accuracy after intervening on a number of concepts
denoted by the x-axis.

0.00 0.05 0.10 0.15 0.20 0.25
|Weight Value|

Wearing_Necklace
z9

Eyeglasses
Chubby

z26
z53
z62
z60

Sideburns
z11

Without SIS regularization

0.00 0.25 0.50 0.75 1.00 1.25
|Weight Value|

Gray_Hair
Heavy_Makeup

Wearing_Lipstick
Big_Nose

Receding_Hairline
Bags_Under_Eyes

Wearing_Necklace
Wearing_Necktie
Bushy_Eyebrows

Arched_Eyebrows
With SIS regularization

(a) Top 10 largest weights. Bars represent absolute weight magnitudes, with
green and red indicating positive and negative weights, respectively. Weights
corresponding to the sidechannel’s neurons are denoted with a ’z’.

Concept Weights Z Weights0.0

10.0

20.0

30.0

40.0

Su
m

 o
f |

W
ei

gh
ts

|

No SIS reg
SIS reg

(b) Total absolute weight mag-
nitudes assigned to concepts
and sidechannel neurons.

Figure 5: Inspection of LRM’s linear layer for predicting the task ’Young’ for CelebA, comparing
LRMs trained with and without SIS regularization.

ization. We observe that dropout (Kalampalikis et al., 2025) enhances SIS only insofar as accuracy
is not compromised, and that detach (Shang et al., 2024) only slightly improves SIS.

SIS regularization increases intervenability (Figure 4). As SIS regularization reduces sidechan-
nel reliance in the CSM, an automatic side-effect and advantage is that the CSM relies more on the
concepts to predict the task, making it more responsive to concept interventions. For more curves,
see Appendix D.

SIS regularization improves the task predictor quality of functionally interpretable CSMs
(Figure 5). We compare the most accurate LRM configurations trained with and without reg-
ularization on CelebA (84.75% vs 84.94% accuracy). Without SIS regularization, many of the
most contributing weights of LRM’s linear task predictor are uninterpretable latent factors from the
sidechannel (e.g. z11), harming interpretability. In contrast, with SIS regularization, large weights
correspond to semantically meaningful concepts (e.g. Gray Hair), while reliance on the sidechannel
is suppressed (Figure 5a), and the total weight magnitude shifts significantly toward concepts rather
than the sidechannel (Figure 5b).

6 CONCLUSION

We addressed a fundamental gap in concept-based models: the lack of principled methods to mea-
sure and control the trade-off between accuracy and interpretability in concept sidechannel models
(CSMs). We proposed a unified probabilistic meta-model that places existing CSMs within a single
framework, enabling us to disconnect representation interpretability from functional interpretabil-
ity. Building on this, we introduced the Sidechannel Independence Score (SIS) as a metric that
quantifies a model’s representation interpretability. We demonstrated how SIS can serve as a regu-
larization objective, allowing human users to explicitly control the extent to which models rely on
uninterpretable sidechannels. Our experiments reveal that state-of-the-art CSMs, when trained using

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

typical objectives, are not genuinely interpretable, and that SIS regularization produces models that
are more representation interpretable, more responsive to interventions and more transparent in their
task predictors. Our analysis also allowed us to find a weakness in a state-of-the-art CSM (CMR),
being unable to exploit its theoretical expressivity, which we addressed. Our contributions provide
both theoretical foundations and practical tools for developing interpretable CSMs.

Limitations and future work Future work could investigate the accuracy-interpretability trade-off
among datasets beyond vision (e.g. language) and more CSMs, and investigate the effect of SIS
regularization on the quality of learned rules for rule-based CSMs.

Reproducibility statement. All our experiments are seeded, and we will make the code publicly
available upon publication of the paper. Moreover, in Appendix D, we describe in detail the setup
of each experiment, the implementation of each model, and the training setup.

REFERENCES

Pietro Barbiero, Gabriele Ciravegna, Francesco Giannini, Mateo Espinosa Zarlenga, Lucie Charlotte
Magister, Alberto Tonda, Pietro Lio’, Frederic Precioso, Mateja Jamnik, and Giuseppe Marra.
Interpretable neural-symbolic concept reasoning. In ICML, 2023.

Pietro Barbiero, Giuseppe Marra, Gabriele Ciravegna, David Debot, Francesco De Santis, Michelan-
gelo Diligenti, Mateo Espinosa Zarlenga, and Francesco Giannini. Neural interpretable reasoning.
arXiv preprint arXiv:2502.11639, 2025.

David Debot, Pietro Barbiero, Francesco Giannini, Gabriele Ciravegna, Michelangelo Diligenti, and
Giuseppe Marra. Interpretable concept-based memory reasoning. Advances of neural information
processing systems 37, NeurIPS 2024, 2024.

