

000 001 002 003 004 005 006 007 008 009 010 CROSS-SUBJECT DECODING OF HUMAN NEURAL DATA FOR SPEECH BRAIN COMPUTER INTERFACES

005 **Anonymous authors**

006 Paper under double-blind review

009 ABSTRACT

011 Brain-to-text systems have recently achieved impressive performance when
 012 trained on single-participant data, but remain limited by uninvestigated cross-
 013 subject generalization. We present the first neural-to-phoneme decoder trained
 014 jointly on the two largest intracortical speech datasets (Willett et al. 2023; Card et
 015 al. 2024), introducing day- and dataset-specific affine transforms to align neu-
 016 ral activity into a shared space. A hierarchical GRU decoder with interme-
 017 diate CTC supervision and feedback connections further mitigates the conditional-
 018 independence assumption of standard CTC loss. Our model matches or outper-
 019 forms within-subject baselines while being trained across participants, and adapts
 020 to unseen subjects using only a linear transform or brief fine-tuning. On an inde-
 021 pendent inner-speech dataset (Kunz et al. 2025), our approach demonstrate gener-
 022 alization, by training only subject day specific transforms. These results highlight
 023 cross-subject pretraining as a practical path toward scalable and clinically deploy-
 024 able speech BCIs.

025 1 INTRODUCTION

027 Language is the cornerstone of human communication, and the ability to speak underpins social
 028 interaction, autonomy, and quality of life. The loss of speech—whether due to amyotrophic lateral
 029 sclerosis (ALS), stroke, or traumatic brain injury—often leads to social isolation and psychological
 030 distress Kao & Chan (2024). For individuals with intact cortical representations of speech but im-
 031 pairied motor output, neural speech prostheses offer a path to restoring communication by decoding
 032 intended speech directly from neural activity. The overall idea is to bypass muscle controls that
 033 could be impaired and directly decode the intended language or speech content from the related
 034 neural activity. Decoding speech from the brain has been approached using both non-invasive and
 035 invasive neural recordings. Non-invasive methods such as fMRI and MEG have demonstrated that
 036 semantic or phonetic content can be decoded above chance Défossez et al. (2023); Tang et al. (2023),
 037 but their temporal resolution and latency remain limiting factors for real-time communication. In
 038 contrast, invasive techniques such as electrocorticography (ECoG) and intracortical microelectrode
 039 arrays provide high-bandwidth, high-temporal-resolution access to speech-related cortical activity,
 040 enabling real-time speech decoding systems with word error rates (WER) approaching practical us-
 041 ability thresholds Silva et al. (2024); Willett et al. (2023); Card et al. (2024). However, invasive
 042 recordings present unique challenges: (i) It is invasive! Requires dedicated neurosurgical intervention;
 043 the eligible population is therefore limited, and the number of electrodes that can be safely im-
 044 planted in humans is strictly constrained. (ii) Data collection is logically demanding and clinically
 045 constrained, often yielding datasets from just a handful of participants worldwide; (iii) recordings
 046 are heterogeneous, with electrode placement driven by clinical need rather than research standard-
 047 ization; and (iv) neural signals exhibit nonstationarity over time, with electrode impedance changes
 048 and neural plasticity causing substantial within-subject drift. These factors have led most prior work
 049 to adopt a single-subject training paradigm, limiting model generalizability and hindering systematic
 progress.

050 A series of seminal studies have demonstrated the feasibility of decoding speech, phonemes, or ar-
 051 ticulatory kinematics from invasive neural data. Moses et al. Moses et al. (2019; 2021) achieved
 052 real-time decoding of a 50-word vocabulary using neural network models combined with n-gram
 053 language models. Willett et al. Willett et al. (2021; 2023; 2024) extended this line of work with
 a CTC-based recurrent neural network capable of phoneme-level decoding from thousands of sen-

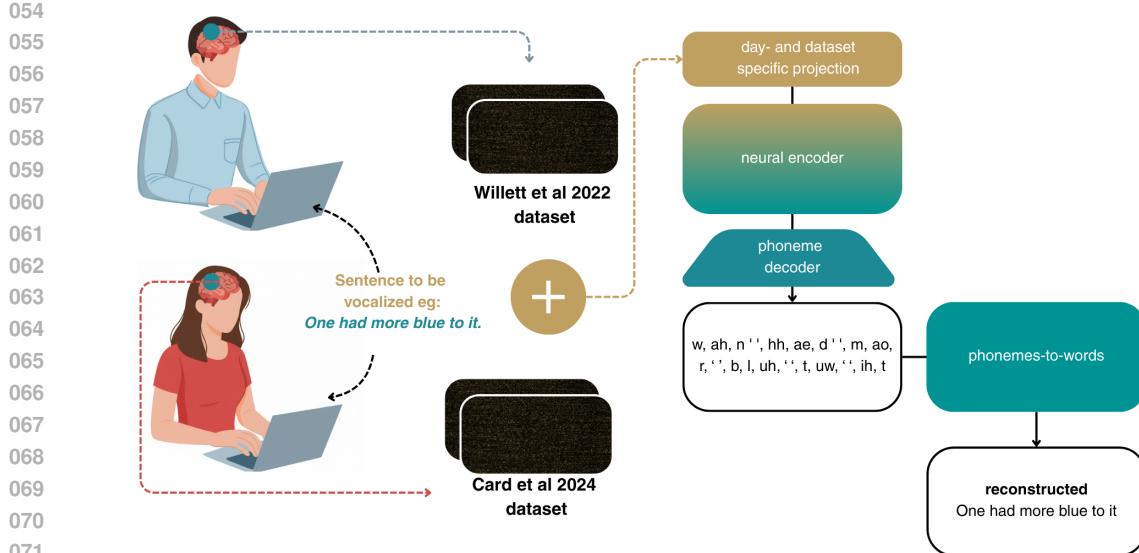


Figure 1: **Cross-subject neural speech decoding pipeline.** Neural data from Willett and Card participants are mapped into a shared space via day- and dataset-specific linear projections, encoded by a shared GRU-based model trained with hierarchical CTC, and decoded into open-vocabulary text through a phoneme-to-word module.

tences, achieving open-vocabulary WERs of 23.8% and communication rates exceeding 60 words per minute. More recently, Card et al. Card et al. (2024) demonstrated the most accurate conversational neuroprosthesis to date, achieving more than 90% accuracy across 125,000 words and supporting >30 WPM communication in spontaneous conversation. These studies confirm the viability of invasive brain-to-speech systems but leave open a crucial question: **can models trained on one participant generalize to others?**

The reliance on single-subject training is a major bottleneck for clinical translation. Each new user typically requires hours of supervised calibration data to achieve competitive performance, making deployment slow and resource-intensive. Yet there are reasons to believe that generalization across participants may be feasible (i) the cortical representation of speech is organized in a largely conserved topography across individuals Bouchard et al. (2013); Mugler et al. (2018); (ii) phoneme-related neural tuning properties have been shown to be reproducible across participants Stavisky et al. (2018); and (iii) within-subject signal drift over time can be as large as the variability observed across participants implanted in comparable regions. If cross-subject models could be trained, they might provide a better initialization for new users, reduce calibration requirements, and enable large-scale data aggregation—analogous to the role of pretraining in automatic speech recognition (ASR) Radford et al. (2022); Baevski et al. (2020). To address the challenge of single-participant dependence, we propose the first cross-subject neural-to-phoneme decoding model trained on invasive recordings from multiple participants implanted in distinct cortical regions. Rather than treating each participant as an isolated case, our approach leverages the shared structure of speech representations in the sensorimotor cortex to learn a unified decoder that can be adapted to new subjects. A couple of scientific challenges immediately arise here. The first is how to deal with neural variability over time. It is well known that neural representations drift quite a bit from day to day. To get an intuition for this, imagine you are asked to draw a circle on a piece of paper. It probably won't be a perfect circle, and if you try again you'll get another one—still a circle, but a slightly different one. Each attempt will vary in size, eccentricity, and asymmetry. Yet all these circles are similar enough that, with a simple affine transformation, we could align them quite well. To make them perfectly identical would require a nonlinear warp, but for alignment purposes a linear transform is usually good enough. Now imagine we also draw a circle. Our circle may be slightly larger or smaller than yours, maybe a bit more oval, but it is still recognizably a circle. With another affine transform, we could align our circle to yours too. This is exactly the intuition behind our approach: if two people can draw circles that can be aligned, maybe two participants' brains produce neural representations that can be aligned.

108 sentations of speech that can also be aligned into a shared space. We think this is feasible because
 109 all the people share an abstract concept of circle and they can somehow convert this "platonic" circle
 110 into an approximation in the real world. Language representations could behave similarly in neural
 111 representations.

112 In our work, we learn a subject-specific and day-specific linear transform to map each participant's
 113 neural data into a common space. The model then processes these aligned signals with its nonlinear
 114 causal decoder, focusing on capturing the complex phonetic and articulatory patterns that are shared
 115 across participants. This approach keeps the alignment step simple and interpretable while allowing
 116 the network to use its capacity where it matters most.

