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ABSTRACT

Brain-to-text systems have recently achieved impressive performance when
trained on single-participant data, but remain limited by uninvestigated cross-
subject generalization. We present the first neural-to-phoneme decoder trained
jointly on the two largest intracortical speech datasets (Willett et al. 2023; Card et
al. 2024), introducing day- and dataset-specific affine transforms to align neu-
ral activity into a shared space. A hierarchical GRU decoder with intermedi-
ate CTC supervision and feedback connections further mitigates the conditional-
independence assumption of standard CTC loss. Our model matches or outper-
forms within-subject baselines while being trained across participants, and adapts
to unseen subjects using only a linear transform or brief fine-tuning. On an inde-
pendent inner-speech dataset (Kunz et al. 2025), our approach demonstrate gener-
alization, by training only subject day specific transforms. These results highlight
cross-subject pretraining as a practical path toward scalable and clinically deploy-
able speech BCIs.

1 INTRODUCTION

Language is the cornerstone of human communication, and the ability to speak underpins social
interaction, autonomy, and quality of life. The loss of speech—whether due to amyotrophic lateral
sclerosis (ALS), stroke, or traumatic brain injury—often leads to social isolation and psychological
distress Kao & Chan (2024). For individuals with intact cortical representations of speech but im-
paired motor output, neural speech prostheses offer a path to restoring communication by decoding
intended speech directly from neural activity. The overall idea is to bypass muscle controls that
could be impaired and directly decode the intended language or speech content from the related
neural activity. Decoding speech from the brain has been approached using both non-invasive and
invasive neural recordings. Non-invasive methods such as fMRI and MEG have demonstrated that
semantic or phonetic content can be decoded above chance Défossez et al. (2023); Tang et al. (2023),
but their temporal resolution and latency remain limiting factors for real-time communication. In
contrast, invasive techniques such as electrocorticography (ECoG) and intracortical microelectrode
arrays provide high-bandwidth, high-temporal-resolution access to speech-related cortical activity,
enabling real-time speech decoding systems with word error rates (WER) approaching practical us-
ability thresholds Silva et al. (2024); Willett et al. (2023); Card et al. (2024). However, invasive
recordings present unique challenges: (i) It is invasive! Requires dedicated neurosurgical interven-
tion; the eligible population is therefore limited, and the number of electrodes that can be safely im-
planted in humans is strictly constrained. (ii) Data collection is logistically demanding and clinically
constrained, often yielding datasets from just a handful of participants worldwide; (iii) recordings
are heterogeneous, with electrode placement driven by clinical need rather than research standard-
ization; and (iv) neural signals exhibit nonstationarity over time, with electrode impedance changes
and neural plasticity causing substantial within-subject drift. These factors have led most prior work
to adopt a single-subject training paradigm, limiting model generalizability and hindering systematic
progress.

A series of seminal studies have demonstrated the feasibility of decoding speech, phonemes, or ar-
ticulatory kinematics from invasive neural data. Moses et al. Moses et al. (2019; 2021) achieved
real-time decoding of a 50-word vocabulary using neural network models combined with n-gram
language models. Willett et al. Willett et al. (2021; 2023; 2024) extended this line of work with
a CTC-based recurrent neural network capable of phoneme-level decoding from thousands of sen-
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Figure 1: Cross-subject neural speech decoding pipeline. Neural data from Willett and Card
participants are mapped into a shared space via day- and dataset-specific linear projections, encoded
by a shared GRU-based model trained with hierarchical CTC, and decoded into open-vocabulary
text through a phoneme-to-word module.

tences, achieving open-vocabulary WERs of 23.8% and communication rates exceeding 60 words
per minute. More recently, Card et al. Card et al. (2024) demonstrated the most accurate con-
versational neuroprosthesis to date, achieving more than 90% accuracy across 125,000 words and
supporting >30 WPM communication in spontaneous conversation. These studies confirm the via-
bility of invasive brain-to-speech systems but leave open a crucial question: can models trained on
one participant generalize to others?

The reliance on single-subject training is a major bottleneck for clinical translation. Each new user
typically requires hours of supervised calibration data to achieve competitive performance, mak-
ing deployment slow and resource-intensive. Yet there are reasons to believe that generalization
across participants may be feasible (i) the cortical representation of speech is organized in a largely
conserved topography across individuals Bouchard et al. (2013); Mugler et al. (2018); (ii) phoneme-
related neural tuning properties have been shown to be reproducible across participants Stavisky
et al. (2018); and (iii) within-subject signal drift over time can be as large as the variability observed
across participants implanted in comparable regions. If cross-subject models could be trained, they
might provide a better initialization for new users, reduce calibration requirements, and enable large-
scale data aggregation—analogous to the role of pretraining in automatic speech recognition (ASR)
Radford et al. (2022); Baevski et al. (2020). To address the challenge of single-participant depen-
dence, we propose the first cross-subject neural-to-phoneme decoding model trained on invasive
recordings from multiple participants implanted in distinct cortical regions. Rather than treating
each participant as an isolated case, our approach leverages the shared structure of speech represen-
tations in the sensorimotor cortex to learn a unified decoder that can be adapted to new subjects. A
couple of scientific challenges immediately arise here. The first is how to deal with neural variability
over time. It is well known that neural representations drift quite a bit from day to day. To get an
intuition for this, imagine you are asked to draw a circle on a piece of paper. It probably won’t be a
perfect circle, and if you try again you’ll get another one—still a circle, but a slightly different one.
Each attempt will vary in size, eccentricity, and asymmetry. Yet all these circles are similar enough
that, with a simple affine transformation, we could align them quite well. To make them perfectly
identical would require a nonlinear warp, but for alignment purposes a linear transform is usually
good enough. Now imagine we also draw a circle. Our circle may be slightly larger or smaller than
yours, maybe a bit more oval, but it is still recognizably a circle. With another affine transform,
we could align our circle to yours too. This is exactly the intuition behind our approach: if two
people can draw circles that can be aligned, maybe two participants’ brains produce neural repre-
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sentations of speech that can also be aligned into a shared space. We think this is feasible because
all the people share an abstract concept of circle and they can somehow convert this ”platonic” circle
into an approximation in the real world. Language representations could behave similarly in neural
representations.

