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Abstract

This paper studies the behaviour of two-layer fully connected networks with linear
activations trained with gradient flow on the square loss. We show how the opti-
mization process carries an implicit bias on the parameters that depends on the
scale of its initialization. The main result of the paper is a variational characteriza-
tion of the loss minimizers retrieved by the gradient flow for a specific initialization
shape. This characterization reveals that, in the small scale initialization regime,
the linear neural network’s hidden layer is biased toward having a low-rank struc-
ture. To complement our results, we showcase a hidden mirror flow that tracks the
dynamics of the singular values of the weights matrices and describe their time
evolution. We support our findings with numerical experiments illustrating the
phenomena.

1 Introduction

The most forceful driver of advancements in the field of Machine Learning over the past decades
has been the success of deep neural networks. Amongst the striking qualities of these models is
the fact that, despite being heavily overparametrized, their optimization consistently yields minima
with good generalization properties. A beckoning research direction is thus to unravel the process
through which neural networks learn internal representations for a given task [Bengio et al., 2013].
Understanding such phenomena is crucial for lowering the interpretability barrier of these models
and developing a principled approach to their training and deployment in practice.

Recent experimental evidence identified one of the likely paths towards achieving these goals as the
study of the inherent regularization properties (or implicit biases) of training algorithms [Neyshabur
et al., 2014, Zhang et al., 2016]. These observations laid the foundation for a new line of work [see,
e.g., Vardi, 2022] whose driving question is which minimum, amongst the many, awaits at the tail
end of optimization.

One of the determining factors for the implicit bias of gradient methods is the initialization scale,
which controls their operational regime as shown by empirical studies [Chizat et al., 2019]. More
precisely, gradient descent with a low-scale initialization is capable of learning rich feature represen-
tations from the data. Strikingly, despite overparameterization, the hidden-layer neurons align in the
direction of the features [Chizat et al., 2019, Atanasov et al., 2022] and learning of representations
reflects in the low-rank structure of the hidden layers. Our work aims to precisely explain this
phenomenon and quantify the impact of the initialization scale on feature learning.

Unfortunately, studying such phenomena for the types of neural networks used in practice is mathe-
matically challenging at present due to the non-linearity of their activations. Their less expressive
linear counterparts, however, are more tractable and represent a good proxy due to their non-convex
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loss landscape and non-linear learning dynamics. Consequently, the study of deep linear networks has
received significant amounts of attention over the past years, and spans several important directions,
including convergence [Arora et al., 2019a, 2018, Min et al., 2021], learning dynamics [Saxe et al.,
2014, Braun et al., 2022] and the implicit bias of optimization algorithms [Azulay et al., 2021]. This
work complements these previous approaches by mathematically describing the properties of their
parameters at convergence, highlighting the implicit bias phenomenon, and further analyzing the
evolution of weight matrices throughout the optimization process.

Specifically, this paper studies overparameterized vector regression problems on two-layer fully-
connected linear neural networks. We show the following results when the network is trained with
gradient flow (GF).

(i) In Theorem 3.1, we prove that the zero-loss solutions retrieved by the gradient flow are the
minimizers of a potential that depends on the initialization scale. Additionally, we provide
explicit expressions for the singular values of the hidden layer weights, also as a function
of the initialization scale. These characterizations reveal how low-magnitude initialization
induces a low-rank structure of the hidden layer.

(ii) In Theorem 3.2, we show that gradient flow on the parameters induces a mirror flow on the
singular values. In the specific case of scalar regression, we show that the gradient flow on
the weights is equivalent to a mirror flow on the linear predictor. These characterizations
give the geometrical structure of the training dynamics of linear neural networks.

(iii) In Proposition 4.1, we design a simple process to analytically describe how stochastic noise
in the training algorithm can likewise induce low-rank structures in the weights regardless
of the initialization scale.

We proceed by presenting related work in Section 1.1, formalizing the problem setup and assumptions
in Section 2, stating and discussing our results in Section 3, and finally, we provide supporting
numerical evidence in Section 4.

1.1 Related Work

The first pillar of our work addresses the implicit bias of GF and its stochastic variant in regression
problems. One of the hallmarks of bias in this setting is the impact of initialization scale: large initial
weights induce a learning regime in which the parameters travel a short distance to convergence
and feature learning fails to happen (lazy regime), while small initialization effects a polar opposite
behaviour of the system (rich regime) Chizat et al. [2019], Woodworth et al. [2020]. Training and
generalization in the lazy regime are well-studied [Jacot et al., 2018, Du et al., 2019a, Arora et al.,
2019c, Soltanolkotabi et al., 2017], however this scenario fails to capture the observed behaviour
of neural networks in practice [Ghorbani et al., 2019]. While the rich regime more faithfully
approximates the feature learning abilities of these models, it is comparatively more challenging to
analyze and few results are known. Amongst them are those concerning diagonal linear networks,
where a preference towards sparse representations is shown [Woodworth et al., 2020], and a restricted
setting of the matrix factorization problem, where the implicit bias leads to low-rank representations
[Gunasekar et al., 2017, Arora et al., 2019b, Li et al., 2018]. We similarly study the rich representation
learning regime and provide initialization scale-dependent statements on implicit bias for two-layer
fully connected linear networks.

Most theoretical results on the implicit bias of GF in overparametrized models rely on the identification
of a related mirror flow in a reparametrized space [Gunasekar et al., 2018]. Diagonal linear networks
are amenable to this technique and therefore well-studied [Woodworth et al., 2020, Pesme et al.,
2021]. For linear fully-connected networks, however, the existence of a mirror flow is not always
guaranteed [Li et al., 2022]. To partly alleviate this issue, Azulay et al. [2021] introduce a nonlinear
time-rescaling technique and show that for scalar least-squares regression on a two-layer fully
connected network with zero-balance initialization, the implicit bias selects low ¢2-norm predictors.
We prove a similar result under imbalanced initialization controlled by a scale parameter, and
characterize the weight matrices independently at convergence, thus presenting a higher-resolution
view of the problem.

Other works on linear networks include [Min et al., 2021] where convergence is studied in the
presence of weight imbalance and implicit bias results are provided in the functional space; and [ Yun



et al., 2021] where tensor networks are studied with the goal of unifying the implicit bias results for
linear parameterization. In the case of linear networks, Yun et al. [2021] further show an implicit bias
towards minimum /5 linear predictors for vanishingly small initializations. For classification in the
case of linear networks, Ji and Telgarsky [2019] show that the weights grow to infinity and the layers
of the deep linear network align during the course of optimization. Timor et al. [2023] show a similar
phenomenon happens for two-layer ReLU networks.

The second pillar concerns the learning dynamics of linear neural networks. The two-layer case
optimized with GF on the square loss has been studied by Fukumizu [1998], Saxe et al. [2014, 2019],
Braun et al. [2022]. The common setup of these works is that of zero-balance initialization and
whitened data. First, Saxe et al. [2014, 2019] provide expressions for the temporal evolution of
singular values of the predictor by assuming decoupled dynamics and a specific data-dependent
initialization of the weights. This latter condition is alleviated by the approach of Fukumizu [1998]
and Braun et al. [2022], Tarmoun et al. [2021] who solve a matrix Ricatti equation yielding solutions
for the weight dynamics in the case where the network initialization has full rank. Finally, Gidel
et al. [2019] loosen the whitened data assumption through a perturbation analysis and provide the
time-evolution of singular values of the weight matrices. Our work removes the requirement of
zero-balanced initialization and full-rank network initialization, and gives formulas for the weights’
evolution as a function of the initialization scale. We further provide mirror flows on the weights’
singular values and show that components are learned in a hierarchical manner for the case of
whitened data.

Related work is further addressed in the following sections, as part of the discussion of results.

2 Preliminaries and problem setup

Notation. Time-dependent variables are written in bold fonts: we drop the ¢ in A(t) and simply

denote it as A. The time derivative of such variables is denoted %A(t) as A.

Vector Regression. The set-up is that of standard vector regression problems with inputs
(1,...,2n) € (R?)" and outputs (y1,...y,) € (R*)" in the so-called overparametrized regime
where d > n. Regarding the output dimension, the reader may keep in mind throughout the article
that k < d, though the analysis holds for any k, d pair. In order to learn the input/output rule, we
minimize the square loss over a class of parametric models H = { fo(-) : R? — R¥ | 8 € RP} which
we specify in the next paragraph. The train loss therefore can be written as

1

£(0) = 2n

(yi — fo(z:))”. 2.1

n
i=1

Parameterization with a Linear Network. We consider the parametric model of two-layer linear
neural networks of width [ € N*: this corresponds to the parametrization 8 = (W1, Ws), W7 €
R W, € R™>™* and fo(z) = W, W, . The model is linear in the input z, and in terms of
expressivity, it is equivalent to the linear class of predictors given by fg(z) = 8"z, with 3 = W; Wa.
We henceforth use the symbol 3 to denote the associated linear predictor of the network. An important
consequence of this reparametrization is that the prediction function fg is positively homogeneous of
degree 2 in 8: VA € R, it holds that fyg = A2 fg, as it is the case for two-layer ReLU networks. This
property has important consequences in the loss landscape through which 6 goes.

Train loss. Assume momentarily that & = 1 and denote ¢(z) = W'z € R! It is then clear
that the predictor rewrites as fg(x) = (¢(x), Ws). For this reason, we call the hidden layer W}
the feature layer and the last layer Wy the weight matrix. We study the overparametrized setting
where [ > d. Letting X T == [z1,...,2,] and YT = [y1, ..., %y, the loss becomes

1
LW, W) = — || XW W, —Y|°. (2.2)
2N

For brevity, we ignore the N in Eq.(2.2) by implicitly rescaling the data as (X,Y") + (X/VN,Y/VN).



Interpolators. Note that when Y € span(X) and X is non-degenerate (which occurs with prob-
ability one if e.g., X,Y are Gaussian and d > n), there always exists a solution which attains
zero loss, i.e., 3" € R*k guch that X(B* =Y. We emphasize the fact that there are two lev-
els of overparametrization here: on one hand, when d > n, the set of zero loss linear predictors
I = {B € R¥™* | X3 =Y} is typically an affine set of dimension (d — n)k. On the other hand,
since we also reparametrize (3 as a linear network of width [ >> d, the manifold of interpolators in
the reparametrized space of 8, defined by Zy := {6 = (W1, W2) | W1 W, € Zg}, is of dimension
I(d + k) — nk. A natural question, therefore, is to which of these interpolators 6* € Zy does a given
optimization algorithm converge. This concept is referred to as the implicit bias of an algorithm. The
aim of this work is to study that of gradient flow.

