
Adaptive Discretization for Consistency Models

Jiayu Bai1, Zhanbo Feng2, Zhijie Deng2, Tianqi Hou3, Robert C. Qiu1, Zenan Ling1∗
1School of EIC, Huazhong University of Science and Technology

2School of Computer Science, Shanghai Jiao Tong University 3Huawei

Abstract

Consistency Models (CMs) have shown promise for efficient one-step generation.
However, most existing CMs rely on manually designed discretization schemes,
which can cause repeated adjustments for different noise schedules and datasets.
To address this, we propose a unified framework for the automatic and adaptive
discretization of CMs, formulating it as an optimization problem with respect to
the discretization step. Concretely, during the consistency training process, we
propose using local consistency as the optimization objective to ensure trainability
by avoiding excessive discretization, and taking global consistency as a constraint
to ensure stability by controlling the denoising error in the training target. We
establish the trade-off between local and global consistency with a Lagrange
multiplier. Building on this framework, we achieve adaptive discretization for
CMs using the Gauss-Newton method. We refer to our approach as ADCMs.
Experiments demonstrate that ADCMs significantly improve the training efficiency
of CMs, achieving superior generative performance with minimal training overhead
on both CIFAR-10 and ImageNet. Moreover, ADCMs exhibit strong adaptability
to more advanced DM variants. Code is available at https://github.com/
rainstonee/ADCM.

1 Introduction

Diffusion Models (DMs) [34, 9, 38, 18, 20] have achieved remarkable accomplishments in the field
of data generation, including images [4, 29, 30], videos [10, 2, 41], audio [15, 28, 19] and 3D
contents [40, 27, 22]. However, DMs require numerous iterations to achieve high-quality generation,
significantly slowing sampling speed and making it resource-intensive. Recently, many fast-sampling
methods for DMs have been proposed, including training-free methods [35, 14, 24, 48] and distillation-
based approaches [25, 31, 46, 6, 26, 42, 45, 32]. However, these methods often sacrifice quality for
faster sampling or incur substantial training overhead, which limits their practical application.

Consistency Models (CMs) [37, 7] offer significant advantages in addressing these challenges. CMs
sample trajectories from the PF-ODE of DMs and aim to map each point on these trajectories to
their corresponding endpoint. Through this approach, CMs achieve single-step generation while
preserving the advantage of DMs, which improve generation quality by performing more iterations.
CMs achieve the mapping to the endpoint by minimizing the distance between adjacent trajectory
points. We refer to the selection of adjacent trajectory points as the discretization for CMs. Previous
works [37, 36, 7, 23, 21] have shown that discretization is crucial for CMs’ training. It determines
the trainability and stability of CMs: poor trainability can impair final performance, while instability
during training may slow convergence or even lead to divergence. A suboptimal discretization strategy
may lead to an imbalance between trainability and stability [7]. It may also cause CMs to overly focus
on training within a specific time interval, leading to a loss of consistency [17]. To mitigate these
challenges and ensure a balanced training process, most existing works adopt empirical discretization
strategies, which require manual adjustments based on different noise schedules and datasets [7].

∗Corresponding Author: Zenan Ling (lingzenan@hust.edu.cn).

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/rainstonee/ADCM
https://github.com/rainstonee/ADCM

0 100 200 300 400
Training Images (Mimgs)

2.5

3

4

6

10

Fr
éc

he
t I

nc
ep

tio
n

Di
st

an
ce

 (F
ID

)

ADCM (Ours)
ADCM (Ours)

ECM

ECM sCD

sCT

CT

CD

iCT

(a) CIFAR-10

100 800 1700
Training Images (Mimgs)

2

4

8

13

Fr
éc

he
t I

nc
ep

tio
n

Di
st

an
ce

 (F
ID

)

ADCM (Ours)
ADCM (Ours)

ECM

sCD

sCT

CT*

CD*

iCT-deep

20 40 60
3.0

3.5

4.0

(b) ImageNet 64× 64

Figure 1: ADCMs significantly improve the training efficiency on both (a) unconditional CIFAR-10
and (b) class-conditional ImageNet 64× 64. ADCMs achieve superior generation quality with only a
minimal amount of training data. ∗ indicates a smaller model.

Our fundamental goal is to adaptively determine the discretization strategy for CMs’ training2, consid-
ering both trainability and stability, thereby improving the training efficiency and final performance
of CMs. First, we propose that the discretization step should minimize the optimization objective of
CMs, i.e., local consistency, to ensure their trainability. Second, the discretization step controls the
denoising error in the training target of CMs, which affects the global consistency. Excessive denois-
ing error can lead to instability in CMs’ training, thereby degrading the efficiency of CMs. Hence, we
introduce global consistency as a constraint to ensure stability. To adaptively balance trainability and
stability, we formulate local and global consistency as a constrained optimization problem and relax
it via the Lagrangian method, introducing a Lagrange multiplier to express the trade-off between
them. To achieve adaptive discretization, we propose using the Gauss-Newton method to obtain an
analytical solution to the optimization problem. We refer to our method as Adaptive Discretization
for Consistency Models (ADCMs). Our analysis reveals that ADCMs adaptively adjust discretization
steps by jointly considering local and global consistency, thus achieving a balanced trade-off between
trainability and stability.

In our experiments, ADCMs significantly improve the training efficiency and final performance of
CMs. On unconditional CIFAR-10, as shown in Figure 1a, ADCMs exhibit outstanding training
efficiency. We achieve a 1-step FID of 3.16 with only a training budget of 12.8M images. In contrast,
ECM [7], the most efficient CM from previous work, requires 51.2M images to reach a FID of 3.60.
Moreover, we attain a 1-step FID of 2.80 using only 76.8M images, outperforming iCT [36], which
requires 409.6M images to achieve comparable performance. On class-conditional ImageNet 64×64,
as shown in Figure 1b, ADCMs significantly reduce the training overhead under the same model
size. ADCMs achieve a 1-step FID of 3.49 with a training budget of only 12.8M images. When the
training budget increases to 51.2M images, ADCMs achieve a competitive 1-step FID of 3.04.

Contributions. Our contributions are summarized as follows.

• We provide a unified framework for the discretization for CMs. Starting from local con-
sistency and global consistency, we investigate the impact of discretization steps on the
trainability and stability of CMs. Guided by these two principles, we formulate a constrained
optimization problem for selecting the discretization step. Previous discretization methods
can be regarded as special cases of our framework.

• Based on this framework, we propose Adaptive Discretization for Consistency Models
(ADCMs). First, we relax the optimization problem using the Lagrangian method and
establish a trade-off between the trainability and stability of CMs through the Lagrange
multiplier. Then, we employ the Gauss-Newton method to derive an analytical solution to
the optimization problem, enabling adaptive discretization steps that effectively balance

2In particular, we focus on Consistency Training (CT) [37] over Consistency Distillation (CD) due to its
superior empirical performance and its ability to bypass numerical solvers by directly leveraging training data
for unbiased score estimation.