In our work, we learn a subject-specific and day-specific linear transform to map each participant’s
neural data into a common space. The model then processes these aligned signals with its nonlinear
causal decoder, focusing on capturing the complex phonetic and articulatory patterns that are shared
across participants. This approach keeps the alignment step simple and interpretable while allowing
the network to use its capacity where it matters most.

A second technical challenge is figuring out how to actually solve the decoding task. We start
from neural data recorded during an attempted speech task, where each trial can have a different
length and we have no direct alignment between neural time frames and words or phonemes. This
means we cannot simply treat it as a supervised frame-by-frame classification problem. Recent
work has borrowed heavily from ASR, using either autoregressive decoders or phoneme classifiers
trained with the Connectionist Temporal Classification (CTC) loss. In the recent Brain2Text ’24
Challenge Willett et al. (2024), a wide range of model architectures were tested—from GRUs to
transformers and even state-space models. Interestingly, the simplest approach often performed the
best: a relatively small GRU trained with CTC loss to predict phonemes, combined with a weighted
finite-state transducer (WFST) to map phonemes to words. Most gains in final WER came not from
radically new model designs but from ensembling or simply throwing more compute at training.

This result raises two possibilities: perhaps we do not yet have enough data to fully exploit modern
architectures such as transformers or SSMs—or perhaps the GRU+CTC approach is simply the most
data-efficient option for now. Still, we believe there is room for improvement, particularly because
of a limitation inherent to the CTC objective: CTC assumes that each prediction is conditionally
independent of the previous ones. This prevents the model from fully exploiting the joint probabili-
ties between successive phonemes. Yet evidence from neuroscience suggests that the speech motor
cortex does not just encode isolated phonemes but also their transitions—at least at the level of di-
phonemes Xu et al. (2024). Indeed, the first-place entry in the challenge achieved a small boost in
phoneme error rate by adding an auxiliary diphoneme prediction head, though at the cost of a much
larger class space (quadratic in the number of phonemes) and a more complex training process Li
et al. (2024).

Autoregressive transformer models trained with cross-entropy could, in theory, capture these depen-
dencies. However, in practice, they still lag behind CTC in this domain, and their training tends to
be unstable. To get the best of both worlds, we build on the proven GRU architecture but propose
a novel hierarchical loss function. In our approach, phoneme predictions are generated at multiple
depths of the network and then fed back into the subsequent recurrent layers. This provides the
model with explicit information about its own phoneme hypotheses at earlier stages, allowing it to
refine predictions in a way that partially recovers the conditional modeling power of autoregres-
sive approaches—while keeping training as simple and robust as standard CTC. (See Figure 1 for a
scheme of the decoding pipeline).

We evaluate this approach by aggregating all the largest publicly available speech BCI datasets
Willett et al. (2024); Card et al. (2024); Kunz et al. (2025) and comparing cross-subject models
to state-of-the-art within-subject baselines. Our results show that cross-subject training is not only
feasible but also does not degrade performance relative to single-subject models. Moreover, we find
that models trained in this way can be rapidly adapted to new participants with minimal fine-tuning
data—achieving competitive phoneme error rates. Taken together, our findings demonstrate that
cross-subject generalization is a realistic and promising path forward for neural speech decoding.
By pooling data across participants, we move closer to the vision of foundation models for BCIs:
models that can be trained once on large, diverse datasets and then deployed with minimal retrain-
ing for new users. Such a paradigm has transformed fields like natural language processing and
speech recognition, where pretrained models dramatically lower the data requirements for down-
stream tasks. In the context of neural decoding, this could mean reducing the calibration burden for
new patients accelerating clinical translation.
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Figure 2: Hierarchical GRU decoder with feedback. Neural features are processed by three
stacked GRUs. Each of the first two GRUs produces phoneme predictions (p1, p2) that are pro-
jected back and added to their hidden states, guiding deeper layers. Training uses a hierarchical
CTC loss, combining early, middle, and final predictions.

