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ABSTRACT

In this paper, we introduce AVCaps, an audio-visual captioning dataset that con-
tains separate textual captions for the audio, visual, and audio-visual contents of
video clips. The dataset contains 2061 video clips constituting a total of 28.8
hours. We provide up to 5 captions for the audio, visual, and audio-visual con-
tent of each clip, crowdsourced separately. Existing datasets focus on a single
modality or do not provide modality-specific captions, limiting the study of how
each modality contributes to overall comprehension in multimodal settings. Our
dataset addresses this critical gap in multimodal research by offering a resource
for studying how audio and visual content are captioned individually, as well as
how audio-visual content is captioned in relation to these individual modalities.
To counter the bias observed in crowdsourced audio-visual captions, which often
emphasize visual over audio content, we generated three audio-visual captions for
each clip using our crowdsourced captions by leveraging existing large language
models (LLMs). We present multimodal and crossmodal captioning and retrieval
experiments to illustrate the effectiveness of modality-specific captions in evaluat-
ing model performance. Notably, we show that a model trained on LLM-generated
audio-visual captions captures audio information more effectively, achieving 14%
higher Sentence-BERT similarity on ground truth audio captions compared to a
model trained on crowdsourced audio-visual captions. We also discuss the pos-
sibilities in multimodal representation learning, question answering, developing
new video captioning metrics, and generative AI that this dataset unlocks. The
dataset will be freely available online.

1 INTRODUCTION

The growth of multimodal large language models (LLMs) and multimedia content has created a
growing demand for datasets and methods capable of a comprehensive understanding of audio-visual
data Nagrani et al. (2022). In this context, captioning datasets play an important role in advancing
AI and machine perception research helping models learn to interpret and describe complex audio-
visual scenes. These datasets enable machines to generate meaningful descriptions, bridging the gap
between humans and machines, and are essential for advancing tasks like image or video captioning
Xu et al. (2015), multimodal scene understanding Li et al. (2022), and improving human-computer
interaction Baltrušaitis et al. (2019). Specifically, audio-visual datasets with accompanying captions
enable models to learn and interpret the rich, multimodal information in such data.

Multimodal perception models developed using captioning datasets have diverse real-world applica-
tions. For example, audio-visual captioning enhances accessibility by providing transcriptions and
descriptions for multimedia content, making it accessible to individuals with disabilities Mocanu
et al. (2019). They are also essential in automating subtitle generation Chen et al. (2023), improving
content searchability Dong et al. (2018), supporting educational tools Zhou et al. (2018), and video
analysis in security and surveillance Yuan et al. (2024).

Captioning datasets typically focus on descriptions for specific input modalities, such as audio,
image, or video. Image captioning datasets like MS COCO Chen et al. (2015), and Flickr30k Young
et al. (2014) provide textual descriptions for images that include various objects and people engaged
in everyday activities. These datasets enable the development of models that can generate textual
descriptions for static visual content.
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Similarly, audio captioning datasets, such as AudioCaps Kim et al. (2019), Clotho Drossos et al.
(2020), and MACS Martın-Morató & Mesaros (2021) provide textual descriptions that capture the
acoustic scenes in audio clips. AudioCaps has captions for audio files from AudioSet Gemmeke
et al. (2017), a dataset for a general-purpose audio classification from YouTube. Clotho contains
captions for sounds occurring in nature such as water, birds, rain, etc., sourced from FreeSound
Font et al. (2013) while avoiding sounds such as music, speech, and sound effects. MACS provides
captions for audio files recorded in different European cities, from three acoustic environments -
airports, public squares, and parks.

While these datasets have significantly advanced the field of multimedia understanding, they con-
centrate on describing one input modality, making it challenging to model the relationships between
different modalities to get a complete context. Image captions emphasize objects present in the im-
ages describing spatial relationships and object properties. Audio captions contain descriptions of
sound sources, environments, and temporal patterns present in the audio. For instance, consider a
video clip of a dog barking at the door while a bell rings in the background. An image captioning
dataset might focus solely on the visual aspect, describing the scene as “A dog is standing near a
door”, without acknowledging the audio elements. On the other hand, an audio captioning dataset
might describe the sound as “A dog barking and a bell ringing” without any context of the visual
scene. The lack of integration between the two modalities means that the complete context - “The
dog is barking at the door because someone rang the bell” is not captured. This demonstrates the
need for datasets that can handle both modalities simultaneously to generate richer and more con-
textually accurate captions.

Video captioning datasets, like MSR-VTT Xu et al. (2016) and ActivityNet Captions Krishna et al.
(2017) offer captions that describe the content of video clips. MSR-VTT consists of 10000 video
clips from various categories such as people, animation, TV shows, vehicles, etc., and 20 associated
crowdsourced English captions per clip. ActivityNet Captions consists of video clips capturing
various human activities annotated with natural language captions. Although these datasets include
audio content as a part of the video clips, the primary focus of the descriptions is on the visual
content. Winter (2019) also presents a study of how the descriptions vary depending on the sensory
input and demonstrates visual as the dominant sensory input. Hence, current captioning datasets
hamper our ability to understand how multimodal models perceive and integrate information from
different modalities, and to quantify the extent to which each modality contributes to the overall
representation.

To address these challenges, there is a pressing need for a dataset that provides captions for audio,
visual, and audio-visual content for the same video clips. To this end, we designed a new audio-
visual captioning dataset AVCaps, that contains modality-specific captions for audio, visual, and
audio-visual content of the same video clips.

In this paper, our contributions are threefold:

• We introduce a novel audio-visual captioning dataset AVCaps, that contains 2061 videos,
spanning a total duration of 28.8 hours, and includes crowdsourced captions for audio,
visual, and audio-visual content of the same video clips.

• Since human annotators tend to focus more on visual elements than audio when describing
audio-visual content Winter (2019), we also present as part of the dataset, three audio-visual
descriptions for each clip generated by an LLM using the modality-specific crowdsourced
captions.

• We develop audio-visual captioning and retrieval models on the AVCaps dataset and
demonstrate how modality-specific captions can be used to enhance and evaluate the ability
of these models to capture information from audio and visual modalities.