Gradient Flow. The dynamics induced in parameter space by running gradient flow on (2.2) is
given by

0= —VoLl(6). 2.3)

We wish to describe the implicit regularization properties of this continuous-time process, which
is the vanishing stepsize limit of (stochastic) gradient descent. While the latter algorithms incur
additional regularization properties from using non-zero stepsizes [Keskar et al., 2017], the study of
GF is an important stepping stone to understanding the implicit bias of gradient-based methods in
practice. In terms of W7, W5 the dynamics translates to

Wi=XT (Y - XWiWo) W, (2.42)
Wo = W XT (Y - XWiW2). (2.4b)

We emphasize a crucial point: even if the function 3 — || X3 — Y||? is convex, its reparametrization
in terms of W7, W is not. Non-convexity and non-linearity makes the analysis challenging and a
priori it is not even clear whether the time evolution of 3 can be expressed as a closed system.

Initialization. One of our primary objects of study is the impact of initialization on the behaviour
of GF. We describe here our initialization choice, to which we henceforth refer as 1,,.

(a) Orthogonal feature layer: We initialize the inner layer such that the rows of W are
orthogonal and scale with parameter v > 0. Mathematically, this translates to W7 (0) =
V27P for P € R¥*! in the Stiefel manifold V;(R!) := {P € R%*!, such that PPT = I,}.
Initializing with an orthogonal matrix is studied by Pennington et al. [2018], Hu et al.
[2020], however from an optimization perspective. Note that when [ is very large, this
setting approximates the real-world scenario of initializing the hidden neurons with d i.i.d.
Gaussian vectors in R, which are known to be almost orthogonal.

(b) Zero weight layer: In order to remove any initialization bias from the linear layer, we
initialize it at W5(0) = 0. This can be seen as the limiting case of initializing the weight
layer with a very small relative scale 7 < .

As already mentioned in Section 1.1, existing studies on linear networks assume a “zero-balance
initialization”, namely that W," (0)W3(0) = W5 (0)W,' (0) [Saxe et al., 2014, Arora et al., 2019b,
Azulay et al., 2021]. This condition introduces the invariant W,” W, = W, W, [Du et al., 2018],
which holds for all times ¢ > 0. This balancedness can be seen as a degeneracy assumption on the
flow, since it implies that W; has at most rank k during the entire process, irrespective of the scale
of initialization . In contrast, we show that depending on ~ the feature layer W is biased (or not)
toward a low-rank predictor, thus unveiling a truly rich representation learning regime.

3 Main result: implicit bias and dynamics description

3.1 Implicit bias on the parameters

Non-convex gradient flows are generally not guaranteed to reach global minimizers of the objective
and even when they do, such results are difficult to formally prove. Moreover, the existence of many
zero-loss solutions with different generalization properties raises the question of which interpolating



network is yielded by training. An elegant answer to such questions is to express the resulting
predictor as the optimum among all the possible interpolators of some new, a priori unspecified cost.
In addition to the descriptive power of such variational formulations, they express a form of capacity
control over the estimator which can be further used to describe its generalization abilities [Bartlett
et al., 2020]. The following theorem adds to this series of works, by precisely deriving such a
characterization for GF in the setting of linear networks.

Theorem 3.1. Let (W7, Wy) be the process that follows the GF equations (2.42)-(2.4b), initialized
according to condition I, for some v > 0. Then

(i) The parameters converge to a global optimum of the loss

Jim (W(2), Wa(t)) = (Wre, Wyo) € Te.

(ii) The linear predictor (3 converges to the minimum £5-norm interpolator

def

lim B(t) = argmin H,@HF = B..
Xp=Y

t—o00

(iii) We have the following variational characterization of the limiting parameters

1 1
(W, W5¥) € argmin S IWell + 5[ Wally — v log (det (WiW7)). G1)

1 2=

Interpretation of the theorem. The theorem is divided into three parts which state that (i) the
matrices converge to a zero loss solution, which is a priori non-trivial since the loss in non-convex;
(ii) among all the interpolators in Zg, 3 converges to the minimum ¢-norm interpolator for all
~ > 0; and (iii) among all the interpolators in Zy, (W7, W3) converge to the ones that minimize a
~v-dependent potential. To fully capture the richness of this result, we observe that in the limit of
v — 0, problem (3.1) informally translates to [Attouch, 1996]

lim (W°, Wg°) € argmin ~||Wa|| + ~ W >

70 XW W=y 2 Fo2 F
This is equivalent, in the space of linear predictors 3 to the minimum nuclear norm solution 3 €
argminy g_y H ﬁ” , (which is also the minimum />-norm interpolator for the problem we study).
We informally derived this interpretation by taking first the limit t — oo and only after v — 0. The
theorem naturally does not hold if the two limits are reversed, since v = 0 places the initialization at
a saddle point of the loss, which is a stationary point of the flow.

With increasing -y, we move towards solutions with a large log det (W, W, ), which is a smooth
approximation of the rank [Fazel et al., 2003]. Intuitively, this means that solutions with increasing
rank are preferred as v grows. This scale-induced implicit bias is reminiscent of the rich and lazy
regimes [Chizat et al., 2019, Woodworth et al., 2020], albeit visible in the space of representations
rather than in that of predictors. As such, our result for linear networks is akin to Woodworth et al.
[2020]’s, which characterizes the rich and lazy regimes for simpler diagonal linear networks.

Comparison with works on implicit bias of 3. Azulay et al. [2021], Min et al. [2021] also study
the implicit bias phenomenon in linear networks, however, these results only address the structure of
the final predictor 3 and not that of the factorized problem (W7, W5). As shown in Theorem 3.1,
these works fall short of unveiling all the nuances of the implicit regularization induced by GF in the
case of linear networks.

To give a precise example, consider the simplest case of scalar regression (k = 1) for which both
Theorem 3.1 and [Azulay et al., 2021] show that 3 is biased towards low-{5 interpolators. This view
is not complete, since there exist many pairs (W7, W5) such that W; W5 = 3. Theorem 3.1 goes
one step further and provides variational characterization of (W7, W5) at convergence. Moreover,
it shows that when v — 0 all columns of W align in the direction of 3, thus creating a rank one
hidden layer. This is an example of rich representation learning, where W is learning the only
feature needed to make a prediction.



Implicit bias of the singular values. Proceeding with the description of the spectral bias, we
provide a characterization of W7’s limiting singular values which highlights their dependence on ~.

Corollary 3.1. [Singular values at the limit] Using the same quantities as in Theorem 3.1, denote
(01 (Ws°),...,04(W®)) and (01(Bx), - . ., 0k (Bx)) the singular values of W°, B, are

o (W) = (\/m+7)1/2,for1gigk.

o; (W) = (27)1/2,f0rk <1 <d.

Discussion. Similar expressions for the singular values of W5 can be derived and are deferred to
the Appendix B due to lack of space. In the vanishing initialization limit, only the first k& singular
values are activated and W7 resembles a rank k& matrix. Conversely, for large -y all the singular values
are approximately equal in scale and W resembles an isotropic full-rank matrix.

To ease interpretation, we again focus on the case of scalar regression. Corollary 3.1 shows that, for
small ~y, only one singular value grows while the others remain small constants. More precisely, when
v~ of ] B ﬁ’), the training model is approximately rank one, with only one spiked singular value.
Conversely, when v ~ Q(Hﬂ* H) the low-rank structure disappears. This result perfectly captures the
rich learning regime at low initialization where the hidden layer learns the defining feature of the
problem, whereas in the lazy regime (large -y) the singular values of the matrix hardly move and no
structure is present in W7.

Our analysis removes the assumptions of balanced/spectral initialization and whitened data of previous
works studying the evolution of singular values [Saxe et al., 2014, Gidel et al., 2019], thus allowing
us to reveal the dependence on the scale of initialization.

3.2 Description of the dynamics

So far we have described the structure of the parameters of the neural network at convergence. Here,
we show that the dynamics of the singular values of 3 enjoy a very particular property: it satisfies a
mirror flow [Alvarez et al., 2004] with a mirror potential that can be written explicitly.

Theorem 3.2. [Dynamics of the flow] With the same notations as in Theorem 3.1,

(a) Mirror on singular values: The singular values of 3, denoted by D g, follow the mirror flow

AV, (Dg) = —Vp,L dt,

where the potential writes V., (Dg) = tr (%Dﬁ sinh™! (Dg/v) — 4 /D3 + 72>.

(b) Mirror on 3. If k = 1, the dynamics of 3 can be characterized as a mirror flow

1/2
4V, (B) = - [v+ VI8P +42]  vL(B) o, (3:3)
3/2 1/2
where the potential writes 1, (3) == % [ ||ﬁH2 +y2+ 7} — 2y [ ||5H2 +72 4 'Y]

Mirror on Singular Values. For vector regression, GF on the parameters induces a continuous-time
mirror descent (which we also refer as mirror flow) with the hyperbolic entropy function [Ghai et al.,
2020]. This extends Arora et al. [2019b]’s characterization of the evolution of singular values when
the initialization is balanced. Note that our result does not fully characterize the evolution of the
system, since the characterization of the singular vectors is absent. Still, some interesting comments
can be made. In the rich regime in which v — 0, the hyperbolic entropy ¥, ~ (—In ’y)“ B H*
Thus, informally, for small ~y the gradient flow on parameters is approximately equivalent to a mirror
flow on the nuclear norm. This is reminiscent of the case of diagonal linear networks where such
an equivalence is proven rigorously [Pesme and Flammarion, 2023] and is known to lead to an
incremental saddle-to-saddle dynamics [Li et al., 2021, Jacot et al., 2022, Berthier, 2022].

In the case of whitened data, i.e., X ' X = I, we show that the singular vectors of 3 are stationary (see
Appendix C.11 for details). Therefore, the mirror flow on the singular values characterizes the entire
system. In this case, we can even provide an exact expression for the evolution of the singular values



(Appendix C.12) by solving a matrix Ricatti equation [Bittanti et al., 1991]. In the limit of v — 0,
we can show that, beyond the case of balanced initialization [Saxe et al., 2014, Gidel et al., 2019], the
singular values are learned in a hierarchical manner. When v — 0 and with appropriately rescaled
time, the limiting trajectory for the i*" singular value 0;,3 can be seen as the jump process

1 1
03 In ; t :0'7;”3*]1 t>20"g s

where 0; g, is the " singular value of B*. Each singular value is activated at time

—1In(v) (20; . ). Therefore, we observe an incremental learning process, where the activation
begins with the largest singular value and proceeds accordingly.