2 METHODS

2.1 DATA

We conduct our experiments by aggregating all publicly available sources of speech decoding
datasets from the BrainGate2 initiative. The first dataset (”Willett”) Willett et al. (2023) is from
subject T12. Data were collected from a single participant with ALS and anarthria implanted with
four 64-channel Utah microelectrode arrays (256 channels total), targeting two key regions of the
speech motor network: the ventral premotor cortex (Brodmann area 6v) and Broca’s area (area 44).
Electrode placement was guided by subject-specific fMRI activation maps and structural parcel-
lation from the Human Connectome Project. During the task, the participant attempted to speak
prompted sentences in an instructed-delay paradigm. Raw neural signals were bandpass filtered in
the ultra-high gamma range (250-5000 Hz). Threshold crossings were detected using a fixed thresh-
old of −4.5 RMS, and spike counts were binned in non-overlapping 20 ms windows. In parallel,
spike band power was computed as the mean squared signal in each 20 ms bin. These two features
(counts and power) were concatenated to form a neural feature vector per channel per time bin.
The dataset spans 24 days of recordings, totaling approximately 9,000 trials. We follow the official
train-test-competition split provided by the authors, using temporally separated evaluation blocks
to test generalization across time and relying only on the premotor cortex electrodes since ones in
the Broca region where no or just little informative. The second dataset (”Card”) is from subject
T15 Card et al. (2024). This dataset comprises recordings from a participant with ALS and severe
dysarthria implanted with four 64-channel Utah arrays (256 channels) in the left ventral precentral
gyrus. Neural features consist of spike counts and spike-band power, preprocessed similarly to Wil-
lett et al. The dataset includes >8 months of recordings across 84 sessions and 45 different days.
Again we relied on the original train/test/competition split provided by authors. We first trained our
models on the concatenation of the Willett et al. and Card et al. datasets, which together constitute
the largest publicly available collection of intracortical neural recordings during attempted speech.
Merging these datasets allowed us to maximize data diversity across days, sessions, and cortical
coverage, providing a strong foundation for learning robust neural-to-phoneme mappings.

To probe the limits of cross-subject and cross-task generalization, we further evaluated our models
on the dataset introduced by Kunz et al. Kunz et al. (2025). This dataset is unique in that it fo-
cuses primarily on inner speech rather than overt production, offering a qualitatively different neural
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Figure 3: Effect of day transforms and example outputs. A: t-SNE of neural embeddings be-
fore/after day transforms, showing reduced day clustering after alignment. B: Cross-day transform
swapping on Card and Willett: lowest PERs lie on the diagonal, but off-diagonals remain reasonable,
indicating shared structure across days. C: Example sentence-level predictions, with most errors be-
ing minor word substitutions.

regime. Recordings were obtained from four participants (T12, T15, T16, T17) implanted with Utah
arrays in ventral motor and premotor speech areas. Notably, T12 and T15 are the same participants
featured in the Willett and Card datasets but were re-recorded several months later, making these
data ideal for testing long-term stability and generalization under neural signal drift. Participants
T16 and T17 are entirely new subjects, providing a clean setting to evaluate out-of-subject general-
ization. The corpus spans several experimental categories: isolated verbal behaviors, which include
listening, reading, mouthed speech (silent articulation without phonation), attempted speech (covert
articulation with intended production), and imagined speech (purely internal generation); sentence
datasets, where participants attempted or imagined speaking either small controlled vocabularies
(50 words) or much larger sets (up to 125k words); as well as additional paradigms such as inter-
leaved verbal behaviors, conjunctive counting, and sequence recall. For this study, we restricted
to speech-motor–related electrodes From the isolated verbal behaviors category we included only
the attempted and mouthed conditions, while from the sentence data we used attempted and imag-
ined trials. This selection emphasizes speech production and imagination processes while excluding
purely perceptual conditions (listening, reading). After preprocessing and trial selection, the result-
ing dataset comprised 836 trials from t12 (5 sessions), 1,040 trials from t15 (9 sessions), 224 trials
from t16 (2 sessions), and 320 trials from t17 (2 sessions), for a total of 2,420 trials. Features were
standardized and padded to a 512-dimensional representation for downstream modeling.

2.2 NEURAL ENCODER AND HIERARCHICAL GRU DECODER

Day- and Subject-Specific Transformation. Before entering the encoder, neural features are first
passed through a subject- and day-specific affine projection to compensate for variability across
recording sessions and participants. For each subject s and recording day d, we learn a linear
transform x̃

(d,s)
t = Wd,sxt + bd,s, where xt ∈ RC is the neural feature vector at time t (with

C channels), and Wd,s ∈ RC×C ,bd,s ∈ RC are trainable projection weights and biases. This
projection aligns neural data into a shared latent space, mitigating electrode drift and subject-specific
scaling effects.

Model Architecture. The transformed data X̃ ∈ RB×T×C are processed by a three-block hier-
archical GRU decoder (Figure 2). The first two blocks contain two bidirectional GRU layers each,
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while the final block contains a single GRU layer. We denote the hidden dimensionality by d and
the number of phoneme classes (including the CTC blank) by N .

Early GRU Block. The early GRU block computes

z1 = GRU
(2)
early(X̃), z1 ∈ RB×T×d. (1)

An auxiliary classifier projects z1 into phoneme logits:

ℓ1 = Wearlyz1 + bearly, ℓ1 ∈ RB×T×N . (2)

Softmax produces class probabilities

p1 = Softmax(ℓ1), p1 ∈ [0, 1]B×T×N , (3)

which are projected back to the hidden dimension:

p̂1 = Wproj,1p1 + bproj,1, p̂1 ∈ RB×T×d. (4)

The feedback signal is summed with the original hidden states to form the input to the next block:
h1 = z1 + p̂1.

Middle GRU Block. Similarly, the middle block refines the representation: z2 =

GRU
(2)
middle(h1), with another auxiliary classifier producing ℓ2 = Wmiddlez2 +bmiddle, p2 =

Softmax(ℓ2), p̂2 = Wproj,2p2+bproj,2. We again sum the feedback signal to inform the final
layer: h2 = z2 + p̂2.

Final GRU Block. The final block consists of a single GRU layer: z3 = GRU
(1)
final(h2), followed

by the final projection to phoneme logits: ℓ3 = Wfinalz3 + bfinal.