2

local and global consistency. Additionally, we introduce an adaptive loss function to further
improve performance.

• Our experiments demonstrate that ADCMs significantly improve the training efficiency,
while achieving competitive performance in one-step generation. On CIFAR-10, ADCMs
achieve superior results using less than 25% of the training budget compared to previous
works. On ImageNet, ADCMs also demonstrate strong performance with minimal training
overhead. Furthermore, ADCMs adapt to advanced variants of DMs such as Flow Matching
without manual adjustments.

1.1 Related Works

Consistency Models. Consistency Models were first proposed by [37], achieving the distillation of
Diffusion Models by mapping any point on the PF-ODE trajectory to the endpoint of the trajectory.
To accomplish this, it proposed sampling adjacent points on the trajectory and enforcing that the
output near the noise end approximates the output near the data end. It divided CMs into two
categories: Consistency Distillation (CD) and Consistency Training (CT), corresponding to sampling
trajectory points using a pretrained DM and the forward diffusion process, respectively. iCT [36]
explored the potential of CT, as it does not require a pretrained DM to sample trajectory points, thus
supporting training from scratch. ECM [7] discovered that initializing the CM with a pretrained DM
can effectively accelerate its training speed. TCM [17] discovered that CMs struggle to map the entire
trajectory using a single model. Therefore, it proposed a two-stage approach for CMs, enabling CMs
to focus on learning tasks from different time intervals separately. CTM [13] and Shortcut Models [5]
aimed to make CMs capable of mapping to any point on the trajectory, not just the endpoint, by
introducing an additional time condition to assist the model’s learning.

Discretization for CMs. The training of CMs fundamentally relies on the selection of adjacent
trajectory points, a process we refer to as the discretization for CMs. Various discretization strategies
have been explored in previous works. iCT [36] proposed segmenting time based on the sampling
steps of DMs [11]. ECM [7] introduced a decoupled approach, employing two functions: one to
determine the overall magnitude of discretization steps and another to regulate their distribution
over time. Both iCT and ECM adopt exponentially decreasing time steps to enhance the stability of
CMs’ training. Alternatively, CCM [21] introduced an adaptive discretization scheme by iteratively
solving for the discretization step based on a Peak Signal-to-Noise Ratio (PSNR) threshold, ensuring
a more balanced training across different times. sCM [23] formulated an “infinite” discretization
approach, where adjacent trajectory points become infinitesimally close, transforming their distance
into the first-order time derivative. However, sCM observed that this discretization scheme suffers
from stability issues and proposed modifications to both the noise schedule and the neural network
architecture, among other refinements, to ensure stable training.

2 Preliminaries

2.1 Diffusion Models

Given a dataset with an underlying distribution pdata, DMs generate samples by learning to reverse a
noising process that progressively adds random Gaussian noise to the data, eventually transforming
it into pure noise. Specifically, for a data sample x0 ∼ pdata and a noise sample z ∼ N (0, I), the
diffusion process is defined as:

xt = αtx0 + βtz

where t ∈ [ϵ, T], and ϵ is a small value used to prevent numerical errors. [38] proposes that the
diffusion process can be modeled as a forward SDE, which is then denoised step-by-step using the
corresponding probability flow ODE (PF-ODE). DMs utilize a time-dependent neural network (NN)
to predict the unknown x0 in the PF-ODE. The optimization objective of DMs is given by:

min
θ

Ex0,z,t[w(t) · ∥fθ(xt)− x0∥22] (1)

where fθ(xt) = cskip(t)xt + cout(t)Fθ

(
cin(t)xt, cnoise(t)

)
, w(t) is a weighting function and Fθ is an

NN with parameters θ. We write f(xt, t) as f(xt) for simplicity. Most DMs, including DDPM [9],
EDM [11], and Flow Matching [18], have training objectives that can be equivalently expressed as
Eq. (1) through the design of precondition cskip(t) and cout(t).

3

2.2 Consistency Models

CMs [37, 23] aim to map any point xt on the PF-ODE trajectory to the corresponding data x0, i.e.,
fθ(xt, t) = x0. To achieve this, (1) at t = 0, CMs require that fθ satisfy the boundary condition
fθ(xϵ, ϵ) ≡ x0, which implies that cskip(ϵ) = 1 and cout(ϵ) = 0; (2) for t > 0, CMs are trained to
produce consistent outputs for any two adjacent points on the PF-ODE trajectory. Specifically, the
optimization objective of CMs is given by:

min
θ

Ex0,z,t[w(t) · ∥fθ(xt)− fθ−(xt−∆t)∥22] (2)

where θ− stands for stopgrad(θ) and ∆t is the time interval that defines the adjacent time step
corresponding to a given time t, which in turn determines the training target on the PF-ODE trajectory.
When retrieving the adjacent point xt−∆t, we adopt Consistency Training (CT) paradigm [37] which
enables unbiased estimation of the score function, expressed as xt−αtx0

β2
t

. This approach eliminates
the numerical errors introduced by solvers required for Consistency Distillation (CD).

The choice of ∆t, referred to as the discretization of CMs, plays a crucial role in their training [37,
21, 23]. Previous works have proposed various discretization strategies, which can be categorized
into two types, as outlined below.

Discrete-CMs. When ∆t > 0 is not infinitesimally small, CMs fall to discrete-CMs. Discrete-CMs
require careful planning of the discretization schedule. iCT [36] divides the time interval [ϵ, T] into
multiple segments using the sampling time steps in DMs [11], i.e., T = {t0, . . . , tN} where t0 = ϵ
and tN = T , and samples adjacent time points within T as t and t − ∆t. iCT proposes that the
discretization of CMs requires meticulous planning and designs time steps that decrease progressively
during training. ECM [7] also adopts dynamic time step scheduling. Unlike iCT, ECM samples t in
continuous time and then maps the corresponding time step through a manually designed function.
CCM [21] points out that the discretization step size affects the training difficulty of CMs at different
times. CCM proposes setting a PSNR threshold for CMs and solving the PF-ODE iteratively until the
selected time steps satisfy this threshold.

Continuous-CMs. Taking the limit ∆t→ 0, CMs fall to continuous-CMs, which can be considered
equivalent to “infinite” discretization. [37] proves that continuous-CMs can be optimized with:

∇θEx0,z,t

[
w(t)f⊤

θ (xt)
dfθ−(xt)

dt

]
(3)

which is a continuous version of Eq. (2). Continuous-CMs effectively avoid the discretization
schedule of discrete-CMs. However, continuous-CMs often face significant instability challenges.
sCM [23] addresses this instability for a specific DM with a specialized noise schedule, but it remains
unclear that how to address the instability for continuous CMs under a more general setting.