2 DATASET

In this section, we discuss the overall process involved in creating our dataset. This includes select-
ing videos, collecting human-annotated captions, data cleaning, and creating the data splits. We also
present some unique characteristics of the collected captions that give a very good insight into how
humans perceive different modalities.
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2.1 DATA COLLECTION

The first step involved selecting videos for the dataset. Our goal was to choose publicly available
videos that can be reused, redistributed, and encompass a broad range of topics. To achieve this, we
sourced the videos from the VidOR dataset Shang et al. (2019); Thomee et al. (2016). The VidOR
dataset comprises 10000 Creative Commons-licensed video clips from Flickr, featuring a variety of
scenarios such as indoor and outdoor family moments, musical performances, speeches, pets, and
babies. The VidOR dataset also contains annotations of 80 object classes with their spatiotemporal
bounding boxes and 50 categories of action and spatial predicates that describe the relationships
between different objects within the videos.

We filtered this dataset to select videos with at least three object classes and a minimum duration
of 10 seconds to aid diverse and descriptive captions. After this filtering, we had 2176 videos for
further data annotation. We isolated audio and visual content from the selected videos, to provide
them as separate modalities for the annotators. Using Amazon Mechanical Turk (AMT), we crowd-
sourced five captions per clip for the audio, visual, and audio-visual content in the selected clips,
annotated by different workers. To ensure quality, we restricted the task to AMT workers with a 97%
approval rate. Since we collected English captions, we limited the task to workers from English-
speaking countries such as the USA, UK, and Australia. The workers were instructed to complete
a Human Intelligence Task (HIT) by describing the input clip (audio, visual or audio-visual) using
a complete sentence with at least five words in the caption. They were also provided with some
example captions to assist them. The workers were compensated at a rate of $0.25 per HIT. In total,
4421 workers annotated the entire dataset. The instructions provided to the workers for annotating
different modalities are provided in Appendix B.

2.2 DATA CLEANING

We implemented a two-stage data cleaning process to ensure high data quality.

Stage 1: Automated Error Correction

Following the crowdsourcing phase, each video clip was paired with 15 captions, 5 each for the
audio, visual, and audio-visual content. Despite limiting the tasks to workers from English-speaking
countries, a notable proportion of captions contained spelling and grammatical errors. To address
these issues, we implemented an automated error correction step using the GPT-3.5 language
model. Following the grammar correction prompt outlined in the OpenAI API documentation1, the
following template was employed:

You will be provided with statements. Your task is to
convert them to standard English.

crowdsourced caption 1
crowdsourced caption 2
...
crowdsourced caption n

After this error correction process, we observed a decrease in the vocabulary of the corrected cap-
tions due to the removal of misspellings. The average length of the corrected captions increased,
due to adding articles and determinants to the sentences. Additionally, readability indices Thomas
et al. (1975) showed that the comprehension level required increased, from 7 years old to 9-10 years.
Examples illustrating this error-correction process and its effects are provided in Appendix C.

Stage 2: Manual Relevance Screening

Next, we found that some captions were not relevant to the scenes, as the annotations were noisy.
For instance, one worker repeated the caption “I enjoy it greatly” 10 times and another worker
wrote “The voice is very nice and likable”, 19 times. Some workers copied the example captions
provided for reference. The audio modality captions were the most affected with a total of 427 HITs
completed using one of the example captions.

1https://platform.openai.com/docs/examples/default-grammar
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In this cleaning stage, we manually read all the crowdsourced captions and checked if they were
relevant to the corresponding input file, and removed noisy captions from the dataset that were not
related to the input. We removed video clips and their corresponding audio and visual clips from the
dataset that did not have at least one relevant audio, visual, and audio-visual caption.

After the data cleaning process, we ended up with 2061 clips, with a total duration of 28.8 hours.
Each video varies in length, with the shortest being 20 seconds and the longest 175 seconds. The
average duration of the videos is 50.45 seconds, while the median duration is 44.54 seconds. The
total number of captions is 6.1k, 7.6k, and 7.7k for audio, visual, and audio-visual clips respectively.
Some sample captions from the dataset are shown in Appendix A.

2.3 TRAINING, VALIDATION AND TEST SPLITS

The dataset is split randomly approximately into 80%-10%-10% for training, validation, and testing,
respectively. The training set contains 1661 clips, while the validation and test set each consist of
200 clips. The data is split in such a way that all files in the validation and test splits have at least
three ground truth captions for audio, visual, and audio-visual content of the clip while all the files
in the training split have at least one caption for each category. The content of the videos in the
training split contains 73 unique VidOR object categories while the validation and test videos have
49 and 48 respectively.

2.4 DATASET CHARACTERISTICS

The audio, visual, and audio-visual captions are analyzed separately and their statistics are presented
in Table 1. The vocabulary size has been calculated by lemmatizing the words using the python NLP
toolkit2. The most common sentence in the dataset is “The baby is playing a game”, repeating 25,
12, and 11 times in audio, visual, and audio-visual captions respectively. The words “baby” and
“play” are among the top three words in the audio, visual and audio-visual captions.

Table 1: Statistics of the crowdsourced audio, visual, and audio-visual captions. The average length
is the average number of words in the caption. Parts of speech (POS) are also shown with percentage
of nouns, verbs, adj. (adjectives), adv. (adverbs).

Caption Total Unique Vocab. Average POS
type captions captions size length Nouns Verbs Adj. Adv.

Audio 6110 5737 1343 10.27 56.7% 35.0% 4.6% 3.2%
Visual 7599 7253 1863 10.24 61.2% 31.2% 5.9% 1.2%

Audio-visual 7747 7487 1977 10.77 60.9% 31.7% 5.7% 1.3%

Parts of speech (POS) analysis gives us information about how the captions are structured. Captions
are mainly formed using nouns and verbs, with a small proportion of adjectives and adverbs. In
particular, audio captions exhibit higher frequency of verbs, indicating that audio is often associated
with sound-producing actions Giordano et al. (2022). The workers use different sensory inputs to
annotate a clip, resulting in different descriptions for the audio, visual, and audio-visual content
of the clips. An example of how different annotators describe different sensory inputs is shown
in Table 2. In audio-visual and visual captions, the actions described are related to visual sensory
e.g.“seeing” or “looking” and for the audio captions, they are related to acoustic sensory inputs, e.g.
“talking” and “barking”.