Hierarchical CTC Loss. Because frame-level phoneme alignment is not available, we train with
the Connectionist Temporal Classification (CTC) loss Graves et al. (2006), which marginalizes over
all possible alignments:

LCTC(ℓ,y) = − log
∑

π∈B−1(y)

T∏
t=1

P (πt | ℓt), (5)

where π is a valid alignment path and B is the collapse operator that removes blanks and repeats. A
known limitation of CTC is its conditional independence assumption: predictions P (πt) are mod-
eled independently across time steps. Our hierarchical decoder partially mitigates this limitation by
feeding back layer-wise phoneme probabilities into deeper GRU blocks, allowing later representa-
tions to be informed by earlier hypotheses.

The total training loss combines CTC terms from all three layers:

LCTC,total = LCTC(ℓ3,y) + λ
[
LCTC(ℓ2,y) + LCTC(ℓ1,y)

]
, (6)

where λ ∈ [0, 1] balances the auxiliary supervision terms.

Training Details. Models are trained jointly on the Willett and Card datasets for 120k steps with
a batch size of 64 using the Adam optimizer. The learning rate is linearly warmed up from 0 to
5×10−3 over the first 1k steps, followed by cosine decay to 1×10−4 at step 120k. We apply a weight
decay of 1 × 10−5 and use mixed-precision training with gradient accumulation to maximize GPU
memory efficiency. Gaussian noise and small per-channel offsets are applied as data augmentation to
improve robustness. Hyperparameters where chosen to be identical to original Card baseline expect
for model dimensionality set at d = 2048 to let the model have more capacity to deal with larger
neural subspace. λ was set a 0.3 empirically. Further hyperparameter exploration could boost the
performance and was left as future work.
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Table 1: Main results on the Willett and Card datasets. We report phoneme error rate (PER),
word error rate (WER) on our evaluation set, and the official Brain2Text’24 and Brain-to-text 2025
challenges WER for comparison.

Model Training Set Test Set PER (%) WER (%) / Comp. WER (%)
Willett baseline Willett Willett 19.7 17.4 / 11.06
Card baseline Card Card 10.2 7.34 / 6.70

Ours (plain CTC) Willett+Card Willett 17.6 14.54 / 10.9
Ours (plain CTC) Willett+Card Card 9.6 7.57 / 6.39
Ours (hierarchical CTC) Willett+Card Willett 16.1 14.54 / 10.3
Ours (hierarchical CTC) Willett+Card Card 9.1 6.67 / 5.9

2.3 PHONEME-TO-WORD DECODING AND EVALUATION

The final stage of our pipeline transforms the decoded phoneme sequences into meaningful sen-
tences. In line with previous works, we relied on a classical approach based on weighted finite-state
transducers (WFSTs), which integrate phoneme posteriors with lexicon and language model con-
straints. Here, the output lattice from the neural decoder is composed with a pronunciation lexicon
and a 5-gram language model, and the most likely sequence is recovered using beam search. Op-
tionally, the resulting hypotheses can be rescored using a larger pretrained language model such as
OPT (see Willett et al. (2023) for details). WFST-based decoding remains a strong baseline, offering
reliable performance, but is computationally expensive, memory-intensive, and inherently limited to
a fixed context window of a few words. We assess performance using two widely adopted metrics:
Phoneme Error Rate (PER) and Word Error Rate (WER). PER is computed as the normalized edit
distance between the predicted and reference phoneme sequences, counting substitutions, insertions,
and deletions. WER is computed over the final text output, enabling a direct comparison between
WFST-based and neural decoding approaches at the sentence level. All experiments are conducted
on the official held-out test sets, with WER also reported on the competition sets (where PER is
not computable since we don’t have access to ground truth labels and WER is returned by online
platforms).

2.4 CROSS-SUBJECT GENERALIZATION

To evaluate whether our model can generalize beyond the participants used for training, we selected
the best-performing model trained jointly on the Willett and Card datasets and froze all its param-
eters except for the subject/day-specific input transformations. We then introduced a new linear
transform for each participant in the Kunz et al. dataset and optimized only these transforms on the
available data. This procedure effectively performs a lightweight alignment of each new subject’s
neural feature space to the shared latent space learned during pretraining. The number of trainable
parameters per subject is small (O(C2 + C)), making this adaptation fast and data-efficient. This
experiment enables us to assess whether a model pretrained on overt speech from multiple partici-
pants can quickly adapt to new participants performing a different task (inner speech) with minimal
data.

2.5 ANALYSIS OF DAY-SPECIFIC TRANSFORMS

To better understand the contribution of the day-specific affine projections, we analyzed the learned
transforms {Wd, bd} both qualitatively and quantitatively. We first visualized neural embeddings be-
fore and after transformation using t-SNE, averaging neural activity per trial to highlight global day-
level structure. After transformation, embeddings from different days became significantly more
clustered, suggesting that the transforms successfully normalize session-to-session variability. Fi-
nally, we performed a transform swapping experiment, in which each day’s data was processed using
every other day’s transform, and measured the resulting PER. This analysis quantifies the similarity
between days and evaluates how sensitive decoding performance is to transform mismatch.

3 RESULTS

3.1 JOINT TRAINING ACROSS SUBJECTS IMPROVES PERFORMANCE

Table 1 summarizes the performance of our models trained on the Willett and Card datasets, re-
porting phoneme error rate (PER) and word error rate (WER) on each dataset’s held-out evaluation
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Table 2: Cross-subject generalization to the Kunz et al. dataset. We report Phoneme Error Rate
(PER, %) when evaluating the best cross-subject model on four participants (T12–T17) under three
adaptation regimes: training only subject-specific linear transforms, fine-tuning the entire model,
and training from scratch on the target data.