Mateo Espinosa Zarlenga, Pietro Barbiero, Gabriele Ciravegna, Giuseppe Marra, Francesco Gian-
nini, Michelangelo Diligenti, Zohreh Shams, Frederic Precioso, Stefano Melacci, Adrian Weller,
Pietro Lio, and Mateja Jamnik. Concept embedding models: Beyond the accuracy-explainability
trade-off. Advances in Neural Information Processing Systems, 35, 2022.

Mateo Espinosa Zarlenga, Katie Collins, Krishnamurthy Dvijotham, Adrian Weller, Zohreh Shams,
and Mateja Jamnik. Learning to receive help: Intervention-aware concept embedding models.
Advances in Neural Information Processing Systems, 36:37849–37875, 2023.

Marton Havasi, Sonali Parbhoo, and Finale Doshi-Velez. Addressing leakage in concept bottleneck
models. Advances in Neural Information Processing Systems, 35:23386–23397, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Nektarios Kalampalikis, Kavya Gupta, Georgi Vitanov, and Isabel Valera. Towards reasonable con-
cept bottleneck models. arXiv preprint arXiv:2506.05014, 2025.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and
Percy Liang. Concept bottleneck models. In International conference on machine learning, pp.
5338–5348. PMLR, 2020.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In ICCV, 2015.

Anita Mahinpei, Justin Clark, Isaac Lage, Finale Doshi-Velez, and Weiwei Pan. Promises and
pitfalls of black-box concept learning models. arXiv preprint arXiv:2106.13314, 2021.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De Raedt.
DeepProbLog: Neural Probabilistic Logic Programming. In NeurIPS, pp. 3753–3763, 2018.

Emanuele Marconato, Andrea Passerini, and Stefano Teso. Glancenets: Interpretable, leak-proof
concept-based models. Advances in Neural Information Processing Systems, 35:21212–21227,
2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tuomas Oikarinen, Subhro Das, Lam Nguyen, and Lily Weng. Label-free concept bottleneck mod-
els. In International Conference on Learning Representations, 2023.

Eleonora Poeta, Gabriele Ciravegna, Eliana Pastor, Tania Cerquitelli, and Elena Baralis. Concept-
based explainable artificial intelligence: A survey. arXiv preprint arXiv:2312.12936, 2023.

Cynthia Rudin, Chaofan Chen, Zhi Chen, Haiyang Huang, Lesia Semenova, and Chudi Zhong. In-
terpretable machine learning: Fundamental principles and 10 grand challenges. Statistic Surveys,
16:1–85, 2022.

Yoshihide Sawada and Keigo Nakamura. Concept bottleneck model with additional unsupervised
concepts. IEEE Access, 10:41758–41765, 2022.

Chenming Shang, Shiji Zhou, Hengyuan Zhang, Xinzhe Ni, Yujiu Yang, and Yuwang Wang. In-
cremental residual concept bottleneck models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 11030–11040, 2024.

Peter Welinder, Steve Branson, Takeshi Mita, Catherine Wah, Florian Schroff, Serge Be-
longie, and Pietro Perona. Caltech-ucsd birds 200. Technical Report CNS-TR-201, Caltech,
2010. URL /se3/wp-content/uploads/2014/09/WelinderEtal10_CUB-200.
pdf,http://www.vision.caltech.edu/visipedia/CUB-200.html.

Mert Yuksekgonul, Maggie Wang, and James Zou. Post-hoc concept bottleneck models. arXiv
preprint arXiv:2205.15480, 2022.

Renos Zabounidis, Ini Oguntola, Konghao Zhao, Joseph Campbell, Simon Stepputtis, and Katia
Sycara. Benchmarking and enhancing disentanglement in concept-residual models. arXiv preprint
arXiv:2312.00192, 2023.

Rui Zhang, Xingbo Du, Junchi Yan, and Shihua Zhang. The decoupling concept bottleneck model.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

11

/se3/wp-content/uploads/2014/09/WelinderEtal10_CUB-200.pdf, http://www.vision.caltech.edu/visipedia/CUB-200.html
/se3/wp-content/uploads/2014/09/WelinderEtal10_CUB-200.pdf, http://www.vision.caltech.edu/visipedia/CUB-200.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Supplementary Material
TABLE OF CONTENTS

A Overview of state-of-the-art CSMs 13

B Learnable prior p(z) 14

C Limits of Disentanglement and Concept Completeness Score 14

C.1 Disentangling for representation interpretability 14

C.2 Concept Completeness Score vs Sidechannel Independence Score 14

D Experiments 15

D.1 Experimental details . 15

D.2 Additional results . 18

E LLM usage declaration 20

F Code and licenses 20

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A OVERVIEW OF STATE-OF-THE-ART CSMS

In this section, we give more examples of how state-of-the-art CSMs are parametrizations of our
meta-model.