Overall, the choice of discretization step ∆t is still challenging. If ∆t is too large, CMs struggle to
learn meaningful information, while if it is too small, instability issues arise [23]. Additionally, how
∆t varies w.r.t. t determines the training emphasis at different times [36, 7], and suboptimal strategies
can lead the model to focus on specific time intervals, negatively impacting overall performance.
Although various discretization strategies have been proposed, they often fail to identify the optimal
∆t for each time step. On the one hand, existing discrete-CMs lack adaptive adjustment capabilities,
requiring additional modeling and hyperparameter tuning for different noise schedules and datasets.
On the other hand, continuous-CMs avoid discrete time steps by treating all time steps equally, but
not all are equally important for effective training [36, 17]. This limits training efficiency.

3 Methodology

3.1 ADCMs: Adaptive Discretization for Consistency Models

In Section 2.2, we illustrate the importance of discretization in training CMs. In this study, our
fundamental goal is to determine which discretization strategy is most beneficial for CMs’ training,
i.e., the discretization step ∆t for a given time t. When we fix the NN’s parameters θ− = stopgrad(θ)
and time t, we aim to find an optimal ∆t that contributes the most to the following training objective
of CMs:

Ex0,z[∥fθ−(xt)− fθ−(xt−∆t)∥22]. (4)

4

We define Eq. (4) as local consistency as it reflects the properties of CMs in a local interval. First, we
need that the objective in Eq. (4) is trainable. To achieve this, we need to choose an appropriate ∆t
such that the objective is as small as possible, thereby satisfying local consistency, namely:

min
∆t

Ex0,z

[
∥fθ−(xt)− fθ−(xt−∆t)∥22

]
. (5)

It can be observed that when ∆t = 0, the local consistency in Eq. (5) is minimized. This implies that
we need to choose ∆t as small as possible. However, previous works [37, 7, 23] have shown that
when ∆t is too small, CMs face severe stability issues, which slows down convergence and may even
lead to divergence. The underlying reason is that the practical training target, i.e., fθ−(xt−∆t), fails
to precisely denoise xt−∆t to the ground-truth x0, leading to the global denoising error quantified as:

Ex0,z

[
∥fθ−(xt−∆t)− x0∥22

]
. (6)

Remark 3.1. This denoising error is also an upper bound on the squared Wasserstein-2 distance
between pdata and the data distribution generated by fθ− at time t−∆t. Moreover, this error can be
regarded as a lower bound on the accumulated error from previous time steps, namely:√

Ex0,z

[
∥fθ−(xt−∆t)− x0∥22

]
≤

k∑
i=1

√
Ex0,z

[
∥fθ−(xti)− fθ−(xti−∆ti)∥

2
2

]
,

where ∆ti is the discretization step corresponding to time ti, satisfying ti −∆ti = ti−1.

We define Eq. (6) as global consistency because it reflects the global properties of CMs. Excessive
denoising error will cause CMs to optimize in the wrong direction, which leads to instability in CMs’
training. Therefore, we propose that when selecting the discretization step ∆t, it is necessary to
ensure that the denoising error is constrained, namely:

Find ∆t, s. t. Ex0,z

[
∥fθ−(xt−∆t)− x0∥22

]
≤ δ (7)

where δ is an upper bound that needs to be set manually. Clearly, when ∆t takes the maximum
value t− ϵ, due to the boundary condition fθ(xϵ, ϵ) ≡ x0, the constraint in Eq. (7) will be satisfied
regardless of the value of δ. This implies that we need to choose the largest possible ∆t.

Notably, the optimization objective in Eq. (5) and the constraint in Eq. (7) respectively impose
opposite guidance for ∆t. When ∆t is extremely small, the local consistency error in Eq. (5) is
minimized, making it easy for CMs to optimize. However, this may cause the constraint in Eq. (7)
to exceed its upper bound. Conversely, when ∆t is extremely large, the constraint in Eq. (7) will
be easily satisfied, but it may cause the optimization objective in Eq. (5) to become too large and
difficult to optimize. Therefore, we propose a constrained optimization objective to achieve a trade-off
between Eq. (5) and Eq. (7), which is given by:

min
∆t

Ex0,z

[
∥fθ−(xt)− fθ−(xt−∆t)∥22

]
, s. t. Ex0,z

[
∥fθ−(xt−∆t)− x0∥22

]
≤ δ. (8)

We denote the optimization objective Ex0,z[∥fθ−(xt) − fθ−(xt−∆t)∥22] as Llocal, as it focuses on
the local consistency information of CMs and controls the local consistency error for CMs. There-
fore, minimizing Llocal effectively improves the effectiveness of CMs. We denote the constraint
Ex0,z[∥fθ−(xt−∆t)−x0∥22] as Lglobal as it focuses on the global consistency and controls the denois-
ing error in the training objective. Consequently, Lglobal helps CMs effectively eliminate denoising
error, find accurate optimization targets, and thus improve training stability and efficiency. Our goal
is to ensure both the global consistency and the local consistency simultaneously, enabling an adap-
tive adjustment of CMs’ discretization. However, directly optimizing the constrained optimization
problem in Eq. (8) is challenging. To address this, we apply the Lagrange multiplier method to relax
the problem, yielding the following formulation:

∆t∗ = argmin
∆t

Ex0,z[Llocal(t,∆t) + λLglobal(t,∆t)]. (9)

Here, the Lagrange multiplier λ acts as a weighting factor balancing the local consistency and the
global consistency of CMs. We aim for λ to be a constant independent of t, ensuring that the focus on
trainability and stability remains consistent across different time scales. Typically, we set λ≪ 1, as
ensuring whether CMs are trainable is of greater importance compared to their stability. We refer to
our approach as Adaptive Discretization for Consistency Models (ADCMs), as shown in Figure 2. We
find that previous discretization strategies can be unified in ADCMs. We summarize this as follows.

5

Global consistency of DMs ADCMs balance local and
 global consistency

Local consistency of CMs

Figure 2: Discretization strategies of different models. CMs consider only local consistency during
discretization, while DMs consider only global consistency. ADCMs balance local and global
consistency and adaptively adjust the discretization step size based on the information from both.

Remark 3.2. DMs, discrete-CMs and continuous-CMs can be viewed as special cases of Eq. (9).
Specifically,

• DMs [11, 18]: Choose the maximum optimization step ∆t = t− ϵ. this corresponds to set
λ→∞ in our framework.

• Discrete-CMs:

– CM [37], iCT [36], ECM [7]: These methods consider the smoother trajectory changes
near the noise end and empirically choose a discretization step size that monotonically
increases w.r.t. t. This is equivalent to estimating Eq. (9) empirically in our framework.

– CCM [21]: CCM ensures that for all x0, z, Le is always less than a certain threshold δ.
Since an analytical solution cannot be obtained directly, CCM requires iterative solving
for all x0, z, t. This is equivalent to making Llocal a constant in our framework.

• Continuous-CMs [23]: Choose the minimum optimization step ∆t→ 0. This is equivalent
to set λ = 0 in our framework.