Figure 1: An example video from the dataset.

2https://www.nltk.org/
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Table 2: Captions annotated for video clip shown in Figure 1.
Input Caption

Audio
A woman is sharing a humorous anecdote about her dog while the dog is barking loudly
in the background.
This lady is laughing out loud.

Visual
The two dogs are scared when things move.
Two dogs are looking at a basket.
Two dogs were listening and looking at the mat.

Audio-visual
There are two dogs that are seeing something.
The dogs are playing with each other.
The homeowner interacts with her puppies by showing them something and laughing.

Some of the most frequently used adjectives in audio captions are: “unintelligible”, “husky”,
“unclear” or “louder”, which are related to describing acoustic content. Some examples of the
most frequently used adjectives in the visual and audio-visual captions are: “ugly”, “illuminated”,
“coloured”, “oversized”, and “attractive”. The audio-visual captions contain more information about
the visual content than the audio content, as it can be seen in the example shown in Table 2. The
audio-visual captions do not focus on the woman talking or the dog barking.

2.5 LLM-GENERATED AUDIO-VISUAL CAPTIONS

As stated in Winter (2019), we also observed during the manual screening process that in many
cases, the crowdsourced audio-visual captions, without explicit instructions to focus on a specific
modality, tended to emphasize visual cues more than auditory ones. This observation further
substantiated in Section 2.6, has motivated the generation of a new set of audio-visual captions that
provide a balanced representation of the visual and audio content. To do so the crowdsourced audio,
visual, and audio-visual captions were fed to the LLM (GPT-4o), and the model was prompted to
give three audio-visual captions. The prompt given to the LLM for this task is as follows:

You will be provided with a few descriptions of audio, visual,
and audio-visual contents of a video clip. These were described
by different people. Hence, they may focus on different aspects
of the video clip when they are looking at the audio and visual
parts. There could be some inconsistencies. For example,
some people may refer a man in the visual clip as father, dad,
grandfather, person and so on.

Your task is to create three consolidated captions that capture
consistent information from audio, visual, and audio-visual
descriptions while ignoring some information that may have been
misinterpreted.

Audio captions:
crowdsourced caption 1
...
crowdsourced caption n

Visual captions:
crowdsourced caption 1
...
crowdsourced caption n

Audio-visual captions:
crowdsourced caption 1
...
crowdsourced caption n

5
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The LLM-generated captions have on average 15.44 words per caption, almost 50% higher than
the average number of words in the crowdsourced captions. Examples of audio-visual captions
produced by GPT-4o based on ground truth captions are provided in Appendix 5.

2.6 COMPARISON OF GROUND TRUTH AND LLM-GENERATED AUDIO-VISUAL CAPTIONS

To support our claim that the crowdsourced audio-visual captions emphasize visual cues more than
auditory ones, we analyzed the audio and visual information present by comparing them against the
ground truth audio and ground truth visual captions. Similarly, we compared the LLM-generated
audio-visual captions to the ground truth audio and visual captions. For this comparison, we treated
each of the ground truth audio-visual captions and LLM-generated audio-visual captions as a predic-
tion and their corresponding ground truth audio and visual captions from the same clip as the refer-
ences. We calculated n-gram overlaps using METEOR Lavie & Agarwal (2007) and ROUGE L Lin
(2004) metrics, semantic similarity using CIDer Vedantam et al. (2015), SPICE metric Anderson
et al. (2016), and the sentence similarity using Sentence-BERT Reimers & Gurevych (2019) cosine
similarity (SBERTsim). We report our findings in Table 3.

Table 3: Comparison of ground truth (GT) and LLM-generated (LLM) audio-visual captions with
the ground truth audio and visual captions.

Reference Predicted METEOR ROUGE L CIDEr SPICE SBERTsim

Visual Audio-visual (GT) 0.25 0.45 0.62 0.21 0.62
Audio Audio-visual (GT) 0.14 0.27 0.14 0.10 0.36
Visual Audio-visual (LLM) 0.31 0.51 0.71 0.30 0.66
Audio Audio-visual (LLM) 0.23 0.38 0.37 0.21 0.49

It can be seen that the LLM-generated audio-visual captions lead to higher similarity to both visual
and audio ground truth captions compared to the crowdsourced audio-visual captions. Specifically,
the similarity between the LLM-generated captions and the audio ground truth captions is almost
14% higher (in terms of SBERTsim) than the similarity between the audio ground truth and the
crowdsourced audio-visual captions.

3 EXPERIMENTS

In this section, we present various captioning and retrieval tasks realized with the AVCaps dataset.
Specifically, we build audio-visual captioning and retrieval models and show how modality-specific
captions can be used to evaluate the ability of these models to capture information from both audio
and visual content. These experiments can also serve as a baseline for methods that will be developed
in the future using this dataset.

3.1 CAPTIONING

Captioning is the task of generating a natural language description for an input signal like an image
or audio. A typical deep-learning captioning model consists of an encoder and a decoder. The
encoder processes the input signal, extracts features, and creates a representation. The decoder then
generates the caption in an auto-regressive manner using this encoded representation. For unimodal
tasks like image or audio captioning, encoders are selected based on the input modality. ResNet
He et al. (2016) or VGG Simonyan & Zisserman (2014) models are common for image feature
extraction, while PANNs Kong et al. (2020) or VGGish Hershey et al. (2017) are used for audio.
With the advancements in natural language processing, transformers have become the gold standard
for decoders to generate textual descriptions.

Audio-visual captioning: Using our AVCaps dataset, we developed an audio-visual captioning
system. This model consists of two encoders - PANNs Kong et al. (2020) for the audio feature
extraction and ResNet-3D Tran et al. (2018) for the visual feature extraction. We used pre-trained
PANNs finetuned on the Clotho dataset Drossos et al. (2020) for the audio retrieval task as a part
of the DCASE 2023 challenge 3, and for visual feature extraction we used the ResNet-3D model

3https://dcase.community/challenge2023/task-language-based-audio-retrieval
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pre-trained on Kinetics 400 dataset Kay et al. (2017). Our decoder is a 6-layer transformer model
trained to predict the next token. We used the GPT-2 tokenizer Radford et al. (2019) which has 50k
tokens, to tokenize the input text fed to the decoder.