We do not give extensive details about the models, only a high-level overview. We also take the
examples CRM and CMR again as they appear in the main text.

Concept Residual Model (CRM) (Mahinpei et al., 2021). In CRM, concepts are represented as
delta distributions: p(c|x) = δ(ĉ − c) where ĉ = g(x) with g a neural network. The sidechannel
z is an embedding also represented by a delta distribution, i.e. p(z|x) = δ(ẑ − z) where ẑ = f(x)
with f a neural network. The task predictor p(y|c, z) is a neural network. Due to the sifting property
of the Dirac delta, the inference expression simplifies to a single evaluation of the task predictor:
p(y|x) = p(y|ĉ, ẑ). CRM is not functionally interpretable due to the neural task predictor.

Concept Embedding Models (CEM) (Espinosa Zarlenga et al., 2022). In CEM, concepts are
represented as delta distributions: p(c|x) = δ(ĉ − c) where ĉ = g(x) with g a neural network. The
sidechannel z consists of 2 embeddings per concept, each represented by a delta distribution, i.e.
for i ∈ {1..nC} and j ∈ {1, 2}, p(zi,j |x) = δ(ẑi,j − zi,j) where ẑi,j = fij(x) with fij a neural
network. The task predictor p(y|c, z) first mixes the two embeddings of each concept using the
concept scores (zi = ci · zi,1 + (1 − ci) · zi,2), and the resulting embeddings are concatenated and
fed through a neural network. Due to the sifting property of the Dirac delta, the inference expression
simplifies to a single evaluation of the task predictor: p(y|x) = p(y|ĉ, ẑ). CEM is not functionally
interpretable due to the neural task predictor.

Concept Memory Reasoner (CMR) (Debot et al., 2024). In CMR, concepts are modelled as
Bernoulli random variables: p(c|x) = g(x) with g a neural network with sigmoid activation. The
sidechannel z is a categorical distribution representing a one-hot mask: p(z|x) = f(x) with f a neu-
ral network with softmax activation. The task predictor p(y|c, z) encodes a set of learned logic rules.
At inference time, it evaluates only the rule indicated by the sidechannel z on the concepts. The re-
sulting inference expression is: p(y|x) =

∑
c∈{0,1}nC

∑nR

z=1 p(c|x) · p(z|x) · p(y|c, z), where nR is
a hyperparameter signalling CMR’s number of learned rules. CMR is functionally interpretable due
to the rule-based task predictor.

Deep Concept Reasoner (DCR) (Barbiero et al., 2023). In DCR, concepts are modelled as delta
distributions: p(c|x) = δ(ĉ − c) where ĉ = g(x) with g a neural network. The sidechannel z
represents a fuzzy logic rule, given by 2 fuzzy values per concept, signalling the relevance and
polarity of each concept in the rule: for i ∈ {1..nC} and j ∈ {1, 2}, p(zi,j |x) = δ(ẑi,j − zi,j)
where ẑi,j = fij(x) with fij a neural network with sigmoid activation. The task predictor p(y|c, z)
uses fuzzy logical inference to deduce the task from the fuzzy logic rule and the predicted concepts.
DCR is functionally interpretable due to the rule-based task predictor.

Concept Bottleneck Model with Additional Unsupervised Concepts (CBM-AUC) (Sawada &
Nakamura, 2022). In CBM-AUC, concepts are also delta distributions. The sidechannel consists
of two components: some unsupervised concepts and a weight for each concept and unsupervised
concept. Both are represented by delta distributions. The task predictor computes the dot product of
all concepts and weights. CBM-AUC is functionally interpretable due to the linear task predictor.

Hybrid Post-hoc Concept Bottleneck Models (PCBM-h) (Yuksekgonul et al., 2022). In PCBM-
h, concepts are delta distributions, and the sidechannel is a single value denoted by a delta distri-
bution. The task predictor applies some interpretable predictor (e.g. linear layer) to the concepts,
providing a score y1, which is summed with the value predicted by the sidechannel. PCBM-h is
functionally interpretable due to the interpretable predictor followed by a simple sum.

Expressivity. Of these models, CRM and CEM are universal classifiers (C → Y) in bottleneck
mode, but not functionally interpretable. DCR and CBM-AUC are functionally interpretable, but
have a linear expressivity (C → Y) in bottleneck mode. PCBM-h is functionally interpretable but
its expressivity depends on the used predictor. CMR is functionally interpretable and its expressivity
in bottleneck mode is limited only by the number of rules it uses.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B LEARNABLE PRIOR p(z)

When using SIS regularization, we propose to use a learnable prior for p(z) as opposed to a marginal-
ization approach. For some models, avoiding the marginalization can improve expressivity. For
instance, for CMR, using the marginalization approach means that the final task prediction is still
using a single logic rule, with uncertainty modelled over which rule to use. As a consequence,
CMR’s expressivity (C → Y) would still be linear. By instead allowing CMR to use the entire
set of learned rules (which would be impossible by the marginalization approach, as this value for
z is out-of-distribution), CMR’s expressivity becomes bounded only by the number of rules it has
learned.

