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Abstract

Recent advances in quantum computing and in particular, the introduction of
quantum GANs, have led to increased interest in quantum zero-sum game theory,
extending the scope of learning algorithms for classical games into the quantum
realm. In this paper, we focus on learning in quantum zero-sum games under Matrix
Multiplicative Weights Update (a generalization of the multiplicative weights update
method) and its continuous analogue, Quantum Replicator Dynamics. When each
player selects their state according to quantum replicator dynamics, we show that
the system exhibits conservation laws in a quantum-information theoretic sense.
Moreover, we show that the system exhibits Poincaré recurrence, meaning that
almost all orbits return arbitrarily close to their initial conditions infinitely often.
Our analysis generalizes previous results in the case of classical games [48, 42].

1 Introduction

The Nash equilibrium has always been a central concept in non-cooperative game theory. While the
existence of Nash equilibria is well known in finite games where mixed strategies are allowed [44],
it is less clear how to efficiently compute these equilibria themselves. Indeed, much work revolves
around finding methods to solve for Nash equilibria in different contexts, as well as analyzing the
complexity of solving for the Nash [33, 15].

Despite the dominance of equilibrium computation in classical theory, recent works have begun
to move towards attempting to understand the nature of learning in games [23, 51]. The family of
regret-minimizing algorithms known as Follow-The-Regularized-Leader (FTRL) have been studied
extensively, both for discrete time [7, 13, 45, 49] and continuous time [42, 21, 48, 47] dynamics.
These algorithms have found many applications in the domain of machine learning - one such example
is that of Generative Adversarial Networks (GANs) [25], which have been successfully modeled
using zero-sum game theory. This rich connection has led to a stronger understanding of adversarial
learning and improved practical performance of GANs in various settings [21, 32, 36].

On the other side of the coin, quantum computing is a field which has garnered much interest in
the machine learning community. Many quantum machine learning algorithms have been proposed,
extending standard classical algorithms. One such example is quantum GANs [14, 39, 12]. While
such works describe the architecture of quantum GANs, we still do not fully understand the behavior
of learning algorithms in the quantum setting. In this paper, we provide an initial analysis of
learning in zero-sum quantum games. We do so by studying the learning behaviour of the ubiquitous
Multiplicative Weights Update (MWU) update rule [37, 22, 5], a specific instance of the FTRL
framework, when applied to such games.
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There have been several important results studying MWU and its continuous counterpart, replicator
dynamics. [7] showed that classical MWU does not converge in day-to-day behaviour to the mixed
Nash equilibrium when applied to two player zero-sum games. [42] showed that the orbits of players
in zero-sum games exhibit Poincaré recurrence when using replicator dynamics. However, quantum
systems can oftentimes behave in radically different ways to their classical counterparts. Indeed,
allowing for quantum strategies can create situations wherein players can gain greater payoffs than
if they were playing using only classical strategies (see e.g. the Mermin–Peres magic square game
[40, 46]). As such, our extension of the classical results to the quantum realm has to be treated with
care.

We focus on a matrix generalization of MWU known as Matrix Multiplicative Weights Update
(MMWU), which changes the paradigm of standard MWU from cost vectors to cost matrices, and
from probability vectors to density matrices. This generalization has been independently discovered
and studied by [54] as Matrix Exponentiated Gradient Updates and [5] as the Matrix Multiplicative
Weights algorithm. Applications of the MMWU algorithm include solving semi-definite programs
(SDPs) [6] and obtaining bounds on the sample complexity for learning problems in quantum
computing [30]. From a game theoretic standpoint, [28] analyzed the MMWU algorithm for quantum
zero-sum games, proving time-average convergence to an approximate Nash equilibrium. We extend
this result by studying the learning behaviour of MMWU in quantum zero-sum games, which could lay
the groundwork for developing novel algorithms that achieve convergence to the Nash in day-to-day
behaviour in quantum zero-sum games, similar to the case of their classical analogues [16, 41].

Contributions. In this paper, we first study the dynamics of MMWU in quantum zero-sum games,
utilizing tools from information theory and classical game theory (Section 3). We provide bounds on
the rate of change of the total quantum relative entropy between a fully mixed Nash equilibrium and
the evolving state of the system. We then study the continuous counterpart of MMWU, which we call
quantum replicator dynamics (Section 4). We show that the aforementioned total quantum relative
entropy is a constant of motion. Furthermore, the dynamics do not converge to equilibrium (in the
day-to-day sense) but rather exhibit a weaker form of approximate periodicity known as Poincaré
recurrence. Our proof of this result departs from the standard classical method, representing our main
technical novelty. Finally, we present several simulations which corroborate our theoretical results
(Section 5).