Audio features Visual features

PANNs ResNet3D Transformer 
Decoder

GPT-2 tokenizer

Classification layer Predicted caption

Input caption + Position
embedding

Figure 2: Audio-visual captioning model architecture

Audio files were cropped or padded to two minutes and sampled at 16 kHz. Log-mel spectrograms
with 64 mel bins were extracted and fed into the pre-trained PANNs model. The PANNs encoder
produces an audio embedding R75×2048, where 75 is the temporal dimension and 2048 is the fea-
ture dimension. Similarly, the visual clips were cropped or padded to two minutes, sampled at 5
frames per second, and fed to the ResNet-3D model. The ResNet-3D outputs a visual representation
R75×512, where 512 is the temporal dimension and 512 is the feature dimension. The output from
the audio encoder is transformed via a learnable linear layer to a 75× 512 representation and then
downsampled to match the temporal resolution of the visual embedding. These are then concate-
nated along the feature dimension and passed to a 6-layer transformer decoder with 1024 attention
units. The decoder generates audio-visual captions using the joint audio-visual representation. The
audio-visual captioning model architecture is shown in Figure 2. We trained two models, one using
the ground truth audio-visual captions and the other using the LLM-generated audio-visual cap-
tions. We evaluated these models on the test split using their corresponding audio-visual captions as
references. We report the performance of both models in Table 4.

Table 4: Performance of audio-visual captioning models on the AVCaps dataset. Audio-visual
(GT) and Audio-visual (LLM) refer to the models trained and evaluated on ground truth and LLM-
generated audio-visual captions respectively.

Model METEOR ROUGE L CIDEr SPICE SPIDEr
Audio-visual (GT) 0.20 0.44 0.37 0.11 0.24
Audio-visual (LLM) 0.18 0.36 0.33 0.14 0.23

Evaluation of audio-visual captioning: While the model trained and evaluated on ground truth
captions achieves higher metrics overall, likely due to the shorter average caption length compared
to the LLM-generated captions, the latter model shows a stronger ability to capture both audio and
visual information. To validate this, we conducted a comparative analysis of the predicted captions
from both models against the ground truth audio and visual captions. The results, shown in Table 5,
indicate that both models effectively capture visual cues within the clips, but the model trained on
LLM-generated captions performs significantly better in identifying audio cues.

Table 5: Comparison of predicted audio-viusal captions (Predicted) against the audio and visual
ground truth captions (Reference).

Predicted Reference METEOR ROUGE L CIDEr SPICE SBERTsim

Audio-visual
(GT)

Audio 0.15 0.34 0.17 0.08 0.31
Visual 0.21 0.45 0.42 0.12 0.44

Audio-visual
(LLM)

Audio 0.20 0.35 0.16 0.15 0.45
Visual 0.19 0.36 0.21 0.17 0.43

These findings reinforce our observation that when humans process audio-visual content, they tend
to focus more on visual information than auditory details. However, when they described the audio

7
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and visual modalities separately, and this information is later integrated (as in the case of LLM-
generated captions), the captioning model can learn from both modalities. In this way, by utilizing
modality-specific captions, we can assess how well multimodal models capture information from
different input modalities and improve their capacity to produce more comprehensive and balanced
captions.

Crossmodal captioning: A unique feature of our dataset is crossmodal captioning, where models
are trained on inputs from one modality and ground truth labels from another. For instance, audio
captions can be generated from visual inputs and vice versa. Our dataset allows validation of these
generated captions using ground truth from the missing modality, making it valuable for generative
AI applications, such as augmenting videos with realistic sounds or generating videos from audio.
For our experiments, we trained two crossmodal captioning models: one that generates audio-visual
captions from audio inputs, and another that generates audio-visual captions from visual inputs. Both
models were trained and evaluated using LLM-generated audio-visual captions. The performance of
these models is presented in Table 6. The results show that the model generates audio-visual captions
more effectively from visual input than from audio input. This may be because visual modality often
contains more information than audio modality. This is reflected in the 21% higher SPIDer score
for the model using visual input, indicating greater semantic similarity with the LLM-generated
audio-visual captions.

Table 6: Comparison of crossmodal captioning models trained and evaluated on audio-visual cap-
tions (Reference) when a single modality is given (Input).

Input Reference METEOR ROUGE L CIDEr SPICE SPIDEr
Audio Audio-visual (LLM) 0.16 0.36 0.24 0.11 0.18
Visual Audio-visual (LLM) 0.17 0.37 0.30 0.13 0.21

Evaluation of crossmodal captioning: To assess how effectively the predicted audio-visual cap-
tions capture the information in the missing modality, the predicted audio-visual captions are com-
pared with the ground truth captions of the missing modality and presented in Table 7. The results
indicate both the models can partly capture the information from the missing modality. It can again
be seen that generating captions related to audio is relatively easier when provided with visual input
compared to the reverse scenario. Leveraging advanced pre-trained LLM decoders and techniques
such as self-supervised learning and data augmentation, the crossmodal performance can be further
improved. In addition to these experiments, we developed unimodal captioning tasks, such as audio
and visual captioning. These experiments are presented in Appendix E.

Table 7: Comparison of the predicted audio-visual captions (Predicted) when a single modality is
given (Input), with the missing modality ground truth captions (Reference).