Analytical Solution. To achieve an adaptive solution for the discretization step, we propose using
the Gauss-Newton method to directly derive an analytical solution to the optimization problem in
Eq. (9). Since we assign a higher weight to local consistency in the objective, we approximate
fθ−(xt−∆t) using its first-order Taylor expansion, which is:

fθ−(xt−∆t) ≈ fθ−(xt)− v∆t, v = ∇xt
fθ− · dxt

dt
+ ∂tfθ−

where v can be efficiently computed via the Jacobian-vector product (JVP) for fθ−(·, ·), evaluated at
input vector (xt, t) and tangent vector (dxt

dt , 1), following the method in [23]. Under this approxima-
tion, the optimization problem is transformed into a least-squares problem, whose optimal solution is
given by:

∆t∗ =
λ

1 + λ

Ex0,z[v
⊤(fθ−(xt)− x0)]

Ex0,z[v
⊤v]

. (10)

From the expression of the discretization step, we have the following observations:

1. The optimal discretization step is inversely proportional to the magnitude of the Jacobian.
This indicates that the output of the current network may vary significantly, and Llocal could
be very large. Therefore, a smaller step size is required to ensure effectiveness.

2. The optimal discretization step is proportional to ∥fθ−(xt)− x0∥2, which is an effective
estimate of Lglobal. This indicates that the denoising error may be very large at this time, and
therefore, a larger step size is required to ensure stability.

3. The optimal discretization step is proportional to the linear correlation between v and
fθ−(xt) − x0. This indicates that when v and fθ−(xt) − x0 tend toward linearity, the
direction of local optimization aligns more closely with the direction of global optimization,
allowing for the use of a larger step size.

6

Algorithm 1 Adaptive Discretization for Consistency Models

Input: datasetD, diffusion parameter αt and βt, time range [ϵ, T], network parameter θ, weighting
factor λ, update frequency m, batch size b
θ− ← θ
repeat

Initialize an empty set T and t← T
repeat

Append t to T
Sample mini-batch x0 ∼ D, z ∼ N (0, I)
xt ← αtx0 + βtz
Calculate ∆t∗ through Eq. (10)
t← t−∆t∗

until t ≤ ϵ
Append ϵ to T
for k = 1 to m do

Sample mini-batch x0 ∼ D, z ∼ N (0, I) and adjacent time points t, t−∆t∗ ∼ T
xt ← αtx0 + βtz, xt−∆t∗ ← αt−∆t∗x0 + βt−∆t∗z
Calculate loss L through Eq. (11)
Update θ using L

end for
until Convergence

The above analysis demonstrates that the proposed discretization step can be adaptively adjusted
based on the current state of the NN, considering both Lglobal and Llocal. As a result, we achieve an
adaptive balance between the stability and trainability of CMs at different times through Eq. (10).
Starting from t = T , we iteratively solve the optimization problem to derive the adaptively optimal
time segmentation T = {t∗1, . . . , t∗N}.

3.2 Putting ADCMs into Practice: Further Training Strategies

Adaptive Weighting Function. Through the analysis in Section 3.1, we know that Lglobal funda-
mentally determines the training stability of CMs at the current time t. However, during the training
of CMs, the NN only optimizes for Llocal. Therefore, to further balance the impact of Lglobal over
time, we propose the following adaptive weighting function:

w(t) =
1

Lglobal
=

1

∥fθ−(xt−∆t)− x0∥22
.

When Lglobal is very large, the training of CMs will suffer from instability. Therefore, a smaller
weighting is needed. On the other hand, when Lglobal is small, the CMs’ training objective aligns
closely with the true target, and thus a larger weighting is required.

Adaptive Distance Metric. Previous works [7, 36] have shown that compared to the squared L2

metric, Pseudo-Huber metric can effectively reduce training variance, which is given by:

d(x,y) =
√
∥x− y∥22 + c2 − c

where c is a constant. ADCMs also use Pseudo-Huber metric for training. At the same time, in order
to ensure the consistency of the distance function, we have similarly modified the adaptive weighting
function. The overall loss function of ADCMs can be expressed as:

min
θ

Ex0,z,t

[√
∥fθ(xt)− fθ−(xt−∆t∗)∥22 + c2 − c√
∥fθ−(xt−∆t∗)− x0∥22 + c2 − c

]
(11)

where ∆t∗ is obtained with Eq. (10). See Appendix B for more discussion on loss function design.

Putting It Together. We alternately optimize the time segmentation T and the NN’s parameters θ
during training. We typically update T after updating θ for m = 25000 times, as the changes in the

7

Table 1: Sample quality on unconditional
CIFAR-10 and class-conditional ImageNet 64×
64. ∗ indicates additional training costs.

Method CIFAR-10 ImageNet 64× 64

NFE (↓) FID (↓) NFE (↓) FID (↓)
Diffusion Models
DDPM [9] 1000 3.17 250 11.0
EDM [11] 35 1.97 511 1.36
DPM-Solver [24] 10 4.70 20 3.42
1-Rectified Flow [20] 127 2.58 – –
ADM [4] – – 250 2.07
EDM2-S [12] – – 63 1.58
EDM2-XL [12] – – 63 1.33

Joint Training
StyleGAN-XL [33] 1 1.52 1 1.52
SiD [47] 1 1.92 1 1.52
CTM [13] 1 1.87 1 1.92
CCM [21] 1 1.64 1 2.18
Consistency-FM [43] 2 1.69 2 1.62
DMD2 [44] – – 1 1.28

Diffusion Distillation
DFNO (LPIPS) [46] 1 3.78 1 7.83
PID (LPIPS) [39] 1 3.92 1 9.49
TRACT [1] 1 3.78 1 7.43
PD [31] 1 8.34 1 10.70
2-Rectified Flow [20] 1 4.85 – –

Consistency Models
CD (LPIPS) [37] 1 3.55* 1 6.20*
CT [37] 1 8.70 1 13.0
iCT [36] 1 2.83 1 4.02
iCT-deep [36] 1 2.51* 1 3.25
ECM [7] 1 3.60 1 2.49*
TCM [17] 1 2.46* 1 2.20*
sCD [23] 1 3.66 1 2.44*
sCT [23] 1 2.85 1 2.04*
ADCM (ours) 1 2.80 1 3.04

Table 2: Training efficiency on CIFAR-10.

Unconditional CIFAR-10
Method Training Budget (Mimgs) 1-Step FID (↓)
CD (LPIPS) 409.6 3.55
iCT 409.6 2.83
sCT (TrigFlow) 204.8 2.85
sCT (VE) 51.2 4.18
ECM 12.8 4.54
ECM 51.2 3.60

ADCM (Ours) 12.8 3.16
ADCM (Ours) 76.8 2.80

Table 3: Training efficiency on ImageNet 64×
64.