Generalization Target Training Only Linear Fine-Tuning Whole Model From Scratch
T12 (Kunz) 30.2 21.3 11.8
T15 (Kunz) 28.8 26.3 26.1
T16 (Kunz) 41.1 26.1 40.9
T17 (Kunz) 58.9 53.3 30.6

blocks, as well as the official competitions WER for reference. Training a single model jointly
on both datasets yields comparable or better performance than models trained separately on each
dataset and this is our first and main result: cross-subject training is feasible. Specifically, our joint
model with a plain CTC loss improves Willett PER from 19.7% to 17.6% and WER from 17.4% to
14.5%, while the performance of single-subject baselines on Card at matched by our model. This
demonstrates that cross-subject training is feasible and does not degrade subject-specific perfor-
mance. Furthermore, our proposed hierarchical CTC decoder exhibit a modereate improvement in
performance across the board. On Willett, PER is reduced to 16.1%, with a relative WER reduction
compared to the plain CTC model. On Card, the improvements are even more pronounced, reaching
9.1% PER and 6.67% WER, outperforming the single-subject baseline. These results confirm that
(i) cross-subject training is not only possible but beneficial, and (ii) our hierarchical CTC design
partially mitigates some of the conditional independence limitations of the standard CTC objective
and improves performances.

3.2 EFFECT OF DAY-SPECIFIC TRANSFORMS

Figure 3A shows a t-SNE visualization of trial-averaged neural embeddings before and after apply-
ing the day-specific affine projections. Prior to transformation, the embeddings form a diffuse cloud
with no discernible organization by day. After applying the transforms, a clear structure emerges:
trials cluster consistently by subject and day, creating an organized space. This suggests that the day-
specific transforms linearly re-center/rotate the data into a shared space that exposes task-relevant
geometry. Figure 3B presents cross-day transform swapping experiments, where each day’s trans-
form was applied to every other day’s data and the resulting PER was measured. In both datasets, the
diagonal of the matrix (correct transform applied) yields the lowest PER, as expected, but many off-
diagonal entries also achieve reasonable performance, suggesting that the transforms share structure
and are not simply overfitting to individual days. This provides evidence that the learned projec-
tions capture generalizable session-invariant mappings and could be an hint that maybe less than
one transform per day is actually needed. Finally, Figure 3C presents representative sentence-level
predictions drawn from the held-out test set. Examples correspond to the 25th, 50th, and 90th per-
centiles of WER for each dataset, illustrating performance across easy, median, and challenging
cases. In most examples, the two-stage decoding pipeline recovers the exact target sentence or a
very close paraphrase, with remaining errors typically consisting of minor word substitutions or
function-word variations rather than gross semantic failures.

3.3 CROSS-SUBJECT GENERALIZATION TO KUNZ ET AL. PARTICIPANTS

Table 2 reports phoneme error rates (PER) for four participants from the Kunz et al. dataset (T12–
T17) under three adaptation regimes. Remarkably, simply training the subject-specific linear trans-
forms on the new data already yields a substantial reduction in error compared to chance level
(PER=100%), demonstrating that much of the variability between participants can be compensated
by a lightweight affine re-alignment. Fine-tuning the entire model for a small number of steps (5k)
further improves performance, reducing PER by an additional 20–40% relative to the linear-only
adaptation. Interestingly, for some participants, training the model entirely from scratch can achieve
even lower PER, likely due to the simplified nature of the Kunz dataset, where the majority of trials
consist of a small set of seven single words repeated many times and only a fraction of full-sentence
trials (for example t16 and t17 only have the 7 words trials, that are easier to overfit for the model).
This setting favors models trained from scratch, which can specialize fully to the limited vocabu-
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lary. Nonetheless, the cross-subject pretrained model with fine-tuning achieves competitive results
with a fraction of the training time, highlighting its potential for rapid deployment in low-resource
scenarios.