117 A second technical challenge is figuring out how to actually solve the decoding task. We start
 118 from neural data recorded during an attempted speech task, where each trial can have a different
 119 length and we have no direct alignment between neural time frames and words or phonemes. This
 120 means we cannot simply treat it as a supervised frame-by-frame classification problem. Recent
 121 work has borrowed heavily from ASR, using either autoregressive decoders or phoneme classifiers
 122 trained with the Connectionist Temporal Classification (CTC) loss. In the recent Brain2Text '24
 123 Challenge Willett et al. (2024), a wide range of model architectures were tested—from GRUs to
 124 transformers and even state-space models. Interestingly, the simplest approach often performed the
 125 best: a relatively small GRU trained with CTC loss to predict phonemes, combined with a weighted
 126 finite-state transducer (WFST) to map phonemes to words. Most gains in final WER came not from
 127 radically new model designs but from ensembling or simply throwing more compute at training.

128 This result raises two possibilities: perhaps we do not yet have enough data to fully exploit modern
 129 architectures such as transformers or SSMs—or perhaps the GRU+CTC approach is simply the most
 130 data-efficient option for now. Still, we believe there is room for improvement, particularly because
 131 of a limitation inherent to the CTC objective: CTC assumes that each prediction is conditionally
 132 independent of the previous ones. This prevents the model from fully exploiting the joint probabili-
 133 ties between successive phonemes. Yet evidence from neuroscience suggests that the speech motor
 134 cortex does not just encode isolated phonemes but also their transitions—at least at the level of di-
 135 phonemes Xu et al. (2024). Indeed, the first-place entry in the challenge achieved a small boost in
 136 phoneme error rate by adding an auxiliary diphasic prediction head, though at the cost of a much
 137 larger class space (quadratic in the number of phonemes) and a more complex training process Li
 138 et al. (2024).

139 Autoregressive transformer models trained with cross-entropy could, in theory, capture these depen-
 140 dencies. However, in practice, they still lag behind CTC in this domain, and their training tends to
 141 be unstable. To get the best of both worlds, we build on the proven GRU architecture but propose
 142 a novel hierarchical loss function. In our approach, phoneme predictions are generated at multiple
 143 depths of the network and then fed back into the subsequent recurrent layers. This provides the
 144 model with explicit information about its own phoneme hypotheses at earlier stages, allowing it to
 145 refine predictions in a way that partially recovers the conditional modeling power of autoregres-
 146 sive approaches—while keeping training as simple and robust as standard CTC. (See Figure 1 for a
 147 scheme of the decoding pipeline).

148 We evaluate this approach by aggregating all the largest publicly available speech BCI datasets
 149 Willett et al. (2024); Card et al. (2024); Kunz et al. (2025) and comparing cross-subject models
 150 to state-of-the-art within-subject baselines. Our results show that cross-subject training is not only
 151 feasible but also does not degrade performance relative to single-subject models. Moreover, we find
 152 that models trained in this way can be rapidly adapted to new participants with minimal fine-tuning
 153 data—achieving competitive phoneme error rates. Taken together, our findings demonstrate that
 154 cross-subject generalization is a realistic and promising path forward for neural speech decoding.
 155 By pooling data across participants, we move closer to the vision of foundation models for BCIs:
 156 models that can be trained once on large, diverse datasets and then deployed with minimal retrain-
 157 ing for new users. Such a paradigm has transformed fields like natural language processing and
 158 speech recognition, where pretrained models dramatically lower the data requirements for down-
 159 stream tasks. In the context of neural decoding, this could mean reducing the calibration burden for
 160 new patients accelerating clinical translation.

161

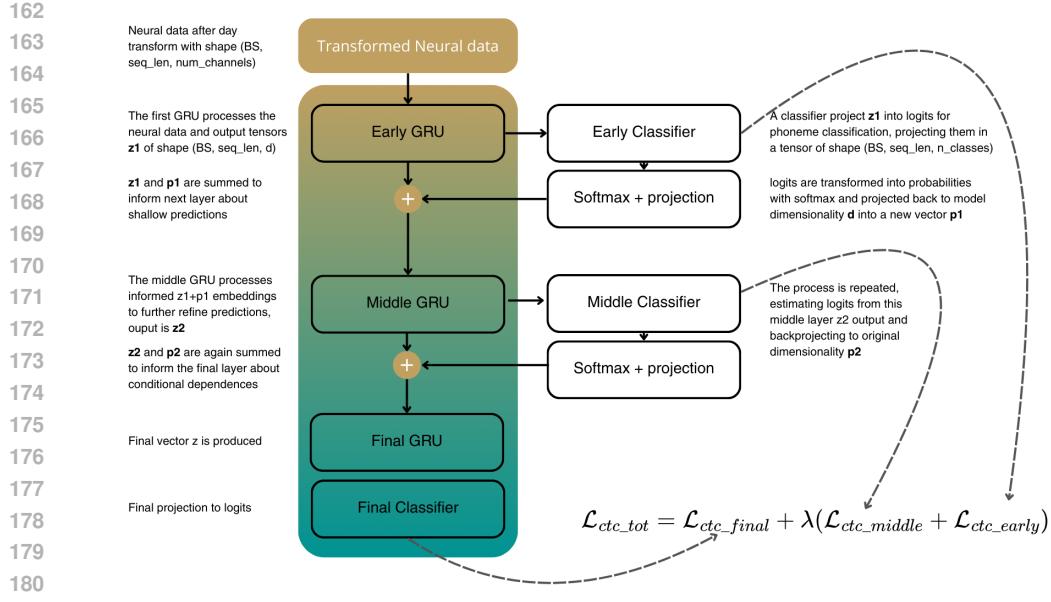


Figure 2: **Hierarchical GRU decoder with feedback.** Neural features are processed by three stacked GRUs. Each of the first two GRUs produces phoneme predictions (p_1, p_2) that are projected back and added to their hidden states, guiding deeper layers. Training uses a hierarchical CTC loss, combining early, middle, and final predictions.

2 METHODS

2.1 DATA

We conduct our experiments by aggregating all publicly available sources of speech decoding datasets from the BrainGate2 initiative. The first dataset ("Willett") Willett et al. (2023) is from subject T12. Data were collected from a single participant with ALS and anarthria implanted with four 64-channel Utah microelectrode arrays (256 channels total), targeting two key regions of the speech motor network: the ventral premotor cortex (Brodmann area 6v) and Broca's area (area 44). Electrode placement was guided by subject-specific fMRI activation maps and structural parcelation from the Human Connectome Project. During the task, the participant attempted to speak prompted sentences in an instructed-delay paradigm. Raw neural signals were bandpass filtered in the ultra-high gamma range (250-5000 Hz). Threshold crossings were detected using a fixed threshold of -4.5 RMS, and spike counts were binned in non-overlapping 20 ms windows. In parallel, spike band power was computed as the mean squared signal in each 20 ms bin. These two features (counts and power) were concatenated to form a neural feature vector per channel per time bin. The dataset spans 24 days of recordings, totaling approximately 9,000 trials. We follow the official train-test-competition split provided by the authors, using temporally separated evaluation blocks to test generalization across time and relying only on the premotor cortex electrodes since ones in the Broca region where no or just little informative. The second dataset ("Card") is from subject T15 Card et al. (2024). This dataset comprises recordings from a participant with ALS and severe dysarthria implanted with four 64-channel Utah arrays (256 channels) in the left ventral precentral gyrus. Neural features consist of spike counts and spike-band power, preprocessed similarly to Willett et al. The dataset includes >8 months of recordings across 84 sessions and 45 different days. Again we relied on the original train/test/competition split provided by authors. We first trained our models on the concatenation of the Willett et al. and Card et al. datasets, which together constitute the largest publicly available collection of intracortical neural recordings during attempted speech. Merging these datasets allowed us to maximize data diversity across days, sessions, and cortical coverage, providing a strong foundation for learning robust neural-to-phoneme mappings.

To probe the limits of cross-subject and cross-task generalization, we further evaluated our models on the dataset introduced by Kunz et al. Kunz et al. (2025). This dataset is unique in that it focuses primarily on inner speech rather than overt production, offering a qualitatively different neural

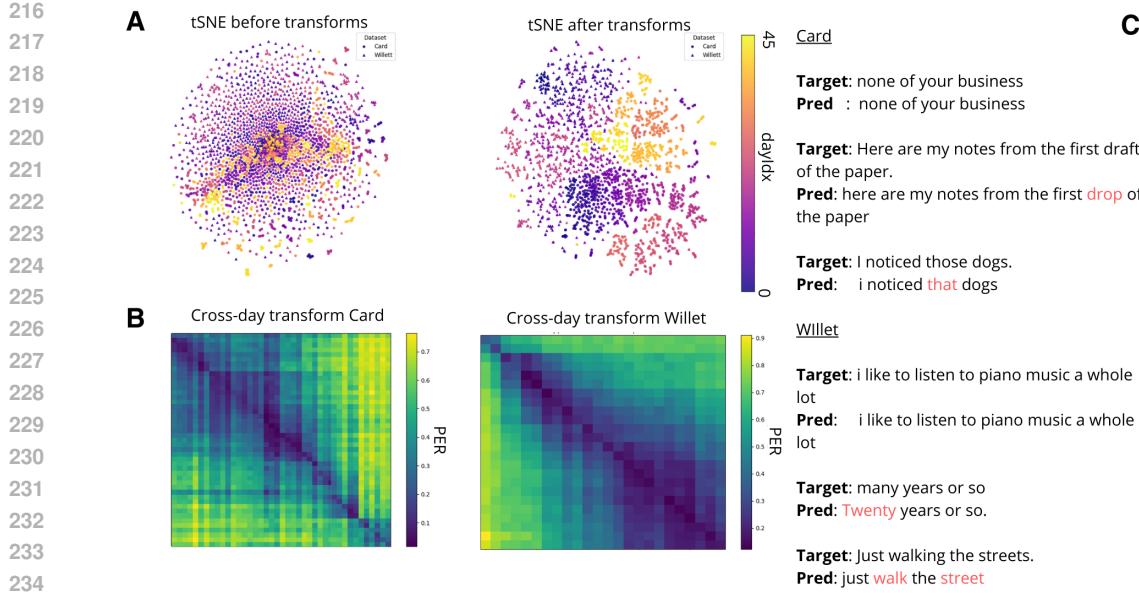


Figure 3: **Effect of day transforms and example outputs.** **A:** t-SNE of neural embeddings before/after day transforms, showing reduced day clustering after alignment. **B:** Cross-day transform swapping on Card and Willett: lowest PERs lie on the diagonal, but off-diagonals remain reasonable, indicating shared structure across days. **C:** Example sentence-level predictions, with most errors being minor word substitutions.

