
Published in Transactions on Machine Learning Research (5/2025)

System-Aware Neural ODE Processes for Few-Shot Bayesian
Optimization

Jixiang Qing1∗, Becky D Langdon1, Robert M Lee2, Behrang Shafei2,
Mark van der Wilk3, Calvin Tsay1, Ruth Misener1
1Imperial College London 2BASF SE 3University of Oxford

Reviewed on OpenReview: https: // openreview. net/ forum? id= FFnRLvWefK

Abstract

We consider the problem of optimizing initial conditions and termination time in dynamical
systems governed by unknown ordinary differential equations (ODEs), where evaluating
different initial conditions is costly and the state’s value can not be measured in real-time but
only with a delay while the measuring device processes the sample. To identify the optimal
conditions in limited trials, we introduce a few-shot Bayesian Optimization (BO) framework
based on the system’s prior information. At the core of our approach is the System-Aware
Neural ODE Processes (SANODEP), an extension of Neural ODE Processes (NODEP)
designed to meta-learn ODE systems from multiple trajectories using a novel context
embedding block. We further develop a two-stage BO framework to effectively incorporate
search space constraints, enabling efficient optimization of both initial conditions and
observation timings. We conduct extensive experiments showcasing SANODEP’s potential
for few-shot BO within dynamical systems. We also explore SANODEP’s adaptability to
varying levels of prior information, highlighting the trade-off between prior flexibility and
model fitting accuracy.

1 Introduction

This paper studies a widely encountered, yet less investigated, problem: optimizing the initial conditions
and termination time in unknown dynamical systems where evaluations are computationally expensive. We
assume that the primary evaluation cost comes from switching initial conditions and wish to use as few
trajectories as possible.

This issue is prevalent in multiple fields, including biotechnology, epidemiology, ecology, and chemistry. For
instance, consider the optimization of a (bio)chemical reactor. Here, the objective is to determine the optimal
“recipe,” i.e., the set of initial reactant concentrations and reaction times that maximize yield, enhance
selectivity, and/or minimize waste (Taylor et al., 2023; Schoepfer et al., 2024; Schilter et al., 2024; Thebelt
et al., 2022). Specifically, the high costs associated with changing reactants for multiple experimental runs
highlight the need for developing efficient optimization algorithms (Paulson & Tsay, 2024).

Bayesian Optimization (BO) (Frazier, 2018; Garnett, 2023) is a well-established method for optimizing
expensive-to-evaluate black-box objective functions. It relies on probabilistic surrogate models built from
limited function evaluations to guide the optimization efficiently. However, standard Gaussian Processes
(GPs) (Williams & Rasmussen, 2006) (the de facto probabilistic surrogate model in BO) with conventional
kernels do not capture the dynamics of these systems effectively. Recent efforts to introduce Bayesian ODE
models aim to incorporate suitable assumptions; however, their inference often involves time-consuming
computations (Heinonen et al., 2018; Dandekar et al., 2020), making them impractical for a time-sensitive
optimization scenario. Some Bayesian ODE models attempt to alleviate computational burdens by leveraging
crude approximation inference (Ott et al., 2023) or approximating numerical integrators (Hegde et al., 2022;

∗Corresponding author: j.qing@imperial.ac.uk

1

https://openreview.net/forum?id=FFnRLvWefK

Published in Transactions on Machine Learning Research (5/2025)

0.0 0.5 1.0 1.5
Time

0.5

1.0

1.5

2.0

In
iti

al
 C

on
di

tio
n

Objective Function

0

2

4

6

GP
NP

SA
NO

DE
P

Number of Evaluated Trajectories

Figure 1: Illustration of meta-learning-based few-shot Bayesian Optimization (BO) with time-delay constraints
(detailed in Section 4) applied to the Lotka-Volterra (LV) system using three different models: Gaussian
Process (GP), Neural Process (NP), and System Aware Neural ODE Process (SANODEP) (Section. 3).
Starting with one randomly sampled trajectory (marked with a ◦), The BO progressively selects promising
initial conditions for experiments (Section. 4.1) and, based on these, recommends subsequent measurement
times while enforcing a minimum time delay constraint (∆t) (Section. 4.2). The figure demonstrates that after
evaluating just one trajectory (the first, left-most column of the three rows), the meta-learned SANODEP
model more closely approximates the original LV system compared to the non-meta-learned GP model. This
enhanced approximation facilitates the BO search in identifying more promising initial conditions.

Ensinger et al., 2024). While these approaches reduce computation time, the necessary approximations
may degrade model performance. Consequently, the widely encountered yet under-investigated problem of
performing BO in dynamical systems remains open, primarily due to the lack of an appropriate model.

This work attempts to tackle this optimization problem by conceptualizing it as a few-shot optimization,
through leveraging prior information about dynamical systems to formulate the meta tasks to train a learning
model, which is then able to adapt to new problems with very few data (a.k.a., shots) and served as our
BO surrogate model. To achieve this, we focus on the Neural ODE Process (NODEP) (Norcliffe et al.,
2021) as our learning model due to several useful model properties. First, NODEP combines Neural ODEs
(Chen et al., 2018)—emphasizing the dynamical system perspective that may provide a more informative
inductive bias—with Neural Processes (NP) (Garnelo et al., 2018b), enhancing the meta-learning aspect for
few-shot optimization. Second, meta-learning endows NODEP with fast adaptation to new observations,
mitigating the potential concern of model training time with incoming measurement results. Third, NODEP
enables continuous gradient-based optimization over time, compared with discrete-time meta-learn models
(e.g., Foong et al. (2020)), integrating seamlessly within the BO framework. Finally, compared to other
continuous-time models involving computationally intensive operations (e.g., time domain attention (Chen
et al., 2024)), NODEP is computationally efficient, making it suitable for BO.

However, building a meta-learning-based few-shot BO framework for unknown dynamical systems is not a
straightforward downstream application. An obstacle is that NODEP’s functionality is limited by its original
learning objective: predicting a single trajectory state value given context data for that trajectory. For
initial condition optimization of unknown ODE systems, it is essential to learn to be aware of the underlying
governing systems using context data consisting of one or several different trajectory observations, as this
benefits for forecasting trajectories starting from arbitrary initial conditions. Moreover, no BO frameworks
are proposed for such problem settings.

In line with our optimization requirements, we introduce the System-Aware Neural ODE Process (SANODEP),
a generalization of NODEP in terms of meta-learning of ODE systems to plug-in our newly developed BO
framework for few-shot BO in dynamical systems. Figure 1 shows, through example, SANODEP outcomes in
comparison to other approaches. Our contributions are as follows:

1. We propose a novel context embedding mechanism enabling SANODEP to meta-learn from batch of
trajectories with minimal model structure adjustments based on NODEP.

2

Published in Transactions on Machine Learning Research (5/2025)

2. We developed a model-agnostic, time-delay constraint process BO framework for optimizing initial
conditions and termination time in dynamical systems.

3. We compare SANODEP and other meta-learned models under our BO framework, validating the
benefits of the ODE-aware model structure and demonstrating the effectiveness of the few-shot BO
framework’s model agnosticity property.

4. We conduct initial investigation on how the different levels of prior information can be utilized for
SANODEP. Strong prior information can enable a physically-informed model structure with extended
loss considering parameter inference, enabling a novel few-shot parameter estimation functionality,
while weak prior information may still be useful through a properly designed task distribution, albeit
at a detriment to model fitting capability.