Mirror descent for scalar regression. The result (b) states that the GF on the parameters (W7, W)
implies a mirror flow on the predictor 3 with the potential v)s. To be more precise, the evolution is
governed by a mirror flow with the time scaled as a function of H [)'H This technique of time-warping
was proposed in Azulay et al. [2021] for the case of a linear network with a single neuron (I = 1)
with balanced initializations. In contrast, with a specific initialization shape, we show the existence
of a mirror flow for an arbitrary number of neurons and unbalanced initialization of any scale. The
existence of a mirror flow is surprising since the reparametrization defining linear networks is not
commutative in general [Li et al., 2022]. However, due to the specific initialization we use, this
problem can be circumvented by preserving certain commutative properties.

The equivalence with mirror descent enables us to show that £ (3(t)) = O(1/~t) (see Appendix C.8),
thus providing a convergence rate for the training loss independent of the conditioning of data, in
contrast to Min et al. [2021], Du et al. [2019b]. Note that with decreasing initialization scale 7,
the convergence speed diminishes, while according to the results in Theorems 3.1 better implicit
bias is achieved. This suggests the existence of a trade-off between optimization and implicit bias
already observed in several works [Woodworth et al., 2020], where achieving better quality solutions
is linked to slower optimization. In contrast to this behaviour, for the case of balanced initialization
[Braun et al., 2022] emphasizes a decoupling between the learning speed and the quality of solutions.
Conversely, we stress that in the general setting (e.g., under imbalance) such a decoupling is absent.

3.3 Sketch of the proofs

In this section, we give a short description of the proofs of the main results from the previous sections.
The common theme of the following intermediate results is to identify natural invariants of the
dynamics, which can be leveraged to understand the hidden mirror structure of the flow.

Lemma 3.1. Consider the dynamics of the gradient flow (2.4) initialized at (W1(0), W»(0)) =
(\/Q'YP, 0). Let Z, := WP, Zy := PW, and the residual R :== X (Y — X Z, Z,), then the
evolution of (Z1, Zs) is governed by the following ODE

Z\=RZ] , Z;=Z R (.4)
Furthermore, the dynamics of gradient flow (2.4) is equivalent to (3.4), i.e., (W1(t), Ws(t)) =
(Z\(t)P, PT Zy(t)) at any time t.

Lemma 3.1 derives an equivalent dynamics to equations (2.4). It shows that weights W,", W5, always
stay in the column span of the initialization P, thus restricting their evolution to a subspace. Going
forward, we derive the invariants of the dynamics (3.4).

Lemma 3.2. For the projected matrices given in (3.4), we have the following invariant,
Z!'z, - 2,Z] =291

This invariant ensures that Z; Z; and Z,Z, commute which is a crucial ingredient in the proofs of

Theorems 3.1, 3.2. Now, we derive the evolution of o := Z; TZQ, which turns out to be the central
quantity enabling our result. The lemma below describes certain properties of the evolution of c.

Lemma 3.3. Let o := Z| T Zs, we have the following time evolution of parameters:

&:R—aRTa, and (= (1—aaT)71a.



An outline of the proof of Theorem 3.1. With an ansarz on the potential that it is decomposable in
terms of Z,, Z5, we derive KKT conditions for the constrained optimization problem
argmin ¥1(Z1) +¢2(Z2).
XZ1Zo=Y
Using Lemmas 3.3, we show that « stays in span(X ). We use the isotropic property of the imbalance
from Lemma 3.2 to find appropriate functions 1, )2 and finally prove Theorem 3.1. The proofs for
theorem 3.1, 3.2 and corollary 3.1 can be found in Appendix B.

4 Further thoughts and perspectives

The previous section provided a deep-dive into the dynamics of the gradient flow, which we comple-
ment here with a few steps in the direction of understanding the dynamics with stochastic gradients.
We investigate stochastic gradient descent (SGD) by studying its simpler counterpart, label noise
gradient descent (LNGD) Blanc et al. [2020].

4.1 The role of noise

It was observed that the noise in stochastic gradient descent has a parameter-dependent shape that
induces certain regularization properties [HaoChen et al., 2021, Blanc et al., 2020]. Here, we study
the properties of the noise shape induced in the case of parameterization with linear neural networks.

Inspired from the analysis of HaoChen et al. [2021] and the large noise regime described by Pillaud-
Vivien et al. [2022] in the context of diagonal neural networks, we design a process driven purely
by noise and which carries the same geometric properties as SGD’s noise. We consider the scalar
(k = 1) regression problem with [ = d and, through an abuse of notation, denote W; = W, and
W = a. The noise-driven process which we consider is:

dW = (dB;)a’ , da=W'dB,, 4.1

where B, is a d-dimensional Brownian motion. Details on how this SDE captures the noise of SGD
are deferred to Appendix D. We show that, similarly to the rich regime of the gradient flow (v — 0),
this noise also carries a rich spectral bias but for any initialization. Indeed, we have the following
result on the SDE dynamics. The proof can be found in Appendix D.

Proposition 4.1. The dynamics (4.1) has the following convergence properties
(a) Variance explosion. The variance of the norms of W , a explode, i.e.,
lim E[|[W(©)|"] 500 . lim E[[a@®)]"] = cc.

t—o00 t—o00

(b) Scale divergence. For d > 5, for any o > 0, we have that,
Jim E[[[W®)]"] 500, lim E[[a(t)]

t—o00

‘4 |\é(t)||“] — 0.

t
where a .= e~" [ e*a(s)ds is the exponential moving average of a.
0

. . ) . def
(c) Alignment - spectral bias. Denote the i row of W as w;. Using [w;, a| = w;al — aw;'— ,

Jim E[|[uw;, al] 0.

For any two vectors u, v, [u,v] denotes the commutator of the vectors: remark that if [u,v] = 0,
then u, v are aligned, i.e, u = cv, for some scalar ¢ € R. First, notice that for d = 1, the SDE
in fact corresponds to the geometric Brownian motion with no drift and the dynamics collapses to
zero [Oksendal, 2013]. For dimension d > 2, the proposition states that the system diverges and the
weights grow towards infinity. However, despite the fact that the norm grows, the commutator [w;, a]
goes to zero, indicating that all the rows of w; align towards a. Overall, similarly to the gradient
flow in the rich regime, this induces a low rank structure in W. This phenomenon can be further
seen through the evolution of singular values, where the top singular value of W grows unboundedly,
whereas the remaining singular values decay to 0 as depicted in Figure 3a in the Appendix. This
sheds some light on how SGD induces a particular parameter-dependent noise which implicitly biases
the solutions towards having a low-rank structure of the hidden layer [Andriushchenko et al., 2022].
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Figure 1: (a) Vector regression with orthogonal initialization and scales v = 1,10~* and Gaussian
initialization with entries from N (0, 0.01) (b) Scalar regression with Gradient Descent (GD) and
Label Noise Gradient Descent (LNGD).

Intricate dynamics in presence of drift. Proposition 4.1 focuses on the process that is solely
driven by noise. However, in general SGD also encompasses a drift term which corresponds to the
dynamics studied in Section 3. The continuous-time SDE describing the process is

dW = —-Vw L (W,a)dt + 6 (dB;)a’ |, da= —V.L(W,a)dt+ W "dB;,

where 6 > 0 indicates the scale of the noise. The presence of drift quickly complicates the analysis, but
intuitively, the noise simplifies the model by inducing a rank reduction, whereas the drift terms prevent
the weights from growing unbounded. This noise-driven mechanism relaxes the role of initialization.
Empirically this is illustrated in Figure 1b. Gradient descent already exhibits a regularization effect
as it increases only one singular value while keeping the others constant. However, gradient descent
with label noise [Blanc et al., 2020] enhances this regularization effect by decaying the singular
values and promoting low-rank representations. As a result, even for larger initialization scales, we
observe the presence of low-rank structures in the hidden layer, unlike in gradient descent. The
precise characterization of the this phenomenon is left for future research.

Experiments. We consider a regression problem on synthetic data, with n = 5 samples of Gaussian
data in R1? (d = 10) and the labels in R?® (k = 3) generated by a ground truth 3, € R4k . We
consider a network with width [ = 200. In Figure 1a, we show the evolution of the top-4 singular
values of the hidden layer W;. We use orthogonal initialization for the network with the two scales
of initialization v = 1,10~*. Note that, as depicted by Corollary 3.1, for the smaller scale only
the first £ = 3 singular values are significant in comparison to the remaining d — k singular values.
This shows that the matrix is approximately rank & and the neurons align along three directions. In
contrast, for the larger scale v = 1, the final weight matrix has rank d. To complement this, we also
consider a Gaussian initialization with variance 0.01 — specifically, we initialize the inner layer with
d = 10 Gaussian random vectors in R!. As described when [ >> d, the initialization is close to the
orthogonal initialization. Hence, in this case, we can see that only & singular values grow and the
final model has an approximately rank k hidden layer. In figure 1b, we depict the time evolution
of singular values for GD and LNGD on a scalar regression problem with orthogonal data in R®
(n,d = 5) and a network with [ = 200. Further details on hyper-parameters can be found in the
Appendix.

Extension to non-linear activations. Huh et al. [2023], Andriushchenko et al. [2022] empirically
demonstrate a low-rank phenomenon through extensive experiments on deep networks with non-linear
activations. However, a comprehensive theoretical comprehension of this behavior remains elusive,
despite some efforts addressing these issues [Boursier et al., 2022]. To show that our analysis extends
beyond linear activations, we present a toy experiment for ReLU networks (see Figure 2 and further
details in Figure 5). Consider a scalar regression problem in a ReLLU teacher-student setup. We
generate a training set of size 10 sampled from a random Gaussian distribution in R®. The training
data (7;,9;):2; € R5 x R is generated by a teacher ReLU network with 2 neurons (wg, w; ), i.e.,

Yi = aoa(wOTxo) + ala(wlTxl),



where o is the ReLLU non-linearity. We train a student network with 20 hidden neurons. Note
that there are two relevant directions wg, w1 for the student network to learn, therefore we expect
the hidden layer to represent these two directions (i.e., a rank 2 hidden layer, and a singular value
decomposition with two non-zero singular values). This property is empirically verified in Figure 2.
We plot the time evolution of singular values and when initialized at low-scale the network converges
to an approximately rank-2 matrix. When initialized at a larger scale, the network weight matrix is
high rank and the neurons do not learn the teacher directions.