2 Preliminaries and Definitions

2.1 Quantum Theory

Basic concepts. Similarly to [28] and in order to make the presentation self-contained, we will
start by introducing some basic concepts of quantum information and game theory.

First, we refer to a quantum register as a collection of qubits representing a message that is transferred
from one party to another. We associate a vector space H = Cn with any quantum register. This
intuitively represents the maximum number of distinct classical states that can be stored in the register
without error. The state of a quantum register is represented by a density matrix, which is an n× n
positive semi-definite matrix with trace 1. We will use D(H) to denote the set of all density matrices
associated with a register that is described by H. One can naturally view such density matrices as
linear operators acting onH.

When two registers with associated spaces A = Cn and B = Cm are considered as a joint register,
the associated space is the tensor product A ⊗ B = Cnm. If the two registers are independently
prepared in states described by ρ and σ, then the joint state is described by the nm × nm density
matrix ρ⊗ σ.

Next, for a given vector space H = Cn, we define L(H) as the set of all n × n complex matrices.
Furthermore, we denote the subset of L(H) given by Hermitian matrices as Herm(H). A Hermitian
matrix A satisfies the equality A = A†, where A† denotes the adjoint (or conjugate transpose) of
matrix A. Subsequently, we define Pos(H) as the subset of Herm(H) which consists of all positive
semi-definite n× n matrices.
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Finally, the Hilbert-Schmidt inner product on L(H) is defined as 〈A,B〉 = Tr(A†B) for all A,B ∈
L(H). Note that 〈A,B〉 is a real number for any Hermitian matrices A and B, and is also additionally
non-negative if A and B are positive semi-definite.

Measurements and observables. In the context of game theory, we are also interested in the
concepts of quantum measurements and observables. An observable is simply a property of the
quantum system which is measurable. The measurement of a register having associated vector
space H = Cn is a collection of linear operators {Pi : 1 ≤ i ≤ k} ⊂ Pos(H) which satisfies∑k
i=1 Pi = 1H, where 1H is the identity matrix on H. If the register corresponding to H is in a

state defined by density matrix ρ and the measurement described by Pi is performed, each outcome i
will be observed with probability 〈Pi, ρ〉. An important note is that two mixed states with the same
density matrix are indistinguishable from each other by any measurement.

Additional notation and definitions. A linear mapping of the form Φ : L(B)→ L(A) is called a
super-operator. The adjoint super-operator to Φ is Φ† : L(A)→ L(B) and is uniquely determined by
the condition:

〈A,Φ(B)〉 = 〈Φ†(A), B〉
A super-operator Φ : L(B)→ L(A) is said to be positive if Φ(P ) is positive semi-definite for every
choice of positive semi-definite operator P ∈ Pos(B). In addition, Φ† is positive if and only if Φ
is positive. There is a one-to-one and linear correspondence between the collection of operators of
the form R ∈ L(A ⊗ B) and the collection of super-operators Φ : L(B) → L(A) defined above.
Specifically, for each super-operator Φ we can define an operator R as follows:

R =
∑

1≤i,j≤m

Φ(Ei,j)⊗ Ei,j (1)

where Ei,j is the matrix with a 1 in entry (i, j) and 0 elsewhere. Conversely, given an operator
R ∈ L(A⊗ B), we can define:

Φ(B) = TrB(R(1A ⊗B>)) (2)

This correspondence is linear and one can translate back and forth between the two as needed for an
given application. R is assumed to be positive semi-definite, so the corresponding super-operator Φ
is also positive.

2.2 Quantum Game Theory

A quantum system which can be manipulated by any number of agents, and where the utility of the
moves is well defined, quantified and ordered can be conceived as a quantum game. In particular,
a 2-player zero-sum quantum game sees players Alice and Bob each sending a quantum state to
a referee, who then performs a measurement on these two states to determine their payoffs. Let
A = Cn and B = Cm be the vector spaces that correspond to the state that Alice and Bob send to the
referee.