regime. Recordings were obtained from four participants (T12, T15, T16, T17) implanted with Utah arrays in ventral motor and premotor speech areas. Notably, T12 and T15 are the same participants featured in the Willett and Card datasets but were re-recorded several months later, making these data ideal for testing long-term stability and generalization under neural signal drift. Participants T16 and T17 are entirely new subjects, providing a clean setting to evaluate out-of-subject generalization. The corpus spans several experimental categories: isolated verbal behaviors, which include listening, reading, mouthed speech (silent articulation without phonation), attempted speech (covert articulation with intended production), and imagined speech (purely internal generation); sentence datasets, where participants attempted or imagined speaking either small controlled vocabularies (50 words) or much larger sets (up to 125k words); as well as additional paradigms such as interleaved verbal behaviors, conjunctive counting, and sequence recall. For this study, we restricted to speech-motor-related electrodes. From the isolated verbal behaviors category we included only the attempted and mouthed conditions, while from the sentence data we used attempted and imagined trials. This selection emphasizes speech production and imagination processes while excluding purely perceptual conditions (listening, reading). After preprocessing and trial selection, the resulting dataset comprised 836 trials from t12 (5 sessions), 1,040 trials from t15 (9 sessions), 224 trials from t16 (2 sessions), and 320 trials from t17 (2 sessions), for a total of 2,420 trials. Features were standardized and padded to a 512-dimensional representation for downstream modeling.

2.2 NEURAL ENCODER AND HIERARCHICAL GRU DECODER

Day- and Subject-Specific Transformation. Before entering the encoder, neural features are first passed through a subject- and day-specific affine projection to compensate for variability across recording sessions and participants. For each subject s and recording day d , we learn a linear transform $\tilde{\mathbf{x}}_t^{(d,s)} = \mathbf{W}_{d,s} \mathbf{x}_t + \mathbf{b}_{d,s}$, where $\mathbf{x}_t \in \mathbb{R}^C$ is the neural feature vector at time t (with C channels), and $\mathbf{W}_{d,s} \in \mathbb{R}^{C \times C}$, $\mathbf{b}_{d,s} \in \mathbb{R}^C$ are trainable projection weights and biases. This projection aligns neural data into a shared latent space, mitigating electrode drift and subject-specific scaling effects.

Model Architecture. The transformed data $\tilde{\mathbf{X}} \in \mathbb{R}^{B \times T \times C}$ are processed by a three-block hierarchical GRU decoder (Figure 2). The first two blocks contain two bidirectional GRU layers each,

270 while the final block contains a single GRU layer. We denote the hidden dimensionality by d and
 271 the number of phoneme classes (including the CTC blank) by N .
 272

273 **Early GRU Block.** The early GRU block computes
 274

$$275 \quad \mathbf{z}_1 = \text{GRU}_{\text{early}}^{(2)}(\tilde{\mathbf{X}}), \quad \mathbf{z}_1 \in \mathbb{R}^{B \times T \times d}. \quad (1)$$

277 An auxiliary classifier projects \mathbf{z}_1 into phoneme logits:
 278

$$279 \quad \boldsymbol{\ell}_1 = \mathbf{W}_{\text{early}} \mathbf{z}_1 + \mathbf{b}_{\text{early}}, \quad \boldsymbol{\ell}_1 \in \mathbb{R}^{B \times T \times N}. \quad (2)$$

280 Softmax produces class probabilities
 281

$$282 \quad \mathbf{p}_1 = \text{Softmax}(\boldsymbol{\ell}_1), \quad \mathbf{p}_1 \in [0, 1]^{B \times T \times N}, \quad (3)$$

284 which are projected back to the hidden dimension:
 285

$$286 \quad \hat{\mathbf{p}}_1 = \mathbf{W}_{\text{proj},1} \mathbf{p}_1 + \mathbf{b}_{\text{proj},1}, \quad \hat{\mathbf{p}}_1 \in \mathbb{R}^{B \times T \times d}. \quad (4)$$

287 The feedback signal is summed with the original hidden states to form the input to the next block:
 288 $\mathbf{h}_1 = \mathbf{z}_1 + \hat{\mathbf{p}}_1$.
 289

290 **Middle GRU Block.** Similarly, the middle block refines the representation: $\mathbf{z}_2 =$
 291 $\text{GRU}_{\text{middle}}^{(2)}(\mathbf{h}_1)$, with another auxiliary classifier producing $\boldsymbol{\ell}_2 = \mathbf{W}_{\text{middle}} \mathbf{z}_2 + \mathbf{b}_{\text{middle}}$,
 292 $\mathbf{p}_2 = \text{Softmax}(\boldsymbol{\ell}_2)$, $\hat{\mathbf{p}}_2 = \mathbf{W}_{\text{proj},2} \mathbf{p}_2 + \mathbf{b}_{\text{proj},2}$. We again sum the feedback signal to inform the final
 293 layer: $\mathbf{h}_2 = \mathbf{z}_2 + \hat{\mathbf{p}}_2$.
 294

295 **Final GRU Block.** The final block consists of a single GRU layer: $\mathbf{z}_3 = \text{GRU}_{\text{final}}^{(1)}(\mathbf{h}_2)$, followed
 296 by the final projection to phoneme logits: $\boldsymbol{\ell}_3 = \mathbf{W}_{\text{final}} \mathbf{z}_3 + \mathbf{b}_{\text{final}}$.
 297

298 **Hierarchical CTC Loss.** Because frame-level phoneme alignment is not available, we train with
 299 the Connectionist Temporal Classification (CTC) loss Graves et al. (2006), which marginalizes over
 300 all possible alignments:
 301

$$302 \quad \mathcal{L}_{\text{CTC}}(\boldsymbol{\ell}, \mathbf{y}) = -\log \sum_{\pi \in \mathcal{B}^{-1}(\mathbf{y})} \prod_{t=1}^T P(\pi_t \mid \boldsymbol{\ell}_t), \quad (5)$$

306 where π is a valid alignment path and \mathcal{B} is the collapse operator that removes blanks and repeats. A
 307 known limitation of CTC is its *conditional independence assumption*: predictions $P(\pi_t)$ are mod-
 308 eled independently across time steps. Our hierarchical decoder partially mitigates this limitation by
 309 feeding back layer-wise phoneme probabilities into deeper GRU blocks, allowing later representa-
 310 tions to be informed by earlier hypotheses.
 311

The total training loss combines CTC terms from all three layers:

$$312 \quad \mathcal{L}_{\text{CTC, total}} = \mathcal{L}_{\text{CTC}}(\boldsymbol{\ell}_3, \mathbf{y}) + \lambda \left[\mathcal{L}_{\text{CTC}}(\boldsymbol{\ell}_2, \mathbf{y}) + \mathcal{L}_{\text{CTC}}(\boldsymbol{\ell}_1, \mathbf{y}) \right], \quad (6)$$

315 where $\lambda \in [0, 1]$ balances the auxiliary supervision terms.
 316

317 **Training Details.** Models are trained jointly on the Willett and Card datasets for **120k steps** with
 318 a batch size of **64** using the Adam optimizer. The learning rate is linearly warmed up from 0 to
 319 5×10^{-3} over the first **1k steps**, followed by cosine decay to 1×10^{-4} at step **120k**. We apply a weight
 320 decay of 1×10^{-5} and use mixed-precision training with gradient accumulation to maximize GPU
 321 memory efficiency. Gaussian noise and small per-channel offsets are applied as data augmentation to
 322 improve robustness. Hyperparameters where chosen to be identical to original Card baseline expect
 323 for model dimensionality set at $d = 2048$ to let the model have more capacity to deal with larger
 324 neural subspace. λ was set a 0.3 empirically. Further hyperparameter exploration could boost the
 325 performance and was left as future work.

324
 325 **Table 1: Main results on the Willett and Card datasets.** We report phoneme error rate (PER),
 326 word error rate (WER) on our evaluation set, and the official Brain2Text’24 and Brain-to-text 2025
 327 challenges WER for comparison.