This ensures the SIS regularization is computationally quite cheap, this ensures that the SIS regu-
larization requires only a single forward pass of the model and computing a KL divergence between
the original forward pass and this additional one.

C LIMITS OF DISENTANGLEMENT AND CONCEPT COMPLETENESS SCORE

C.1 DISENTANGLING FOR REPRESENTATION INTERPRETABILITY

In this section, we argue that disentangling the sidechannel from the concepts is neither a sufficient,
nor necessary condition for achieving a representation-interpretable CSM. Moreover, it may even
needlessly harm the CSM’s accuracy. This highlights that representation interpretability (and SIS)
capture(s) a distinct notion of interpretability not already addressed by disentanglement.

Zabounidis et al. (2023) propose disentangling the sidechannel from the concepts. This im-
proves representation interpretability by preventing concept-related information from leaking into
the sidechannel. However, as noted in Section 4, this is not sufficient: task-relevant information that
is unrelated to the concepts is still free to appear in the sidechannel.

Importantly, disentanglement is not strictly necessary for a CSM to be representation interpretable.
The simplest example is when the task predictor relies only on the concepts for each prediction. In
this case, the prediction is representation interpretable regardless of what information the sidechan-
nel encodes.

A more interesting example is the following, where disentanglement is clearly unnecessary and even
hurts the model’s accuracy. Suppose the dataset is such that the concepts are sufficient for solving
the task. That is, they capture all task-relevant information. Consider CMR, a CSM where the
sidechannel is a one-hot mask. The task predictor contains a set of logic rules. In default mode,
the predictor uses the sidechannel to select a single rule to apply to the concepts; in bottleneck
mode, it applies all rules simultaneously. For some inputs, the prediction made in default mode
(via rule selection) may coincide with the prediction in bottleneck mode (via all rules), meaning
the prediction is representation interpretable. However, if the sidechannel were disentangled from
the concepts, rule selection could not exploit any task-relevant information (since all of it resides in
the concepts). In that case, accuracy would collapse, as the rule selection would effectively become
random.

C.2 CONCEPT COMPLETENESS SCORE VS SIDECHANNEL INDEPENDENCE SCORE

In this section, we argue that the concept completeness score (Havasi et al., 2022) does not capture
representation interpretability, comparing it to our SIS metric.

The concept completeness score (CCS) τ is defined by Havasi et al. (2022) as

τ =
I(y; c)

I(y; c, x)
≈
H(y) + E(x,c)∼D[logEz∼q(z|c)[p(y|c, z)]]
H(y) + E(x,c)∼D[logEz∼p(z|x)[p(y|c, z)]]

(5)

where H(·) denotes entropy. This score is used to estimate how much task-relevant information
is present in the concepts. Note that the numerator uses q(z|c): CCS will be high whenever pre-
dictions based on z derived from c resemble those based on z derived from x. Crucially, this can
happen even if the task predictor heavily relies on the sidechannel, so long as all the information in
the sidechannel is also present in the concepts. Intuitively: the concept completeness score measures

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

how much information more than concepts is encoded in the sidechannel; SIS measures how much
the sidechannel is used. CCS can be very high for a completely uninterpretable prediction, which is
not the case for SIS. Concept-related information encoded in an uninterpretable form (e.g. embed-
dings) is not interpretable, since humans cannot identify what it represents, despite CCS being high.
Furthermore, concepts are explicitly supervised to align with human-understandable interpretations,
whereas sidechannels are not. Thus, even if a sidechannel has a simple form (e.g. a logic rule, as in
DCR (Barbiero et al., 2023)) and is predicted from the same information as the concepts, we argue
it remains uninterpretable. Consider the following two examples.

Consider an example with DCR. Suppose the concepts capture all task-relevant information, and the
model uses five concepts c1, c2, . . . , c5. For an input x with ground-truth label y = True, assume all
concepts are predicted as True, and the sidechannel outputs the rule y ← c1 ∧ c2 ∧ · · · ∧ c5. DCR’s
task predictor applies this rule to the predicted concepts, correctly predicting y = True. For this
individual prediction, τ would be high, since the rule is derived from concept-related information.
However, it is opaque to the human why the model used this particular rule. Why not y ← c1 ∧
c2, which would yield the same correct label, or even y ← c1, or y ← True? In the last case,
the concepts are bypassed entirely, and the prediction is made solely by the sidechannel: a neural
network, hence uninterpretable. The core issue is that the sidechannel is not explicitly aligned with
human-understandable semantics, unlike the concepts. If it were, then it would be a concept.