Input Predicted Reference METEOR ROUGE L CIDEr SPICE SBERTsim

Audio Audio-visual
(LLM) Visual 0.17 0.35 0.14 0.10 0.36

Visual Audio-visual
(LLM) Audio 0.22 0.36 0.17 0.13 0.44

3.2 RETRIEVAL

Retrieval is the task of identifying and returning relevant information based on an input query. For
example, in text-based image retrieval, images from a database that corresponds to a textual query
are returned. Similarly, retrieval tasks can be extended to return audio clips, audio-visual clips, and
so on. One common way in deep learning to build retrieval models is to have two encoders. A
textual encoder encodes the information in the query text and an audio or visual encoder encodes all
the audio or visual files in the database. Then the cosine similarity between the text representation
and all the audio or visual representations is calculated and the files with top similarity scores are
returned. To train these retrieval models, a contrastive training approach is adopted, wherein the
similarity between media files and their corresponding ground truth descriptions is increased while
the similarity with the other textual descriptions and other media files in the database is decreased.

8
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Audio-visual retrieval: Similarly to captioning models, we developed audio-visual retrieval mod-
els. The task is to retrieve videos that correspond to audio-visual descriptions. Figure 3 shows the
architecture of our audio-visual retrieval model. The audio and visual embeddings from the PANNs
and ResNet-3D encoders are averaged over the temporal dimension, concatenated, and mapped to
a fixed-size embedding of size 512 using a learnable linear layer. To facilitate the learning of sim-
ilarity between the representations, InfoNCE van den Oord et al. (2019) loss was applied among
these fixed-size embeddings to aid contrastive learning. The contrastive training was performed on
mini-batches of size 32.

Audio feat. B
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Audio feat. 1

Visual feat. B
Visual feat. 2
Visual feat. 1

PANNs ResNet3D Sentence
BERT

Linear layer Linear layer
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Audio-visual
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Figure 3: Audio-visual retrieval model. Left: Training. Right: Inference

The retrieval task is typically evaluated using the recall metric (recall@k, where k represents the
number of top results taken into account for the evaluation.). Table 8 presents the performance of our
audio-visual retrieval model trained with both ground truth and LLM-generated audio-visual cap-
tions. The results indicate that LLM-generated captions outperform ground truth captions, as they
encapsulate information from both modalities, enhancing the retrieval of video clips with similar
visual content.

Table 8: Performance of audio-visual retrieval models on the AVCaps dataset.

Text Query Recall@1 Recall@5 Recall@10
Audio-visual (GT) 0.12 0.36 0.49

Audio-visual (LLM) 0.16 0.41 0.57

Crossmodal retrieval: A crossmodal retrieval task is again a unique feature of this dataset. It can be
used to retrieve visuals based on audio captions and vice-versa. These crossmodal experiments are
presented in Appendix E. We performed audio and visual retrieval based on LLM-generated audio-
visual captions and compared them with retrieval based on corresponding ground truth captions.
The results of these experiments are presented in Table 9. It can be seen that the LLM-generated
captions which combined information from the audio and visual captions retrieve audio and visual
files better than the models trained with the corresponding ground truth captions.

Table 9: Comparison of unimodal and crossmodal retrieval on the AVCaps dataset

Modality Text Query Recall@1 Recall@5 Recall@10
Audio Audio 0.05 0.23 0.36
Visual Visual 0.18 0.44 0.57
Audio Audio-visual (LLM) 0.08 0.29 0.43
Visual Audio-visual (LLM) 0.18 0.47 0.62
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4 POSSIBILITIES WITH THE DATASET

Representation Learning: Traditionally, multimodal representation learning has concentrated on
two modalities, such as image and text (e.g., CLIP) Radford et al. (2021) and audio and text (e.g.,
CLAP) Elizalde et al. (2023). Some studies, such as Wu et al. (2022) employ a two-step approach to
create a shared representation across audio, visual, and textual modalities. First, a model is trained
to align images and text in a shared space using an image-text dataset. The text/image encoder is
then frozen or fine-tuned to create a shared representation with audio using a separate audio-text
or audio-image dataset. A key disadvantage of this approach is the suboptimal alignment due to
the independent training phases and different datasets used in these phases. In contrast, our dataset
provides paired audio, visual, and audio-visual captions, enabling the development of a single-stage
shared representation encompassing all three modalities. This approach has the potential to signif-
icantly enhance performance in tasks such as video understanding, video classification, captioning,
and retrieval.

Multimodal Question Answering: Using LLMs and modality specific captions, our dataset enables
the creation of multimodal question-answering datasets by forming questions and answers about
different aspects of the video content, such as sound events, visual actions, or combined audio-visual
occurrence. We can then train models that provide contextually accurate responses about various
aspects of video clips compared to previous approaches that often focus on isolated modalities.

Benchmarking and Metrics: This dataset establishes a new benchmark for evaluating video cap-
tioning models. With ground truth available for each modality, we can assess how effectively these
models capture and integrate information from both audio and visual inputs, enabling the develop-
ment of new metrics for video captioning. This capability is essential for advancing the state-of-the-
art in multimodal scene understanding.

Rich Video Descriptions: Using captions from multiple modalities, incorporating additional meta-
data from the VidOR dataset such as spatiotemporal bounding boxes, object detection, and sound
event detection models, we can generate comprehensive and descriptive video summaries. Unlike
existing datasets that focus on a single modality, our dataset combines information from various
sources, providing a richer context for a more holistic understanding of the video.

Generative Modeling: State-of-the-art video generation models lack the capability to produce
videos accompanied by their corresponding audio. However, this dataset facilitates the training
of such models since it has ground truth captions for individual modalities. We can train models
to generate visual content for a given audio caption, and conversely, generate audio from a visual
caption. This capability significantly enhances the potential for multimodal content generation.

5 CONCLUSION

In this paper, we presented AVCaps, an audio-visual captioning dataset consisting of 2061 video
clips, each paired with up to five human-annotated captions for the audio, visual, and audio-visual
content. To address the bias toward visual cues in crowdsourced audio-visual captions, we included
three audio-visual captions generated by large language models (LLMs) based on the ground truth
annotations. Using multimodal and crossmodal captioning and retrieval experiments, we demon-
strated the effectiveness of modality-specific captions for model evaluation. Our captioning experi-
ments showed that models trained on LLM-generated audio-visual captions capture audio informa-
tion more effectively, achieving 14% higher Sentence-BERT similarity on ground truth audio cap-
tions compared to models trained on crowdsourced audio-visual captions. In retrieval experiments,
we found that audio-visual text queries improve recall@10 in audio retrieval by 7% and visual re-
trieval by 5%, demonstrating the advantage of incorporating crossmodal information. Finally, we
discussed potential applications of the dataset in advancing multimodal learning, highlighting the
value of AVCaps for future research in this domain.
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Irene Martın-Morató and Annamaria Mesaros. Diversity and bias in audio captioning datasets. In
Proceedings of the 6th Detection and Classification of Acoustic Scenes and Events 2021 Work-
shop, pp. 90–94, Barcelona, Spain, November 2021.