328 Model	329 Training Set	330 Test Set	331 PER (%)	332 WER (%) / Comp. WER (%)
333 Willett baseline	334 Willett	335 Willett	336 19.7	337 17.4 / 11.06
338 Card baseline	339 Card	340 Card	341 10.2	342 7.34 / 6.70
343 Ours (plain CTC)	344 Willett+Card	345 Willett	346 17.6	347 14.54 / 10.9
348 Ours (plain CTC)	349 Willett+Card	350 Card	351 9.6	352 7.57 / 6.39
353 Ours (hierarchical CTC)	354 Willett+Card	355 Willett	356 16.1	357 14.54 / 10.3
358 Ours (hierarchical CTC)	359 Willett+Card	360 Card	361 9.1	362 6.67 / 5.9

363 2.3 PHONEME-TO-WORD DECODING AND EVALUATION

364 The final stage of our pipeline transforms the decoded phoneme sequences into meaningful sentences. In line with previous works, we relied on a classical approach based on weighted finite-state transducers (WFSTs), which integrate phoneme posteriors with lexicon and language model constraints. Here, the output lattice from the neural decoder is composed with a pronunciation lexicon and a 5-gram language model, and the most likely sequence is recovered using beam search. Optionally, the resulting hypotheses can be rescored using a larger pretrained language model such as OPT (see Willett et al. (2023) for details). WFST-based decoding remains a strong baseline, offering reliable performance, but is computationally expensive, memory-intensive, and inherently limited to a fixed context window of a few words. We assess performance using two widely adopted metrics: Phoneme Error Rate (PER) and Word Error Rate (WER). PER is computed as the normalized edit distance between the predicted and reference phoneme sequences, counting substitutions, insertions, and deletions. WER is computed over the final text output, enabling a direct comparison between WFST-based and neural decoding approaches at the sentence level. All experiments are conducted on the official held-out test sets, with WER also reported on the competition sets (where PER is not computable since we don’t have access to ground truth labels and WER is returned by online platforms).

365 2.4 CROSS-SUBJECT GENERALIZATION

366 To evaluate whether our model can generalize beyond the participants used for training, we selected the best-performing model trained jointly on the Willett and Card datasets and froze all its parameters except for the subject/day-specific input transformations. We then introduced a new linear transform for each participant in the Kunz et al. dataset and optimized only these transforms on the available data. This procedure effectively performs a lightweight alignment of each new subject’s neural feature space to the shared latent space learned during pretraining. The number of trainable parameters per subject is small ($\mathcal{O}(C^2 + C)$), making this adaptation fast and data-efficient. This experiment enables us to assess whether a model pretrained on overt speech from multiple participants can quickly adapt to new participants performing a different task (inner speech) with minimal data.

367 2.5 ANALYSIS OF DAY-SPECIFIC TRANSFORMS

368 To better understand the contribution of the day-specific affine projections, we analyzed the learned
 369 transforms $\{W_d, b_d\}$ both qualitatively and quantitatively. We first visualized neural embeddings
 370 before and after transformation using t-SNE, averaging neural activity per trial to highlight global day-
 371 level structure. After transformation, embeddings from different days became significantly more
 372 clustered, suggesting that the transforms successfully normalize session-to-session variability. Fi-
 373 nally, we performed a transform swapping experiment, in which each day’s data was processed using
 374 every other day’s transform, and measured the resulting PER. This analysis quantifies the similarity
 375 between days and evaluates how sensitive decoding performance is to transform mismatch.

376 3 RESULTS

377 3.1 JOINT TRAINING ACROSS SUBJECTS IMPROVES PERFORMANCE

378 Table 1 summarizes the performance of our models trained on the Willett and Card datasets, re-
 379 porting phoneme error rate (PER) and word error rate (WER) on each dataset’s held-out evaluation

378
 379 **Table 2: Cross-subject generalization to the Kunz et al. dataset.** We report Phoneme Error Rate
 380 (PER, %) when evaluating the best cross-subject model on four participants (T12–T17) under three
 381 adaptation regimes: training only subject-specific linear transforms, fine-tuning the entire model,
 382 and training from scratch on the target data.

383 Generalization Target	384 Training Only Linear	385 Fine-Tuning Whole Model	386 From Scratch
387 T12 (Kunz)	30.2	21.3	11.8
388 T15 (Kunz)	28.8	26.3	26.1
389 T16 (Kunz)	41.1	26.1	40.9
390 T17 (Kunz)	58.9	53.3	30.6

391 blocks, as well as the official competitions WER for reference. Training a single model jointly
 392 on both datasets yields comparable or better performance than models trained separately on each
 393 dataset and this is our first and main result: cross-subject training is feasible. Specifically, our joint
 394 model with a plain CTC loss improves Willett PER from 19.7% to 17.6% and WER from 17.4% to
 395 14.5%, while the performance of single-subject baselines on Card at matched by our model. This
 396 demonstrates that cross-subject training is feasible and does not degrade subject-specific perfor-
 397 mance. Furthermore, our proposed **hierarchical CTC decoder** exhibit a modereate improvement in
 398 performance across the board. On Willett, PER is reduced to 16.1%, with a relative WER reduction
 399 compared to the plain CTC model. On Card, the improvements are even more pronounced, reaching
 400 9.1% PER and 6.67% WER, outperforming the single-subject baseline. These results confirm that
 401 (i) cross-subject training is not only possible but beneficial, and (ii) our hierarchical CTC design
 402 partially mitigates some of the conditional independence limitations of the standard CTC objective
 403 and improves performances.

404 3.2 EFFECT OF DAY-SPECIFIC TRANSFORMS

405 Figure 3A shows a t-SNE visualization of trial-averaged neural embeddings before and after apply-
 406 ing the day-specific affine projections. Prior to transformation, the embeddings form a diffuse cloud
 407 with no discernible organization by day. After applying the transforms, a clear structure emerges:
 408 trials cluster consistently by subject and day, creating an organized space. This suggests that the day-
 409 specific transforms linearly re-center/rotate the data into a shared space that exposes task-relevant
 410 geometry. Figure 3B presents cross-day transform swapping experiments, where each day’s trans-
 411 form was applied to every other day’s data and the resulting PER was measured. In both datasets, the
 412 diagonal of the matrix (correct transform applied) yields the lowest PER, as expected, but many off-
 413 diagonal entries also achieve reasonable performance, suggesting that the transforms share structure
 414 and are not simply overfitting to individual days. This provides evidence that the learned projec-
 415 tions capture generalizable session-invariant mappings and could be an hint that maybe less than
 416 one transform per day is actually needed. Finally, Figure 3C presents representative sentence-level
 417 predictions drawn from the held-out test set. Examples correspond to the 25th, 50th, and 90th per-
 418 centiles of WER for each dataset, illustrating performance across easy, median, and challenging
 419 cases. In most examples, the two-stage decoding pipeline recovers the exact target sentence or a
 420 very close paraphrase, with remaining errors typically consisting of minor word substitutions or
 421 function-word variations rather than gross semantic failures.

422 3.3 CROSS-SUBJECT GENERALIZATION TO KUNZ ET AL. PARTICIPANTS

423 Table 2 reports phoneme error rates (PER) for four participants from the Kunz et al. dataset (T12–
 424 T17) under three adaptation regimes. Remarkably, simply training the subject-specific linear trans-
 425 forms on the new data already yields a substantial reduction in error compared to chance level
 426 (PER=100%), demonstrating that much of the variability between participants can be compensated
 427 by a lightweight affine re-alignment. Fine-tuning the entire model for a small number of steps (5k)
 428 further improves performance, reducing PER by an additional 20–40% relative to the linear-only
 429 adaptation. Interestingly, for some participants, training the model entirely from scratch can achieve
 430 even lower PER, likely due to the simplified nature of the Kunz dataset, where the majority of trials
 431 consist of a small set of seven single words repeated many times and only a fraction of full-sentence
 432 trials (for example t16 and t17 only have the 7 words trials, that are easier to overfit for the model).
 433 This setting favors models trained from scratch, which can specialize fully to the limited vocabu-

432 lary. Nonetheless, the cross-subject pretrained model with fine-tuning achieves competitive results
 433 with a fraction of the training time, highlighting its potential for rapid deployment in low-resource
 434 scenarios.