Consider an example with LRM. Suppose the concepts capture all task-relevant information, and the
model uses some concepts and a sidechannel z that is a single neuron. These are passed to a linear
layer for the task prediction. If the linear layer has learned every weight to be zero except the weight
on the sidechannel, then the task prediction probability is determined entirely by the sidechannel,
i.e. by the underlying neural network that predicts z. In this case, τ will be 1, since z is derived from
concept-related information. However, the interpretability the linear layer provides is completely
lost. A human examining the weights will only see that the task decision (completely) depends
on z, but has no way to understand how the individual concepts contribute. While the linear layer
provides functional interpretability, it is useless because the model is completely not representation
interpretable: the linear layer purely uses an uninterpretable representation.

Similarly, the example in Section 3.5 would also have a high completeness score.

Using p(z) versus q(z | c). One could consider defining bottleneck mode using q(z | c) instead
of p(z), where the former is parameterized by a neural network. This substitution would increase
expressivity: CSMs that currently act as linear classifiers (C → Y) in bottleneck mode under p(z)
would become universal classifiers (C → Y) under q(z | c), since q is parameterized by a neural
network. However, as we explained above, this added flexibility comes at the cost of interpretabil-
ity. With p(z), the mapping from C → Y in bottleneck mode is interpretable for functionally
interpretable CSMs, whereas with q(z | c) a neural network is put between concepts and task pre-
dictions, reducing interpretability.

D EXPERIMENTS

D.1 EXPERIMENTAL DETAILS

Datasets. In MNIST-Addition (Manhaeve et al., 2018), each input consists of two MNIST images
each representing some digit. The task is to predict the sum of the 2 digits. The concepts denote
which digit is in each image. In CelebA (Liu et al., 2015), the concepts are face attributes such
as Blond Hair and Wears Make-up. As tasks, we take the concepts Male, Young and Attractive,
dropping them from the concept set.

Metrics. For CelebA, we use regular accuracy and SIS as defined in the main text. For MNIST-
Addition, we use subset versions of these metrics due to the large imbalance and mutually exclusive
nature of both concepts and tasks.

Seeds. We use seeds 1, 2 and 3.

Hard concepts. To avoid the problem of concept leakage which harms interpretability (Marconato
et al., 2022), we employ hard concepts (as opposed to soft concepts) by thresholding the concept
predictions at 50% before passing them to the task predictor, which is common for CBMs.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Training. We use a training objective similar to sequential training. We maximize the likelihood
of our data (see Section 3.4), with as difference that we use the predicted concepts ĉ instead of
the ground truth labels for c in the task predictor p(y|c, z). This makes the model more robust
and aware of mistakes in the concept prediction. Importantly, we do not allow the gradient from y
to pass through c (so we avoid the joint training objective some CBMs employ), as this is known
to cause task leakage, harming interpretability (Mahinpei et al., 2021). For CEM, we also use its
randint regularization. We always use the AdamW optimized with learning rate 0.001 and train for
80 epochs, restoring the weights that resulted in the lowest validation loss. Our training/validation
split is 9/1.

Backbones. For each model, we use the same backbone (which differs between datasets). For
CelebA, we train on pretrained ResNet18 embeddings (He et al., 2016), similar to Debot et al.
(2024). Images are first resized to (224, 224) using bi-linear interpolation. They are then normal-
ized per channel with means (0.485, 0.456, 0.406) and standard deviations (0.229, 0.224, 0.225).
By removing the last layer of the pretrained ResNet18, using the resulting model on each image,
and flattening the output, we obtain an embedding. For MNIST-Addition, we train directly on the
images. The backbone is a CNN (learned jointly with the rest of the CSM) that consists of the fol-
lowing layers: a convolution layer with 6 output channels and kernel size 5, a max-pool layer with
kernel size and stride 2, a ReLu activation, a convolution layer with 16 output channels and kernel
size 5, a max-pool layer with kernel size and stride 2, a ReLu activation, a flattening layer, a linear
layer with emb size//2 output features, and 3 linear layers each with emb size//2 output features
and ReLu activation (except the last one). The backbone is applied to each MNIST image, and the
two resulting embeddings are concatenated. emb size is a hyperparameter. If any hyperparameters
are unmentioned, we use the default values.

Concrete CSMs. We will describe our implementation of the different CSMs. For each CSM, the
input first passed through the backbone before being passed to the layers we will describe in what
follows. Unless explicitly mentioned otherwise, each linear layer has emb size output features.