Class-Conditional ImageNet 64× 64

Method Model Size Training Budget (Mimgs) 1-Step FID (↓)
CD (LPIPS) 1× 1228.8 6.20
iCT 1× 1638.4 4.02
iCT-deep 2× 1638.4 3.25
sCT (TrigFlow) 2× 819.2 2.25
ECM 1× 12.8 5.51
ECM 2× 12.8 3.67

ADCM (Ours) 1× 12.8 5.12
ADCM (Ours) 1× 25.6 4.65
ADCM (Ours) 1× 51.2 4.23
ADCM (Ours) 2× 12.8 3.49
ADCM (Ours) 2× 25.6 3.28
ADCM (Ours) 2× 51.2 3.04

NN are relatively slow. Before training the network, we fix its parameters and perform simulation-
based optimization starting from t = T . We iteratively update t using Eq. (10) until t = ϵ, recording
the optimization process as T = {t∗1, . . . , t∗N}. We observe that during the optimization process, the
expectation in Eq. (10) is well approximated using a single mini-batch. This is because we do not
require precise step sizes, only the trend of their change over time t. Subsequently, we fix the time
segmentation and optimize the NN. The detailed process is illustrated in Algorithm 1.

4 Experiments

To validate the effectiveness of ADCMs, we perform unconditional and class-conditional generation
experiments on CIFAR-10 [16] and ImageNet 64× 64 [3], respectively. For CIFAR-10, we initialize
CMs with pretrained DM from [11]. For ImageNet 64× 64, we adopt the pretrained DM from [12].
If not otherwise specified, our experiments are conducted under VE SDE [38] settings. We evaluate
the sample quality using FID [8] and measure the generation speed using the number of function
evaluations (NFEs).

We compare ADCMs with different generative models, as shown in Table 1. FIDs with ∗ indicate
that they have additional training costs compared to other CMs, such as a larger model or an
auxiliary model used during training. Experiments show that ADCMs achieve high-quality single-
step generation without additional training costs. See Appendix C for multi-step generation results.

4.1 Efficiency of ADCMs

We evaluate the training efficiency of ADCMs on both unconditional CIFAR-10 and class-conditional
ImageNet 64× 64. For CIFAR-10, we use a unified model size and measure computational cost by
the total number of training images. For ImageNet 64× 64, both model size and training budgets
are taken into consideration. TCM [17] is excluded from the comparison since its two-stage strategy
introduces significant training overhead. For a fair comparison, we reproduce some baseline results,
as detailed in Appendix A.3.

8

0

2

4

6

1-
St

ep
 F

ID
 (

) 4.54

30.2h

3.16

31.5h

CIFAR-10
5.51

17.2h

5.12

17.8h

ImageNet 64×64w/o Adaptvie Discretization
w Adaptvie Discretization

(a)

0 20 40 60 80 100
Training steps (×103)

3
4
6

10

50

200

400

FI
D

CD
CT
iCT
sCT
ECM
ADCM (ours)

(b)

0 20 40 60 80 100
Training steps (×103)

3
4
6

10

50

200

400

FI
D

= 0.1
= 0.05
= 0.02
= 0.01
= 0.005

0 (sCT)

(c)

Figure 3: (a) Training time cost of ADCMs. (b) Training dynamics of different discretization
methods. Compared to other CMs’ approaches, ADCMs have a faster convergence rate and better
final performance. (c) Training dynamics for different λ. A large λ improves stability but hurts final
performance, while a too-small λ reduces stability and hinders convergence.

10 2 10 1 100 101 102

t

10 5

10 4

10 3

10 2

10 1

100

t

iCT
ECM
ADCM (ours)

(a) EDM (VE)

10 2 10 1 100

t

10 5

10 4

10 3

t

iCT
ECM
ADCM (ours)

(b) Flow Matching

Figure 4: Adaptive Discretization on (a) EDM (VE) and (b) Flow Matching.

Data Efficiency. On unconditional CIFAR-10, as shown in Table 2, ADCMs achieve high-quality
one-step generation results with a training budget of only 12.8M images. Compared with ECM [7],
the most efficient CM to date, ADCMs achieve better generation quality with only 25% of its training
budget. Moreover, ADCMs surpass all previous CMs in one-step generation performance with only
76.8M training images. On class-conditional ImageNet 64 × 64, as shown in Table 3, ADCMs
significantly reduce the training budgets of CMs. Compared to the most efficient ECM [7], ADCMs
can achieve a better 1-step FID with the same model size and training budget. Moreover, ADCMs
exhibit notable improvements as both the model size and training budget increase. With a 2× model
size, ADCMs achieve a 1-step FID of 3.49 with a training budget of only 12.8M images. Remarkably,
ADCMs are able to surpass iCT-deep [36] with only 3% of its training budget.

Computational Efficiency. We first compare the training time cost of ADCMs with other CMs,
as shown in Figure 3a. It can be observed that ADCMs introduce only about 4% additional time
cost under the same training epochs while improving the final performance. We also explore the
convergence speed of ADCMs on unconditional CIFAR-10 with different CM approaches, as shown
in Figure 3b. It can be observed that ADCMs converge significantly faster than other CM approaches,
while also achieving better final performance.

4.2 More Results

Adaptive Discretization Step of ADCMs. We explore the relationship between the adaptive
discretization step ∆t of ADCMs and time t under different noise schedules, and compare it with
existing discretization methods. We modify the discretization strategies of iCT and ECM under Flow
Matching setting to be functions of SNR in order to enhance their performance. The results are
shown in Figure 4. ADCMs are able to adaptively learn discretization strategies that are similar in
trend to empirical ones without manual adjustments. In addition, compared to other discretization
schemes, ADCMs adopt finer discretization at smaller t and coarser discretization at larger t. As a
result, ADCMs place greater emphasis on time intervals closer to the data during training, which
aligns with empirical practices in both DMs and CMs [11, 36, 7].

9

Table 4: Generalization to Flow Matching. *
indicates additional training costs.

Method NFE (↓) FID (↓)
1-Rectified Flow [20] 1 378
2-Rectified Flow* [20] 1 4.85
CCM* [21] (w GAN) 1 1.64
Consistency-FM (w/o GAN) [43] 2 5.34
ECM [7] 1 5.82
sCT [23] 1 88.52

ADCM (Ours) 1 5.14

Table 5: Scalability to ImageNet 512× 512.

Class-Conditional ImageNet 512× 512

Method Model Size Training Budget (Mimgs) 1-Step FID (↓)
sCT 1× 204.8 10.13
sCT 2× 204.8 5.84
ECM 1× 6.4 25.69
ECM 2× 6.4 13.55

ADCM (Ours) 1× 6.4 23.12
ADCM (Ours) 2× 6.4 10.53

λ as a Trade-off between Stability and Effectiveness. We control the trade-off between the
trainability and stability of ADCMs through the Lagrange multiplier λ according to Eq. (9). We
perform an ablation study on λ by examining the training dynamics of ADCMs on unconditional
CIFAR-10, as shown in Figure 3c. We find that when λ is small, i.e., more emphasis is placed on
Lglobal, CMs converge quickly, but the final generation quality is relatively poor. When λ is large, i.e.,
more emphasis is placed on Llocal, CMs become more unstable, making them difficult to converge
and reach the optimal solution. Ablation study on loss function are deferred to Appendix B.