4 DISCUSSION AND CONCLUSION

Our study demonstrates that training neural speech decoders across multiple participants is not only
feasible but beneficial: a single model trained on the concatenation of the Willett and Card datasets
matches or outperforms single-subject baselines and generalizes well to new data. By introducing a
hierarchical CTC loss with feedback connections, we mitigate some of the conditional-independence
limitations of the standard CTC objective while preserving its stability and efficiency. Together,
these results indicate that cross-subject pretraining can serve as a powerful strategy to bootstrap
neural speech BCIs, enabling rapid adaptation to new participants with minimal calibration. A cen-
tral contribution of this work is the explicit modeling of session and subject variability via learned
day-specific affine transforms. Our analyses reveal that these transforms are not merely per-channel
re-scaling layers: they perform meaningful linear re-alignments that re-align day-specific variability
and highlight task-relevant structure in the neural data, as evidenced by t-SNE visualizations and
transform swapping experiments. This is consistent with the hypothesis that neural manifolds are
stable up to a low-dimensional linear transforms, and that much of the day-to-day drift can be cor-
rected with simple affine mappings. Such transforms may provide a general mechanism for neural
domain adaptation in BCIs, reducing the need for re-training large models when electrodes shift
or signal statistics drift over time. Despite the improvements introduced by the hierarchical CTC
decoder, our approach still inherits the conditional independence limitation of CTC at the frame
level, which may prevent the model from fully capturing sequential dependencies in the phoneme
stream. While the feedback connections partly reintroduce conditional information, there remains a
gap between this approach and fully autoregressive sequence models. Downstream language mod-
els, whether WFST-based or neural, play an essential role in correcting phoneme-level errors and
producing fluent sentences. As shown in our percentile-based qualitative analysis, most residual
errors are attributable to phoneme-to-word reconstruction rather than neural-to-phoneme decoding,
suggesting that future gains may come from more powerful phoneme-to-word models, ensembling,
and context-aware decoding strategies. As neural decoding technology approaches practical usabil-
ity, its ethical implications become increasingly critical. High-performance neural decoders could,
in principle, extract unintended or private mental content. Recent work has shown that it is possi-
ble to decode selective attention and even imagined inner speech from cortical activity Tang et al.
(2023); Kunz et al. (2025), raising concerns about privacy and consent in neural data use. We stress
that decoding should be performed only with the participant’s explicit intention and consent, in line
with the development of intent BCIs. This may include requiring a separate neural signal for vol-
untary activation or the use of secure mental passwords as demonstrated in Kuntz et al. Kunz et al.
(2025). Building safeguards into BCI systems is not just a technical challenge but an ethical neces-
sity. Overall, our findings suggest several promising avenues for future work. First, scaling cross-
subject training to larger, more diverse datasets could yield general-purpose foundation models for
speech BCIs, analogous to Whisper Radford et al. (2022) or wav2vec Baevski et al. (2020) in ASR.
Such models could be fine-tuned with a few minutes or hours of data to personalize decoding to a
new participant. Second, integrating information from higher-order language and semantic regions
may enable models to go beyond phoneme-level decoding and recover intended meaning, opening
the door to concept-level or semantic BCIs. Architecturally, mixture-of-experts (MoE) models could
be used to automatically select specialized experts conditioned on day or subject embeddings, of-
fering a flexible way to handle variability across sessions. Finally, improving language modeling
remains a key bottleneck: better phoneme-to-word models, rescoring strategies, and even in-context
learning could further reduce WER and bring performance closer to natural conversation rates. In
summary, this work shows that cross-subject training combined with lightweight subject-specific
adaptation is a viable path toward scalable and robust neural speech BCIs. By aligning neural man-
ifolds across participants and introducing a hierarchical CTC objective, we achieve performance
competitive with single-subject systems while greatly improving data efficiency. These results lay
the groundwork for future neural speech decoders that are not just accurate, but adaptable, efficient,
and ethically deployable in real-world settings.
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A STATEMENTS

ETHICS STATEMENT

This work exclusively uses publicly available, de-identified datasets released by their original au-
thors with explicit Institutional Review Board (IRB) approval and participant informed consent as
described in the source publications (Willett et al., 2023; Card et al., 2024; Kunz et al., 2025). We
did not collect any new human data, nor did we access identifiable or restricted information beyond
the public releases. All data handling adheres to the licenses and usage terms specified by the dataset
providers, and no attempt was made to re-identify individuals or to infer private attributes unrelated
to the stated research purposes.

Neural speech decoding raises important privacy and autonomy considerations. Consistent with the
intent-BCI paradigm, models should be deployed only with explicit user consent and with safeguards
that prevent unintended decoding (e.g., explicit activation signals, user-controlled on/off mecha-
nisms, and audit logs). We encourage practitioners to follow best practices for secure data storage,
access control, and transparent communication of model capabilities and limitations. Where clini-
cally applicable, systems should be developed in partnership with participants, clinicians, and ethics
boards to ensure that benefits and risks are carefully balanced.

REPRODUCIBILITY STATEMENT

We aim for full reproducibility. The Methods section specifies all architectural components, training
schedules, optimization details, and evaluation protocols. We provide a self-contained .zip archive
in the supplementary material that includes: (i) scripts to download/prepare the publicly available
datasets used in this study (with checksums and expected directory structures), (ii) training and eval-
uation code, (iii) configuration files with all hyperparameters and random seeds for each experiment,
(iv) instructions to reproduce Tables 1–2 and Figures 1–3.

Upon publication, we will release the same code publicly under a permissive license, together with
frozen configuration files and (where dataset terms allow) pretrained checkpoints required to repro-
duce the reported results. Any deviations from defaults needed to match the paper’s numbers are
documented in the provided README and per-experiment config files.

B DATASET DETAILS

B.1 DATASET STATISTICS

Table 3 summarizes the size and split of the three datasets used in this study: the Card dataset Card
et al. (2024), the Willett dataset Willett et al. (2023), and the Kunz et al. dataset Kunz et al. (2025).
For Card and Willett, we report the number of training, held-out test, and competition trials provided
in the Brain-to-Text challenges. For Kunz et al., we report the number of trials after preprocessing
and trial selection, split 80/20% into training and validation partitions.

Table 3: Dataset splits and statistics used in this work.
Dataset Training Trials Test Trials Competition Trials
Card (Brain-to-Text ’25) 8,072 1,426 1,450
Willett (Brain-to-Text ’24) 8,800 880 1,200
Kunz et al. (Inner Speech) T12: 836, T15: 1,040, T16: 224, T17: 320 (total: 2,420)

For the Kunz dataset, features were standardized and zero-padded to a 512-dimensional representa-
tion before being passed to the model. This ensured consistent input dimensionality across subjects
and sessions.
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B.2 PARTICIPANT AND RECORDING DETAILS

Table 4 compares the participants and experimental setups between the Brain-to-Text ’24 (Willett)
and Brain-to-Text ’25 (Card) challenges.