The rest of the paper is organized as follows: In Section 2, we describe the preliminaries. Section 3 introduces
the System-Aware Neural ODE Processes (SANODEP). In Section 4, we develop the optimization framework
based on SANODEP specific to our optimization problem. Section 5 discusses related work. Section 6
presents the numerical experiments we conducted. In Section E, we investigate the impact of different levels
of prior information.

2 Problem Statement and Background

2.1 State Optimization

Consider a dynamical system whose evolution is described by the following ordinary differential equation
(ODE) system in the time domain, denoted as t:

dx

dh
= f(x, h), x(h = t0) = x0, (1)

where x(t) ∈ Xx ⊂ Rdx represents the state value of the system at time t, f(·) : Rdx × R → Rdx is an
unknown function (vector field) governing the system dynamics, and x0 ∈ X0 ⊆ Xx ⊂ Rdx is the initial
system state. Define fevolve(x0, t, f) : X0 × τ × (Rdx × R → Rdx) → Rdx , where τ ∈ [t0, tmax], to obtain
the system state at time t from an initial condition x0 as: fevolve(x0, t, f) = x0 +

∫ t

t0
f(x(h), h)dh. Let

g(·) : Rdx → R be a practitioner-specified (known) function that aggregates the state values into a scalar, we
consider the following multi-objective problem:

max
{t,x0}∈τ×X0

g (fevolve(x0, t, f)) ,−t. (2)

The goal is to identify the initial conditions x0 along with the corresponding evolution termination time t
that provide the optimal trade-off between the objective g applied to the state values x(t) and the amount of
time to reach this state. Simply put, we wish to maximize the objective function g early.

2.2 Neural ODE Processes (NODEP)

NODEP (Norcliffe et al., 2021) is a latent variable-based Bayesian meta-learning model with generative
processes that can be summarized as follows: given a set of N observations of state values at different times
from a single trajectory, represented by context set C := {(tCi , xC

i)}N
i=1, NODEP assumes the conditional

prediction has been generated from a latent controlled ODE of state dimensionality dℓ. The stochasticity of
the model is induced by stochastic latent initial condition L0 and the stochastic dynamics representation,
which in practice is implemented via a time-invariant control LD. These two terms are obtained through first
encoding the context elements ϕr([tCi , xC

i]) and then applying average pooling (Zaheer et al., 2017) to produce
a single representation vector r = 1

N

∑N
i=1 ϕr([tCi , xC

i]), which is then mapped to corresponding distributions
L0 and LD. Once we sample the latent initial condition and the trajectory dynamics representation u1, the

1With slight abuse of notation, we follow the common notation in control to use u (instead of d) to represent the realization
of time-invariant control term LD.

3

Published in Transactions on Machine Learning Research (5/2025)

evolution of the latent ODE is:

l(t) = fevolve(l0, t, fnn(u, θode)) := l(t0) +
∫ t

t0

fnn (l(h), u, h, θode) dh. (3)

Here fnn represents the vector field as a neural network parameterized by θode. We compute fevolve using
numerical ODE solvers. To predict the state values at time t, after solving the latent ODE, the latent state
l(t) ∈ Rdl can be decoded back to real state predictions through a decoder p(x(t)|l(t), t). Thus, the overall
joint probability of the model can be represented as:

p (u, l0, x|C, t) = p (x|l0, u, t) p(u|C)p(l0|C). (4)

The latent state’s dimensionality dl is typically chosen to be larger than dx as additional state variables
benefit the model flexibility (Dupont et al., 2019) and enable learning of higher-order dynamics implicitly
(Norcliffe et al., 2020).

Given a context set C and a target set T := {(tTk , xT
k)}J

k=1
2, to calculate the log-likelihood on T for inference,

the intractable posterior of p (l0|C) p(u|C) has been approximated through the mean field approximation
q(ℓ0|T)q(u|T), which in practice has been implemented through encoder qL (l0|C), qD (u|C) in an amortized
fashion, eventually leading to the following evidence lower bound (ELBO):

log p
(
{(xT

k)}J
k=1|{(tCi , xC

i)}N
i=1, T T)

≈ Eq(ℓ0,u|T)

[
J∑

k=1
log p (xk|u, l0, tk)

]
−KL [qL (l0|T) ||qL (l0|C)]−KL [qD (u|T) ||qD (u|C)] ,

(5)

where T T := {(tTk)}J
k=1 represents the (irregularly sampled) target times3. NODEP has competitive perfor-

mance in predicting single trajectory, and we therefore consider extending its functionality to meta-learn
ODE system distributions for our subsequent optimization purpose.

3 System Aware Neural ODE Process
T C XC T C

new XC
new

L0new Dsys

T T
new XT

new

C

T

Figure 2: Graphical Model of SANODEP, the
model predicts any time point in the new tra-
jectory by knowing both observations from new
trajectories and from past trajectories. Depend-
ing on whether the XC

new and TC
new consists of

more than the initial condition, the model focuses
on forecasting or interpolating tasks. The solid
and dashed lines represent the generative and in-
ference processes, respectively.

Few-Shot Optimization with Prior Information
Given that evaluating fevolve(x0, t, f) is limited by cost
to a small number of different initial conditions. To enable
fast adaptation with few evaluations, we take a meta-
learning approach by assuming that f is a realization of
a stochastic function F , and we can access data from its
different realizations to formulate the meta-task distribu-
tions.

More precisely, consider a random function F : X0 × τ →
Rdx representing the distribution of dynamical systems.
From a specific realization of F , suppose we have observed
M distinct trajectories, the context set then encompasses
observations from all M trajectories, denoted as T C =
{T C

1 , ..., T C
M}. Each trajectory, labeled as T C

l , includes its
own set of Nl context observations: T C

l = {(tl
C
i , xl

C
i)}Nl

i=1.
Furthermore, consider a new trajectory Tnew. After ob-
serving additional context observations on this trajectory,
T C

new (e.g., the initial condition of this new trajectory),
we can define the extended context set as C = T C ∪ T C

new.
2We follow the Garnelo et al. (2018b) and Norcliffe et al. (2021) convention by assuming T is a superset of C.
3We denote context trajectory data either as a set of pairs {(tCi , xC

i)}N
i=1 or as vectors {TC, XC}, where TC = [tC1 , ..., tCN]T,

XC = [xC
1 , ..., xC

N]T. We use similar notation {T T, XT} for the target set.

4

Published in Transactions on Machine Learning Research (5/2025)

Additionally, the target set is defined as T = T C ∪ T T
new

4, a visual elaboration is provided in Figure 5 in
Appendix A.

It is straightforward to see why NODEP is suboptimal in such scenario as it makes predictions based on single
time series (C = T C

new, T = T T
new), unable to leverage M trajectorys’ information. Below, we demonstrate

how SANODEP is efficiently enabled through the set-based representation (Zaheer et al., 2017).

3.1 Set-based Dynamical System Representation

Similar to the latent variable u (Eq. 3) capturing trajectory dynamics in NODEP, we adapt a latent variable
Dsys ∼ q(usys|C) in SANODEP, effectively replacing u in the model structure but with an enhanced
conditioning on context observations from M + 1 trajectories, to capture the dynamical systems properties.
Follow this mechanism, we will have a feature extraction for multi-start multivariate irregular time
series, in addition with an efficiency requirement for our optimization purposes.