Perspectives. Learning representations which can
be transferred to downstream tasks is a key attribute
for the success of deep learning [Bengio et al., 2013,
LeCun et al., 2015]. In this work, we present an 01
archetypal problem where for the same predictor in
functional space, there exist multiple representations
in parameter space, some of which can exhibit a rich
structure. This scenario presents a case for going
beyond the characterization of implicit bias in the
functional space [Parhi and Nowak, 2022] and fur-
ther studying the implicit bias in the parameter space.

Singular Values

. . ey . . . 10° 10! 10? 10° 10*
Such characterizations facilitate the identification of [terations

crucial ingredients in training algorithms that enable
effective feature learning.

m= =10 —— =i

Figure 2: The time evolution of singular val-
Limitations and Future Work. This paper tack- yes of the hidden layer weights of a 2-layer
les the phenomenon of implicit bias, with the aim of ReL.U network when trained with gradient
furthering the understanding of how neural networks flow initialized with Gaussian random vari-
learn in practice. Unfortunately, practical models are  gbles with different scales. We consider a
highly nonlinear due to their activations and rely on  gcalar regression problem in a teacher-student
various heuristics to achieve state-of-the-art perfor- setup.
mance, thus being difficult to grasp mathematically.
This work therefore studies the simplified setting of two-layer linear neural networks. In terms
of the assumptions we make, the orthogonality of initialization is only approximately faithful to
practical settings where small random weights are used. Nevertheless, we are confident that this
requirement can be loosened through a perturbation analysis in the vein of Gidel et al. [2019]. Finally,
our dynamical description of the system is yet to be completed in the vector regression case with
non-whitened data. A careful set of assumptions is necessary here, and hopefully ones that are
weaker than the restricted isometry property used in related works [Li et al., 2018]. Finally, we only
partially describe the dynamics in the presence of stochastic noise and giving a full characterization
remains a desired objective of future investigations. Further discussion on these aspects is presented
in Appendix C.1.
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Organization

The appendix is organized as follows,

* In section A, we present the experiment details.
* In section B, we present the proof of Theorems 3.1, 3.2 and Corollary 3.1.
* section C contains the proofs of the supporting lemmas.

* In the final section D, we discuss our choice on the noise model and present the proof of
Proposition 4.1.

* For the results referenced in the main section, the convergence rate of mirror flow can
be found at C.8, the time evolution of singular values and their limiting jump process is
available at C.12, the stationarity of singular vectors in the orthogonal case at C.11, the
discussion on the noise model at D.

Notations. For matrices of appropriate dimensions, we use [A4, B] to denote AB — BA.

A Experiment Details

Experiments. We discretize the SDE (4.1) with a step-size ~ 1/vz. We simulate three parallel runs
and track the evolution of singular values and the evolution of alignment using the commutator of
the row w;, a, i.e., [w;,a] = (w;a’ — aw, ). We consider the SDE for dimemsion d = 2. The
evolution is initialized at W (0) = I and a(0) = 0. As seen in Figure 3a, the noise shape inherently
induces a low-rank structure where it intensifies a singular value and significantly diminishes the
other singular value. As predicted by our proposition (4.1), figure 3b shows that the rows of W align
with a, thus giving a rank 1 structure. The experiments were run on a 16-GB RAM Apple M1 mac
with OS Ventura 13.3.1.

105 . [wo, a]|
2 o lwy,a]|

o
-

Commutator

Singular Values
=
<

"
5]
i

H
o
4

,_.
15}
i

10° 10t 102 103 104 10° 10t 102 10° 104
Iterations Iterations

(a) (b)

Figure 3: Three parallel runs of the noise dynamics Eq. (4.1) for d = 2. (a) The evolution of singular
values with o increasing and o decaying. (b) Measuring the norm of the commutator again as
predicted by Proposition 4.1.

B Main Proofs

In this section, we present the proofs of the theorem discussed in Section 3.

Theorem 3.1. Let (W7, W5) be the process that follows the GF equations (2.42a)-(2.4b), initialized
according to condition 1., for some v > 0. Then

(i) The parameters converge to a global optimum of the loss

Tim (W (1), Wa(t)) = (Wie, W5°) € To.
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(ii) The linear predictor (3 converges to the minimum {5-norm interpolator
def

Jim, B() = argmin [|8]]. = ..

(iii) We have the following variational characterization of the limiting parameters

(W, W5°) € argmin

1 1
_amin JIW [+ 3 |Wl[L — vlos (det (WiW/)). )
1 2=

Proof. We initialize such that W7 = /2vP, W5 = 0. Lemma 3.1 states that the dynamics of
gradient flow is restricted to a subspace and can be equivalently described by,

Z,=RZ, , Z,=2ZR. (B.1)
where R := X (Y — X Z,Z>).

(i) To show the convergence, we track the evolution of tr (RT R) and use the following descent
inequality to show that it converges to 0. With Api, (X7 X)) denoting the smallest eigenvalue
of the X T X, the descent inequality (C.13) is as follows,

,/;\
tr (RTR) < —29Amin(X ' X)tr (RTR).
Refer to Lemma C.6 for the detailed proof.

(i) To show that 3 — (3, in the limit, we show that 8 € span(X "), ie., 8 = X T\, for some
A. This satisfies the KKT conditions required for the following minimization problem.

1
B € argmin§||,6||2 = (..
XB=Y

The complete proof can be found at Lemma C.6.

(iii) For the limit of the projected dynamics (Z{°, Z$°) = tlim (Z1(t), Z>2(t)), Lemma C.4
— 00
shows the following,

1 1
(2, Z5°) € sxgmin S22+ 5112l — 7 log (det (2,2))).
Using the transformation from Eq. C.7, we have,

Wi =2,P, Wy,=P'2Z,.
Thus,
Wil =12l (W2 = (22|,
Z,\Z] =W\W,', Z,Z, = W W,
Therefore,

1
(W°, W) € argminC||Wafy. + 5[ Wi [ — vlog (det (WiW7T)).

o
XW, Wo=Y 2

This hold on the set { (W7, W5) : W, PI = 0, P, W5 = 0} which is ensured from gradient
flow from Lemma 3.1.

O

Corollary 3.1. [Singular values at the limit] Using the same quantities as in Theorem 3.1, denote
(01 (W°),...,0q4(W®)) and (01(Bs), - . ., 0k (Bx)) the singular values of W°, B, are

o (W°) = (\/WJrv)l/z,forlgigk.

o; (W) = (27)1/2,f0rk <3 <d.
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Proof. Using the transformation W; = Z; P from Lemma 3.1, we obtain,
ww, =2,z]. (B.2)

Thus, W7 and Z; share the same singular values, similarly W5 and Z, share the same singular
values. The expressions for the singular values of Z; (similarly Z5) can be found at Lemma C.10.
This along with the fact that 3 — 3, proves the Corollary 3.1 O

Theorem 3.2. [Dynamics of the flow] With the same notations as in Theorem 3.1,
(a) Mirror on singular values: The singular values of 3, denoted by D g, follow the mirror flow
dVV¥, (Dg) = ~Vp,L dt,
where the potential writes U., (Dg) := tr (%Dg sinh ™' (Dg/v) — \/W>

(b) Mirror on B. If k = 1, the dynamics of 3 can be characterized as a mirror flow

1/2
avy, (8) =~ [y + VI8P ++2| VL (B) at, (3:3)
where the potential writes 1., (8) = 2 {\/ 18117 + 72 + 7] 02 2y [1 N8I +~2 + ’Y] 1z

Proof. The equivalence with mirror flow for scalar regression is shown in Lemma C.7. The continuous
time mirror descent for singular values of 3 is derived in Lemma C.13. O

C Supporting Lemmas

This section contains all the technical lemmas and definitions used in the proofs in the section before.

Lemma 3.1. Consider the dynamics of the gradient flow (2.4) initialized at (W1(0), W»(0)) =
(\/2'yP, O). Let Z) :== W PT,Zy :== PW, and the residual R := X (Y — X Z,Z), then the
evolution of (Z1, Zs) is governed by the following ODE

Z,=RZ] , Z,=Z/R. C.1)

Furthermore, the dynamics of gradient flow (2.4) is equivalent to (3.4), i.e., (W1(t), Wa(t)) =
(Z1(t)P, PT Zy(t)) at any time t.

Proof. We choose P, € RU=DxL gych that P, PT = 0. Using the fact that P, P, orthogonal and
span the entire R%!,

P'P+P/P =1,
Denoting (Z1) | == W1 P[,(Z,), == P, Wa, we have,

Wy =W, [PTP+P'P|=W\P'P+W\P/P =ZP+(Z), P,. (C.2)
Wyo=[P'P+P/P |Wo=P ' PW,+P P Wy=P'Z+ P (Z), . (C.3)

Recalling the evolution of gradient flow (2.4) on the loss

Wi =XT (Y - XW,Wo) Wy
Wo=W,XT (Y - XW,W2).
Multiplying the gradient flow updates with P, P from the right, left (resp.) for the above equations
WiPT =X (Y - XWiWo) W, PT, PWy=PW, X" (Y - XW,Ws).

Similarly multiplying with P, P, , we have,

WPl = XT (Y - XWiWo) Wy P], P.Wo=P. WX (Y - XW,W2).
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Using the above, we have,
W\ W, =W, [PTP+ P[P | W,
=W, PTPW, + W, P| P, W5.

Wi\Wyo =Z1Z>+ (Z1), (Zo), - (C.5)
Rewriting the evolution in terms of Z1, Z5, (Z1) | ,(Z2) |,
Z=XT(Y - X[2:2:+(2)), (2),) 2], Z:=Z[X (Y —X[2:2:+(Z1), (Z2),]).
(), =X (Y = X(Z:2:+(2), (Z:) ) (Z)], (Z2), = (Z)] X (V= X (2122 +(21), (Z2),)).
This is exactly equivalent to the gradient flow under the linear transformation which maps Wy, W

to (Z1,(Z1),),(Z2,(Z5) ). Now taking into consideration the evolution of (Z1), ,(Z2) |, we
have that (0, 0) is a equilibrium point for the dynamics. From our initialization I,

(Z1), |,_y = Wl\tzopj =/2vPP] =0,
(Z2), }t:() = PJ-W2| 0.

t=0

As we initialized at the equilibrium of the dynamics we have ((Z1) , , (Z2),) = (0, 0) for any time
t. From Eq. (C.5), we have,

WiW, = Z1Z5. (C.6)
The gradient flow (2.4) is equivalent to

Z,=X"(Y-XZ2,)Z, ,
Zo=ZIXT (Y — XZ.25).

where Z71(0) = V27PPT =14, Z5(0) = 0. Furthermore, from Eq. C.2, C.3, we have the following,
W, =2,P , Wo=P'Z,. (C.7)

This finishes the proof of the lemma. O

Lemma C.1. For the projected matrices given in (C.1), we have the following invariant,

Z! Z, - Z,Z, =21 (C.8)
Proof. Recalling the dynamics (C.1)
Z,=RZ] ., Z,=Z/R.