ADCMs Adapt to Different Variants of DMs. We conduct experiments on Flow Matching [18, 20],
an advanced variant of DMs. We initialize CMs with pretrained DMs from [20] and compare ADCMs
with other Flow Matching-based distillation methods. Additionally, we conduct experiments on
ECM and sCT, two state-of-the-art CMs. All CMs are trained under a training budget of 12.8M
images. As shown in Table 4, ADCMs achieve superior performance over other CMs without manual
adjustments, which demonstrates the strong adaptability.

Scalability to High-Resolution Images. To further assess the scalability of ADCM, we conduct
experiments on ImageNet 512 × 512. We adopt EDM2 [12] as the base latent diffusion model,
which employs SD-VAE for image encoding and decoding. We compare ADCM with sCT [23]
and ECM [7], the two most efficient prior CMs. The detailed results are reported in Table 5. It can
be observed that ADCM scales effectively to large-scale datasets. As the model size increase, its
performance improves substantially. Moreover, ADCM consistently outperforms ECM under the
same training cost, further demonstrating its empirical effectiveness and training efficiency.

5 Conclusion

In this paper, we propose ADCMs, a unified framework for adaptive discretization in CMs. By
formulating discretization as an optimization problem, we introduce local consistency as the opti-
mization objective and global consistency as a constraint, establishing a trade-off using the Lagrange
multiplier. Leveraging the Gauss-Newton method, ADCMs enable adaptive discretization, improving
both trainability and stability. Experimental results show that ADCMs significantly improve training
efficiency and final performance of CMs on different datasets while demonstrating strong adaptability
to different variants of DMs.

Acknowledgments and Disclosure of Funding

Z. Ling is partially supported by the National Natural Science Foundation of China (via
NSFC-62406119), the Natural Science Foundation of Hubei Province (2024AFB074), and the
Guangdong Provincial Key Laboratory of Mathematical Foundations for Artificial Intelligence
(2023B1212010001). Z. Deng is partially supported by the National Natural Science Founda-
tion of China (via NSFC-92470118 and NSFC-62306176) and the Natural Science Foundation of
Shanghai (23ZR1428700). R. C. Qiu is partially supported in part by the National Natural Sci-
ence Foundation of China (via NSFC-12141107), the Key Research and Development Program
of Wuhan (2024050702030100), and the Key Research and Development Program of Guangxi
(GuiKe-AB21196034).

10

References
[1] David Berthelot, Arnaud Autef, Jierui Lin, Dian Ang Yap, Shuangfei Zhai, Siyuan Hu, Daniel

Zheng, Walter Talbott, and Eric Gu. Tract: Denoising diffusion models with transitive closure
time-distillation. arXiv preprint arXiv:2303.04248, 2023.

[2] Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Do-
minik Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion:
Scaling latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023.

[3] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[4] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
Advances in neural information processing systems, 34:8780–8794, 2021.

[5] Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
models. arXiv preprint arXiv:2410.12557, 2024.

[6] Zhengyang Geng, Ashwini Pokle, and J Zico Kolter. One-step diffusion distillation via deep
equilibrium models. Advances in Neural Information Processing Systems, 36, 2024.

[7] Zhengyang Geng, Ashwini Pokle, William Luo, Justin Lin, and J Zico Kolter. Consistency
models made easy. arXiv preprint arXiv:2406.14548, 2024.

[8] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

[9] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[10] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and
David J Fleet. Video diffusion models. Advances in Neural Information Processing Systems,
35:8633–8646, 2022.

[11] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space
of diffusion-based generative models. Advances in neural information processing systems,
35:26565–26577, 2022.

[12] Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine.
Analyzing and improving the training dynamics of diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 24174–24184, 2024.

[13] Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu
Uesaka, Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models:
Learning probability flow ODE trajectory of diffusion. In The Twelfth International Conference
on Learning Representations, 2024.

[14] Zhifeng Kong and Wei Ping. On fast sampling of diffusion probabilistic models. In ICML
Workshop on Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models,
2021.

[15] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis. In International Conference on Learning Representations,
2021.

[16] Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.

[17] Sangyun Lee, Yilun Xu, Tomas Geffner, Giulia Fanti, Karsten Kreis, Arash Vahdat, and Weili
Nie. Truncated consistency models. arXiv preprint arXiv:2410.14895, 2024.

11

[18] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning
Representations, 2023.

[19] Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang,
and Mark D Plumbley. Audioldm: Text-to-audio generation with latent diffusion models. In
International Conference on Machine Learning, pages 21450–21474. PMLR, 2023.

[20] Xingchao Liu, Chengyue Gong, and qiang liu. Flow straight and fast: Learning to generate
and transfer data with rectified flow. In The Eleventh International Conference on Learning
Representations, 2023.

[21] Yunpeng Liu, Boxiao Liu, Yi Zhang, Xingzhong Hou, Guanglu Song, Yu Liu, and Haihang You.
See further when clear: Curriculum consistency model. arXiv preprint arXiv:2412.06295, 2024.

[22] Xiaoxiao Long, Yuan-Chen Guo, Cheng Lin, Yuan Liu, Zhiyang Dou, Lingjie Liu, Yuexin Ma,
Song-Hai Zhang, Marc Habermann, Christian Theobalt, et al. Wonder3d: Single image to 3d
using cross-domain diffusion. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 9970–9980, 2024.

[23] Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency
models. arXiv preprint arXiv:2410.11081, 2024.

[24] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver:
A fast ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in
Neural Information Processing Systems, 35:5775–5787, 2022.

[25] Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for
improved sampling speed. arXiv preprint arXiv:2101.02388, 2021.

[26] Thuan Hoang Nguyen and Anh Tran. Swiftbrush: One-step text-to-image diffusion model with
variational score distillation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 7807–7816, 2024.

[27] Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using
2d diffusion. In The Eleventh International Conference on Learning Representations, 2023.

[28] Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tasnima Sadekova, and Mikhail Kudinov. Grad-
tts: A diffusion probabilistic model for text-to-speech. In International Conference on Machine
Learning, pages 8599–8608. PMLR, 2021.

[29] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark
Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In International conference on
machine learning, pages 8821–8831. Pmlr, 2021.

[30] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 10684–10695, 2022.

[31] Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models.
In International Conference on Learning Representations, 2022.

[32] Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion
distillation. In European Conference on Computer Vision, pages 87–103. Springer, 2025.

[33] Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-xl: Scaling stylegan to large diverse
datasets. In ACM SIGGRAPH 2022 conference proceedings, pages 1–10, 2022.

[34] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In International conference on machine
learning, pages 2256–2265. PMLR, 2015.

[35] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In
International Conference on Learning Representations, 2021.