438 4 DISCUSSION AND CONCLUSION

439
 440 Our study demonstrates that training neural speech decoders across multiple participants is not only
 441 feasible but beneficial: a single model trained on the concatenation of the Willett and Card datasets
 442 matches or outperforms single-subject baselines and generalizes well to new data. By introducing a
 443 hierarchical CTC loss with feedback connections, we mitigate some of the conditional-independence
 444 limitations of the standard CTC objective while preserving its stability and efficiency. Together,
 445 these results indicate that cross-subject pretraining can serve as a powerful strategy to bootstrap
 446 neural speech BCIs, enabling rapid adaptation to new participants with minimal calibration. A central
 447 contribution of this work is the explicit modeling of session and subject variability via learned
 448 day-specific affine transforms. Our analyses reveal that these transforms are not merely per-channel
 449 re-scaling layers: they perform meaningful linear re-alignments that re-align day-specific variability
 450 and highlight task-relevant structure in the neural data, as evidenced by t-SNE visualizations and
 451 transform swapping experiments. This is consistent with the hypothesis that neural manifolds are
 452 stable up to a low-dimensional linear transforms, and that much of the day-to-day drift can be cor-
 453 rected with simple affine mappings. Such transforms may provide a general mechanism for neural
 454 domain adaptation in BCIs, reducing the need for re-training large models when electrodes shift
 455 or signal statistics drift over time. Despite the improvements introduced by the hierarchical CTC
 456 decoder, our approach still inherits the conditional independence limitation of CTC at the frame
 457 level, which may prevent the model from fully capturing sequential dependencies in the phoneme
 458 stream. While the feedback connections partly reintroduce conditional information, there remains a
 459 gap between this approach and fully autoregressive sequence models. Downstream language mod-
 460 els, whether WFST-based or neural, play an essential role in correcting phoneme-level errors and
 461 producing fluent sentences. As shown in our percentile-based qualitative analysis, most residual
 462 errors are attributable to phoneme-to-word reconstruction rather than neural-to-phoneme decoding,
 463 suggesting that future gains may come from more powerful phoneme-to-word models, ensembling,
 464 and context-aware decoding strategies. As neural decoding technology approaches practical usabil-
 465 ity, its ethical implications become increasingly critical. High-performance neural decoders could,
 466 in principle, extract unintended or private mental content. Recent work has shown that it is possi-
 467 ble to decode selective attention and even imagined inner speech from cortical activity Tang et al.
 468 (2023); Kunz et al. (2025), raising concerns about privacy and consent in neural data use. We stress
 469 that decoding should be performed only with the participant’s explicit intention and consent, in line
 470 with the development of intent BCIs. This may include requiring a separate neural signal for vol-
 471 untry activation or the use of secure mental passwords as demonstrated in Kunz et al. Kunz et al.
 472 (2025). Building safeguards into BCI systems is not just a technical challenge but an ethical neces-
 473 sity. Overall, our findings suggest several promising avenues for future work. First, scaling cross-
 474 subject training to larger, more diverse datasets could yield general-purpose foundation models for
 475 speech BCIs, analogous to Whisper Radford et al. (2022) or wav2vec Baevski et al. (2020) in ASR.
 476 Such models could be fine-tuned with a few minutes or hours of data to personalize decoding to a
 477 new participant. Second, integrating information from higher-order language and semantic regions
 478 may enable models to go beyond phoneme-level decoding and recover intended meaning, opening
 479 the door to concept-level or semantic BCIs. Architecturally, mixture-of-experts (MoE) models could
 480 be used to automatically select specialized experts conditioned on day or subject embeddings, of-
 481 fering a flexible way to handle variability across sessions. Finally, improving language modeling
 482 remains a key bottleneck: better phoneme-to-word models, rescore strategies, and even in-context
 483 learning could further reduce WER and bring performance closer to natural conversation rates. In
 484 summary, this work shows that cross-subject training combined with lightweight subject-specific
 485 adaptation is a viable path toward scalable and robust neural speech BCIs. By aligning neural man-
 ifolds across participants and introducing a hierarchical CTC objective, we achieve performance
 competitive with single-subject systems while greatly improving data efficiency. These results lay
 the groundwork for future neural speech decoders that are not just accurate, but adaptable, efficient,
 and ethically deployable in real-world settings.

486 REFERENCES
487

488 Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A frame-
489 work for self-supervised learning of speech representations, 2020. URL <https://arxiv.org/abs/2006.11477>.

490

491 Kristofer E Bouchard, Nima Mesgarani, Keith Johnson, and Edward F Chang. Functional organiza-
492 tion of human sensorimotor cortex for speech articulation. *Nature*, 495(7441):327–332, 2013.

493

494 Nicholas S. Card, Maitreyee Wairagkar, Carrina Iacobacci, Xianda Hou, Tyler Singer-Clark, Fran-
495 cis R. Willett, Erin M. Kunz, Chaofei Fan, Maryam Vahdati Nia, Darrel R. Deo, Aparna
496 Srinivasan, Eun Young Choi, Matthew F. Glasser, Leigh R. Hochberg, Jaimie M. Henderson,
497 Kiarash Shahlaie, Sergey D. Stavisky, and David M. Brandman. An accurate and rapidly cal-
498ibrating speech neuroprosthesis. *New England Journal of Medicine*, 391(7):609–618, 2024.
499 doi: 10.1056/NEJMoa2314132. URL <https://www.nejm.org/doi/full/10.1056/NEJMoa2314132>.

500

501 Alexandre Défossez, Charlotte Caucheteux, Jérémie Rapin, et al. Decoding speech perception from
502 non-invasive brain recordings. *Nature Machine Intelligence*, 5:1097–1107, 2023. doi: 10.1038/s42256-023-00714-5. URL <https://doi.org/10.1038/s42256-023-00714-5>.

503

504

505 Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Connectionist tem-
506 poral classification: labelling unsegmented sequence data with recurrent neural networks. In *Pro-
507 ceedings of the 23rd International Conference on Machine Learning*, ICML '06, pp. 369–376,
508 New York, NY, USA, 2006. Association for Computing Machinery. ISBN 1595933832. doi:
509 10.1145/1143844.1143891. URL <https://doi.org/10.1145/1143844.1143891>.

510

511 S.K. Kao and C.T. Chan. Increased risk of depression and associated symptoms in poststroke apha-
512 sia. *Scientific Reports*, 14:21352, 2024. doi: 10.1038/s41598-024-72742-z.

513

514 Erin M. Kunz et al. Inner speech in motor cortex and implications for speech neuroprostheses. *Cell*,
515 188(17):4658–4673.e17, 2025. doi: 10.1016/j.cell.2025.07.006.

516

517 Jingyuan Li, Trung Le, Chaofei Fan, Mingfei Chen, and Eli Shlizerman. Brain-to-text decoding
518 with context-aware neural representations and large language models, 2024. URL <https://arxiv.org/abs/2411.10657>.

519

520 David A. Moses, Matthew K. Leonard, Joseph G. Makin, and Edward F. Chang. Real-time decoding
521 of question-and-answer speech dialogue using human cortical activity. *Nature Communications*,
522 10(1):3096, 2019. doi: 10.1038/s41467-019-10994-4. URL <https://doi.org/10.1038/s41467-019-10994-4>.

523

524 David A. Moses, Sean L. Metzger, Jessie R. Liu, Gopala K. Anumanchipalli, Joseph G. Makin,
525 Pengfei F. Sun, Josh Chartier, Maximilian E. Dougherty, Patricia M. Liu, Gary M. Abrams, Ade-
526 lyn Tu-Chan, Karunesh Ganguly, and Edward F. Chang. Neuroprosthesis for decoding speech
527 in a paralyzed person with anarthria. *New England Journal of Medicine*, 385(3):217–227, 2021.
528 doi: 10.1056/NEJMoa2027540. URL <https://www.nejm.org/doi/full/10.1056/NEJMoa2027540>.

529

530 Eric M Mugler, Joseph L Patton, Robert D Flint, Zachary A Wright, Stephan U Schuele, Joshua
531 Rosenow, and Marc W Slutzky. Direct classification of all american english phonemes using
532 signals from functional speech motor cortex. *Journal of Neural Engineering*, 15(3):036020, 2018.

533

534 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
535 Robust speech recognition via large-scale weak supervision, 2022. URL <https://arxiv.org/abs/2212.04356>.

536

537 A. B. Silva, K. T. Littlejohn, J. R. Liu, et al. The speech neuroprosthesis. *Nature Reviews Neuro-
538 science*, 25(7):473–492, 2024. doi: 10.1038/s41583-024-00819-9. URL <https://doi.org/10.1038/s41583-024-00819-9>.

540 S. D. Stavisky, P. Rezaii, F. R. Willett, L. R. Hochberg, K. V. Shenoy, and J. M. Henderson. Decoding
 541 speech from intracortical multielectrode arrays in dorsal "arm/hand areas" of human motor cortex.
 542 In *2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology
 543 Society (EMBC)*, pp. 93–97, 2018. doi: 10.1109/EMBC.2018.8512199.

544 Jerry Tang, Alexandre LeBel, Shailee Jain, and Alexander G Huth. Semantic reconstruction
 545 of continuous language from non-invasive brain recordings. *Nature Neuroscience*, 26(5):858–
 546 866, May 2023. doi: 10.1038/s41593-023-01304-9. URL <https://doi.org/10.1038/s41593-023-01304-9>.

547 Francis R. Willett, David T. Avansino, Leigh R. Hochberg, Jaimie M. Henderson, and Kr-
 548 ishna V. Shenoy. High-performance brain-to-text communication via handwriting. *Nature*, 593:
 549 249–254, 2021. doi: 10.1038/s41586-021-03506-2. URL <https://doi.org/10.1038/s41586-021-03506-2>.

550 Francis R. Willett, Evan M. Kunz, Charles Fan, David T. Avansino, Josef Parvizi, Shaul Druckmann,
 551 Edward F. Chang, and Krishna V. Shenoy. A high-performance speech neuroprosthesis. *Nature*,
 552 620:1031–1036, 2023. doi: 10.1038/s41586-023-06377-x. URL <https://doi.org/10.1038/s41586-023-06377-x>.

553 Francis R. Willett, Jingyuan Li, Trung Le, Chaofei Fan, Mingfei Chen, Eli Shlizerman, Yue
 554 Chen, Xin Zheng, Tatsuo S. Okubo, Tyler Benster, Hyun Dong Lee, Maxwell Kounga, E. Kelly
 555 Buchanan, David Zoltowski, Scott W. Linderman, and Jaimie M. Henderson. Brain-to-text bench-
 556 mark '24: Lessons learned, 2024. URL <https://arxiv.org/abs/2412.17227>.

557 Francis R. Willett, Jingyuan Li, Trung Le, Chaofei Fan, Mingfei Chen, Eli Shlizerman, Yue
 558 Chen, Xin Zheng, Tatsuo S. Okubo, Tyler Benster, Hyun Dong Lee, Maxwell Kounga, E. Kelly
 559 Buchanan, David Zoltowski, Scott W. Linderman, and Jaimie M. Henderson. Brain-to-text bench-
 560 mark '24: Lessons learned, 2024. URL <https://arxiv.org/abs/2412.17227>.