Such questions are less considered in contemporary time series models, as existing approaches (Shukla
& Marlin, 2021; Schirmer et al., 2022) are mainly developed for single initial condition start trajectories.
Specifically for multi-start scenario, Jiang et al. (2023) proposes first extracting a trajectory-wise aggregated
feature vector, and then averaging feature vectors as a final representation. However, both extraction are
implemented through a convolution operation, which poses challenges with irregular time series without
additional modifications.

A straightforward thinking would be still using average pooling across all context elements as a set-based
representation. While the Picard-Lindelöf theorem (Lindelöf, 1894) guarantees the uniqueness of state values
in an initial value problem when f(x, t) is Lipschitz continuous, in case when only part of the underline
system states can be measured as x(t), different trajectories might still share identical x(t) values, leading
to identifiability issues (duplicate context elements come from different initial conditions). Consequently,
we propose an augmented sets-based approach: we augment each observation with its corresponding initial
condition: (ti, x0, xi), to enhance the model’s ability to differentiate between trajectories that might otherwise
appear identical. Then we perform the average pooling on the flattened context set to obtain the context
representation rsys = 1∑M+1

l=1
Nl

∑M+1
l=1

∑Nl

i=1 ϕrsys([tl
C
i , xl

C
0 , xl

C
i]), which is then mapped to a distribution

representing possible system realizations from F that has generated C. Aside from the theoretical intuition,
we also empirically compare the average pooling without initial condition augmentation in the Section. 6.1,
and find that the augmentation leads to more robust performance even F only represents first-order systems
with fully observable states.

For the rest of the model, SANODEP follows the NODEP structure, hence requiring minimal adjustment, only
with additional care on activation function choices to enable differentiability (Appendix A.3). Appendix A.2
provides a detailed description of the model structure.

3.2 Bi-scenario Loss Function

In line with the principles of episode learning (Vinyals et al., 2016), SANODEP’s training is structured
through multiple episodes. Motivated by our optimization problem that will be detailed in Section. 4, the
design of each episode’s problem ensures good model performance under two primary scenarios:

1. Forecasting: Using M context trajectories T C, the model predicts future state values XT
new for a

new trajectory initiated from T C
new = {(tnew

C
0 , xnew

C
0)} at designated target times T T

new.

2. Interpolating: From the same M trajectories, the model interpolates and extrapolates state
values for a new trajectory that already includes K > 1 observations: T C

new = {(tnew
C
i , xnew

C
i)}K

i=0,
predicting the states at times T T

new.

4Note that again T C
new ⊂ T T

new.

5

Published in Transactions on Machine Learning Research (5/2025)

Both scenarios can be considered under a bi-scenario loss function, designed to enhance model’s accuracy for
predicting new trajectory states XT

new at T T
new:

Lθ =Ef∼F,M,T C,T T
new,1forecast,T C

new(1forecast)log pθ

(
XT

new|T C ∪ T C
new(1forecast), T T

new

)
, (6)

where pθ(·) represents the SANODEP prediction when parameterized by θ.

Algorithm 1 Learning and Inference in System Aware Neural ODE Processes (SANODEP)
Require: ODE system inducing distributions P , known trajectory range [Mmin, Mmax], batch size of Monte

Carlo approximation of initial condition sample Nx0 , batch size of dynamical systems sample Nsys,
prespecified time grid Tgrid := linspace(t0, tmax, Ngrid), minimum and maximum context points within
a trajectory mmin, mmax. minimum and maximum extra target points nmin, nmax, initial condition space
X0.

1: Initialize SANODEP model parameters θ with random seeds.
2: for step in training_steps do
3: # Training data generation
4: for j = 1 to Nsys do
5: Sample ODE system f ∼ F and Nx0 different initial conditions from X0, solve Nx0 odes at time

grids Tgrid to obtain the dataset {T1, ..., TNx0
}.

6: Sample known trajectory number M from Uniform(Mmin, Mmax).
7: for l = 1 to M do
8: # Sample context and target elements within each trajectory
9: Sample ml from Uniform(mmin, mmax), sample nl from Uniform(nmin, nmax).

10: Randomly subsample from Tl to extract the context dataset Tl
C and target dataset Tl

T, where
|Tl

C| = ml and |Tl
T| = ml + nl and Tl

C ⊆ Tl
T.

11: end for
12: Concatenate M trajectories context set T C = {T C

1 , ..., T C
M} and target set T T = {T T

1 , ..., T T
M}.

13: end for
14: # Model Prediction
15: for j = 1 to Nsys do
16: for k = 1 to Nx0 do
17: sample 1forecast from Bernoulli(λ) # determine forecasting or interpolating
18: if 1forecast = 1 then
19: T C

new = {(t0k, x0k)} where (t0k, x0k) ∈ Tk

20: else if 1forecast = 0 and k > M then
21: Randomly subsample from Tk to extract the context dataset Tk

C and target dataset Tk
T, where

|Tk
C| = m, |Tk

T| = m + n and Tk
C ⊆ Tk

T.
22: else
23: T C

new = Tk
C, T C = T C\Tk

C.
24: end if
25: Augmented the context trajectories and target trajectories with the new trajectory T C = T C∪T C

new,
T T = T T ∪ T T

new.
26: Compute variational posterior q(usys|T T), q(L0

T
new|T T), q(usys|T C), q(L0

T
new|T C) through the

encoder block.
27: Sample l(t0), usys from q(l(t0)|T T), q(usys|T T).
28: Solve latent odes as in Eq. (3) for all times and decode to obtain the model prediction.
29: Calculate the trajectory wise loss LELBOk based on Eq. (8).
30: end for
31: end for
32: Average the trajectory wise loss LELBO = 1

Nx0

∑Nx0
o=1 LELBOo

33: Update the model parameter through optimizer θ ← θ − η∇θLELBO
34: end for

During training, once a dynamical system realization f from F has been drawn, we randomly sample the
number of context trajectories M that we have observed, where the number of context elements, the initial

6

Published in Transactions on Machine Learning Research (5/2025)

condition of the trajectory and the observation time are all sampled. For the new trajectory to be predicted,
besides sampling the target set {T T

new, XT
new}, a Bernoulli indicator 1forecast ∼ Bernoulli(λ) parameterize

by λ is sampled to determine whether the episode will address a forecasting or interpolating scenario. This
indicator directly influences the part of the context set sampled from the new trajectory5:

T C
new(1forecast) =

{
{(tnew

C
0 , xnew

C
0)} if 1forecast = 1,

{(tnew
C
i , xnew

C
i)}K

i=0 if 1forecast = 0.
. (7)

For each system realization, we train in a mini-batch way by making prediction on a batch of different new
trajectories.

The intractable log-likelihood in Eq. (6) can be approximated via the following evidence lower bound (ELBO):

log pθ

(
XT

new | T C ∪ T C
new(1forecast), T T

new

)
≈ Eq(usys|T C∪T C

new(1forecast)∪T T
new)q(LT

0new
|(tC0,xC

0new
)) log p

(
XT

new | T T
new, usys, LT

0new

)
−KL

[
q
(
usys | T C ∪ T C

new(1forecast) ∪ T T
new

)
∥ q
(
usys | T C ∪ T C

new(1forecast)
)]

−KL
[
q
(
LT

0new
|
(
tC0new

, xC
0new

))
∥ p(LT

0new
)
]

,

(8)

where q
(
usys | T C ∪ T C

new(1forecast) ∪ T T
new

)
and q

(
LT

0new
|
(
tC0new

, xC
0new

))
has been obtained through the

encoder in an amortized fashion, the prior p(LT
0new

) is isotropic Gaussian. Appendix B derives the ELBO and
Algorithm. 1 provides implementation details of the model inference procedure. Compared to Eq. (5), Eq. (8)
is designed to generalize across any new trajectory within the same dynamical system. This aligns with our
Bayesian Optimization (BO) setting, where we further introduce the BO algorithm in the next section.