In order to determine the payoffs of the players’ actions, the referee performs a joint measurement
where Alice’s and Bob’s states are viewed as a single register. Thus, the referee’s measurement can
be described by a collection

{Ra : a ∈ S} ⊂ Pos(A⊗ B) (3)

which satisfies the condition
∑k
a=1Ra = 1A⊗B. We associate each possible measurement outcome

a with a payoff for each player. Since we are only considering zero-sum games, if the payoff that
Alice receives from the referee is v(a), then Bob’s corresponding payoff will be −v(a). Henceforth,
we refer to the states sent by Alice and Bob to the referee as ρ and σ respectively. For a given choice
of ρ and σ, Alice’s expected payoff is:

u(ρ, σ) =

k∑
a=1

v(a)〈Ra, ρ⊗ σ〉 = 〈R, ρ⊗ σ〉 (4)

where R =
∑k
a=1 v(a)Ra. Likewise, Bob’s corresponding expected payoff is −u(ρ, σ) = −〈R, ρ⊗

σ〉. R is referred to throughout the rest of the paper as a payoff observable. A necessary and sufficient
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condition for matrix R acting on A⊗ B to be obtained from some real valued payoff function v is
that R is Hermitian. From Equation 2, we can equivalently define the expected payoff of Alice as
u(ρ, σ) = 〈ρ,Φ(σ)〉. We will use the latter formulation for the remainder of the paper.

A key notion of equilibrium in classical game theory is the Nash equilibrium. In the quantum setting,
we define the pair of quantum states (ρ∗, σ∗) as a Nash equilibrium of R if

u(ρ∗, σ∗) ≥ u(ρ, σ∗) and u(ρ∗, σ∗) ≥ u(ρ∗, σ) (5)

for all ρ, σ. That is, neither Alice nor Bob would prefer to unilaterally deviate from playing ρ∗ and σ∗
respectively. On another note, since the set of available strategies (density matrices) for both agents
is convex and compact and the utility function of Alice is bilinear, standard extensions of the of von
Neumann’s Min-Max Theorem apply [20].

Finally, we define the notion of a ‘fully mixed’ Nash equilibrium. An equilibrium (ρ∗, σ∗) is fully
mixed if ρ∗, σ∗ are full rank.

2.3 Information Theory

We also introduce several information theoretic concepts which will be referenced throughout the
paper.

Shannon entropy. The Shannon entropy of a random variable X where each strategy x is obtained
with probability p(x) is given by H(X) = −

∑
x p(x) log p(x). This intuitively is a measure of

randomness or uncertainty in the system. A natural generalization of the Shannon entropy to a
quantum context is the von Neumann entropy. For a quantum mechanical system defined by density
matrix ρ, the von Neumann entropy is given by S(ρ) = −Tr(ρ log ρ).

Bregman divergence. We are also interested in the notion of Bregman divergence, which measures
the distance between two points. Let x∗ ∈ X be a Nash equilibrium and let x ∈ X be an arbitrary
strategy profile. Also, let F be a continuously-differentiable, strictly convex function. The Bregman
divergence from x∗ to x is given by DF (x∗‖x) = F (x∗)− F (x)− 〈∇F (x), x∗ − x〉.
In the context of quantum games, the Bregman divergence is defined using matrix notation. We
define the quantum relative entropy between two quantum states using the von Neumann entropy
S(ρ). In particular, the quantum relative entropy between two quantum states ρ and σ is defined as
S(ρ‖σ) = Tr (ρ(log ρ− log σ)).

2.4 Dynamical Systems

Flows. Consider a differential equation ṗ = f(p) on a topological space P . The existence and
uniqueness theorem for ordinary differential equations guarantees that we can write the unique
solution to the differential equation as a continuous map φ : P × H → P . This is referred to as
the flow of the differential equation such that for any point p ∈ P , φ(p,−) defines a function of
time corresponding to the trajectory of p. Conversely, fixing a time t provides a map φt ≡ φ(−, t) :
P → P . In Section 4, we introduce the notion of quantum replicator dynamics, which are Lipschitz
continuous differential equations. Hence, a unique flow φ of these replicator dynamics exists.