For CRM (Mahinpei et al., 2021), the concept predictor is a neural network consisting of 2 linear
layers with ReLU activation, and a linear layer with nC output features with sigmoid activation. The
task predictor is a neural network with 3 linear layers and a linear layer with ny output features and
sigmoid activation. The sidechannel is a neural network with 2 linear layers with ReLU activation,
and a linear layer, outputting an embedding. The prior p(z) is denoted by a single learnable Torch
embedding object with emb size weights.

For CEM (Espinosa Zarlenga et al., 2022), the sidechannel is a neural network with 3 linear layers
with 2·c emb size·nc output features and ReLU activation, and a linear layer with 2·c emb size·nc
output features (with c emb size a hyperparameter). This is reshaped to nc, 2, c emb size. The
concept predictor concatenates for each concept its 2 embeddings, and applies a (different) linear
layer to the resulting embedding with 1 output feature and sigmoid activation. This is the concept
prediction. The task predictor uses the concept predictions to mix for each concept its 2 embeddings,
and concatenates the resulting embeddings. The result is passed through 3 linear layers with ReLU
activation, and a linear layer with ny output features and sigmoid activation. The prior p(z) is
denoted by a single learnable Torch embedding object with 2 · c emb size · nc weights.

For DCR (Barbiero et al., 2023), the sidechannel is a neural network with 3 linear layers with
2 · c emb size · nc output features and ReLU activation, and a linear layer with 2 · c emb size · nc
output features (with c emb size a hyperparameter). This is reshaped to nc, 2, c emb size. The
concept predictor concatenates for each concept its 2 embeddings, and applies a (different) linear
layer to the resulting embedding with 1 output feature and sigmoid activation. This is the concept
prediction. The task predictor uses the concept predictions to mix for each concept its 2 embeddings.
Each resulting concept embedding is passed through a (different) neural network consisting of 3
linear layers with c emb size output features and ReLU activation, and a linear layer with 2 · ny
output features with sigmoid activation. These should be interpreted as, for each concept, its polarity
and relevance for each task, as defined by DCR. These are used together with the concept predictions
to infer the task prediction. We employ DCR’s logic formula (see Barbiero et al. (2023)) using
the product t-norm. The prior p(z) is denoted by a single learnable Torch embedding object with
2 ·c emb size ·nc weights. To avoid needing to finetune DCR’s temperature hyperparameter, which
a human user would do to find a preferred rule parsimony, we modelled DCR’s role and relevance
with a sigmoid activation instead of their rescaled softmax activation.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

For CMR (Debot et al., 2024), the concept predictor is a neural network consisting of 2 linear lay-
ers with ReLU activation, and a linear layer with nC output features with sigmoid activation. The
sidechannel is a neural network with 3 linear layers with ReLU activation, and a linear layer with
nr ·ny output features, where nr is CMR’s allowed number of rules to learn (hyperparameter). This
is reshaped to (ny, nr) with a softmax on the last dimension (as this is a categorical random vari-
able). The task predictor consists of a Torch embedding object with shape ny, nr, rule emb size
weights, with rule emb size a hyperparameter. This is CMR’s rulebook in its latent representation,
which is decoded into explicit logic rules by using a neural network on each rule embedding with
3 linear layers with ReLU activation and a linear layer with 3 · nc output features with softmax ac-
tivation. The task predictor then uses CMR’s inference formula (see (Debot et al., 2024)) to derive
the task prediction from the categorical distribution over rules (given by the sidechannel) and the
learned set of rules. In bottleneck mode, CMR applies the entire set of rules to the concepts, each
making a y prediction. The final prediction is the logical OR of the individual predictions. CMR’s
hyperparameter for its prototype regularization is set to 0 for the same reason as why we changed
DCR’s role and relevance activation, as this hyperparameter would be used by the human to find a
preferred rule parsimony.

For LRM, we use the same setup as for CRM, with as difference that the task predictor is a linear
layer with ny output features and sigmoid activation.

Training with and without learnable prior. Whenever we use SIS regularization, we train with a
learnable prior. Otherwise, we compute p(z) by marginalizing out x, as proposed in the main text.
For deterministic CSMs that use an embedding as sidechannel (e.g. CRM), this typically means p(z)
becomes a mixture of delta distributions, with one delta per training instance (as embeddings rarely
perfectly coincide). As this does not scale, we instead relax this by instead considering a single z,
namely the average of all such embeddings.

CMR*. We define CMR* as an adaptation of CMR by equipping it with rules learned by a decision
tree. Specifically, we extract the rules decision trees learned on ground truth (c, y) pairs predicting
positive classes. We start with decision trees with a maximum depth of 1, increasing it until the
decision tree has more than 17 such rules, or depth exceeds 40. Then, we take the rules from the
tree with the highest validation accuracy. We inject these rules into CMR, and allow it to learn 3
additional rules on its own. This is done through rule interventions, which CMR supports (see Debot
et al. (2024)).