.
—

Z] Z, = (2))" Z, + Z] (Z)),= Z.R" Z, + ZT RZ] .
Similarly,

.
—

Z,Z] = Z,R'"Z, + Z RZ, .

L —

Hence, ZF Z — Zgég = 0. This implies,

ZZ, - 2,Z, = |Z] Z, — Z,Z, | =29yPPT = 241,.
t=0

Lemma C.2. Let o .= Z| T Z,, we have the following time evolution of parameters:

&:R—aRTa, and (3 =2y (I—aaT)ila.
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Proof. Taking the time derivative of o,

&=Z ' Zy+ Z7 2y = —Z71 2,271 2, + Z7VZ\R,
= -Z'Z,R"Z'Z, + R,
= —aR"a+R.

The evolution of Z; Z|, aaT,

(2,:2]) = 2, Z[ aR" + Ra" 2, 2], (C.9)

aa” = (R- aRTa) a' +a (R— aRTa)T ,
—Ra' —aR"aa" +aR" —aa"Ra’,

= (I — aaT) Ra' +aRT (I — aaT) )

Computing the evolution of (I — aa™)™!

i

.
—

(I- aaT)_1 =(I- aaT)_1 laaT

(I—aa’)", (C.10)

= Ra' (I — aaT)_l + (I - aaT) aR". (C.11)

Let Cq =27 (I - ozozT)_1 and Cz = Z, Z]', so we have,

Co=CoaR" + Ra'C,,
Cz =CzaR'" + Ra'Cy.
Since, at initialization, C,(0) = Cz(0), we have C, = C'z, for any time ¢. Therefore, we have,

Z,Z] =2y (I-aa’) . (C.12)

Using B = Z1Z, = Z1Z] o and the above invariant, we obtain 3 = 2 (I — aaT)71 a. 0
Lemma C.3. The following property holds for o:

— T
Qo = tli>I£<: a(t) € span(X™).

Proof. From the evolution of «, we have
a=R-aR"a.

Let U € R%*? be the matrix projection each column of a on the column span of X T, i.e.,
span{z1, ..., @, }, UL € R be the matrix projection on the orthogonal space, i.e., Ker (X T).
Soa=Ua+U,a.Notethat R=X" (Y — XZ1Z] a). SoU R =0,since U; X" = 0. The
evolution of U « is that

Uia=-UaR (Ua+U.a).

Again, U o = 0 is the equilibrium point and our initialization a¢ = 0 ensures that it stays at this
equilibrium. This proves the lemma. O

Lemma Cd4. Let (Z°, Z5°) def tlim (Z1(t), Z2(t)) the limit of the gradient flow dynamics. Then,

— 00

1 1
(Z7°,2Z5°) € Xa;g;ni:rly §HZ2H2 + §HZ1H§«“ — 7log (det (ZlZir)).

142
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Proof. From Lemma C.3, we have that the (Zfo)fT Z3° € span(X), so the condition (P2) from
Proposition C.5 holds. Note that from (P2) of Proposition C.5, we have,

VU (27) = (27) 25 (Z5)
=(27) " (Z7) Z7 - 20,
=277 - 2(27) .
which is satisfied by the potential

1 2
V1 (21) = 5[| 2] — 7log (det (212)).
When the imbalance is not isotropic, i.e., ZlT 7 — Zs Z2T = D, where D is some diagonal matrix
(# I, for any constant c). It this case,

VU, (Z7°) = Z7° - D(Z°) 7,
and there exists no such function ¥, and the proof breaks. O
Proposition C.5. Let (Z7, Z3) satisfy the following minimization problem
(Z7,Z3) = argmin Wy (Z;) + V3 (Z,),

142=Y

Sfor some non-negative potential functions Uy (Z1) , Vo (Zs). Then, (Z7, Z3) satisfies
(PI) (Z7)” | VW5(Z3) € span (X),
(P2) VU1 (Z7) = (Z5) ' V¥a(Z5)(2Z5)".

Proof. The Lagrangian for the minimization problem above is,
L(Z1,Z9,\) =V1(Z1)+ V2 (Z2)+ (N XZ1Zs —y).
Taking derivatives w.r.t. to Z1, Z5, we get,
V2 L(Z1,22,0) =V (Z))+ (X)) Z, .
V2,L(Zy,Z2,)) =VVUy (Zy) + Z (XTN).
As Z7, Z5 should satisfy VL = 0.
(Z7)" " VUy(Z5) = -XT),
VUL (Z7) = (Z7)7 VUa(25)(Z3)"
O

Lemma C.6. Let (Z1, Zs) be the process that follows the GF equations (3.1), initialized according
to condition I, for some vy > 0. Then

(i) The parameters converge to a global optimum of the loss

tll>r£loy — XZl(t)ZQ(t) =0.

(ii) The linear predictor (3 converges to the minimum £5-norm interpolator

def

lim B(¢) = argmin Hﬁ”2 = ..
XB=Y

Proof. The evolution of R writes,

R=—(X"X)[Z2] R+ RZ] Z,),

tr (RTR) = —2tr (R" (X' X)Z:Z] R) - 2tr (R" (X' X)RZ; Z>).
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Note that for any three PSD matrices ABC'. Using Lasserre [1995],( [see Lemma 7, Min et al.,
2021])

tr (ABC) > Apin (A) Amin (B)tr C.
From the invariance, we have,
Z Zy =291+ Z, Zo,
Z! Z, = 291,
Since ZlT Z, and Z; ZIT, share the same eigenvalues, Z; ZlT > 2+1,4. Therefore A, (Z1 ZlT) > 27.
Let A\pnin (X 7 X) be the smallest non-zero eigenvalue of X " X. Although (X " X) can have zero

eigenvalues, we can always restrict the evolution to the span (X T), which R belongs to and without
loss of generality assume that all the eigenvalues are non-zero. Using this for the first term, we have,

tr (R'(X'X)Z:1Z/R) =tr (X" X)Z:Z/ RR"),
> Amin (X' X)Amin(Z1Z] )tr (RR") > 22 (X T X)ytr (RR1).
For the second term, Z2T Z5 = 0 we have,
tr (R"(X'X)RZ, Z,) =tr (X" X)RZ, Z-R")),
> Amin(X ' X)tr (RZ, ZoRT),
> 0.

Combining both,

tr (RTR) < —2\uin(X ' X)ytr (RRT). (C.13)

. 2 .
Thus, using Gronwall we can show that HRH 7 decays exponentially to zero, thus we have X —-Y —
0. The last step is due to overparameterization, i.e., d > n and existence of a interpolating solution.

Implicit bias of 3. We know that & € span(X ") and 8 = (I - aa") ~! . Using, Woodbury
matrix identity,

(100" ~I-a(l-a’a) "o,
(—aa”) 'a-a-a(l-a’a) 'aa,
Therefore 3 € span(X 7). Hence, this satisfies the KKT conditions for
B < angmin 3 ]
O

Lemma C.7 (Mirror flow(k=1).). For k = 1, the dynamics of 3 can be characterized as a mirror

flow
1/2
dve, (B) =~ [7+ VIBIP +42]  vL(B) &, (C.14)

where the potential writes

w'y (/8) =

VI8P 422 +4] =2 [VIBP 42 +4]

Proof. Here we consider the case k = 1, let 7 := X ' (Y — X3). It is denoted lowercase since r
here is a vector. The gradient flow C.1 now in Z;, & can be now can be written as,

Wl Do

.
«

(I—aaT)r ) Z.1:Z1a'rT,

B= (2 210) = (2] 2, + & 2] Zia)yr |, 7=—(X"X) (2] 2 +a" 2] Zio)r.
0

20



Recall from Lemma 3.3 that
B=2vI1-aa") la.
Using Sherman-Morrison,

T)—l aaT

(I-oaa = —_— .
1=l

aa’

I+ ] a=2y—2
1= le]” 1= e]”

B=27y[I-aa’)'a=2y

Taking the norms, we get,

]| 2, 2y
— oy + llal-1=o0.
||5H le oll? HaH HﬁHHaH

aaT .
Hz] .
1 e

. T . . S
One cannot write {I + "‘”3‘”2} as a Hessian of any function of ae. However, multiplying on both
1-||x

sides with (1 — Ha||2)_1/2, we obtain,

I n aal & r
(=) =lla)” ) =o'

d [ o ]_ r
dt 12| — 1/2°
(1= {el) (1=l
‘We tackle the left hand side as follows,
48— 27

2

1—Ha

1/2
#:ﬂ(l_HaH?)m:ﬁ 2y
(1—[a?)” > 20\ V72 + 18I+~

B

m( /’}’2+ |‘I3H2+ﬁy)1/2
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1/2
Substituting the above expression and also (1 — HaHz) on the RHS gives us,

/
z (huugum)w = (Ve ol ea)

Define the mirror potential,

def

¢v (B) =

Using the fact that,

R N P VR K [ e R

‘We have,

VisP 4] = [VisP 4] cas

[SCII )

v, @) = (v+ VI8P +2) B

Thus, we can write it as a continuous-time mirror descent.

70, B - (Ve + I8 +4) vE®).

Lemma C.8 (Convergence rate of mirror flow). For the dynamics of the mirror flow given by
Eq. (C.14), we have the following rate of convergence,

Dy (B, Bo)

£(B() < oz

Proof. Note that v is convex. Let Dy, (.,.) be the Bregman divergence defined with the potential
1 (.). Taking the time derivative of the Bregman divergence, we get,

4 Dy (B.,B) = <W7<ﬂ>,ﬁ —~ ﬁ*> :

dt
- < 72+ [18]" + 7)1/2 (VL(B), B~ B).

‘We have,

. ( /’72 4 ||ﬁ”2 —1—7)1/2 . _\/ﬂ

Using the convexity of £ (.) in 3, we have

(VL(B),B—Bx) <L(B)—L(B.) = L(B)-

The last step is using the existence of an interpolating solution. Substituting the above two inequalities,
we get,

d

=Dy (B.,8) < —/2L(B).