Liouville’s theorem. Liouville’s theorem can be applied to any system of ordinary differential
equations with a continuously differentiable vector field ξ on an open domain Y ∈ Rd. The divergence
of ξ at y ∈ Y is the trace of the Jacobian at y: div ξ(y) =

∑d
i=1

∂ξi
∂yi

(y). Because the divergence is
continuous, it is integrable on Lebesgue measurable subsets of Y . Given any such set C, define the
image of C under flow φ at time t as C(t) = {φ(c, t) : c ∈ C}. C(t) is measurable and of volume
vol[C(t)] =

∫
C(t)

dµ. Liouville’s formula states that the time derivative of the volume vol[C(t)]

exists and links it to the divergence of ξ:
d

dt
[vol C(t)] =

∫
C(t)

div(ξ)dµ (6)

If div ξ(y) is null at any y ∈ Y , then the volume is conserved. Since div ξ is continuous, the converse
statement is also true - if the volume is conserved on any open set, div ξ(y) has to be null at any point
y ∈ Y .
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Algorithm 1: Parallel Approximation of Equilibrium Point

Let µ = ε/8 and let N = d64 log (nm)/ε2e.
Initialize: A0 = 1A, ρ0 = A0/Tr(A0), B0 = 1B, and σ0 = B0/Tr(B0).
for j = 1 . . . N do
Aj = exp

(
µ
∑j−1
i=0 Φ(σi)

)
ρj = Aj/Tr(Aj)

Bj = exp
(
−µ
∑j−1
i=0 Φ∗(ρi)

)
σj = Bj/Tr(Bj)

end for

Diffeomorphisms of flows. A function f between two topological spaces is called a diffeomorphism
if i) f is a bijection, ii) f is continuously differentiable, iii) f has a continuously differentiable inverse.
Two flows Φt : A → A and Ψt : B → B are diffeomorphic if there exists a diffeomorphism
f : A → B such that for each x ∈ A and t ∈ R, f(Φt(p)) = Ψt(f(p)). For the purpose of our
analysis, the replicator dynamics defined in Equations 17 are translated via a diffeomorphism from
the interior of P to a space C = Πi∈V Rn−1, which allows us to show certain desirable properties.

Poincaré recurrence. The concept of Poincaré recurrence arises from Henri Poincaré’s celebrated
1890 work regarding the three body problem [50]. He proved that if a dynamical system preserves
volume and always remains bounded in its orbits, almost all trajectories return arbitrarily close to
their initial position, and do so infinitely often.
Theorem 2.1 (Poincaré recurrence). If a flow preserves volume and has only bounded orbits then for
each open set there exist orbits that intersect the set infinitely often.

3 MMWU in Quantum Zero-Sum Games

In [28], the MMWU algorithm for zero-sum games is shown to exhibit time-average convergence to
an approximate Nash equilibrium in two-player quantum zero-sum games. The MMWU algorithm is
shown in Algorithm 1.

Note that here we focus specifically on two-player games, and utilize the expected payoffs defined
via super-operators Φ : L(A) → L(B) as seen in Equation 2. Moreover, µ is the step-size in the
quantum algorithm.

In this section, we examine closely the update steps for each player in the MMWU algorithm
(Algorithm 1) and analyze the limiting behaviour of the total quantum relative entropy in the system.
First, we introduce two useful facts which will aid in the analysis.
Fact 3.1 (Golden-Thompson inequality [24, 53]). Let A,B be Hermitian matrices. Then

Tr exp(A+B) ≤ Tr exp(A) exp(B) (7)
Fact 3.2. Let 0 ≤ A ≤ 1 be a PSD matrix and δ be a real number. Then,

exp(δA) ≤ 1 + δ exp(δ)A (8)

Next, we put forward two corollaries which will help us prove Theorem 3.5. We first define
∆S(ρ∗‖ρj) = S(ρ∗‖ρj)− S(ρ∗‖ρj−1) and ∆S(σ∗‖σj) = S(σ∗‖σj)− S(σ∗‖σj−1).
Corollary 3.3. The change in the sum of quantum relative entropies in a quantum zero-sum game
between a fully-mixed Nash equilibrium and the players’ strategies is given by:

∆S(ρ∗‖ρj) + ∆S(σ∗‖σj) = log
TrAj

TrAj−1
+ log

TrBj
TrBj−1

(9)

Corollary 3.4. The following trace inequalities hold for PSD matrices A and B updated with
MMWU:

∆S(ρ∗‖ρj) + ∆S(σ∗‖σj) ≥ µ exp(−µ)Tr (ρjΦ(σj−1))− µ exp(µ)Tr (ρj−1Φ(σj)) (10)
∆S(ρ∗‖ρj) + ∆S(σ∗‖σj) ≤ µ exp(µ)Tr (ρj−1Φ(σj−1))− µ exp(−µ)Tr (ρj−1Φ(σj−1)) (11)
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The proof of Corollary 3.4 relies on Facts 3.1 and 3.2, as well as the equality shown in Corollary 3.3.