Bogdan Mocanu, Ruxandra Tapu, and Titus Zaharia. Enhancing the accessibility of hearing impaired
to video content through fully automatic dynamic captioning. In E-Health and Bioengineering
Conference, pp. 1–4, 2019.

Arsha Nagrani, Paul Hongsuck Seo, Bryan Seybold, Anja Hauth, Santiago Manen, Chen Sun, and
Cordelia Schmid. Learning audio-video modalities from image captions. In European Conference
on Computer Vision, pp. 407–426. Springer, 2022.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, vol. 1, no 8, p. 9, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-
networks. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings of the
Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing, pp. 3982–3992, Hong Kong, China, Novem-
ber 2019.

Sebastian Schuster, Ranjay Krishna, Angel Chang, Li Fei-Fei, and Christopher D. Manning. Gen-
erating semantically precise scene graphs from textual descriptions for improved image retrieval.
In Workshop on Vision and Language, Lisbon, Portugal, September 2015.

Xindi Shang, Donglin Di, Junbin Xiao, Yu Cao, Xun Yang, and Tat-Seng Chua. Annotating ob-
jects and relations in user-generated videos. In Proceedings of the International Conference on
Multimedia Retrieval, pp. 279–287. ACM, 2019.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Georgelle Thomas, R Derald Hartley, and J Peter Kincaid. Test-retest and inter-analyst reliability of
the automated readability index, flesch reading ease score, and the fog count. Journal of Reading
Behavior, 7(2):149–154, 1975.

Bart Thomee, David A Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni, Douglas Poland,
Damian Borth, and Li-Jia Li. YFCC100M: The new data in multimedia research. Communica-
tions of the ACM, 59(2):64–73, 2016.

Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar Paluri. A closer
look at spatiotemporal convolutions for action recognition. In Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition, pp. 6450–6459, 2018.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2019.

Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi Parikh. CIDEr: Consensus-based image
description evaluation. In CVPR, pp. 4566–4575. IEEE Computer Society, 2015.

Bodo Winter. Sensory linguistics. Converging Evidence in Language and Communication Research,
2019.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ho-Hsiang Wu, Prem Seetharaman, Kundan Kumar, and Juan Pablo Bello. Wav2CLIP: Learning
robust audio representations from clip. In IEEE International Conference on Acoustics, Speech
and Signal Processing, pp. 4563–4567, 2022.

Jun Xu, Tao Mei, Ting Yao, and Yong Rui. MSR-VTT: A large video description dataset for bridging
video and language. In IEEE Conference on Computer Vision and Pattern Recognition, pp. 5288–
5296, 2016.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich
Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual
attention. In Proceedings of the 32nd International Conference on Machine Learning, 2015.

Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image descriptions to visual
denotations: New similarity metrics for semantic inference over event descriptions. TACL, 2:
67–78, 2014.

Tongtong Yuan, Xuange Zhang, Kun Liu, Bo Liu, Chen Chen, Jian Jin, and Zhenzhen Jiao. Towards
surveillance video-and-language understanding: New dataset baselines and challenges. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22052–
22061, 2024.

Luowei Zhou, Chenliang Xu, and Jason J Corso. Towards automatic learning of procedures from
web instructional videos. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, pp. 7590–7598, 2018.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A EXAMPLES FROM THE DATASET

In this section, we include some examples from the dataset. Figures 4, 5, and 6 show sample
video clips present in the dataset. We also show the corresponding audio, visual, and audio-visual
captions which were crowdsourced from human annotators. Note that to collect the audio captions,
the audio content was extracted from the videos, and annotators only had access to the audio clip
and not to the visual content. Similarly, the audio content was removed from the videos and shown
to the annotators for the visual captioning task. For the audio-visual captioning task, the annotators
had access to both modalities. We also include the LLM-generated audio-visual captions for these
corresponding examples.

Figure 4: An example video from the dataset.

Caption type Captions

Audio

A person sang a song in front of everyone, and finally, they all clapped.
Someone is singing loudly, and people are encouraging and clapping.
A man is singing and making music on their own.
People are singing, dancing, and playing music.
A man is making sounds and singing a song. A siren sound is heard in the background,
and people are clapping at the end.

Visual
The woman is good at dancing.
A lady is performing a dance on the stage.
A woman is dancing on the stage wearing traditional dress and accompanied by live music.

Audio-visual
(GT)

The girl is dancing superbly.
A lady is dancing on the stage to music.
The girl is dancing and the man is singing with a very nice voice.
A woman shows a dancing performance on stage in front of people.

Audio-visual
(LLM)

A woman is dancing on the stage in traditional dress while a man sings and people clap.
A lady performs a dance on stage accompanied by live music and audience applause.
A woman dances superbly on stage as a man sings and a siren sounds in the background.

Figure 5: An example video from the dataset.
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Caption type Captions

Audio

A lady is speaking to the children. Other children are also speaking. A child is shouting.
A woman is talking to another woman while children are playing and talking loudly
in the background.
The children are talking loudly, and someone is being noisy and clapping.

Visual

These kids are playing on a playground.
The kids are happily seen playing with water balloons. A man and a woman are also
seen in the video.
The babies are playing on the ground.
The kids are playing a water ball game.

Audio-visual
(GT)

This is a children’s park where all the children are playing with water balloons and
enjoying themselves.
The children are playing in the garden.
The children are playing in the park.
The children are playing with water balloons and they are really enjoying it.

Audio-visual
(LLM)

Children are playing with water balloons in a park, enjoying themselves while a woman
talks to another woman.
Kids are happily playing with water balloons in a park, with a woman speaking and
children talking loudly in the background.
Children are seen playing with water balloons in a park, with a woman conversing and
kids making noise.