For obtaining Figure 2, we perform a grid search where emb size is taken
from {64, 128, 256} and the weight of the SIS regularization is taken from
{0, 0.0001, 0.001, 0.01, 0.05, 0.1, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0}. For CEM and DCR, we use
prandint = 0.05. For obtaining Figure 4, we have 2 phases. In the first phase, we perform
the same grid search except that we do not employ SIS regularization. For each CSM, we take
the most accurate configuration on the validation set. Then, in the second phase, for each CSM,
we train this configuration with different values of the SIS regularization weight, taken from
{0, 0.0001, 0.001, 0.01, 0.05, 0.1, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0}. For each such trained model,
we compute its intervenability curve by (1) generating a random concept intervention order, (2)
intervening on increasingly more concepts following this order, (3) each time computing the
accuracy on the tasks after the intervention. For obtaining Figure 5, we take the most accurate
LRM on the validation set (taken from the first mentioned grid search) with and without SIS
regularization and inspect the learned weights. For obtaining Figure 3, we re-use the results of
CRM from the first mentioned grid search, and additionally train a dropout version inspired by
Kalampalikis et al. (2025) and a detach version inspired by Shang et al. (2024). For the dropout
version, we extend the grid by considering values for pdropout from {0.0, 0.2, 0.4, 0.8, 0.8, 1.0}.
For more details of these two versions, see below. For obtaining Figure 10, we first finetune a
ResNet18 on CUB, where we add a linear layer with a softmax for predicting the classes and a linear
layer with a sigmoid for predicting the concepts. We use a learning rate of 0.01 (SGD optimizer,
momentum of 0.9), batch size 128 and train for 200 epochs. This is similar to the configuration
many other CBM works use (Espinosa Zarlenga et al., 2022). We then drop the classification layers
and run the CUB images through the ResNet18 to obtain image embeddings, which we use to train
the CSMs on (instead of on the images). We use the following hyperparameter grid: SIS weight
within {0, 0.0001, 0.001, 0.01, 0.05, 0.1, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 7.0, 10.0, 12.0, 20.0, 50.0},
emb size 512, sidechannel number of hidden layers between 0 and 2, concept predictor number of
hidden layers either 0 or 1, task predictor number of hidden layers between 0 and 2.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0.0 0.4 0.8
Accuracy

0.0

1.0

SI
S

CMR*
CMR
DCR
LRM

(a) Seed 1

0.0 0.4 0.8
Accuracy

0.0

1.0

SI
S

CMR*
LRM
CMR
DCR

(b) Seed 2

0.0 0.4 0.8
Accuracy

0.0

1.0

SI
S

CMR
CMR*
DCR
LRM

(c) Seed 3

Figure 6: Accuracy vs representation interpretability trade-off in functionally interpretable CSMs,
including CMR*. Different points are different hyperparameter configurations, keeping only pareto-
efficient points. Crosses denote the most accurate configuration trained without SIS regularization.

0.810 0.825 0.840
Accuracy

0.5

1.0

SI
S

DCR
CMR
LRM

(a) FI CSMs, CelebA

0.825 0.840
Accuracy

0.5

1.0
SI

S
CEM
CRM

(b) Non-FI CSMs, CelebA

0.810 0.825 0.840
Accuracy

0.5

1.0

SI
S

DCR
CEM
CRM
CMR
LRM

(c) All CSMs, CelebA

0.0 0.4 0.8
Accuracy

0.0

1.0

SI
S

LRM
CMR
DCR

(d) FI CSMs, MNIST-Add.

0.964 0.968 0.972
Accuracy

0.0

1.0

SI
S

CRM
CEM

(e) Non-FI CSMs, MNIST-Add.

0.0 0.4 0.8
Accuracy

0.0

1.0

SI
S

LRM
CMR
DCR
CRM
CEM

(f) All CSMs, MNIST-Add.

Figure 7: Accuracy vs representation interpretability trade-off in CSMs (seed 2). Different points
are different hyperparameter configurations, keeping only pareto-efficient points. Crosses denote the
most accurate configuration trained without SIS regularization (excluded from (c) and (f)). ”(Non)-
FI” denotes the figure only contains (non)-functionally interpretable CSMs.

Detach version (CRM). We adapt CRM’s architecture to resemble Shang et al. (2024). Concretely,
we redefine the task predictor as y = f(c) + g(z). For g, we use a linear layer with ny output
features and sigmoid activation. For f , we use a neural network consisting of 3 linear layers with
ReLU activation, and a linear layer with ny output features and sigmoid activation. The model is
trained by optimizing (1) a cross entropy between f(c) and the label, and (2) a cross entropy between
f(c).detach() + g(x) and the label. The first objective tries to maximize concept usage, while the
second one trains the sidechannel.