Integrating, we get,

t | Dy, (B..Bo)
O/ £(B(s)ds < —= Dy, (B Po) Doy (8.p1)] < 2]
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The last step is using the fact that Bregman divergence is positive for convex functions. We will now
show that the loss is decreasing along the trajectory,

cip) = (vee).h) = - ! )1/2 <vm,b>.

(Va2 + 118l +

0 (B) = V4, (8) B <'wy (ﬂ>,b><v2wy (8)8.8) >0, (Using convxity).

Thus £ (3) < 0, using this,

t
Dwy (ﬂ* 3 ﬂO)
1B (D) < / £(Ble))ds < =B
This completes the proof. O

Definition C.9. [Singular value decomposition and notation.] The singular value decomposition of
a given matrix A € R¥* be denoted as UADAVAT where Uy € R4%4 D, € Rk 1, € RFXE,

Let k < d and consider the products AAT and AT A. We will refer to the diagonal matrices
Dyt 4 € REXF and Dy 4+ € R¥¥4 g5 D? and D2, in order to ease notation. Note that D? is a
block-diagonal matrix containing D% as the first diagonal block and 0 as the second diagonal block.

Finally, if k = d then D% = D?.

Lemma C.10 (Singular values of Z; and 3). Using the notations in Definition C.9, the singular
values of Z, Z5 and 3 are related as the following,

D7, =~k + /2 Ik + D} and Dy, =~ls+ /7214 + D3,
Proof. From the invariance (C.8) we further deduce (by appropriately multiplying left and right with
Z1, Z5 and their transposes):
B'B—(ZyZ:)° =29Z)Z> and  (Z1Z])* - BB =29Z:Z],

which implies that [3T 3, ZJ Z>] = 0 and [38",Z,Z]] = 0. Hence 3" 3 and Z, Z, commute and
can be simultaneously diagonalizable, same is the case with 33", Z;Z] . Therefore, the following
relation holds (elementwise):

D7, = I+l + D5 and D7, =9ls+4/7*la+ Dj, (C.16)

where the appropriate dimensionality of the diagonal matrices is evident from the indexing of the
identity matrices. O

Theorem C.11 (Singular vectors are static under orthogonal data). Let o := ZITZQ. Then, it
holds that

Ug =Ugz, =U,,
Vg =Vz, =V,

Furthermore, if X TX =1, it additionally holds that
U, = Ug = Ug-~,
Vo = Vg = Vs-.
Proof. From invariance (C.8), by multiplying left and right with Vgl and Vz,, respectively, we get
that:
D%1 - V—Zrl ZQZ;—VZ1 = 2’7Id7
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which implies that Vz, also diagonalizes ZoZ, (i.e., the left singular vectors of Z are the same as
the right singular vectors of Zs for all ¢ > 0). As aresult, 3 = Ug, DBV;2 and thus we have shown
that Uﬁ = IJZ1 and VB = sz.

Next, by definition o = ZfTZQ, and Z; and ZfT have the same left and right singular vectors (since

Z1_1 = VZIDZUEI). This, in conjunction with the above proves Uz, = U, and Vz, = V.

To show that U, = Ugr and V, = VR, we need to do a bit more work. We will show that:
a'R=R'a, and (C.17)
aR" =Ra’. (C.18)

Once we prove (C.17) and (C.18), it directly follows that

(aa”) (RR") = (RR") (aa’) and (a'a)R'R)=(R'R)(a'a), (C.19)
which gives the desired result.

To prove (C.17) we will show that RTa — a "R = 0,Vt > 0. First, we recall some relations that
will be needed. Under orthogonal data, it holds that

R=(8"-73) and R=-p3 (C.20)
Furthermore, using the reparametrization in terms of « which induces identity (C.12) and the

invariance (C.8), the original dynamics of 3 given by 3 = RZY Z, + Z,Z| R rewrites as

B =2y [RaT(Id —aa ) ta+ (I; - aaT)_lR] . (C.21)
Now, using (C.21), it holds that

R'a=R'R— RTa)? —29R"(I; —aa’ ) la—2va' (I; — aa’) 'aR T«
=R'R-R'a))-2R'a(l —a'a) ! —2va"a(ly —a'a)"'RTa
=R'R-R'a)?’-29RTa(ly —a'a) ' —29(I; —a'a) 'RTa+ R a,

were we used the push-through identity (I + UV)~!U = U(I + VU)~ L.

Denoting C := R." «, computing the transpose version of the above ODE and using the fact that
C?—(CT)?’=3(C+CT)(C-CT)+3(C—CT)(C+CT), the following holds:

C-CT=-C-2C(—a'a) ' —2y(I, —a'a) 'C+ C+ (CT)?
+29(I —a'a)'CT +29CT (I, —a'a)" ! = CT

=—[c?—(CT)P]+(C-CT) =2y —a'a) (C-C")—29(C-CT ([ —a'a)™*

1

5 I-C-C")—2y(I) - aTa)_l} (c-ch

—-(c-ch) E I-C-C") =2yl —a'a)™'|.

Finally, since C(0) — CT(0) = 0, it is a fixed point of the above equation and it implies that
C = CT,Vt. Thus, identity (C.17) is proven.

We proceed similarly for identity (C.18).

Ra™ = -29Ra ' (I; —aa’) ™' —2y(I; —aa’)'Ra’ + RRT + Ra' — (Ra')?.
Denoting B := Ra" and computing B-B" we get:

N
B_BT = 3 (I, - B _BT) —2y(I4 — aaT)_l} (B-B')

+(B-B") E (I.-B-B") —2y(I; —a”) ']
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Since (B(0) — BT (0)) = 0 is a fixed point of the above equation, identity (C.18) is proven.

Finally, we show Ur = Ug~ and Vr = V3~ using yet another invariance, namely

Z/RZ) = Z,R"Z,,Vt > 0. (C.22)

We proceed by computing the associated time derivatives and showing that their difference is null:
Z[RZ] — Z,RZ, = Z RZ] — Z,RZ, (C.23)
= -7Z/RZ,7Z:Z, — 2yZ{RZ, — 7,7, Z/ RZ, (C.24)
+ ZyZy ZoR'"Zy + 29ZyR "7y + ZoR 7,757 (C.25)

= (Z:R"Z1 — Z{RZ;) ZoZy + Z2Zy (ZoR'Zy — Z{ RZ; ) (C.26)
- 2v(Z{RZ; —Z,R"Z,), (C.27)

where we used (C.20) and the invariance (C.8). Since Z2(0)R " (0)Z1(0)—Z1(0) "R(0)Z2(0)" =0,
it is a fixed point of the above equation and we have shown (C.22).

Finally, it holds that
Z RZ)] =7.R"Z, «— Z[B*Z] — Z] BZ] = 7,3" "7, — Z.8" 7,

— 732 =7, "7,
= B'a’ =af*’, (C.28)

where the second equivalence comes from the fact that Z] Z; and Z,Z] are simultaneously di-
agonalizable and thus commute (from invariance (C.8)), and the second equivalence comes from

multiplying left and right with Zl_T and Z !, respectively and the definition of . Furthermore,
Rla=a'R «—=pg""a-la=a'g" —a'j
= pa=a'p, (C.29)
where the second line comes from the fact that 3'a = o' Z1Z{ o = T 3.

From repeated applications of (C.28) and (C.29) we obtain that
(aTa) (B*TIB*) — (IB*TIB*) (aTa) and (aaT) (ﬂ*ﬂ*T> _ <B*IB*T> (aaT)7 (C.30)
and the final identity follows. O

Theorem C.12 (Time evolution of singular values - orthogonal data). Assume that X' X = I;.
Then, the it" singular value of 3 evolves over time as

o (ot [ e )
o? +\/crfyi+'y?+exp(72t \/afﬂﬁr'y?)(\/oiﬂr’y?—'y) Ox,i
(O E [ ) )
o2 'y+\/af,,i+72+cxp(—2t \/UEJ—&-’Y?)(\/UEJ-F’F—’Y) Ox,i
As a consequence, under vanishing initialization v — 0 and with a rescaling of time as t — In(1/7)t,
the ith singular value is learned at time T; = 1/20, ;:

st

opi(t) =

K3

. 0, if t<1/20,,
1 (In(1/v)t) = ’
71—% 7p.4(In(1/7)t) {JM—, otherwise.

Proof. From Lemma 3.3 we have that & = R — aRa . In light of Theorem C.11, identity (C.18)
and it holds that:

D, = (14— D) Dg- — 29/Da.
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For the i singular value of c it holds that:

.
—

Oai(t) = —04i08,i(t) = 270ai(t) + 0w

2 2
—0yi {(Cfa,i(t) + Oz) - (1 + ;)} , (C.31)

*,1

where o, ; is the ' singular value of 3*. Equation (C.31) is a Ricatti ODE and is separable. For

ease of notation, let p := %, qg=1+ 0722‘ and r ;== —o, ;. Then, we need to solve the IVP:
— 2
Oai(t) =7[(0ailt)+p)" —q] (C.32)
0a,i(0) =0,

1 —exp(2r\/§(t+cl ))
1+cxp(2r\/§(t+cl))

>. Replacing p, ¢, r and rearranging we finally obtain:

for which we get 0q.i(t) = \/q {
s o8 (Vi
o i [T el RN )]

TN el [y ok rexp (<2t 4/02, 192) (ol a2 =) | i

(C.33)

} — p and solving for the initial value gives us

Cc1 =

In order to obtain the dynamics for the singular values of 3 = Z1Z] « we recall the relation given in

Lemma C.10:
D%1 =14+ \/721(1 + D2 ,

where the appropriate dimensionality of the diagonal matrices is evident from the indexing of the
identity matrices. Therefore, the singular values og ;(t) are the solutions to the equation

0p.i(t) = 05, ;(00ailt) = 0ai(t) [v+ /72 +0%,(0)]

and have the following expression:

2’)/0'0‘,1‘(75)
7p.(t) = 1—02 .(t)
ol

q

2 ( 14+ 2 {H“Uz’iﬂQ’e"p(*zt\/"f,ﬁﬁ)(\/fff,ﬁvhv
v o} T4/ fyi+’72+exp(72t\/Uf’ﬂr'ﬂ)(\/af)ﬂr’ﬂfv
L (i E [/
(- It

P
n 'y+\/af‘i+72+exp Qt\/o'fvivﬁ»'y? \/afyi%»'y?f'y

|-=)
|-)