Figure 6: An example video from the dataset.

Caption type Captions

Audio

The dog wants to play catch with the owner on the beach.
A man is talking to a hungry, whining dog while a river flows in the background.
A small puppy is whining and a man is taking care of the puppy.
A dog was barking in the middle of the river, and a man was helping the dog.

Visual

The man is standing on the beach while his dogs are playing.
Two dogs are playing on the beach.
Dogs are playing with the ball on the beach.
The dog is barking in front of the man. The two dogs are playing with the ball.
Two dogs are barking near the sea.

Audio-visual
(GT)

The owner is playing catch with two dogs on the beach.
Two dogs are on the beach, and they bark at their owner. He throws a ball into the sea,
and the two dogs run to retrieve it. They then give it back to the owner.
The dog is playing by the beach.

Audio-visual
(LLM)

A man is playing catch with two dogs on the beach, throwing a ball into the sea for
them to retrieve.
Two dogs are barking and playing with a ball on the beach while their owner stands nearby.
The owner is interacting with two dogs on the beach, throwing a ball for them to
fetch and return.
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B ANNOTATOR INSTRUCTIONS

In this section, we describe the instructions provided to Amazon Mechanical Turk (AMT) workers
for the captioning annotation tasks across different modalities. Figures 7, 8, and 9 illustrate the user
interface shown to the workers for the audio, visual, and audio-visual captioning tasks, respectively.
The instructions were designed to be straightforward, ensuring that workers could easily grasp the
task requirements and generate captions without unnecessary constraints. Additionally, example
captions were provided to clarify the expected output for each task.

To reduce noisy annotations, we implemented a strategy where the caption textboxes were activated
only after the workers had fully listened to the audio or watched the video. Additionally, we en-
forced a minimum caption length of five words to ensure more detailed and informative responses
from the annotators. It can be noted that for the audio-visual captioning task, we did not have explicit
instructions for the annotators to focus on both the audio and visual modalities or to provide cap-
tions that include information from both modalities. Hence, the ground truth audio-visual captions
emphasized more on the visual aspects compared to the auditory aspects present in the clip.

Please read the following instructions carefully!

We are building a smart robot that can understand audios similarly to humans. Your task is to describe the audio below in one complete sentence. We will  use your description to teach the 
robot.

General guidelines:
1. Please turn on your speaker to listen to the audio.
2. DO NOT use phrases like ‘In this audio’,  ‘I can hear’. In general, avoid mentioning that you are describing an audio.

Task: Describe the audio.

Describe the audio in one complete sentence.
Examples: (Note that these examples are not based on the audio shown here).
• A baby is shouting and people are walking in the background.
• Two children are talking loudly while an announcement is being made.

Enter your description here. This textbox will be active once you listen to the audio completely.

Please listen to the following audio and complete the task given below. (You can listen to it multiple times).

Submit

Figure 7: Instructions to AMT workers for the audio captioning task.
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Please read the following instructions carefully!

We are building a smart robot that can understand videos similarly to humans. Your task is to describe the video below in one complete sentence. We will  use your description to teach the 
robot.

General guidelines:
1. There is NO SOUND in the video.
2. DO NOT use phrases like ‘In this video’, ‘I can see’. In general, avoid mentioning that you are describing a video.

Task: Describe the video.

Describe the video shown above in one complete sentence.
Examples: (Note that these examples are not based on the video shown here).
• A dog is playing with a boy while he is working on a laptop.
• Two children are playing with a tennis ball at a park.

Enter your description here. This textbox will be active once the video is played completely.

Please watch the following video and complete the task given below. (You can watch the video multiple times).

Submit

Figure 8: Instructions to AMT workers for the visual captioning task.

Please read the following instructions carefully!

We are building a smart robot that can understand videos similarly to humans. Your task is to describe the video below in one complete sentence. We will  use your description to teach the 
robot.

General guidelines:
1. Please turn on your speaker to listen to the audio present in the video.
2. DO NOT use phrases like ‘In this video’, ‘I can see’, ‘I can hear’. In general, avoid mentioning that you are describing a video.

Task: Describe the video.

Describe the video shown above in one complete sentence.
Examples: (Note that these examples are not based on the video shown here).
• A dog is barking at a boy who is working on a laptop.
• Two children are playing with a ball at a park and birds are chirping in the background.

Enter your description here. This textbox will be active once the video is played completely.

Please watch the following video and complete the task given below. (You can watch the video multiple times).

Submit

Figure 9: Instructions to AMT workers for the audio-visual captioning task.

C AUTOMATED ERROR CORRECTION WITH GPT

As discussed in Section 2.2, we used GPT-3.5 to correct spelling and grammatical errors in the
crowdsourced captions automatically. Some examples of the errors in annotated captions and their
corresponding GPT-corrected versions are shown in Table 10.

It should be noted that while GPT-3.5 fixed the grammar and spelling in all the captions, in some
cases like the example in the last row, it rephrased the caption to give a slightly different context
than what was provided by the annotator. To understand the impact of the error-correction process,
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Table 10: Crowdsourced captions and their corresponding GPT-corrected versions.
Crowdsourced Caption GPT-Corrected Caption

Teacher is teaching programming using a projector
in front of her class and she is explaining the subject.

A teacher is teaching programming using a projector
in front of her class and explaining the subject.

Teacher teaching a class and students answreing it. A teacher is teaching a class and the students are
answering.

Two adults is talking to a baby in crowded area. Two adults are engaged in conversation with a baby
in a busy location.

we compared the crowdsourced captions and the error-corrected captions of all the modalities based
on their average length in words, readability index, and ease of reading. We present our findings
in Table 11. As spelling errors in the crowdsourced captions are fixed, the vocabulary size reduces
after the error correction. The average length of the corrected captions increases as the LLM adds
missing articles and determinants to these captions. GPT-error-corrected captions use more complex
sentence patterns that increase the age and grade levels required to comprehend the captions.