561 Duo Xu, Jason Chung, Quinn Greicius, Yizhen Zhang, Matthew Leonard, and Edward Chang.
 562 Human precentral gyrus neurons link speech sequences from listening to speaking. *bioRxiv*,
 563 2024. doi: 10.1101/2024.12.27.630563. URL <https://www.biorxiv.org/content/10.1101/2024.12.27.630563v1>. preprint.

564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593

594 **A STATEMENTS**
595596 **ETHICS STATEMENT**
597599 This work exclusively uses publicly available, de-identified datasets released by their original au-
600 thors with explicit Institutional Review Board (IRB) approval and participant informed consent as
601 described in the source publications (Willett et al., 2023; Card et al., 2024; Kunz et al., 2025). We
602 did not collect any new human data, nor did we access identifiable or restricted information beyond
603 the public releases. All data handling adheres to the licenses and usage terms specified by the dataset
604 providers, and no attempt was made to re-identify individuals or to infer private attributes unrelated
605 to the stated research purposes.606 Neural speech decoding raises important privacy and autonomy considerations. Consistent with the
607 intent-BCI paradigm, models should be deployed only with explicit user consent and with safeguards
608 that prevent unintended decoding (e.g., explicit activation signals, user-controlled on/off mecha-
609 nisms, and audit logs). We encourage practitioners to follow best practices for secure data storage,
610 access control, and transparent communication of model capabilities and limitations. Where clin-
611 ically applicable, systems should be developed in partnership with participants, clinicians, and ethics
612 boards to ensure that benefits and risks are carefully balanced.613
614 **REPRODUCIBILITY STATEMENT**
615616 We aim for full reproducibility. The Methods section specifies all architectural components, training
617 schedules, optimization details, and evaluation protocols. We provide a self-contained `.zip` archive
618 in the supplementary material that includes: (i) scripts to download/prepare the publicly available
619 datasets used in this study (with checksums and expected directory structures), (ii) training and eval-
620 uation code, (iii) configuration files with all hyperparameters and random seeds for each experiment,
621 (iv) instructions to reproduce Tables 1–2 and Figures 1–3.622 Upon publication, we will release the same code publicly under a permissive license, together with
623 frozen configuration files and (where dataset terms allow) pretrained checkpoints required to repro-
624 duce the reported results. Any deviations from defaults needed to match the paper’s numbers are
625 documented in the provided `README` and per-experiment config files.627
628 **B DATASET DETAILS**
629630 **B.1 DATASET STATISTICS**
631632 Table 3 summarizes the size and split of the three datasets used in this study: the Card dataset Card
633 et al. (2024), the Willett dataset Willett et al. (2023), and the Kunz et al. dataset Kunz et al. (2025).
634 For Card and Willett, we report the number of training, held-out test, and competition trials provided
635 in the Brain-to-Text challenges. For Kunz et al., we report the number of trials after preprocessing
636 and trial selection, split 80/20% into training and validation partitions.637
638 **Table 3: Dataset splits and statistics used in this work.**639
640

Dataset	Training Trials	Test Trials	Competition Trials
Card (Brain-to-Text '25)	8,072	1,426	1,450
Willett (Brain-to-Text '24)	8,800	880	1,200
Kunz et al. (Inner Speech)	T12: 836, T15: 1,040, T16: 224, T17: 320 (total: 2,420)		

641
642 For the Kunz dataset, features were standardized and zero-padded to a 512-dimensional representa-
643 tion before being passed to the model. This ensured consistent input dimensionality across subjects
644 and sessions.

648
649

B.2 PARTICIPANT AND RECORDING DETAILS

650
651
652
653

Table 4 compares the participants and experimental setups between the Brain-to-Text ’24 (Willett) and Brain-to-Text ’25 (Card) challenges.

654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Table 4: Participant and experimental details for the Brain-to-Text ’24 and ’25 datasets.

	Brain-to-Text ’24 (Willett)	Brain-to-Text ’25 (Card)
Participant(s)	T12, implanted with four 64-channel Utah arrays (128 electrodes in speech motor cortex, 128 in inferior frontal gyrus)	T15, implanted with four 64-channel Utah arrays (256 electrodes in speech motor cortex)
Recording Period	25 sessions spanning 4 months	45 sessions spanning 20 months
Number of Sentences	12,100	10,948
Sentence Corpus	Switchboard	50-word vocabulary, Switchboard, OpenWebText2, Harvard sentences, custom high-frequency word sentences, random word sentences
Speaking Strategy	Attempted vocalized speech	Attempted vocalized or attempted silent speech
Speaking Rate	~62 words per minute	~30 wpm (vocalized) or ~50 wpm (silent)

B.3 TASK DESIGN FOR KUNZ ET AL. DATASET

Participants T12, T15, T16, and T17 performed perceptual tasks including listening and silent reading, followed by attempted or imagined speech production. Trials were drawn from a mixture of isolated words and full sentences, with the majority of trials consisting of a repeated set of seven single words. This design provides a valuable testbed for assessing cross-subject generalization under reduced linguistic complexity and weaker neural responses (inner speech).

C ANALYSIS OF SUBJECT AND DAY TRANSFORMS

To better understand how the learned day-specific affine projections $\tilde{x} = W_d x + b_d$ behave across recording sessions and participants, we performed a quantitative analysis of the matrices W_d and biases b_d . Each affine transform aims to compensate for day-to-day subject-wise variability in neural signal statistics, aligning the raw neural activity into a common latent space before decoding. We computed several matrix- and vector-based metrics that characterize the geometry, structure, and magnitude of each transform. Below we define these metrics, outline their interpretation, and discuss the patterns observed across datasets (Card and Willett). Figures 4–10 summarize the evolution of each metric across days, jointly visualizing the per-day Phoneme Error Rate (PER) obtained by the model after applying the corresponding transform.

C.1 DEFINITIONS AND INTERPRETATION OF METRICS

For each recording day d , with learned transform $W_d \in \mathbb{R}^{C \times C}$ and bias $b_d \in \mathbb{R}^C$, we compute:

Frobenius distance to identity.

$$\text{fro_to_I}(W_d) = \|W_d - I\|_F.$$

Measures how far W_d deviates from the identity. Small values indicate minimal transformation; large values indicate substantial scaling or rotation.

Condition number.

$$\text{cond}(W_d) = \kappa(W_d) = \frac{\sigma_{\max}(W_d)}{\sigma_{\min}(W_d)}.$$

702 Large values correspond to anisotropic stretching that scale some channels more than others.
 703

704 **Log absolute determinant.**

705 $\text{logdet_abs}(W_d) = \log |\det W_d|.$

707 Reflects global volume change induced by the transform. Values near zero imply approximately
 708 volume-preserving mappings; strongly negative values indicate contraction.
 709

710 **Orthogonality gap.**

711 $\text{orth_gap}(W_d) = \|W_d^\top W_d - I\|_F.$

712 Quantifies deviation from an orthogonal transformation. Orthogonal matrices preserve angles and
 713 norms, so larger values indicate distortion of geometric structure. A value of zero would indicate
 714 that transforms are just rotation, while larger values suggest that shearing is also happening.
 715

716 **Diagonal ratio.**

717 $\text{diag_ratio}(W_d) = \frac{\|\text{diag}(W_d)\|_F^2}{\|W_d\|_F^2}.$

720 Values close to 1 imply low cross-channel mixing; lower values indicate greater off-diagonal struc-
 721 ture.
 722

723 **Off-diagonal energy.**

724 $\text{offdiag_energy}(W_d) = \sum_{i \neq j} W_{d,ij}^2.$

726 Direct measure of how much channels are mixed by the transform.
 727

728 **Spectral entropy.**

729 $\text{spec_entropy}(W_d) = - \sum_i p_i \log p_i, \quad p_i = \frac{\sigma_i(W_d)}{\sum_j \sigma_j(W_d)}.$

733 Higher entropy corresponds to more uniform distribution of singular values.
 734

735 **ℓ_2 bias magnitude.**

736 $\text{bias_l2}(b_d) = \|b_d\|_2.$

738 Measures global shift applied to neural features.
 739

740 In all figures, the left axis tracks the metric of interest and the right axis shows the PER achieved
 741 when decoding data from the same day.
 742

743 **C.2 SUMMARY OF OBSERVED PATTERNS**

744 Across all metrics, we observe systematic differences between the two datasets, reflecting the dis-
 745 tinct recording properties of the Card and Willett datasets.
 746

747 **(1) Card shows smaller and more stable transforms.** For metrics such as **fro_to_I**, **orth_gap**,
 748 **logdet_abs**, and **offdiag_energy**, Card consistently exhibits smaller magnitudes and narrower day-
 749 to-day variation. This indicates that Card’s neural feature distribution is more stable across sessions,
 750 requiring only mild linear corrections.
 751

752 **(2) Willett shows larger drift and stronger cross-channel mixing.** In Willett, **cond**, **orth_gap**,
 753 **offdiag_energy**, and **bias_l2** attain larger values, particularly in early and late sessions. This reflects
 754 more pronounced day-to-day variability, greater signal drift, and increased need for alignment. Not-
 755 ably, early Willett days include extremely high condition numbers, suggesting highly anisotropic
 neural scaling.