Note that lim; o0 0, i(t) = ﬁ (1 [0+ 72— fy) and therefore we can verify that 3 =% 3 by
looking at the singular values, since the singular vectors are static (Lemma C.11).

lim op,(t) = 2y (Vi 417 -7)
e B ()

= Ox,i-

*,0

)
)
)
)

S

K3

We can now derive asymptotic transition times at which the singular values are learned. Now,

we further process expression (C.33). Let v = /UEJ +92 =y, w = /af’,i + 72 + «, then
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v+w=2/07, + 2 and w — v = 2. We re-write:
w —exp (—t(v+w))v

1 {(w +v) { w + exp(—t(v + w))v } —(w- U)}

" 204,
) (e )

O'a7i(t)

1 [—vwexp (—t(v+ w)) n vw }
Owi Lw +exp(—t(v +w))v  w+exp(—t(v + w))v

_ Y| twen (vt w) | (C.34)
Oxi w + vexp(—t(v + w))
L =:h(t)
2 a,t t . 2
Since from before we have that og;(t) = 1W2’((£) and we can write 1 — O’i () = y +
“Oa, ' x4

2h(t) (2 = h(t
M, the singular values of 3 become:

2
J*,i
o 20l SIM-h®] o= h(D)]
O’ﬁ,z( ) —1_ Uii(t) - 2371, I v2h(t)(22—h(t)) - 1+ vh(t)(;_h(t)) .
’ a*,i U*,i Y

We wish to study the limit of infinitesimal initialization v — 0. We introduce a constant ¢ > 0 and
rewrite v = exp(—c) and have ¢ = In(1/). Rescaling time ¢ — ¢t and taking the limit ¢ — oo we
have

. L 20, [1 — h(ct)]
cliglo op.ilct) = clggo 2 + vh(ct) exp(c) (2 — h(ct))

Ox,i

1+ lim,—, o vh(ct) exp(c)

0, ift < 1/20, ,,
g it =120,

Ox,is if t > 1/20'*77;,

o _ o (Wt w)exp (el — t(v + w)])
smee cliglo exp(c)h(ct) = clggc w + vexp(—ct(v + w))

24/0% ; 4 exp(—2c) exp ([l — 2to, ;]) exp ( —2ct exp(=2c) )

) Oxitr/02 ;+exp(—2c)
= lim ’

¢o0 \/ 03 i+ exp(—2¢) + exp(—c) +vexp(—ct(v + w))

00, ift < 1/20,,
={2, ift=1/20,, 0
0, if t > 1/20,,.

Lemma C.13 (Mirror on singular values). With the same notations as in Theorem 3.1, The singular
values of B, denoted by Dg, follow the mirror flow

dvy, (Dg) = _ngﬁ(B) dt,

where the potential is V., (Dg) = tr (%Dﬁ sinh ™ (Dg/7) — /D% + ’yQ).
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Proof. We recall the dynamics induces on o = Z;TZQ given in Lemma 3.3:
a=R-aR'a. (C.35)
Writing the SVD decomposition of v as UaDa V,, = Uz, DoV we have that:

U}, &Vz, = Uy Uz, DaVy Vg,

. o o I
=Uy Uz, DaVy Vz, + Uy Uz DoV Vz, + Uy Uz DoV, Vz,
. . . T
=Uy Uz, Dy + Do +DaVy, Vz,.
. o I . o I .
Since U;UZ1 + Uz Uz, = 0 and V;‘,Vz2 + V3, Vz, = 0, the matrices U;lUZ1 and

VL Vz, are skew-symmetric (have 0 diagonal), and therefore the principal diagonals of the products
. o« T
UglelDa and DoV, Vz, are also 0.

We define the linear operator diag : R*** — R¥** which maps any A € R?** to a matrix of the
same dimensions whose principal diagonal contains the elements on the principal diagonal of A, and
zeros otherwise. With this notation, we have that diag(U_ aVy,) = ].Da.
We similarly apply the orthogonal matrices to the left and right of the RHS of C.35, letting R/ :=
U;RVZ2 € Raxk,
diag (Uz, (R— aR"a) Vz,) = diag (R’ —= DoR''Dy)

= diag (R') — diag (DR’ ' Dq)

= diag (R') — Dadiag (R')| Dy

= (Id - f)i) diag (R').
Therefore it holds that:

D, = (I; — D) diag (R/) (C.36)

We now wish to arrive at an expression in 3. From the definition of c it holds that « = (Z,Z{ )~'3

and, in conjunction with the first part of Theorem C.11 it holds that D, = (]32Zl )_1D 3. Therefore,
the LHS of (C.36) becomes:

. .

Do = (B3,)"'Dp + (B3,)"'Dy. 37

For computing (]ND%l )~ 1 it is perhaps easiest to proceed as we did with cv.

. .
L —

Uz, (212]) Uz, = —Uy,(Z:2]) " (2:12] )(2:2]) ' Ug,
— (D}, (DaR'T + R'DS) (D)

and therefore

(Dz,)"" = diag (U;(lef)iUm)
~o . T, 4 =0
=—-(Dz,)"! (Dﬁdlag(R’) + diag (R) Dg) (Dz)™ "
— —2(D%,) *Dgdiag (R)) " .
Putting everything back together in (C.37) we have that
D, = —2(D%,) *Dgdiag (R')' Dg+ (D%,) 'Dg (C.38)
—2(D%,)"2D% diag (R') + (DZ,)'Dg. (C.39)
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Finally, for dealing with the RHS of (C.36), we recall equation (C.12) which is implies that
27(D%,)~! = I — DZ,. Putting together (C.39) and (C.36), we get that:

—2(D,)"*D} diag (R') + (D,)"'Dy = 2¢(D%,) 'diag (R'). (C.40)
Therefore, we have the following string of implications:
1 P NITE b B .
(C40) = 5 [/I+D}(D%,)7!| Dg = diag (R')

1~ N 1 ,
= D3, [v(D%,)+ D3] Ds = diag(R)
1 - . —1-1 .
2 2 2 2 _ : /
= 5(7](1—1— \/7v?1a+Dj) {fy I;+Dg +7\/'yQId+Dﬁ} Dg = diag(R’)
1 7.
=3 {\/vzfd—i-D%} Dg = diag(R/)

df sinh™! (£ Dg)

- = diag (R').
As a final step, we remark that diag(R/) = ~Vp,L(B) and that
Vb, tr (Dgsinh ™" (Dg/7) — \/Dj +12) =sinh ' (1 Dp). O

C.1 Extensions and further experiments

In this subsection, we describe how the insights from our analysis can be extend to relaxed assumptions
on initialization, discrete gradient descent and non-linear activations.

Perturbations from assumption on initialization. Our analysis is contingent upon two assump-
tions regarding the initialization shape. The first assumption concerns the orthogonality of the initial
feature layer W71 (0). In Figure la, we explored a scenario where the feature layer is initialized with
a random Gaussian matrix, yet the evolution of singular values closely aligns with our theoretical
analysis for orthogonal initialization. In Figure 4, we demonstrate the impact of zero initialization for
the weight layer W5,. We maintain the same experimental setup as in Figure 1a, but employ a random
Gaussian initialization for W5 with variance scales of 10~2 and 103, while initializing W7 with a
variance of 10~2. In this context, the evolution of singular values continues to adhere to the predicted
trend from our analysis.

T
10/ R
/0
;o
/
@n ,I J 27
é F /f"/"
i a i g
= A ,
i:: 10714 e a0 ,/ : /’
[ / 7
o9 / R
/ s
o3 /’ Vi
Pl //
FEEEEEEEEEENANEERS
100 10! 102 10° 101 10°
Iterations
==== W5(0) ~ N(0,.01) == W5(0) ~ N(0,.001)

Figure 4: The time evolution of singular values of the hidden layer weights of a 2-layer linear network
when trained with gradient flow initialized with Gaussian random variables and non-zero W.

Discrete step size. Here we present a simpler problem to show how we can go beyond continuous
time analysis. Consider the problem withl = d, k = 1, W1, Wy = W a and W is initialized with
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1. The evolution of W, a with a learning rate 7 can be written as

Wi = W, +nRa; ,
a1 = ag + nWtTata
R =R —n (X' X) (WW," +|as|*) R — n? (a/ WiR:) (X7 X) Ry

If we further assume that X T X = I, then it can be shown that R;, a, only grow in norm and do not
change in direction. So the update of W is always aligned with the rank-1 matrix Roa,] . Hence for
small initialization, the final W, is approximately a rank-1 matrix. This presents a way forward for
the discrete step-size case and orthogonal data. With further analysis, we think this can be generalized
to any data matrix satisfying the RIP conditions. This is not included in the main paper due to
restrictive assumptions on the data but we will include these comments in the appendix.

Non-linear activations. We consider the same teacher-student setup as in the Figure 2. To com-
pletely characterize the dynamics and the final weight parameters is a challenging problem. The
characterization of the dynamics at the small scale of initialization is also absent (for any general
data matrix), Boursier et al. [2022] solves this in the case of orthogonal data. To study even this
simple case of two neurons, one has to study the dynamics in two phases where one jumps from
zero initialization (a saddle point) to another saddle and then further converge to zero train loss as
seen in the Figure 5a. It is difficult to precisely characterize this intermediate saddle. With some
careful additional work, we believe that our analysis can capture Phase 1 (where you jump to the first
saddle) of the dynamics where you approximately learn rank 1 matrix, see Figure 5b, for general data
matrices extending the current understanding. We hope this briefly sketches a way forward for ReLU

networks.

Evolution of Singular Values of ReLU network - Phase 1

10°

1 i ay !
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Training loss

Singular Values
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Figure 5: (a) The training curve of the teacher-student network which follows a saddle-to-saddle
dynamics. (b) The time evolution of singular values of the hidden layer weights of a 2-layer ReLU
network when trained with gradient flow. The plot represents Phase 1 of the training where you first

learn a (approximately) rank-1 hidden layer.

D Noise Dynamics

Noise Model. Here we consider the scalar case (k = 1), abusing the notation W = Wy, a = Wa.
The gradients of the loss £ (W, a) are
VwL=-X"(Y-XWa)a', V.L=-W'XT (Y - XWa).