4 Time Delay Constraint Process Bayesian Optimization

Through maximizing the ELBO for θ, we can obtain SANODEP’s predictive distribution pθ(XT|C, T T, x0)
for batch of time T T = {t1, ..., tN} at specified initial condition x0, which is sufficient for few-shot learning
tasks. In the section, specifically for our practically motivated optimization problem that incorporates one
additional time delay constraint, we propose an optimization framework, leveraging SANODEP for few-shot
BO in ODE and benchmark in Section. 6.2.

Minimum Observation Delay Constraint When optimizing Eq. (2), we assume that, while one can
observe state values at any chosen time t on a specific initial condition x0, as illustrated in Figure 1, the next
observation can only commence after a fixed known time duration ∆t. In practice, these delays stem from
the need to sequentially conduct separate, smaller experiments for state value measurements, each requiring
a known period to complete before the next can begin.

With the above context, the proposed optimization framework consists of the following two steps:

4.1 Initial Condition Identification

The first optimization stage identifies the optimal initial conditions necessary for starting experiments. The
optimality of the initial conditions is defined as achieving the maximum expected reward after the completion
of observations starting at this location. Inspired by the batch strategy to achieve a similar non-myopic
objective (González et al., 2016; Jiang et al., 2020), we propose an adaptive batch size based optimization
strategy for the initial condition identification:

maximizex0∈X0,{t1,t2,...,tN ∈τ},N∈Nopt
α
(
x0, t1, ..., tN , p(XT|C, T T, x0)

)
s.t. ∀i ∈ {1, ..., N} : ti − ti−1 ≥ ∆t

, (9)

where α is the batch acquisition function to be maximized, Nopt = {1, 2, . . . , Nmax} is the search space for
the total number of observation queries, with Nmax = ⌊(tmax − t0)/∆t⌋. T T = {t1, . . . , tN} represents the set
of observation times. We omit the dependence of pθ(x|C, t, x0) in α(·) for brevity thereafter.

5For notation simplicity, we always use subscript 0 to represent the initial condition of a trajectory.

7

Published in Transactions on Machine Learning Research (5/2025)

4.2 Choose the next query time

Once the initial condition x0 has been chosen, and our last observation query made is at time tn, when still
have query opportunity (i.e., tmax > tn + ∆t), redefine the maximum remaining trajectory observation Nmax

as ⌊ tmax−tn

∆t ⌋, the batch size search space Nopt and time search space τ = [tn + ∆t, tmax], we choose the next
query time recurrently via the following optimization problem:

maximize{t1,t2,...,tN ∈τ},N∈Nopt
α (x0, t1, ..., tN)

s.t. ∀i ∈ {1, ..., N} : ti − ti−1 ≥ ∆t
. (10)

Search Space Reduction The integer variable N ’s search space Nopt in Eq. (9),(10), though one dimensional,
can be cumbersome to optimize in practice. However, for the batch expected hypervolume improvement
acquisition function (qEHVI) (Daulton et al., 2020) that we will use as acquisition function α, the search
space can be reduced without losing optimality:
Proposition 1. For acquisition functions defined as α() = Ep(XT|C,T T,x0)

[
HVI

(
XT, T T,F∗|C

)]
:

maximize x0∈X0,
{t1,t2,...,tN }∈τ,
N∈{1,...,Nmax}

α(x0, t1, . . . , tN) = maximize x0∈X0,
{t1,t2,...,tN }∈τ,

N∈{⌈Nmax/2⌉,...,Nmax}

α(x0, t1, . . . , tN),

where HVI stands for hypervolume improvement based on Pareto frontier F∗, see Definition 2 of Daulton
et al. (2020). Appendix C.1 provides the proof and shows that the search space reduction property holds
for generic acquisition functions that are monotonic w.r.t. set inclusions. Consequently, we define Nopt as
[⌈Nmax

2 ⌉, Nmax] thereafter.

Algorithm 2 Model Assisted Ordinary Differential Equation Optimization Framework
1: Input: maximum number of experiment trajectories Nexp, minimum spacing ∆t, maximum observations

per trajectory Nmax, initial evaluated context datasets C, acquisition function α, evaluated trajectory
number n = 1, initial time lower bound tlb = t0, time range τ = [tlb, tmax], observer fevolve for
measurement.

2: while n ≤ Nexp do
3: T = ϕ
4: Construct the probabilistic model for p(x|t,C, x0)
5: # Initial Condition Optimization
6: x∗

0, N∗ = arg maxx0∈X ,{t1=t0,t2,...,tN ∈τ},N∈[⌈ Nmax
2 ⌉,Nmax] α (x0, t1, ..., tN)

s. t. ∀i ∈ {1, ..., N} : ti − ti−1 ≥ ∆t
tlb = t0 + ∆t, τ := [tlb, tmax], T = T ∪ {t0, x∗

0},C = C ∪ T
7: Ntraj = Nmax − 1
8: # Within trajectory Next Measurement Time Scheduling
9: while Ntraj >= 1 do

10: N∗, t∗
1 = arg max

{t1,t2,...,tN ∈τ},N∈[⌈
Ntraj

2 ⌉,Ntraj]
α (t1, ..., tN)

s. t. ∀i ∈ {1, ..., N} : ti − ti−1 ≥ ∆t
11: x∗

1 = fevolve(x∗
0, t∗

1)
12: tlb = t∗

1 + ∆t, τ := [tlb, tub], C = (C\T) ∪ (T ∪ {t1, x∗
1}), T = T ∪ {t1, x∗

1}
13: Ntraj = ⌊ tmax−tlb

∆t ⌋
14: end while
15: n = n + 1
16: end while

Optimization Framework is outlined in Algorithm. 2. We refer to the Appendix C.1 for details of how
SANODEP is utilized within qEHVI, together with acquisition function optimizer described in Appendix C.1.
Finally, we highlight that this Bayesian Optimization framework is agnostic to the model choice of pθ(XT |
C, T T, x0), as we will compare in Section. 6, both NP and GP (as a non-meta-learn model) can be used.

8

Published in Transactions on Machine Learning Research (5/2025)

5 Related Work

Meta-learning of Dynamical Systems: Our work is built upon a meta-learned continuous time-based
model for state prediction in dynamical systems. Singh et al. (2019) extended Neural Processes (Garnelo et al.,
2018b) by incorporating temporal information from the perspective of the state-space model. However, their
approach is limited to discrete-time systems. Following the NODEP framework, Dang et al. (2023) extended
the model for forecasting purposes in multi-modal scenarios. Recently, Jiang et al. (2023) used meta-learning
to tackle high-dimensional time series forecasting problems for generic sequential latent variable models, they
leverage spatial-temporal convolution to extract the usys, which only works on regularly spaced time steps
(e.g., image frames in their use cases). However, SANODEP extracts system dynamic’s feature from multiple
irregularly sampled multivariate time series using the newly proposed encoder structure. Song & Jeong (2023)
explored Hamiltonian representations, which are flexible enough for cross-domain generalizations. Beyond
the Bayesian meta-learning paradigm, Li et al. (2023) used classical gradient-based meta-learning (Finn
et al., 2017) to meta-learn dynamics with shared properties. Auzina et al. (2024) investigated the separation
and modeling of both dynamic variables that influence state evolution and static variables that correspond
to invariant properties, enhancing model performance. Motivated by recent advances in extending Graph
Neural Networks (GNNs) to dynamical systems, several studies have explored leveraging GNN-ODEs for
modeling multi-agent interactions (e.g., Luo et al. (2025); Yuan et al. (2024)). However, such advantages is
not applicable to single-agent problem setting. Additionally, several works (Luo et al., 2025; Fotiadis et al.,
2023) investigate robustness to distribution shifts in system-level dynamics by separating system-level and
trajectory-level dynamics encoding. While this separation improves trajectory-level prediction robustness, it
is less beneficial to guard against trajectory-level predictive performance if the initial condition optimization
is already misleading due to distribution shift.