In many practical scenarios, one would use decreasing step-sizes when running MMWU. As such,
we utilize Corollary 3.4 and take the limit as step-size µ goes to 0 in order to show the following
theorem:
Theorem 3.5. The change in the sum of quantum relative entropies between a fully mixed Nash
equilibrium and the player’s strategies and in a two-player zero-sum quantum game tends to zero
when step-size µ→ 0. Specifically,

lim
µ→0

1

µ
(∆S(ρ∗‖ρj) + ∆S(σ∗‖σj)) = 0 (12)

The proof of Theorem 3.5, along with Corollaries 3.3 and 3.4 can be found in Appendix C.

Theorem 3.5 further motivates an investigation into the continuous time variant of MMWU, which
we call quantum/matrix replicator dynamics. In particular, we show that in the continuous case, the
sum of quantum relative entropies is invariant. We introduce and study quantum replicator dynamics
in detail in Section 4.

4 Replicator Dynamics in Quantum Zero-Sum Games

We have seen that in the case of discrete dynamics (MMWU), as the step-size becomes infinitesimal,
the total quantum relative entropy between the Nash equilibirum and the system state tends to
stabilize. A natural question would then be: does the same result hold in continuous time? In order to
explore this question in greater detail, we first need to define the continuous analogue of MMWU,
the quantum replicator dynamics, which has well known classical analogues [51].

We start by rewriting the MMWU update steps, but now defined over a continuous time interval [0, t]:

A(t) =

∫ t

0

Φ(σ(τ))dτ (13)

ρ(t) = exp(A(t))/Tr(exp(A(t))) (14)

B(t) = −
∫ t

0

Φ†(ρ(τ))dτ (15)

σ(t) = exp(B(t))/Tr(exp(B(t))) (16)

Note here that we shift the exponential terms from the definition ofA(t) andB(t) to the corresponding
ρ(t) and σ(t) terms. This will help simplify some of the proof techniques later on in the paper.
Furthermore, in the rest of the paper we will typically drop from the notation the explicit dependence
on t to ease with the notational burden.

It is important to note the following observation, which will be helpful in our later analysis.
Observation 4.1. The discrete-time trajectories ρj and σj defined in Algorithm 1 are a standard Euler
discretization (with step µ) of the continuous-time trajectories ρ(t) and σ(t) defined in Equations 14
and 16.

We now define the quantum replicator dynamics as:

dρ/dt =
d

dt

(
exp(A)

Tr(exp(A))

)
, dσ/dt =

d

dt

(
exp(B)

Tr(exp(B))

)
(17)

It is worth noting that in the classical/commuting setting, one can write the replicator equations in
a form that describes the relative utility that one agent obtains as compared to the average utility
overall. However, in the quantum case this is not possible in general, since it relies on the assumption
that

∫ t
0

Φ(σ(τ))dτ and Φ(σ(t)), and respectively
∫ t
0

Φ†(ρ(τ))dτ and Φ†(ρ(t)) commute.

As a consequence of Observation 4.1, we can also conclude that the dynamical system described by
the replicator dynamics defined in Equations 17 is a limit case of the dynamical system described by
the MMWU algorithm as µ→ 0.
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We are now able to state the main theorem for quantum relative entropy in quantum replicator
dynamics.

Theorem 4.2. When applying matrix/quantum replicator dynamics in a quantum zero-sum game
with a fully-mixed Nash equilibrium (ρ∗, σ∗), the sum of quantum relative entropies between the
fully-mixed Nash equilibrium and the state of the system (ρ(t), σ(t)) is invariant on every system
trajectory, i.e.:

d
(
S(ρ∗‖ρ(t)) + S(σ∗‖σ(t))

)
dt

= 0 (18)

4.1 Poincaré Recurrence in Quantum Zero-Sum Games

Now that we have described analytical results surrounding the day-to-day behaviour of quantum
replicator dynamics, we seek to understand the dynamics of the trajectories. After all, invariance of
quantum relative entropy does not fully describe how the system moves over time. We show that
for any two-player zero-sum quantum game updated with replicator dynamics, the system exhibits
Poincaré recurrence, insofar as the game is zero-sum and has a fully-mixed Nash equilibria. As
introduced in Section 2, the notion of Poincaré recurrence is a weaker version of periodicity. To be
precise, for almost all initial conditions ρ0 ∈ P , the replicator dynamics return arbitrarily close to ρ0
infinitely often.