When the labels or outputs are doped with a noise of magnitude 6 > 0, i.e., adding ¢ ~ 6N(0,L,).
Now the gradients computed after doping with this label noise are

Vwl=-X"(Y +e—-XWa)a', V.L=-W'XT (Y +c—- XWa).
Vwl=VwLl—-X"Teal, ViL=V.L-WTXe
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Thus label noise gradient descent with step size n and with added label noise ¢; at each iteration
writes

Wi =W, —n(VwL (Wya) — X ga) ).
The continuous time version of this SDE writes,
dW = —nVw L (W,a)dt +ndX "dB;a’.

Now, we consider the large noise regime, where the dominating term in the SDE is the diffusion term.
Therefore we consider the SDE,

dW =n6X"dB,a’,

where B, is a n-dimensional Brownian motion. Note that we can get rid of the term 7J by re-scaling
time by a constant factor. Similar steps for the evolution of a gives the SDE,

dW = X"dB,a’, da=W'X"dB,.

Now consider the compact SVD decomposition of X, i.e., X = UDV ", where U, D € R"*",V ¢
R>X" and UUT =UTU =V'V =1,.

dW =VDU"dB,a", da=W'VDU'dB;,,
AW =D(UTdB)a", da= (VW) D(UTdB,).
Using Levy’s characterization Y; = U T B, is a Brownian motion, since U is an orthogonal matrix.
Let W = VW, then
dW = DdY;a', da= W 'DdY,.

Here we consider D = I and change the notation to get the SDE 4.1 below. Our results can be
extended to any diagonal matrix D.

dW = (dB;)a’ , da=W'dB,.
Proposition 4.1. The dynamics (4.1) has the following convergence properties

(a) Variance explosion. The variance of the norms of W , a explode, i.e.,

tliglOIE “|W(t)H2} —o00 , limE [Ha(t)‘ﬂ — 00.

t—o0
(b) Scale divergence. For d > 5, for any a > 0, we have that,
Jlim E (W] = lim E[[la@)|" + [[a®)]|"] = oo

t—o0

¢
where a == e~" [ e®a(s)ds is the exponential moving average of a.
0

(c) Alignment - spectral bias. Denote the i row of W as w;. Using [w;, a| ef w;al —aw,

7

Jim E[|feo,, ][] - 0.

Proof. Consider the noise model Eq. (4.1),
dW = (dBy)a' , da=W'dBy, (D.1)

Variance. Let w; be the i'" column of W and a; be the ' coordinate of a. For any i € [n], the
diffusion of the quantities can be separately written as

dw; = a;dB;, da; = (w;,dB;).
Using the It6 chain rule,
deiHQ = 2 (w;, dw;) + (dw;, dw;),
= d||ai||*dt + 2a; (w;,dB).
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Similarly,
da? = 2a,da; + da;da; = 2a; (w;,dB,) + |jw,||*dt.
Note that {(w;, dB;) ~ Hwi ||d§t for some one-dimensional Brownian motion (Bt)tZO-
a0 = [jw|*at + 2 faw|Be, | = da"dt + 2a. 0B
Letv :=a;,u = ||wZ || using this notation we get,
du? = dv’dt + 2uvdB;, dv? = u?dt + 2uvdB;. (D.2)
Let ug := E [u?] , v := E [v?]. Using the Dynkins formula, taking the expectation, we get,
dE [u?] = dE [v?] dt, dE [v*] =E [u®],
dug = dvgdt, dwvy = updt.
This system can be transformed into,
d(uo + \/Ev()) =Vd (wo + vnwy) dt
Solving the above ODE we get,
(uo + \/a'vo) = coeV¥ where ¢y = u0(0) + Vdvy (0)
Similarly,
d(uo — \/(Ev()) =-Vd (uo — \/gvo) dt,
(uo - \/&)0) —cre v where ¢; = uo(0) — Vdvy (0).

Vat + Cle—\/ﬁt] ’ Vat —\/Et] '

Vo= —— [606 — C1€

2/d

: [
up = - |c
0=3 0¢
Taking the limit proves the first part of the result.

Scale. From Eq. D.2, we have,
d(u? + vVnv?) = Va(u® + Vdv?) + 2 (Vd + 1) uvd B;.
Again using the It chain rule, we get,
d(u2 + \/&'02>a =« (u2 + \/ﬁvQ)a_l d(u2 + \/&12)
+ %a(a — 1) (u? + V)™ d(u? + vaw?)d(u? + Viw?),
= o (u? + Vdo?)™ T [Vid(u® + Vdv?)dt +2 (Vi + 1) wodB,]
+ %a(a —1) (u? + V)™ (4 (Va+1)* u2v2) dt,
The drift term is

ay/n (u2 + \/31)2>0t +2a(a—1) (\/& + 1)2 (u? + \/75'172)&_2 u?v?

2,2
— a(u? + Vi) |Vd+2a—1) (Va+1) —2 |
(w2 + Vi)
Again using the Dynkins formula for the evolution of expectation, we have,
o o 2,2
]E[(u2+\/gv2> ]:]E a(u2+\/gvz> ﬁ—%—Q(a—l)(ﬂ%—l)QLz dt.
(w2 + Vi)

D.3)
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For any function,

a(y) = ——,
(v+Vd)
attains its maximum value at y = /d, i.e., g(v/n) = 1/(4V/d). Note that & < 1 and we have

u?v? (Va+1)*
mz (a—l)(\f—i—l) g(f) (O‘_l)ﬁ-

The drift can be lower bounded as the following,

av/n (u2 + \/31)2)& +2a(a—1) (\/& + 1)2 (u? + \/ﬁvQ)a_2 u?v?

2(a—1) (Vi +1)°

a Vi+1)
a(u2+\/a'v2) [\/&Jr(al)(?\/g)] .

Ford > 5and 0 < @ < 1, we have ¢y > 0,

[\@—i— (a — 1)(\/(;—/;1)} > cp.

Using the above expression in Eq. D.3,
E [(uz + \/gvz)a} > acolE {(uz + \/a'lﬂ)a] dt
Taking the limit,
tlggo]E [(uQ + \/31)2) ] — 00.
From the SDE (D.2), we obtain the following process with only diffusion,
d(u® —v%) = (dv® — 2)dzﬁ,
d(u? - v°) + (u® —v?) dt = (n — 1)o?

e'd(u® —v°) + e (u® —v?)dt = (n — 1)’ 2dt,

de’ (u ) (n — 1)etv?dt,

to
(u(t2) = v (t2)) = e~ 27" (uP(t1) — v?(t1)) + (n — 1) / e~ (202 (1)dt,

t1
to

(u?(t2) + Vnv?(t2)) = e~ 271) (u?(ty) — v*(t1)) + Vv (t2) + (n — 1)e™" /etv2(t)dt,
Denote C(t) := u?(t) + v/dv?(t), using the fact that u?(t1) — v%(t;) < C(t1),
C(tz) < e” =700 (1)) + Vv (t2) + (d — 1)e ™2 /etvz(t),

¢

With ¢; = 0, using the notation ©2(t) := e~" [ e*v?(s)ds, to denote the exponential moving average.
0

For any time ¢ > 0, we have,

C(t) <e W (0) +d (v2(t) + B%(1)) .

Raising to the power of o,

C ()" < [e7'C(0) +d (v2(t) + 9°()]" .
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For a,b > 0and 0 < p < 1, we have (a + b)? < a? + bP. Using the inequality,
C () < e ®C(0) +d* (v3(t)" +d* (92()"
Taking the expectation,

E[C(£)"] < e™E[C(0)"] + d°E [(v*(1)"] + d°E [(5*(t))"] .

Now, we proceed by taking the limit,

lim E[C (1)) < e lim E[C(0)"] +d° lim [E [(v2())"] + E [(87(1)"]].

t—o0 t—o0 t—o0

Thus, we obtain,

lim (E [(v2(1)"] +E[(2%(1)"]) = oo,

t—o0

¢
where 9% (t) :== e [ e*v?(s)ds is the exponential moving average.
0

A similar computation for u will yield,

lim E [(u2(t))a} — 00.

t—o00
Therefore for the limit of a;, ||w7 H we have,

tim B[] > oo, Jim (B[(@20)°] + & [(@(0)°]) = o

t—o00 —00

Now we proceed to combine the above results and obtain the result on a, W. Note that for0 < o < 1,
z® is concave. Further using the Jensen’s inequality, we have,

d
()" = (3ol ) a3 o)
i=1
Similar expression for a and taking the limit, we obtain, the result

lim E [HW H } , lim E [Ha H + Hé(t)”a] — 0

t—o0 t—o0

¢
where a := e [ e®a(s)ds is the exponential moving average of a.
0

Alignment. Let 2z, 25 ... 24 be the rows of the matrix W. Now the evolution of the rows can be
written as

Z‘Z' = a(dB;),
d
da = Z z;dBj.
j=1
. . . . def T T
For any two matrices, with same dimensions define [u,v] = uv' —ou ' .

d[z;,a] = d(ziaT) — d(aziT)7
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Using the It6 chain rule,
d(zia—r) = dziaT + zide + dz;da,

d d
=aa' (dB})+z | Y z/dB] | + (a(dB))) | >z dB] |,
j=1 j
—aa' (dB!) + Z ziz;dBi +az; dt,
j=1

d
d(az/) =aa' (dB]) + za'dt + Z 2z, dB],
j=1
d .
d[z;,a] = — [z;,a]dt + Z [z, z;] dBY,
i=1
From the above evolution, we have that,
dE [[z;, a]] = —E [[2;, a]] dt.
Hence, we have,
E[[zi,a]] = [2:(0),a(0)] e~".

Lete; 2 [2i, ] [k, 1], be any (kl)*" entry of the matrix. Similarly, let c;; def [z, z5] [k, 1].

de; = —e;dt + Z c;;dBY,
J
de? = —2¢; | e;dt + Z Cideg + Z C?Jdt’
j J
j J
Again using the Ito formula and computing (e7)* for some a € (0,1), we get,

7

4(6)" = a () det o+ Jada— 1) ()" dekack

d(e?)a = (612)&_1 —2e2dt + Zc?jdt — 2e; Zcideg + %a(a -1) (ef)a_z 4e? Z cfj ,

J J J
-« . 1 a—
= 2« ( ) dt + Zcudt - 2a €; Zcidef + ia(a -1) (e?) 24622
= —2a (€] ) dt + (20— 1) ( a 1Zc”dt—2a elz:cdet7

Taking o = 0.5,
d‘61| = 7‘ei|dt - |€i|71€i ZC”ng
J
Taking expectation, we get,

E [le;[] = —E [le;|] dt.
Hence,
E [|[zi,a]|] = [[2:(0), a(0)][e ™.
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