Process-Constrained Bayesian Optimization: Vellanki et al. (2017) address process-constrained batch
optimization where each batch shares identical constrained variables within a subspace. Our problem similarly
treats initial conditions as constrained variables in batch optimization but differs by using a joint expected
utility method instead of a greedy strategy. Additionally, our approach involves on-the-fly optimization with
system evolution, leading to a novel time-constrained problem addressed by an adaptive batch BO algorithm
with search space reduction. Folch et al. (2022; 2024) also consider optimization under movement (initial
condition) constraints.

Few-Shot Bayesian Optimization: A significant amount of recent work has focused on meta-learning
stochastic processes, to be used as alternatives to GP for BO. Within the (Conditional) Neural Process
framework ((C)NP) (Garnelo et al., 2018a;b), Transformer Neural Processes (TNP) (Nguyen & Grover, 2022)
have demonstrated robust uncertainty quantification capabilities for BO. Dutordoir et al. (2023) introduced a
diffusion model-based Neural Process, providing a novel framework for modeling stochastic processes which
enables joint sampling and inverse design functionality. Similar to TNP, Müller et al. (2021) approached
the meta-learning problem as Bayesian inference, subsequently integrating a BO framework into this model
(Müller et al., 2023). We note that while a majority of the aforementioned approaches lead to promising
empirical performance on BO for regular black-box functions, their backend models (if there are any) are
mainly motivated by a drop-in replacement of GP or non-temporal stochastic process. A meta-learned BO
method specifically for dynamical systems is, to our best of knowledge, not revealed yet.

6 Experiments

This section conducts experiments on meta-learning and few-shot BO for dynamical systems. All models
are implemented using Flax (Heek et al., 2023) and are open source, available in: https://github.com/
TsingQAQ/SANODEP. The optimization framework is based on Trieste (Picheny et al., 2023).

6.1 Modeling Comparison

We evaluate model performance comparisons on meta-learning diverse ODE system distributions with a
twofold purpose. First, we investigate whether leveraging the system information can help modeling. We also
investigate whether the inductive bias could bring performance benefits.

9

https://github.com/TsingQAQ/SANODEP
https://github.com/TsingQAQ/SANODEP

Published in Transactions on Machine Learning Research (5/2025)

Baseline: To see if adding system information helps with the modeling, we compare SANODEP against
NODEP under its original testing scenario (interpolation). For the second purpose, we compare SANODEP
with Neural Processes (NP) (Garnelo et al., 2018b). As mentioned in Section 5, we were not able to compare
with the meta ODE models of Jiang et al. (2023) as it is not been able to be applied on irregular time series.
Although GP-ODE (Heinonen et al., 2018) appears to be a promising non-meta-learning baseline for modeling
dynamical systems, it is not directly applicable to our meta-testing scenario. This is due to its prohibitively
expensive training process and the fact that its performance on modeling multiple irregularly sampled
trajectories from the same dynamical system has not been investigated in the original work. Therefore, we
instead provide results using a standard Gaussian Process with independent outputs for reference, where
we use Matérn 3/2 kernel as a common choice (e.g., Xie et al. (2024); Baek et al. (2024)) and trained with
maximum likelihood estimation 6. For models that do not explicitly incorporate the ODE in their structure,
we use the trajectory’s initial condition augmented with time as its input. We also note that due to the
context set consisting of batches of multiple trajectories sampled irregularly, prevents efficient use of scaled
dot product attention-based models (e.g., Nguyen & Grover (2022)) (see Appendix B.2 for details) hence we
omit for comparing these none ODE based NP models.

Training: Following Norcliffe et al. (2021), we treat F as a parametric function of a specific kinetic model
with stochasticity induced by model parameter distributions P 7. We refer to Appendix D.1 for the model
formulations, its parameter distribution P ’s form, and the training epochs. Interpolation-only experiments use
SANODEP trained using Eq. (6), setting λ = 0, and NODEP trained using Eq. (5), We refer to Appendix. B.2
for the specific training parameter setting for Algorithm. 1. For the second experimental purpose, we train
all models using Eq. (6) setting λ = 0 for interpolation only training and λ = 0.5 for bi-scenario training,
with 5 different random seeds for model initialization.

Evaluation: We evaluate the model performance on target data generated from systems sampled from
the same F , which is known as in-distribution generalization evaluation. Excluding GP, each model was
evaluated on 104 random systems, each consisting of 100 trajectories to predict in a minibatch fashion.
As it is computationally infeasible to evaluate GPs on the same scale, we used a random subset of the
test set, 5,000 trajectories. Appendix B.2 provides full data generation settings. Following Norcliffe et al.
(2021), we assess model performance in terms of Mean-Squared Error by conducting a sequential evaluation
with varying numbers of context trajectories, as illustrated in Figure 3 (and Figure 8 in Appendix D.2
for Negative-log-Likelihood). We also provide the model prediction illustration in Appendix D.3 and the
averaged-context-trajectory-size performance results in Tables 2 and 3 in Appendix D.2.

Table 1: Model comparison on interpolation tasks (mean-squared-error ×10−2) for a range of
dynamical systems.

Models Lotka-Volterra (2d) Brusselator (2d) Selkov (2d) SIR (3d) Lotka-Volterra (3d) SIRD (4d)
NODEP-λ = 0 38.9± 0.52 15.5± 0.379 7.12± 0.56 367.5± 58.0 26.8± 1.53 188.1± 21.8
SANODEP-λ = 0 32.1± 0.55 8.7 ± 1.11 0.52 ± 0.03 254.3 ± 60.3 25.1 ± 1.85 137.2 ± 12.8

Does System Awareness Improve Predictive Performance? Table. 1 demonstrates that SANODEP is
better than NODEP in all problems, indicating the benefit of capturing system information.

Does Incorporating Temporal Information Enhance Model Performance? Illustrated in Figure 3,
comparing with NP, except for the Lotka-Voterra problem where the SANODEP trained with mixing
probability λ = 0.5 shows larger predictive variance, and Lotka-Voterra (3d) where NP demonstrates better
performance when context trajectory numbers are small, for the rest of the problems, SANODEP is either on
par or noticeably better than NP irrespective with the mixing probability. Indicating that the incorporation
of right inductive bias has the potential to help modeling.

Does Augmenting Initial Conditions Improve Modeling? We further evaluate the performance of
SANODEP by comparing models with and without initial condition augmentation, as depicted in Figure 3

6We use the GP implementation within Trieste and additionally follow the common numerical trick implemented in
linear_operator (used by GPyTorch), where the jitter term is progressively increased if Cholesky decomposition fails.