Table 4: Participant and experimental details for the Brain-to-Text ’24 and ’25 datasets.
Brain-to-Text ’24 (Willett) Brain-to-Text ’25 (Card)

Participant(s) T12, implanted with four 64-channel
Utah arrays (128 electrodes in speech
motor cortex, 128 in inferior frontal
gyrus)

T15, implanted with four 64-channel
Utah arrays (256 electrodes in speech
motor cortex)

Recording Period 25 sessions spanning 4 months 45 sessions spanning 20 months
Number of Sen-
tences

12,100 10,948

Sentence Corpus Switchboard 50-word vocabulary, Switchboard,
OpenWebText2, Harvard sentences,
custom high-frequency word sen-
tences, random word sentences

Speaking Strategy Attempted vocalized speech Attempted vocalized or attempted
silent speech

Speaking Rate ∼62 words per minute ∼30 wpm (vocalized) or ∼50 wpm
(silent)

B.3 TASK DESIGN FOR KUNZ ET AL. DATASET

Participants T12, T15, T16, and T17 performed perceptual tasks including listening and silent read-
ing, followed by attempted or imagined speech production. Trials were drawn from a mixture of
isolated words and full sentences, with the majority of trials consisting of a repeated set of seven
single words. This design provides a valuable testbed for assessing cross-subject generalization
under reduced linguistic complexity and weaker neural responses (inner speech).

C ANALYSIS OF SUBJECT AND DAY TRANSFORMS

To better understand how the learned day-specific affine projections x̃ = Wdx + bd behave across
recording sessions and participants, we performed a quantitative analysis of the matrices Wd and
biases bd. Each affine transform aims to compensate for day-to-day subject-wise variability in neural
signal statistics, aligning the raw neural activity into a common latent space before decoding. We
computed several matrix- and vector-based metrics that characterize the geometry, structure, and
magnitude of each transform. Below we define these metrics, outline their interpretation, and discuss
the patterns observed across datasets (Card and Willett). Figures 4–10 summarize the evolution of
each metric across days, jointly visualizing the per-day Phoneme Error Rate (PER) obtained by the
model after applying the corresponding transform.

C.1 DEFINITIONS AND INTERPRETATION OF METRICS

For each recording day d, with learned transform Wd ∈ RC×C and bias bd ∈ RC , we compute:

Frobenius distance to identity.

fro to I(Wd) = ∥Wd − I∥F .
Measures how far Wd deviates from the identity. Small values indicate minimal transformation;
large values indicate substantial scaling or rotation.

Condition number.
cond(Wd) = κ(Wd) =

σmax(Wd)

σmin(Wd)
.
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Large values correspond to anisotropic stretching that scale some channels more than others.

Log absolute determinant.
logdet abs(Wd) = log | detWd|.

Reflects global volume change induced by the transform. Values near zero imply approximately
volume-preserving mappings; strongly negative values indicate contraction.

Orthogonality gap.
orth gap(Wd) = ∥W⊤

d Wd − I∥F .
Quantifies deviation from an orthogonal transformation. Orthogonal matrices preserve angles and
norms, so larger values indicate distortion of geometric structure. A value of zero would indicate
that transforms are just rotation, while larger values suggest that shearing is also happening.

Diagonal ratio.

diag ratio(Wd) =
∥diag(Wd)∥2F

∥Wd∥2F
.

Values close to 1 imply low cross-channel mixing; lower values indicate greater off-diagonal struc-
ture.

Off-diagonal energy.
offdiag energy(Wd) =

∑
i̸=j

W 2
d,ij .

Direct measure of how much channels are mixed by the transform.

Spectral entropy.

spec entropy(Wd) = −
∑
i

pi log pi, pi =
σi(Wd)∑
j σj(Wd)

.

Higher entropy corresponds to more uniform distribution of singular values.

ℓ2 bias magnitude.
bias l2(bd) = ∥bd∥2.

Measures global shift applied to neural features.

In all figures, the left axis tracks the metric of interest and the right axis shows the PER achieved
when decoding data from the same day.

C.2 SUMMARY OF OBSERVED PATTERNS

Across all metrics, we observe systematic differences between the two datasets, reflecting the dis-
tinct recording properties of the Card and Willett datasets.

(1) Card shows smaller and more stable transforms. For metrics such as fro to I, orth gap,
logdet abs, and offdiag energy, Card consistently exhibits smaller magnitudes and narrower day-
to-day variation. This indicates that Card’s neural feature distribution is more stable across sessions,
requiring only mild linear corrections.

(2) Willett shows larger drift and stronger cross-channel mixing. In Willett, cond, orth gap,
offdiag energy, and bias l2 attain larger values, particularly in early and late sessions. This reflects
more pronounced day-to-day variability, greater signal drift, and increased need for alignment. No-
tably, early Willett days include extremely high condition numbers, suggesting highly anisotropic
neural scaling.
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(3) Diagonal structure remains dominant. For both datasets, diag ratio remains near 0.9–1.0,
indicating that most transforms preserve approximate channel independence and rely only modestly
on cross-channel mixing. This supports our claim that the day-to-day drift is largely linear and can
be corrected with simple affine operations.

(4) Relationship with decoding accuracy. We compute Pearson correlations between each metric
and the corresponding PER for that day (annotated in each panel). For most metrics, especially
in Willett, the correlation magnitude is moderate (|r| ≈ 0.4–0.6), suggesting that days requiring
stronger linear alignment tend to be harder to decode. This provides additional evidence that the day
transforms capture true physical variability in neural signals rather than overfitting noise.

(5) PER consistently decreases once transforms stabilize. In both datasets, PER tends to fall
when the geometric metrics stabilize (e.g., mid-to-late Card days; middle Willett days), indicating
that the affine alignment effectively normalizes the input space for decoding.