Dropout version (CRM). During training, for each batch, we set the entire sidechannel to 0 with
probability pdropout, which is a hyperparameter. This encourages the task predictor to rely on the
concepts when the sidechannel is dropped out.

D.2 ADDITIONAL RESULTS

With a different rule learner, CMR can achieve high accuracy when allowed to learn enough rules
(Figure 6). CMR* achieves near-perfect accuracy and representation interpretability on MNIST-
Addition.

Figures 7 and 8 give additional accuracy-interpretability trade-off results for seed 2 and 3. Figure
9 shows some additional intervenability curves, which also show that SIS regularization improves
intervenability (similar to Figure 4 in the main text).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0.825 0.840
Accuracy

0.5

1.0

SI
S

LRM
CMR
DCR

(a) FI CSMs, CelebA

0.825 0.840
Accuracy

0.5

1.0

SI
S

CEM
CRM

(b) Non-FI CSMs, CelebA

0.825 0.840
Accuracy

0.5

1.0

SI
S

LRM
CMR
DCR
CEM
CRM

(c) All CSMs, CelebA

0.0 0.4 0.8
Accuracy

0.0

1.0

SI
S

CMR
DCR
LRM

(d) FI CSMs, MNIST-Add.

0.964 0.968 0.972
Accuracy

0.0

1.0
SI

S
CRM
CEM

(e) Non-FI CSMs, MNIST-Add.

0.0 0.4 0.8
Accuracy

0.0

1.0

SI
S

CMR
CRM
CEM
DCR
LRM

(f) All CSMs, MNIST-Add.

Figure 8: Accuracy vs representation interpretability trade-off in CSMs (seed 3). Different points
are different hyperparameter configurations, keeping only pareto-efficient points. Crosses denote the
most accurate configuration trained without SIS regularization (excluded from (c) and (f)). ”(Non)-
FI” denotes the figure only contains (non)-functionally interpretable CSMs.

5 10 15 20
Number of interventions

96

97

98

99

Ac
cu

ra
cy

 (%
)

w=0.0
w=0.01

(a) CMR* on MNIST-Addition

0 10 20 30
Number of interventions

84.5

85.0

85.5

86.0

Ac
cu

ra
cy

 (%
)

w=0.0
w=0.01
w=0.1

(b) CEM on CelebA

Figure 9: Intervenability in CSMs with (w > 0) and without (w = 0) SIS regularization for different
regularization weights w. The y-axis denotes accuracy after intervening on a number of concepts
denoted by the x-axis.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0.0 0.3 0.6
Accuracy

0.0

1.0

SI
S

CRM
CEM
LRM

(a) Seed 1

0.0 0.3 0.6
Accuracy

0.0

1.0

SI
S

CRM
CEM
LRM

(b) Seed 2

0.2 0.4 0.6
Accuracy

0.0

1.0

SI
S

CRM
CEM
LRM

(c) Seed 3

Figure 10: Accuracy vs representation interpretability trade-off on CUB. Different points are dif-
ferent hyperparameter configurations, keeping only pareto-efficient points. Crosses denote the most
accurate configuration trained without SIS regularization.

On CUB, we only used CRM, LRM and CEM because CMR and DCR do not naturally support
multiclass classification. Figure 10 shows their accuracy-interpretability trade-off, which is similar
to the ones in the main text.

E LLM USAGE DECLARATION

During writing, Large Language Models (LLMs) were used only to polish and improve the clarity
of the text.

F CODE AND LICENSES

Our code will be made publicly available upon acceptance under the Apache license, Version 2.0.
We used Python 3.10.12 and the following libraries: PyTorch v2.5.1 (BSD license) (Paszke et al.,
2019), PyTorch-Lightning v2.5.0 (Apache license 2.0), scikit-learn v1.5.2 (BSD license) (Pedregosa
et al., 2011), PyC v0.0.11 (Apache license 2.0). We used CUDA v12.7 and plots were made using
Matplotlib (BSD license). The CelebA dataset is available for non-commercial research purposes
only4 and MNIST is available on the web with the CC BY-SA 3.0 DEED license.

4https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

20

https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

	Introduction
	Background
	Method
	Representation Interpretability vs Functional Interpretability
	The Meta-Model of CSMs
	Default and Bottleneck modes for CSMs
	Measuring and Optimizing for representation interpretability
	Expressivity of CSMs in Bottleneck Mode

	Related Work
	Experiments
	Setup
	Results and Discussion

	Conclusion
	Overview of state-of-the-art CSMs
	Learnable prior p(z)
	Limits of Disentanglement and Concept Completeness Score
	Disentangling for representation interpretability
	Concept Completeness Score vs Sidechannel Independence Score

	Experiments
	Experimental details
	Additional results

	LLM usage declaration
	Code and licenses