Table 11: Comparison of crowdsourced captions and GPT corrected captions.
Metrics Crowdsourced Captions Corrected captions
Number of captions 21456 21456
Vocabulary (lemma) 5555 2907
Average length in words 9.63 10.44
Automated readability index ages: 7 to 9 ages: 9 to 10
Flesch reading ease Easy, grade level 6 Fairly easy, grade 7

Finally, we calculated if a sentence is grammatically correct by defining grammar rules. We defined
the rules such as there should be noun phrases, verb phrases, prepositional phrases, and a clause.
A clause is defined as a group of words that contains a subject and a predicate; we defined it as a
noun phrase followed by a verb phrase. We used the Python natural language toolkit 4 to process
the sentences. First, we tokenized and tagged the parts of speech in the sentence, then we used the
parser to map the sentence into a tree structure and finally identified if the clause is present in the
parsed structure. If the label clause is found, the sentence is identified as grammatically correct.
Our analysis showed that 38.7% of the crowdsourced captions and 81.3% of the corrected captions
were categorized as grammatically correct. It should be noted that the defined grammar rules are
too simple, and they are not always able to identify all the grammar structures of a sentence. For
example, it can not identify different verbs forms or subordinate clauses.

D GROUND TRUTH VS LLM-GENERATED AUDIO-VISUAL CAPTIONS

In Section 2.6, we quantitatively showed with various captioning metrics that the ground truth audio-
visual captions place greater emphasis on visual cues than on auditory cues. To illustrate this obser-
vation, we present an example that highlights this disparity. Additionally, we include the correspond-
ing LLM-generated audio-visual captions, which incorporate information from both modalities.

Figure 10: An example video from the dataset.

4https://www.nltk.org/

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Caption type Captions

Audio
The baby and her mother are speaking in a cute voice.
The children are talking to the parent.
A lady and a boy are talking.

Visual

Two children are eating something on the sofa.
Two children are drinking beverages.
There are two children and their father. One child is a boy and the other is a girl. The
girl is eating food while the boy is not eating. The father is using his mobile phone
and the children are fighting.

Audio-visual
(GT)

Two children are at the table. The elder one is eating, and the younger one is playing.
A little girl is eating food with a spoon and she is giving food to the baby next to her.
The children are fighting at the dining table.
A little girl is eating food and she is giving that food to the baby near her.

Audio-visual
(LLM)

Two children are at the table. The girl is eating food with a spoon and giving some
to the baby next to her while the father uses his mobile phone.
The children are talking to their parent while the girl eats and the boy plays; they
occasionally fight.
A lady and a boy are talking as the girl eats and shares food with the baby beside her.

In the above example, objects, attributes, and relationships marked in bold are extracted using the
Stanford Scene Graph Schuster et al. (2015). The audio captions capture the conversation between
the babies and their parents, including the speech of a woman who is not visible in the visual modal-
ity but is audible (sitting on the opposite side of the table). However, this auditory information is not
reflected in the ground truth audio-visual captions, which predominantly focus on the visual aspects
of the scene, such as a little girl eating and sharing food, while omitting the conversational details.
In contrast, the captions generated by Large Language Models (LLMs) incorporate both auditory
and visual elements, effectively capturing the conversation and providing a more comprehensive
description of the clip.

E OTHER EXPERIMENTS

In addition to the experiments presented in Section 3, we developed various other unimodal and
crossmodal captioning and retrieval models that are presented in this section.

Audio captioning: The audio captioning model takes audio files cropped or padded for 2 minutes,
sampled at 16 kHz as inputs, and their corresponding ground truth captions as labels. Log-mel
spectrograms with 64 mel bins are extracted and fed into the pre-trained PANNs model, producing
an encoded representation R75×2048, where 75 is the temporal dimension and 2048 is the feature
dimension. This is transformed via a learnable linear layer to a 75x512 representation and passed
to a 6-layer transformer decoder with an attention size of 512 that predicts the next token auto-
regressively.

Visual captioning: Similarly, a visual captioning model was trained using muted video clips as input
and ground truth captions as labels. The clips were cropped or padded to 2 minutes and sampled
at 5 fps and visual features were extracted using a pre-trained ResNet-3D. It produces an encoded
representation R75×512, where 512 is the temporal dimension and 512 is the feature dimension that
is passed to the decoder. The decoder architecture is identical to that used for the audio captioning
model. Note that in both cases, the transformer decoders are trained from scratch. The results of the
unimodal captioning experiments are presented in Table 12. It can be seen that the audio captioning
model performs slightly better in the SPICE metric, while the visual captioning model shows better
performance in ROUGE L and CIDEr.

Crossmodal captioning: Next, we developed additional crossmodal captioning models. Specifi-
cally, we trained models that generate visual captions using audio input and vice-versa. During the
training phase, these models were provided inputs from one modality and captions from the other
modality. During inference, the predicted captions are evaluated against the ground truth captions of
the cross-modality. In Table 13, we present the performance of these crossmodal captioning models.
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Table 12: Performance of unimodal captioning models on the AVCaps dataset.

Modality METEOR ROUGE L CIDEr SPICE SPIDEr

Audio 0.200 0.380 0.333 0.153 0.243
Visual 0.195 0.424 0.416 0.117 0.267

These results suggest that visual modality contains more cues to learn about the audio than audio
modality about visuals.

Table 13: Performance of crossmodal captioning models on the AVCaps dataset.

Input Reference METEOR ROUGE L CIDEr SPICE SPIDEr

Audio Visual 0.187 0.415 0.257 0.098 0.177
Visual Audio 0.177 0.378 0.270 0.126 0.198

Crossmodal retrieval: Similarly, we performed crossmodal retrieval experiments to retrieve audio
and visual files based on visual and audio captions respectively. During training, the similarity
between the input signals of one modality and the corresponding captions of the same signal from
the other modality is increased using the InfoNCE loss. The results of our crossmodal retrieval
experiments are presented in Table 14. It can be seen that visual captions retrieve audio files nearly
twice as effectively as audio captions retrieve visual files.

Table 14: Performance of crossmodal retrieval models on the AVCaps dataset.

Modality Text Query Recall@1 Recall@5 Recall@10

Visual Audio 0.03 0.10 0.16
Audio Visual 0.05 0.19 0.29
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