7We discuss in Appendix E on how the flexibility of F may change and affect the SANODEP.

10

https://github.com/cornellius-gp/linear_operator/blob/main/linear_operator/utils/cholesky.py

Published in Transactions on Machine Learning Research (5/2025)

0 5 10

100

Lotka-Voterra (2d)

0 5 10

10 1

100
Brusselator (2d)

0 5 10

10 2

10 1

Selkov (2d)

0 5 10
100

101

SIR (3d)

0 5 10

100
Lotka-Voterra (3d)

0 5 10

100

101

SIRD (4d)

0 5 10

0.3

0.4
0.5
0.6

0 5 10

10 1

0 5 10

10 2

0 5 10

100

101

0 5 10
0.2

0.3

0.4

0 5 10

100

101M
SE

Number of Context Trajectories
SANODEP-\x0- = 0.5 NP- = 0 NP- = 0.5 NODEP SANODEP- = 0.0 SANODEP- = 0.5

Figure 3: Model evaluation performance comparison on a different number of context trajectories. The first
row corresponds to forecasting performance (prediction with only the initial condition known), and the second
row represents an interpolating setting. It can be seen that SANODEP is either on-par or marginally better
than NP for most problems, and the initial condition augmented encoder-based model variant provides more
robust performance across problems.

(labeled as SANODEP-\x0 for without augmentation). The results intriguingly show that even for first order
systems, models augmented with initial conditions exhibit greater robustness across various systems. This
demonstrates the empirical benefits of our context aggregation approach.

How Do Meta-Learned Models Compare with Non-Meta-Learned Models? We provide the
sequential model evaluation plot in Figure 7 including GPs in Appendix D.2. As expected, the meta-learned
models show superior accuracy when the number of trajectories is small (as we have also illustrated in
Figure 1), aligning with the problem setting of this study. We also remark that GP can quickly overtake
when the context trajetcory number is abundant, since the Neural Process typed model is known to suffer
from under fit when the data is abundant.

6.2 Few-Shot Bayesian Optimization

0 0.5 1
Scaled Time

0

10

20

30

Lotka-Voterra (2d)

0 0.5 1
Scaled Time

0.5

1.0

1.5

Brusselator (2d)

0 0.5 1
Scaled Time

2.0

2.2

2.4

2.6
Selkov (2d)

0 0.5 1
Scaled Time

0.00

0.05

0.10

SIR (3d)

0 0.5 1
Scaled Time

10

20

30
Lotka-Voterra (3d)

0 0.5 1
Scaled Time

0.0

0.1

0.2

SIRD (4d)

Hy
pe

rv
ol

um
e

In
di

ca
to

r

NP- = 0.0 NP- = 0.5 NODEP SANODEP- = 0 SANODEP- = 0.5 GP

Figure 4: Comparison of few-shot BO performances in terms of mean ± standard deviation. Except for the
Lotka-Voterra (3d) problem, SANODEP-based few-shot BO demonstrates competitive performance on all
the rest of the problems.

Baselines: We conduct few-shot BO using the meta-learned models (SANODEP, NODEP, NP) trained in
the previous section using our optimization framework (Algorithm 2). For reference, we provide GP-based BO
(GP-BO) using the same framework. Since the optimization problem we consider is novel and not addressed
by existing BO algorithms, we conduct our comparisons within the proposed BO framework, evaluating
different models under a consistent setting.

Optimization: We optimize dynamical system realizations sampled from F . The parameter settings, the
objective function definitions and performance indicator calculation are provided in Table 4. For simplicity, in
each optimization problem, we assume the maximum number of observations per trajectory is ∆t = tmax−t0

10 .

11

Published in Transactions on Machine Learning Research (5/2025)

We start with one randomly sampled trajectory with uniformly spaced observations and have an additional
budget to query 10 trajectories. Each optimization is repeated 10 times with different random seeds.
Results: are reported in terms of the scaled experimental time versus the hypervolume indicator, with the
reference point also provided in Table 4 (we also report the results of PI-SANODEP that will be introduced
in next section.).

Does Meta-learning Help Few-Shot Optimization in Dynamical Systems? We highlight the merits
of few-shot BO, as it consistently demonstrates significant convergence speed improvements during the early
stages of BO.

Does Dynamical System Informed Model Behaves Better than Standard Model for Optimization?
Exept for Lotka-Voterra (3d), SANODEP demonstrates better performance compared with Neural Processes.
Again validate the potential of a deliberate consideration of temperal information.

Does Weight Training Objective help Optimization? For SANODEP, except in the case of the
Brusselator, combining training with bi-scenario losses shows either comparable or slightly better performance
than training solely in the interpolation setting. This suggests that careful design of the loss function for
optimization purposes may offer modest benefits.

Finally, we provide the time profile of different models in the Appendix D.5, in general, as the involvement of
simulation in inference process, SANODEP and NODEP takes more time than NP and GP when perform
optimization.

7 Discussion

Bayesian Optimization (BO) of unknown dynamical systems is an underexplored area, with existing approaches
often relying on unsuitable surrogate models. Addressing this gap, while minimising the number of costly
optimization steps, we have developed a novel few-shot BO framework. Our approach extends the Neural
ODE Processes (NODEP) into the System-Aware Neural ODE Processes (SANODEP), which meta-learns the
system’s prior information to enhance the optimization process. Through extensive benchmark experiments,
we demonstrated SANODEP’s potential over NODEP. Our results show that SANODEP, equipped with
an optimization-driven loss function, offers competitive performance compared to other non-dynamic-aware
meta-learning models, and can offer additional possibilties including parameter estimation , which can’t be
said with other non-dynamic-aware meta-learning models.
Limitations: A key limitation of SANODEP, inherited from Neural Processes, is the issue of underfitting.
This necessitates a trade-off between few-shot functionality and model fitting capability. While strong prior
information enhances performance in scenarios with well-defined priors, the model performance is limited by
a lack of prior information about the dynamical system. Although We have discussed extensively on the
variety of prior information in Appendix E, and our proposed task distribution (Appendix E.2) shows promise
for cross-domain generalization, SANODEP still faces a trade-off between model fitting and prior flexibility,
indicating that it cannot be used out of the box as a generic probabilistic model to optimize arbitrary
dynamical system without knowing its kinetic form. Furthermore, unlike GP-BO which has established
sublinear cumulative regret bounds typically due to the connection between maximum information gain
and model predictive variance from the kernel (Srinivas et al., 2009), amortized latent variable models like
SANODEP face several upstream open issues, including the convergence properties of amortized variational
inference. Consequently, regret bounds for SANODEP based BO remain an open.
Future investigations: Future work will aim to develop more adaptable conditional distributions to better
capture a wider range of dynamical systems. This will address the trade-off between model performance and
the flexibility needed to handle diverse and complex dynamical systems without relying heavily on strong
priors.

Acknowledgments

The authors gratefully acknowledge support from BASF SE, Ludwigshafen am Rhein (BL), Engineering
and Physical Sciences Research Council [grants EP/W003317/1, EP/X025292/1, EP/Y028775/1, and

12

Published in Transactions on Machine Learning Research (5/2025)

EP/S023151/1] (RM, CT, JQ, BL), a BASF/RAEng Research Chair in Data-Driven Optimisation (RM),
and a BASF/RAEng Senior Research Fellowship (CT).