(3) **Diagonal structure remains dominant.** For both datasets, **diag_ratio** remains near 0.9–1.0, indicating that most transforms preserve approximate channel independence and rely only modestly on cross-channel mixing. This supports our claim that the day-to-day drift is largely linear and can be corrected with simple affine operations.

(4) **Relationship with decoding accuracy.** We compute Pearson correlations between each metric and the corresponding PER for that day (annotated in each panel). For most metrics, especially in Willett, the correlation magnitude is moderate ($|r| \approx 0.4\text{--}0.6$), suggesting that days requiring stronger linear alignment tend to be harder to decode. This provides additional evidence that the day transforms capture true physical variability in neural signals rather than overfitting noise.

(5) **PER consistently decreases once transforms stabilize.** In both datasets, PER tends to fall when the geometric metrics stabilize (e.g., mid-to-late Card days; middle Willett days), indicating that the affine alignment effectively normalizes the input space for decoding.

C.3 FIGURES

Bias magnitude across days. The evolution of $\|b_d\|_2$ and PER is shown in Figure 4. Card shows small, stable biases, while Willett exhibits larger drifts, particularly at the beginning and end of the recording period.

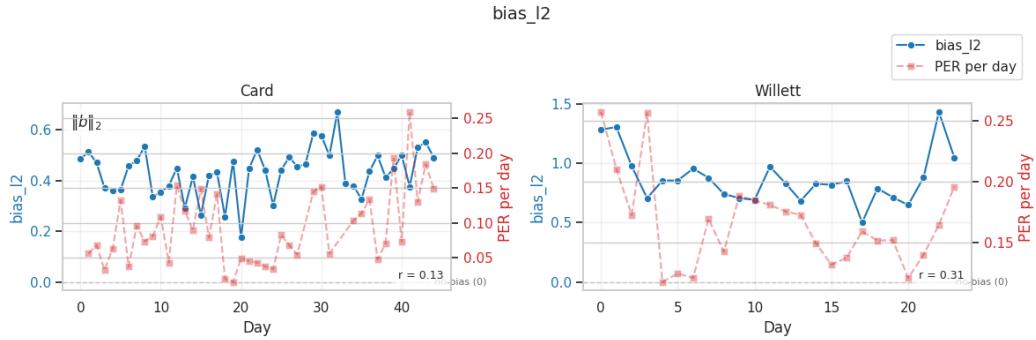


Figure 4: Day-wise evolution of $\|b_d\|_2$ (left axis) and PER (right axis).

Condition number. Figure 5 reveals substantial differences across datasets: Card maintains moderate condition numbers (4–12), whereas Willett shows extreme early-session instability ($\kappa(W_d) > 1000$), followed by stabilization.

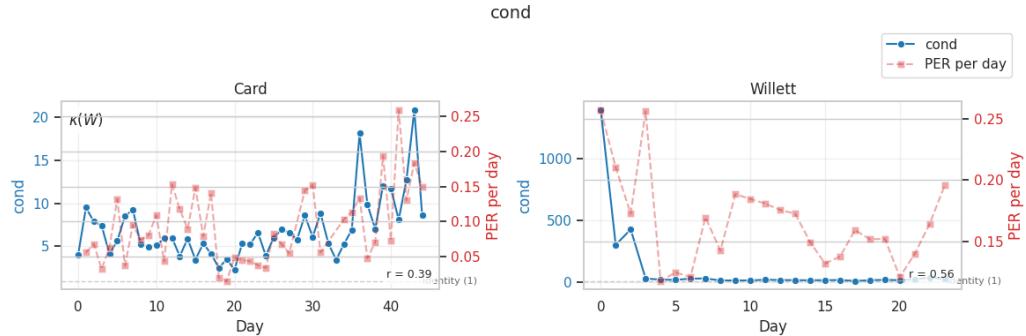


Figure 5: Day-wise evolution of $\kappa(W_d)$ and PER.

810
 811 **Diagonal structure, Frobenius deviation, volume change, off-diagonal energy, orthogonality**
 812 **gap.** Figures 6, 7, 8, 9, and 10 demonstrate similar patterns: Card exhibits smoother, lower-
 813 magnitude metrics; Willett shows larger deviations, particularly in early days. All metrics correlate
 814 moderately with PER, further linking the learned linear transforms to recording quality.

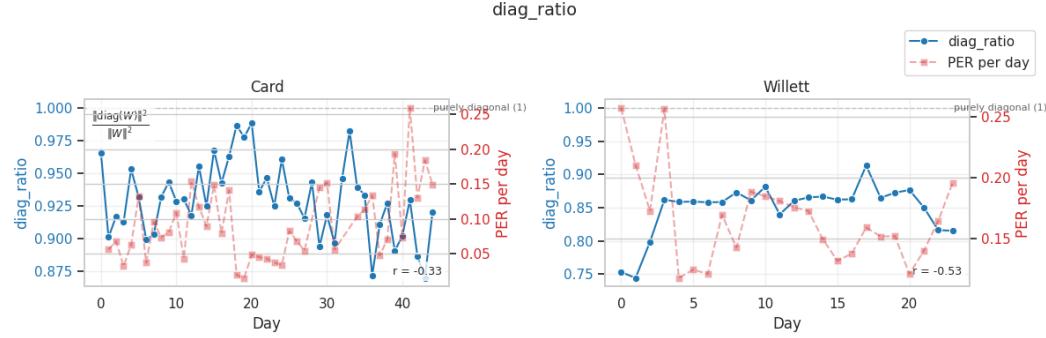
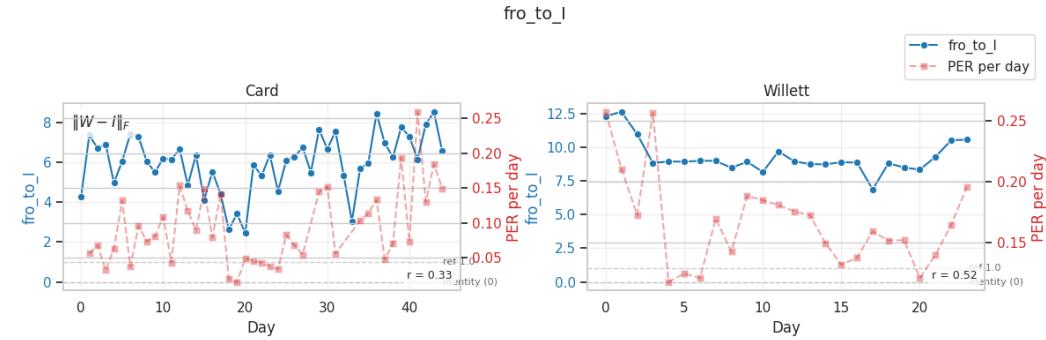
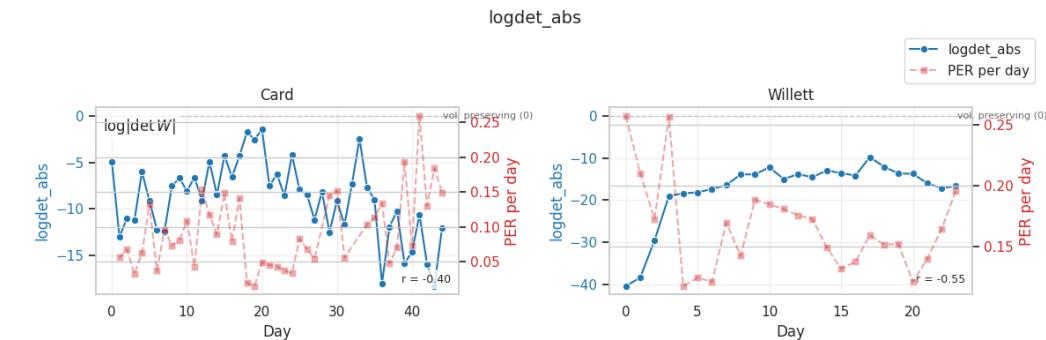


Figure 6: Day-wise evolution of diagonal ratio and PER.

Figure 7: Day-wise evolution of $\|W_d - I\|_F$ and PER.Figure 8: Day-wise evolution of $\log | \det W_d |$ and PER.

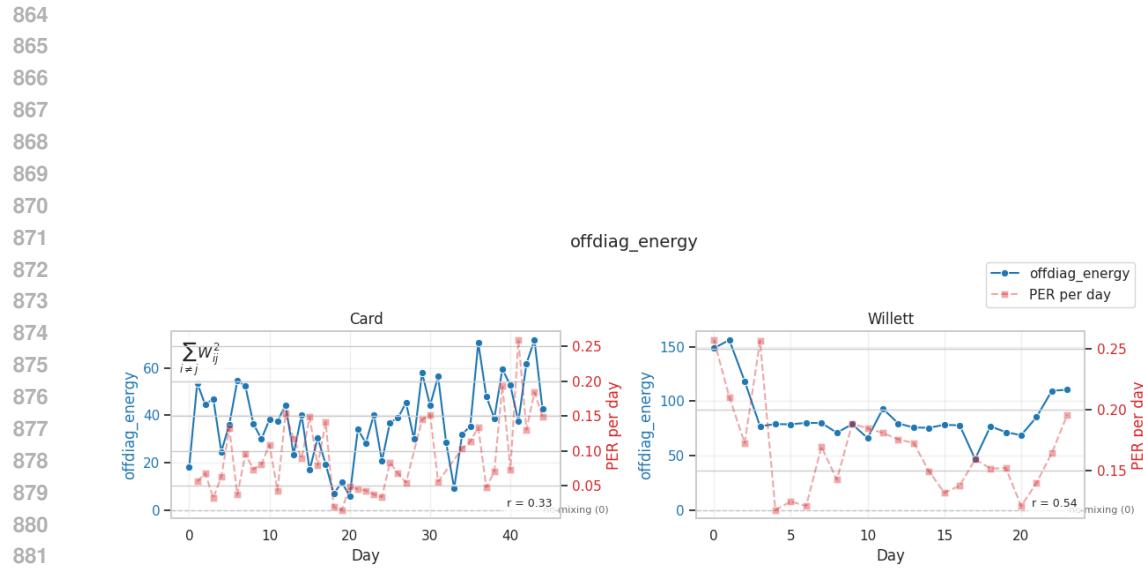


Figure 9: Day-wise evolution of off-diagonal energy and PER.