Theorem 4.3. The quantum replicator dynamics given in Equations 17 are Poincaré recurrent in
any two player zero-sum game which has a fully-mixed Nash equilibrium.

The proof of this main theorem involves carefully piecing together several auxiliary results, which we
will describe in the rest of the section. Furthermore, we stress that due to the non-commutative nature
of quantum systems, the standard (classical) approach of differentiating the discrete-time dynamics
in the primal space of probability distributions does not apply directly unless we have the highly
unlikely situation where

∫ t
0

Φ(σ(τ))dτ and Φ(σ(t)) (resp.
∫ t
0

Φ†(ρ(τ))dτ and Φ†(ρ(t))) commute.
This problem with carrying over the standard approach is explicitly discussed in Appendix D.

For the proof in the quantum setting, we first define a canonical transformation on the space of the
matrices A(t) and B(t), which will be crucial in proving the theorem.

Definition 4.4 (Canonical transformation). We define the canonical transformation of A′(t) and
B′(t) to be a mapping of A(t) and B(t) as defined by Equations 13 and 15. In particular, we define

A′(t) = A(t)− (v†A(t)v)1

B′(t) = B(t)− (v†B(t)v)1
(19)

where v is a fixed vector defined as v = [1, 0 . . . 0]>, such that the values of v†A(t)v and v†B(t)v
are real numbers corresponding to the (1, 1)-th element of matrices A(t) and B(t) for all t. Notice
that this creates matrices A′(t) and B′(t) which have 0 as the (1, 1)-th entry.

Under the transformation in Definition 4.4, the vector fields Ȧ′(t) = F (A′) and Ḃ′(t) = F (B′) are
given by:

Ȧ′(t) = Φ(σ(t))− (v†Φ(σ(t))v)1

Ḃ′(t) = −Φ†(ρ(t)) + (v†Φ†(ρ(t))v)1
(20)

where d
dt

(
v†A(t)v

)
is given by v† dA(t)

dt v.

Moreover, the values of ρ′(t) and σ′(t) are defined as:

ρ′(t) = exp(A′(t))/Tr(exp(A′(t)))

σ′(t) = exp(B′(t))/Tr(exp(B′(t)))
(21)

Proposition 4.5. The dynamics of ρ(t) and σ(t) remain the same after undergoing the canonical
transformation. Equivalently, A′(t) and A(t) (resp. B′(t) and B(t)) admit the same strategy ρ(t)
(resp. σ(t)).

Proposition 4.6. The mappings A′(t) and ρ(t) (resp. B′(t) and σ(t)) are diffeomorphic to one
another.
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Proposition 4.6 will be of crucial importance to our proof technique, since we first prove recurrence
for the system described by A′(t) and B′(t), then recover recurrence in ρ(t) and σ(t).

To show Poincaré recurrence of Equations 17, we first prove two key properties: (i) the flow of
Ȧ′ is volume preserving, meaning that the trace of the Jacobian of the respective vector fields
Ȧ′(t) = F (A′) and Ḃ′(t) = F (B′) are zero, and (ii) A′ and B′ have bounded orbits from any
interior initial condition. Then, Poincaré recurrence of A′ and B′ follows from Poincaré’s recurrence
theorem.

Volume Conservation. We introduce a lemma which shows that in two-player zero-sum quantum
replicator dynamics, the canonical transformation produces a dynamical system which preserves
volume.

Lemma 4.7. For two-player zero-sum quantum replicator dynamics, the vector fields that arise as a
result of the canonical transformation in Definition 4.4 are volume preserving.

The proof of Lemma 4.7 follows from considering the flows of A′(t) and B′(t) and showing that
the divergences of the vector fields defined in Equations 20 are equal to zero. A straightforward
application of Liouville’s theorem completes the proof.

Bounded Orbits. We now show that the transformed dynamical system always has bounded orbits
when initialized on the interior of the space of probability density matrices.