References
Ilze Amanda Auzina, Çağatay Yıldız, Sara Magliacane, Matthias Bethge, and Efstratios Gavves. Modulated

neural ODEs. NeurIPS, 36, 2024.

Jaewan Baek, Jinwoo Kim, Hyunho Lee, Minki Lee, and Mingi Choi. Bayesian-optimization-assisted efficient
operation for direct ammonia solid oxide fuel cells. Journal of Power Sources, 619:235194, 2024.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential
equations. In NeurIPS, volume 31, 2018.

Yuqi Chen, Kan Ren, Yansen Wang, Yuchen Fang, Weiwei Sun, and Dongsheng Li. ContiFormer: Continuous-
time transformer for irregular time series modeling. In NeurIPS, volume 36, 2024.

Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference. Proceedings
of the National Academy of Sciences, 117(48):30055–30062, 2020.

Raj Dandekar, Karen Chung, Vaibhav Dixit, Mohamed Tarek, Aslan Garcia-Valadez, Krishna Vishal Vemula,
and Chris Rackauckas. Bayesian neural ordinary differential equations. arXiv preprint arXiv:2012.07244,
2020.

Ting Dang, Jing Han, Tong Xia, Erika Bondareva, Chloë Siegele-Brown, Jagmohan Chauhan, Andreas
Grammenos, Dimitris Spathis, Pietro Cicuta, and Cecilia Mascolo. Conditional neural ODE processes for
individual disease progression forecasting: A case study on COVID-19. In 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pp. 3914–3925, 2023.

Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. Differentiable expected hypervolume improvement
for parallel multi-objective Bayesian optimization. In NeurIPS, volume 33, pp. 9851–9864, 2020.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural ODEs. In NeurIPS, volume 32,
2019.

Vincent Dutordoir, Alan Saul, Zoubin Ghahramani, and Fergus Simpson. Neural diffusion processes. In
ICML, pp. 8990–9012, 2023.

Katharina Ensinger, Nicholas Tagliapietra, Sebastian Ziesche, and Sebastian Trimpe. Exact inference for
continuous-time Gaussian process dynamics. In AAAI, volume 38, pp. 11883–11891, 2024.

Leo Feng, Hossein Hajimirsadeghi, Yoshua Bengio, and Mohamed Osama Ahmed. Latent bottlenecked
attentive neural processes. In ICLR, 2023. URL https://openreview.net/forum?id=yIxtevizEA.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In ICML, pp. 1126–1135, 2017.

Jose Pablo Folch, Shiqiang Zhang, Robert Lee, Behrang Shafei, David Walz, Calvin Tsay, Mark van der Wilk,
and Ruth Misener. SnAKe: Bayesian optimization with pathwise exploration. In NeurIPS, volume 35, pp.
35226–35239, 2022.

Jose Pablo Folch, Calvin Tsay, Robert M Lee, Behrang Shafei, Weronika Ormaniec, Andreas Krause, Mark
van der Wilk, Ruth Misener, and Mojmír Mutnỳ. Transition constrained Bayesian optimization via Markov
decision processes. In NeurIPS, volume 37, 2024.

Andrew Foong, Wessel Bruinsma, Jonathan Gordon, Yann Dubois, James Requeima, and Richard Turner.
Meta-learning stationary stochastic process prediction with convolutional neural processes. In NeurIPS,
volume 33, pp. 8284–8295, 2020.

13

https://openreview.net/forum?id=yIxtevizEA

Published in Transactions on Machine Learning Research (5/2025)

Stathi Fotiadis, Mario Lino Valencia, Shunlong Hu, Stef Garasto, Chris D Cantwell, and Anil Anthony
Bharath. Disentangled generative models for robust prediction of system dynamics. In International
Conference on Machine Learning, pp. 10222–10248. PMLR, 2023.

Peter I Frazier. A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray Shanahan,
Yee Whye Teh, Danilo Rezende, and SM Ali Eslami. Conditional neural processes. In ICML, pp. 1704–1713,
2018a.

Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Eslami, and
Yee Whye Teh. Neural processes. arXiv preprint arXiv:1807.01622, 2018b.

Roman Garnett. Bayesian optimization. Cambridge University Press, 2023.

Javier González, Michael Osborne, and Neil Lawrence. GLASSES: Relieving the myopia of Bayesian
optimisation. In AISTATS, pp. 790–799, 2016.

Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas Steiner, and
Marc van Zee. Flax: A neural network library and ecosystem for JAX, 2023. URL http://github.com/
google/flax.

Pashupati Hegde, Çağatay Yıldız, Harri Lähdesmäki, Samuel Kaski, and Markus Heinonen. Variational
multiple shooting for Bayesian ODEs with Gaussian processes. In UAI, pp. 790–799, 2022.

Markus Heinonen, Cagatay Yildiz, Henrik Mannerström, Jukka Intosalmi, and Harri Lähdesmäki. Learning
unknown ODE models with Gaussian processes. In ICML, pp. 1959–1968, 2018.

Shali Jiang, Henry Chai, Javier Gonzalez, and Roman Garnett. Binoculars for efficient, nonmyopic sequential
experimental design. In ICML, pp. 4794–4803, 2020.

Xiajun Jiang, Ryan Missel, Zhiyuan Li, and Linwei Wang. Sequential latent variable models for few-shot
high-dimensional time-series forecasting. In ICLR, volume 11, 2023.

Patrick Kidger. On neural differential equations. arXiv preprint arXiv:2202.02435, 2022.

Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosenbaum, Oriol Vinyals,
and Yee Whye Teh. Attentive neural processes. In ICLR, 2019.

Qiaofeng Li, Tianyi Wang, Vwani Roychowdhury, and Mohammad Khalid Jawed. Metalearning generalizable
dynamics from trajectories. Physical Review Letters, 131(6):067301, 2023.

Ernest Lindelöf. Sur l’application de la méthode des approximations successives aux équations différentielles
ordinaires du premier ordre. Comptes rendus hebdomadaires des séances de l’Académie des sciences, 116
(3):454–457, 1894.

Xiao Luo, Yiyang Gu, Huiyu Jiang, Hang Zhou, Jinsheng Huang, Wei Ju, Zhiping Xiao, Ming Zhang,
and Yizhou Sun. Pgode: towards high-quality system dynamics modeling. In Proceedings of the 41st
International Conference on Machine Learning, ICML’24. JMLR.org, 2025.

Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter. Transformers
can do Bayesian inference. In ICLR, 2021.

Samuel Müller, Matthias Feurer, Noah Hollmann, and Frank Hutter. PFNs4BO: In-context learning for
Bayesian optimization. In ICML, pp. 25444–25470, 2023.

Tung Nguyen and Aditya Grover. Transformer neural processes: Uncertainty-aware meta learning via sequence
modeling. In ICML, pp. 16569–16594, 2022.

Alexander Norcliffe, Cristian Bodnar, Ben Day, Nikola Simidjievski, and Pietro Liò. On second order
behaviour in augmented neural ODEs. In NeurIPS, volume 33, pp. 5911–5921, 2020.

14

http://github.com/google/flax
http://github.com/google/flax

Published in Transactions on Machine Learning Research (5/2025)

Alexander Norcliffe, Cristian Bodnar, Ben Day, Jacob Moss, and Pietro Liò. Neural ODE processes. In ICLR,
2021.

Derek Onken and Lars Ruthotto. Discretize-optimize vs. optimize-discretize for time-series regression and
continuous normalizing flows. arXiv preprint arXiv:2005.13420, 2020.