12

[36] Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. In
The Twelfth International Conference on Learning Representations, 2024.

[37] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In
International Conference on Machine Learning, pages 32211–32252. PMLR, 2023.

[38] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In
International Conference on Learning Representations, 2021.

[39] Joshua Tian Jin Tee, Kang Zhang, Hee Suk Yoon, Dhananjaya Nagaraja Gowda, Chanwoo
Kim, and Chang D Yoo. Physics informed distillation for diffusion models. arXiv preprint
arXiv:2411.08378, 2024.

[40] Arash Vahdat, Francis Williams, Zan Gojcic, Or Litany, Sanja Fidler, Karsten Kreis, et al.
Lion: Latent point diffusion models for 3d shape generation. Advances in Neural Information
Processing Systems, 35:10021–10039, 2022.

[41] Yaohui Wang, Xinyuan Chen, Xin Ma, Shangchen Zhou, Ziqi Huang, Yi Wang, Ceyuan Yang,
Yinan He, Jiashuo Yu, Peiqing Yang, et al. Lavie: High-quality video generation with cascaded
latent diffusion models. International Journal of Computer Vision, pages 1–20, 2024.

[42] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Pro-
lificdreamer: High-fidelity and diverse text-to-3d generation with variational score distillation.
Advances in Neural Information Processing Systems, 36, 2024.

[43] Ling Yang, Zixiang Zhang, Zhilong Zhang, Xingchao Liu, Minkai Xu, Wentao Zhang, Chenlin
Meng, Stefano Ermon, and Bin Cui. Consistency flow matching: Defining straight flows with
velocity consistency. arXiv preprint arXiv:2407.02398, 2024.

[44] Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand,
and William T Freeman. Improved distribution matching distillation for fast image synthesis.
arXiv preprint arXiv:2405.14867, 2024.

[45] Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T
Freeman, and Taesung Park. One-step diffusion with distribution matching distillation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
6613–6623, 2024.

[46] Hongkai Zheng, Weili Nie, Arash Vahdat, Kamyar Azizzadenesheli, and Anima Anandkumar.
Fast sampling of diffusion models via operator learning. In International conference on machine
learning, pages 42390–42402. PMLR, 2023.

[47] Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang. Score
identity distillation: Exponentially fast distillation of pretrained diffusion models for one-step
generation. In Forty-first International Conference on Machine Learning, 2024.

[48] Zhenyu Zhou, Defang Chen, Can Wang, and Chun Chen. Fast ode-based sampling for diffusion
models in around 5 steps. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 7777–7786, 2024.

13

A Experiments Details

A.1 Precondition

For VE-based ADCMs, we follow the parameterization of EDM. Specifically, we set:

cskip(t) =
σ2

data

σ2
data + t2

, cout(t) =
σdatat√
σ2

data + t2
, cin(t) =

1√
σ2

data + t2
, cnoise(t) =

1

4
log t.

For ADCMs on the Flow Matching setting, using EDM’s precondition causes the model output to
deviate from x0, which contradicts the objective of CMs to estimate x0. We use a pretrained model
from rectified flow [20] whose output is:

Fθ(xt, t) =
xt − x0

t
,

which implies cin(t) = 1 and cnoise(t) = t. To ensure the model’s final output matches x0, we
accordingly modify the preconditioning to:

cskip(t) = 1, cout(t) = −t.

A.2 Hyperparameters

Batch Size and EMA. For unconditional CIFAR-10, we use a batch size of 128 with an EMA
decay rate of 0.9999 for training budget of 12.8M images. We use a batch size of 1024 with an EMA
decay rate of 0.99993 for training budget of 76.8M images. For class-conditional ImageNet 64× 64,
we set the batch size to 128, 256, and 512, corresponding to training budgets of 12.8M, 25.6M, and
51.2M images, respectively. We use Power function EMA for class-conditional ImageNet 64× 64
following [12].

Time Sampling. For unconditional CIFAR-10, we follow previous works [36, 7, 23] and use a
log-normal SNR distribution for time sampling, which can be expressed as:

log(SNR(t)) ∼ N (Pmean, P
2
std)

where SNR(t) = βt

αt
, Pmean = −1.1, Pstd = 2.0. Since the time segment T is discrete, we also apply

discretization to the sampling results following [36]. For class-conditional ImageNet 64× 64, we
sample uniformly within the time segment T.

Lagrange Multiplier λ. For unconditional CIFAR-10, we set λ = 0.01. For class-conditional
ImageNet 64×64, we find that starting with a small λ led to training instability on ImageNet 64×64.
Therefore, we follow previous work [36, 7] and select λ = 0.64 for warm-up, gradually decreasing it
to λ = 0.01. We summarize the hyperparameter settings in Table 6.

A.3 Baseline Reimplementation.

Some of the baseline results in this paper, including those in Figure 3b, Table 4 and sCM [23]
under VE settings, are obtained from our own reproductions. Under the VE SDE setting, for a fair
comparison, we initialize all neural networks using the pretrained DM provided by EDM [11]. We
also adopt a consistent EMA decay rate of 0.9999 and a dropout probability of 30% (except for
CD where dropout is set to 0, as dropout can lead to a decline in CD’s performance). We do not
make further modifications to other parameters. For sCM under the VE SDE and Flow Matching
setting, we apply the advanced training techniques from [23], except for the network architecture
changes, allowing sCM to utilize pretrained DMs. We do not use the adaptive weighting and tangent
warmup techniques, as we find that they degrade the performance of sCM. For all baselines under
the Flow Matching setting, we replace their original discretization scheme, time sampling, and
weighting function—from being functions of time t to being functions of SNR. It is important to
note that without manual adjustments, the performance of these baselines degrades significantly
(e.g., the 1-step FID of ECM drops from 5.82 to 15.55). The implementation code is available in the
supplementary material.

14

Table 6: Hyperparameter Settings
Unconditional
CIFAR-10

Class-conditional ImageNet 64× 64

Base model EDM [11] EDM2-S [12] EDM2-M [12]
Model capacity (Mparams) 55.7 280.2 497.8
Model complexity (GFLOPS) 21.3 101.9 180.8

GPU types RTX3090 RTX3090 A100
GPU memory 24G 24G 40G
Number of GPUs 1 8 4

Dropout probability 30% 40% 50%

Optimizer RAdam Adam Adam
Learning rate schedule fixed square root square root
Learning rate max 0.0001 0.001 0.0009

Pseudo-Huber c 0.03 0 0

Time sampling log-normal SNR uniform uniform
Pmean -1.1 - -
Pstd 2.0 - -

B Ablation Study

We investigate the impact of adaptive loss function in ADCMs, including the choice of weighting
function and distance metric. We perform an ablation study on unconditional CIFAR-10 under the
same training budget of 12.8M images.