Lemma 4.8. For any finite initial points A(0) and B(0), the dynamics mapped to A′(t) and B′(t)
via the transformation in Definition 4.4 have bounded orbits.

The proof of Lemma 4.8 relies on Theorem 4.2, and leverages the hermicity of the matrices involved.
Moreover, we use the fact that the canonically transformed matrices A′(t) and B′(t) have zero as the
(1, 1)-th element to bound the eigenvalues of A′(t) and B′(t) away from infinity.

Now we are ready to prove Theorem 4.3 using Lemmas 4.7 and 4.8.

Proof of Theorem 4.3. By Lemmas 4.7 and 4.8, as well as the Poincaré recurrence theorem introduced
in Section 2, we immediately see that the system of replicator equations given by dA′/dt and dB′/dt
are Poincaré recurrent since they are volume preserving and have bounded orbits. Since the flows of
A′(t) and ρ(t) are diffeomorphic to one another (likewise for B′(t) and σ(t)), dρ/dt and dσ/dt are
also Poincaré recurrent. This concludes the proof.

All proofs of the results in this section are provided in Appendix D.

5 Experimental Results

µ = log(1 + 1
t1/4

) µ = log(1 + 1
t1/3

) µ = log(1 + 1
t1/2

) µ = log(1 + 1
t2/3

)

Figure 1: Eigenvalue trajectories for quantum Matching Pennies game with decreasing µ values.

To corroborate the theoretical results presented in prior sections, we performed relevant simulations
of quantum games using both discrete MMWU and replicator dynamics. In the rest of this section,
we standardize the use of quantum game matrices obtained via basis transform (described in more
detail in Appendix E). This effectively allows us to transform classical games to the matrix setting.

First, we show the trajectories of the first eigenvalue of each player in a quantum Matching Pennies
game, obtained using the discrete MMWU algorithm. We see that in accordance to Theorem 3.5,
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the rate of divergence of the trajectories from the uniform Nash goes to zero for cases with rapidly
decreasing learning rate µ.

In the case of replicator dynamics, we present Bloch sphere representations of the trajectories in
a quantum Matching Pennies game. The Bloch sphere is a unit 2-sphere representation of a qubit,
and we utilize it to visualize the orbits of the replicator dynamics. In particular, the density matrix
representing the strategy of each player at each time-step is given as a point within the sphere, and
we plot the movement of these orbits over time. According to Theorems 4.2 and 4.3, we expect the
trajectories of the replicator dynamics to stay on the interior of the Bloch sphere, since the surface
of the sphere corresponds to the pure states of the system. We see from Figure 2 that over time, the
system never reaches the boundary of the sphere, which experimentally agrees with our theory.

t = 1 t = 50 t = 370 t = 1000

Figure 2: Bloch sphere trajectories for quantum Matching Pennies game between Alice (blue) and
Bob (red). The arrowheads represent the current state of each player at each time-step. Notice that
over time, the orbits oscillate within the interior of the Bloch sphere.

Finally, in the experiments above we have only studied single qubit systems. We provide further
experiments which show that our results hold beyond the single qubit setting in Appendix E.2.

6 Conclusion

In this paper, we studied the properties of Matrix Multiplicative Weights Update and its continuous
analogue, quantum replicator dynamics, in the context of two-player zero-sum quantum games. First,
we provide a formulation of quantum replicator dynamics which arises from MMWU. Then, we show
that such systems exhibit quantum information-theoretic constant of motions. Finally, we show that in
quantum replicator systems with interior Nash equilibria, the dynamics exhibit Poincaré recurrence.

This work constitutes an initial step towards analyzing learning behaviour in games with quantum
information. In the classical world, showing that conservation laws and recurrence holds has led to a
better understanding of game dynamics in increasingly complex settings [52, 43, 47]. Similar work is
now potentially possible in the quantum setting.

Moreover, one key implication which can be derived from our recurrence results is to encourage
novel discretization methods that preserve the connections to volume preservation and more generally,
conservative dynamical systems (e.g. Hamiltonians). This line of research has received increased
interest in recent years [57, 56, 17]. It is a natural question to explore whether such techniques can
lead to similar advantages in the quantum setting as well.

Finally, some other interesting directions for future work include:

• extending our results to multi-agent network generalizations of quantum zero-sum games,

• understanding the potential behavior of quantum GANs using our results about learning in
quantum zero-sum games, and

• understanding the quantum setting for different classes of games, e.g., potential games.
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