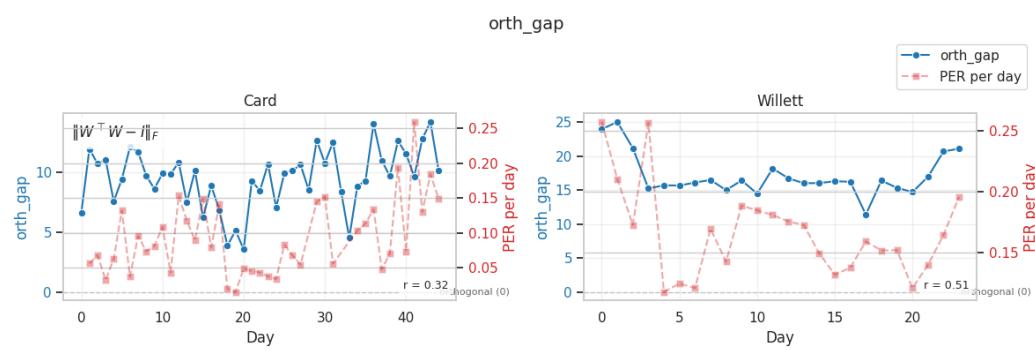


Figure 10: Day-wise evolution of orthogonality gap and PER.

918 **D SENSITIVITY ANALYSES OF CROSS-DATASET TRAINING AND**
919 **HIERARCHICAL CTC WEIGHT**
920

921 To isolate the effect of key hyperparameters on cross-subject and cross-dataset performance, we con-
922 ducted two controlled sensitivity analyses. All experiments were performed under identical training
923 conditions, using a fixed random seed and identical optimization hyperparameters. Thus, each anal-
924 ysis varies exactly one factor at a time, enabling a clear causal interpretation of the results.
925

926 **D.1 EFFECT OF HIERARCHICAL CTC WEIGHT α**
927

928 The first analysis studies the contribution of intermediate CTC supervision by varying the loss
929 weight α associated with the hierarchical CTC auxiliary head. The parameter α determines the
930 relative influence of intermediate phoneme-level loss signals on the optimization dynamics. We
931 sweep $\alpha \in \{0.1, 0.2, 0.3, 0.5, 0.75, 1.0\}$ while holding every other training component fixed.
932

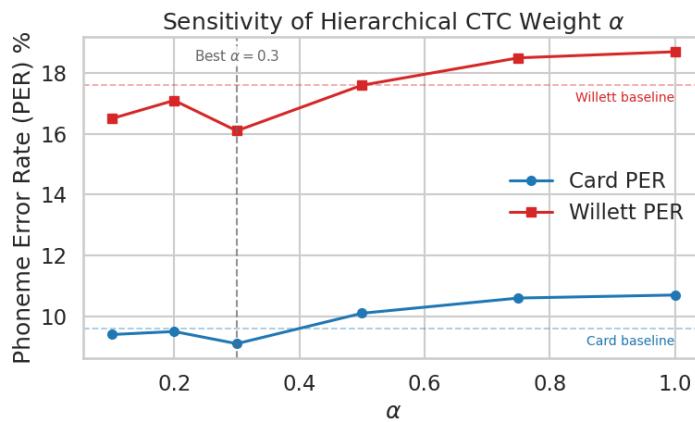
933 **Numerical results.** Table 5 reports the PER for both datasets. A distinct optimum emerges at
934 $\alpha = 0.3$, which yields the lowest error for both Card and Willett.
935

937 **Table 5: Sensitivity of PER to hierarchical CTC weight α .**

938

α	Card PER	Willett PER
0.1	9.4	16.5
0.2	9.5	17.1
0.3	9.1	16.1
0.5	10.1	17.6
0.75	10.6	18.5
1.0	10.7	18.7

947 **Interpretation.** Moderate hierarchical supervision improves decoding, suggesting that interme-
948 diate phoneme representations are beneficial but should not dominate optimization. Both datasets
949 exhibit the same optimum, which supports the idea that hierarchical CTC acts as a regularizer that
950 stabilizes gradient flow and improves cross-subject phonetic structure.
951

952 Figure 11 visualizes the PER evolution with respect to α , including baseline performance levels
953 from single-dataset training. The vertical dashed line highlights the optimal configuration.
954

970 Figure 11: Sensitivity of PER to the hierarchical CTC weight α . Dashed horizontal lines denote
971 baselines; the best setting $\alpha = 0.3$ is marked by a vertical line.

972 D.2 CROSS-DATASET FRACTION SENSITIVITY ANALYSIS
973974 The second analysis examines how the amount of data from a *second* dataset influences generaliza-
975 tion. We consider two complementary configurations:
976977 1. **Full Card + fraction of Willett**: measures how much Willett data is required to improve
978 Willett decoding performance when starting from a strong Card-trained model.
979 2. **Full Willett + fraction of Card**: measures how Card data helps transfer performance onto
980 Card subjects when starting from a Willett-trained model.
981982 We further include “Card only” and “Willett only” controls, trained on the same fractions. As before,
983 the random seed, optimizer, number of epochs, and model architecture remain fixed.
984985 **Numerical results.** Tables 6 and 7 summarize the results.
986987 Table 6: Willett PER as a function of the fraction of Willett data used.
988989

Fraction	Full Card + fraction Willett	Willett only
10%	43.1	47.8
25%	31.2	36.6
50%	24.5	30.7
75%	19.3	26.4
100%	16.1	19.7

996 Table 7: Card PER as a function of the fraction of Card data used.
997998

Fraction	Full Willett + fraction Card	Card only
10%	36.0	38.9
25%	24.2	26.3
50%	17.8	18.5
75%	14.8	15.8
100%	9.1	10.2

1004 Our interpretation of these results is that adding even a small amount of data from the second dataset
1005 consistently improves performance relative to training on that dataset alone. This effect is present
1006 in both directions: Card improves Willett decoding, and Willett improves Card decoding. The
1007 improvement is especially pronounced at small fractions (10–25%), suggesting that cross-dataset
1008 pretraining provides strong structural priors for phoneme-level representations. At 100% fraction,
1009 both experiments converge to the same PER (16.1 for Willett, 9.1 for Card), matching the fully
1010 mixed training configuration.
10111012 Figure 12 shows the two learning curves side-by-side.
10131014 These experiments confirm that both hierarchical CTC supervision and cross-dataset exposure sub-
1015 stantially improve generalization. The consistent optimum at $\alpha = 0.3$ demonstrates that hierarchical
1016 supervision provides beneficial intermediate gradients, while the fraction-sensitivity study illustrates
1017 a clear and reciprocal transfer effect between datasets. Both findings reinforce the central claim of
1018 the paper: **cross-subject and cross-dataset representations share a stable phonetic structure**
1019 **that can be leveraged through joint training and appropriate auxiliary losses**.
10201021
1022
1023
1024
1025

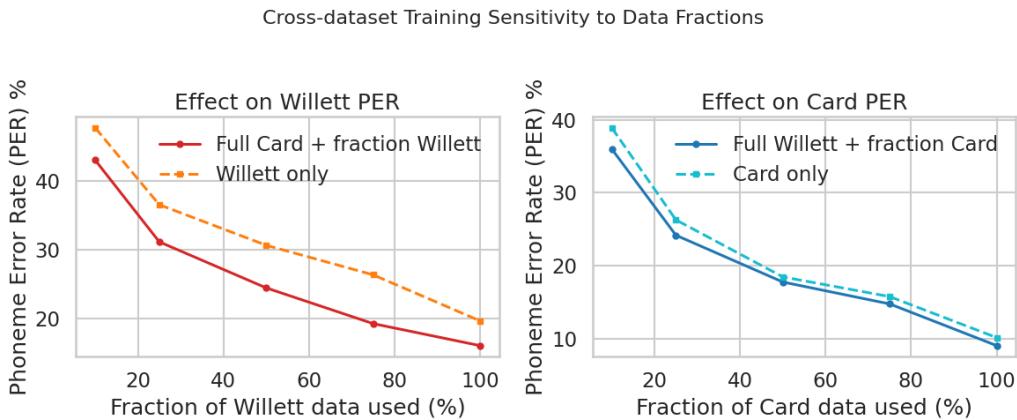


Figure 12: Sensitivity of PER to the fraction of the second dataset used. Left: Full Card + fraction Willett vs. Willett-only. Right: Full Willett + fraction Card vs. Card-only.