Table 7: Ablation Study on Weighting Function.
Weighting Function 1-Step FID (↓)
1 5.70

1
ti−ti−1

4.09
1
ti

3.84
Adaptive weighting (Ours) 3.16

Weighting Function. The choice of weighting function is crucial for training CMs. An inap-
propriate weighting function can lead to imbalanced optimization over time, ultimately degrading
performance. We investigate the impact of different weighting functions on ADCMs. The detailed
results are presented in Table 7. The results show that our designed adaptive weighting function can
effectively enhance the generation capability of ADCMs. Notably, even without the loss function
improvement, ADCMs still outperform ECM’s 1-step FID (4.54). This demonstrates that the im-
provement of ADCMs mainly comes from our designed adaptive discretization strategy while our
proposed adaptive weighting function further enhances the performance of ADCMs.

Distance Metric. We investigate the effect of different distance metrics on the performance of
ADCMs. Following common practice in prior works [7, 36, 17], we adopt the Pseudo-Huber metric
due to its robustness to outliers [36]. The Pseudo-Huber metric is defined as

d(x,y) =
√
∥x− y∥22 + c2 − c,

which provides a smooth interpolation between the L2 and squared L2 metrics. Specifically, when
c = 0, it reduces to the standard L2 distance, while as c→∞, it approaches the squared L2 distance.
smoothly bridges the gap between the L2 and squared L2 metric. When c = 0, the Pseudo-Huber
metric degenerates to the standard L2 metric. When c→∞, it becomes equivalent to the squared
L2 metric. To address this phenomenon, we conduct experiments with different values of c, and the

15

Table 8: Ablation Study on Distance Metric.

Distance Metric 1-Step FID (↓)
L2 3.54
Pseudo-Huber (c=0.0003) 3.44
Pseudo-Huber (c=0.003) 3.42
Pseudo-Huber (c=0.03) 3.16
Pseudo-Huber (c=0.3) 4.42
Pseudo-Huber (c=3) 5.23
Squared L2 5.33

results are presented in Table 8. It can be observed that Pseudo-Huber metric smoothly interpolates
between L2 and squared L2 through the control of the parameter c, thus achieving performance that
surpasses both extremes. These results clearly demonstrate the significance of choosing Pseudo-Huber
as our distance metric.

We also examine the impact of mismatched distance metrics between the original CM loss function
and the weighting function. We fix the distance metric applied to the original CM loss function as
Pseudo-Huber with c = 0.03, while applying different distance metrics in the weighting function. As
shown in Table 9, a mismatched distance metric leads to degraded performance of ADCMs.

Table 9: Impact of Mismatched Distance Metric.

Distance Metric on Weighting Function 1-Step FID (↓)
Squared L2 4.09
L2 3.36
Pseudo-Huber (c=0.03) 3.16

C Two Step Generation

Compared to other distillation methods for DMs, CMs have the significant advantage of preserving
the inherent characteristics of DMs, specifically, the ability to improve generation quality through
multi-step sampling. We investigate the two-step generation performance of ADCMs on unconditional
CIFAR-10, with results shown in Table 10. We set the intermediate t = 0.420. It can be observed
that ADCMs not only maintain optimal single-step generation performance but also demonstrate
strong two-step generation capabilities, second only to ECM [7], which is specifically designed for
two-step generation.

Table 10: 2-step generation results on unconditional CIFAR-10. ADCMs achieve the best 1-step FID
while also attaining the second-best 2-step FID.

Method 1-Step FID (↓) 2-Step FID (↓)
iCT 4.18 2.58
sCM (VE) 5.62 2.73
ECM 4.54 2.20
ADCM (Ours) 3.16 2.44

D Limitations and Broader Impacts

In this paper, we introduce ADCMs, an adaptive discretization method for CMs. Our approach
effectively improves both the training efficiency and generation quality of CMs, and demonstrates
adaptability to different variants of DMs. However, ADCMs focus on Consistency Training (CT),
as it generally yields better performance. In the case of Consistency Distillation (CD), estimating

16

Lglobal significantly increases training costs due to the need for iterative solving of the endpoint of the
PF-ODE. We leave this issue for future work. ADCMs enable efficient content generation for creators
while significantly reducing the computational cost of obtaining similar models. Additionally, similar
to other deep generative models, ADCMs could be misused to generate harmful fake content, and the
proposed method may further exacerbate the potential risks associated with malicious applications of
such models.

E License

We list the used datasets, models and their citations, URLs, and licenses in Table 11.

Table 11: Licenses and citations for existing assets.
Name URL Citation License
CIFAR-10 https://www.cs.toronto.edu/

~kriz/cifar.html
[16] \

ImageNet https://www.image-net.org [3] \
EDM https://github.com/NVlabs/

edm
[11] Creative Commons Attribution-

NonCommercial-ShareAlike 4.0
International License

EDM2 https://github.com/NVlabs/
edm2

[12] Creative Commons Attribution-
NonCommercial-ShareAlike 4.0
International License

Rectified Flow https://github.com/
gnobitab/RectifiedFlow

[20] \

F Additional Samples

We provide additional samples of ADCMs from unconditional CIFAR-10 and class-conditional
ImageNet 64× 64 in Figures 5 - 7.

17

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.image-net.org
https://github.com/NVlabs/edm
https://github.com/NVlabs/edm
https://github.com/NVlabs/edm2
https://github.com/NVlabs/edm2
https://github.com/gnobitab/RectifiedFlow
https://github.com/gnobitab/RectifiedFlow

Figure 5: 1-step samples from unconditional CIFAR-10 trained with a budget of 76.8M images.

18

Figure 6: 1-step samples from unconditional CIFAR-10 trained with a budget of 12.8M images.

19

Figure 7: 1-step samples from class-conditional ImageNet 64× 64 trained with a budget of 12.8M
images.

20

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work. See sec D.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

21

Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper fully disclose all the information needed to reproduce the main
experimental results of the paper. Detailed algorithm can be found in Algorithm 1. Detailed
settings can be found in Sec 4 and Appendix A. Code is available in the supplementary
material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

22

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provide open access to the code. Code is available in the supple-
mentary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specify all the training and test details. Detailed settings can be
found in Sec 4 and Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Since the FID is computed using 50k samples, we find that the standard
deviation of ADCMs’ FID is very small, and thus it does not affect the conclusions of our
experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide sufficient information on the computer resources in Table 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss both potential positive societal impacts and negative societal
impacts of the work performed. See Appendix D.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

24

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We list the used datasets, models and their citations, URLs and licenses in
Appendix E.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

25

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code is well documented and the documentation is available in the
supplementary material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

26

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

27

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Works

	Preliminaries
	Diffusion Models
	Consistency Models

	Methodology
	ADCMs: Adaptive Discretization for Consistency Models
	Putting ADCMs into Practice: Further Training Strategies

	Experiments
	Efficiency of ADCMs
	More Results

	Conclusion
	Experiments Details
	Precondition
	Hyperparameters
	Baseline Reimplementation.

	Ablation Study
	Two Step Generation
	Limitations and Broader Impacts
	License
	Additional Samples