C.3 FIGURES

Bias magnitude across days. The evolution of ∥bd∥2 and PER is shown in Figure 4. Card shows
small, stable biases, while Willett exhibits larger drifts, particularly at the beginning and end of the
recording period.

Figure 4: Day-wise evolution of ∥bd∥2 (left axis) and PER (right axis).

Condition number. Figure 5 reveals substantial differences across datasets: Card maintains mod-
erate condition numbers (4–12), whereas Willett shows extreme early-session instability (κ(Wd) >
1000), followed by stabilization.

Figure 5: Day-wise evolution of κ(Wd) and PER.
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Diagonal structure, Frobenius deviation, volume change, off-diagonal energy, orthogonality
gap. Figures 6, 7, 8, 9, and 10 demonstrate similar patterns: Card exhibits smoother, lower-
magnitude metrics; Willett shows larger deviations, particularly in early days. All metrics correlate
moderately with PER, further linking the learned linear transforms to recording quality.

Figure 6: Day-wise evolution of diagonal ratio and PER.

Figure 7: Day-wise evolution of ∥Wd − I∥F and PER.

Figure 8: Day-wise evolution of log | detWd| and PER.
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Figure 9: Day-wise evolution of off-diagonal energy and PER.

Figure 10: Day-wise evolution of orthogonality gap and PER.
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D SENSITIVITY ANALYSES OF CROSS-DATASET TRAINING AND
HIERARCHICAL CTC WEIGHT

To isolate the effect of key hyperparameters on cross-subject and cross-dataset performance, we con-
ducted two controlled sensitivity analyses. All experiments were performed under identical training
conditions, using a fixed random seed and identical optimization hyperparameters. Thus, each anal-
ysis varies exactly one factor at a time, enabling a clear causal interpretation of the results.

D.1 EFFECT OF HIERARCHICAL CTC WEIGHT α

The first analysis studies the contribution of intermediate CTC supervision by varying the loss
weight α associated with the hierarchical CTC auxiliary head. The parameter α determines the
relative influence of intermediate phoneme-level loss signals on the optimization dynamics. We
sweep α ∈ {0.1, 0.2, 0.3, 0.5, 0.75, 1.0} while holding every other training component fixed.

Numerical results. Table 5 reports the PER for both datasets. A distinct optimum emerges at
α = 0.3, which yields the lowest error for both Card and Willett.

Table 5: Sensitivity of PER to hierarchical CTC weight α.
α Card PER Willett PER

0.1 9.4 16.5
0.2 9.5 17.1
0.3 9.1 16.1
0.5 10.1 17.6

0.75 10.6 18.5
1.0 10.7 18.7

Interpretation. Moderate hierarchical supervision improves decoding, suggesting that interme-
diate phoneme representations are beneficial but should not dominate optimization. Both datasets
exhibit the same optimum, which supports the idea that hierarchical CTC acts as a regularizer that
stabilizes gradient flow and improves cross-subject phonetic structure.

Figure 11 visualizes the PER evolution with respect to α, including baseline performance levels
from single-dataset training. The vertical dashed line highlights the optimal configuration.

Figure 11: Sensitivity of PER to the hierarchical CTC weight α. Dashed horizontal lines denote
baselines; the best setting α = 0.3 is marked by a vertical line.
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D.2 CROSS-DATASET FRACTION SENSITIVITY ANALYSIS

The second analysis examines how the amount of data from a second dataset influences generaliza-
tion. We consider two complementary configurations:

1. Full Card + fraction of Willett: measures how much Willett data is required to improve
Willett decoding performance when starting from a strong Card-trained model.

2. Full Willett + fraction of Card: measures how Card data helps transfer performance onto
Card subjects when starting from a Willett-trained model.

We further include “Card only” and “Willett only” controls, trained on the same fractions. As before,
the random seed, optimizer, number of epochs, and model architecture remain fixed.

Numerical results. Tables 6 and 7 summarize the results.

Table 6: Willett PER as a function of the fraction of Willett data used.
Fraction Full Card + fraction Willett Willett only

10% 43.1 47.8
25% 31.2 36.6
50% 24.5 30.7
75% 19.3 26.4

100% 16.1 19.7

Table 7: Card PER as a function of the fraction of Card data used.
Fraction Full Willett + fraction Card Card only

10% 36.0 38.9
25% 24.2 26.3
50% 17.8 18.5
75% 14.8 15.8

100% 9.1 10.2

Our interpretation of these results is that adding even a small amount of data from the second dataset
consistently improves performance relative to training on that dataset alone. This effect is present
in both directions: Card improves Willett decoding, and Willett improves Card decoding. The
improvement is especially pronounced at small fractions (10–25%), suggesting that cross-dataset
pretraining provides strong structural priors for phoneme-level representations. At 100% fraction,
both experiments converge to the same PER (16.1 for Willett, 9.1 for Card), matching the fully
mixed training configuration.

Figure 12 shows the two learning curves side-by-side.

These experiments confirm that both hierarchical CTC supervision and cross-dataset exposure sub-
stantially improve generalization. The consistent optimum at α = 0.3 demonstrates that hierarchical
supervision provides beneficial intermediate gradients, while the fraction-sensitivity study illustrates
a clear and reciprocal transfer effect between datasets. Both findings reinforce the central claim of
the paper: cross-subject and cross-dataset representations share a stable phonetic structure
that can be leveraged through joint training and appropriate auxiliary losses.
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Figure 12: Sensitivity of PER to the fraction of the second dataset used. Left: Full Card + fraction
Willett vs. Willett-only. Right: Full Willett + fraction Card vs. Card-only.
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