Katharina Ott, Michael Tiemann, and Philipp Hennig. Uncertainty and structure in neural ordinary differential
equations. arXiv preprint arXiv:2305.13290, 2023.

Joel A Paulson and Calvin Tsay. Bayesian optimization as a flexible and efficient design framework for
sustainable process systems. arXiv preprint arXiv:2401.16373, 2024.

Victor Picheny, Joel Berkeley, Henry B Moss, Hrvoje Stojic, Uri Granta, Sebastian W Ober, Artem Artemev,
Khurram Ghani, Alexander Goodall, Andrei Paleyes, et al. Trieste: Efficiently exploring the depths of
black-box functions with TensorFlow. arXiv preprint arXiv:2302.08436, 2023.

Thomas Pinder and Daniel Dodd. GPJax: A Gaussian process framework in JAX. Journal of Open Source
Software, 7(75):4455, 2022. doi: 10.21105/joss.04455. URL https://doi.org/10.21105/joss.04455.

Ilya Prigogine and René Lefever. Symmetry breaking instabilities in dissipative systems. ii. The Journal of
Chemical Physics, 48(4):1695–1700, 1968.

Jixiang Qing, Tom Dhaene, and Ivo Couckuyt. Spectral representation of robustness measures for optimization
under input uncertainty. In ICML, volume 38, 2022.

Jixiang Qing, Henry B Moss, Tom Dhaene, and Ivo Couckuyt. {PF} 2es: Parallel feasible pareto frontier
entropy search for multi-objective Bayesian optimization. In AISTATS, 2023.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. NIPS, 20, 2007.

Oliver Schilter, Daniel Pacheco Gutierrez, Linnea M Folkmann, Alessandro Castrogiovanni, Alberto García-
Durán, Federico Zipoli, Loïc M Roch, and Teodoro Laino. Combining Bayesian optimization and automation
to simultaneously optimize reaction conditions and routes. Chemical Science, 2024.

Mona Schirmer, Mazin Eltayeb, Stefan Lessmann, and Maja Rudolph. Modeling irregular time series with
continuous recurrent units. In ICML, pp. 19388–19405, 2022.

Alexandre Schoepfer, Jan Weinreich, Ruben Laplaza, Jerome Waser, and Clemence Corminboeuf. Cost-
informed Bayesian reaction optimization. 2024. doi: 10.26434/chemrxiv-2024-44ft2.

Satya Narayan Shukla and Benjamin M Marlin. Multi-time attention networks for irregularly sampled time
series. In ICLR, 2021.

Gautam Singh, Jaesik Yoon, Youngsung Son, and Sungjin Ahn. Sequential neural processes. In NeurIPS,
volume 32, 2019.

Yeongwoo Song and Hawoong Jeong. Towards cross domain generalization of Hamiltonian representation via
meta learning. In ICLR, volume 12, 2023.

Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian process optimization in
the bandit setting: No regret and experimental design. arXiv preprint arXiv:0912.3995, 2009.

Connor J Taylor, Alexander Pomberger, Kobi C Felton, Rachel Grainger, Magda Barecka, Thomas W
Chamberlain, Richard A Bourne, Christopher N Johnson, and Alexei A Lapkin. A brief introduction to
chemical reaction optimization. Chemical Reviews, 123(6):3089–3126, 2023.

Alexander Thebelt, Johannes Wiebe, Jan Kronqvist, Calvin Tsay, and Ruth Misener. Maximizing information
from chemical engineering data sets: Applications to machine learning. Chemical Engineering Science, 252:
117469, 2022.

15

https://doi.org/10.21105/joss.04455

Published in Transactions on Machine Learning Research (5/2025)

Pratibha Vellanki, Santu Rana, Sunil Gupta, David Rubin, Alessandra Sutti, Thomas Dorin, Murray Height,
Paul Sanders, and Svetha Venkatesh. Process-constrained batch Bayesian optimisation. NeurIPS, 30, 2017.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one shot
learning. In NeurIPS, volume 29, 2016.

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning, volume 2.
MIT press Cambridge, MA, 2006.

Mohan Wu and Martin Lysy. Data-adaptive probabilistic likelihood approximation for ordinary differential
equations. In AISTATS, pp. 1018–1026, 2024.

Yilin Xie, Shiqiang Zhang, Joel Paulson, and Calvin Tsay. Global optimization of gaussian process acquisition
functions using a piecewise-linear kernel approximation. arXiv preprint arXiv:2410.16893, 2024.

Jingyang Yuan, Gongbo Sun, Zhiping Xiao, Hang Zhou, Xiao Luo, Junyu Luo, Yusheng Zhao, Wei Ju,
and Ming Zhang. Egode: An event-attended graph ode framework for modeling rigid dynamics. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and Alexander J
Smola. Deep sets. In NeurIPS, volume 30, 2017.

16

Published in Transactions on Machine Learning Research (5/2025)

Appendix

Table of Contents
A Problem Setting and Model Structures 17

A.1 Problem Setting Illustrations . 17
A.2 Model Structure . 17
A.3 On the Differentiability of the Encoder and Decoder . 19

B ELBO Derivation and Training Details 20
B.1 SANODEP ELBO derivation . 20
B.2 Learning and Prediction Process of SANOEP . 20

C Time Delay Constraint Optimization 21
C.1 Acquisition Functions . 21
C.2 Search Space Reduction . 21

D Experimental Details and Additional Results 22
D.1 Meta Training Data Definition . 22
D.2 Additional Experimental Results . 23
D.3 Model Prediction Visual Comparison . 23
D.4 Optimization Problem Definition . 23
D.5 Inference Time . 24

E Investigation of the prior strength, F 26
E.1 Strong Prior information: Physics-Informed SANODEP 26
E.2 Weaker Prior of F : Cross-domain generalization possibility 29

F Notations 31

A Problem Setting and Model Structures

A.1 Problem Setting Illustrations

A.2 Model Structure

The model structure and hyperparameters of SANODEP are summarized as follows:

• Initial State Encoder: rinit = ϕinit([t0, x0]), ϕinit : Rd+1 → Rr consists of three dense layers and
activation functions in between.

• Augmented State Encoder: ri = ϕr([ti, x0, xi]), ϕr := R2d+1 → Rr consists of three dense layers
and activation functions in between.

• System Context Aggregation: rsys = 1
N

∑N
i=1 ri.

• Context to Hidden Representation : hsys = ϕsys(rsys), : hinit = ϕinit(rinit), ϕsys(·) and ϕinit(·)
are one dense layer followed by a context encoder activation function, hsys ∈ Rh, hinit ∈ Rh.

17

Published in Transactions on Machine Learning Research (5/2025)

t

x0

tnew
T
1 tnew

T
2 tnew

T
3 tnew

T
N...

T C
1

T C
2

T C
new

T C
M

Figure 5: Illustration of the initial condition optimization problem within one state variable (d = 1)
ODE system. The optimization involves a forecasting scenario: having observed the context set C :=(
∪M

i=1T C
i

)
∪ T C

new (including the new trajectory’s initial condition, illustrated as ●), one tries to predict the
target state values XT

new = [xnew
T
1 , . . . , xnew

T
N] at target times T T

new = [tnew
T
1 , . . . , tnew

T
N] (illustrated as ★).

• Hidden to Variational posterior of usys: q(usys|·) = N
(

ϕµsys(hsys), diag
(
ϕσsys(hsys)2)),

ϕµsys : Rh → Rdsys is a dense layer, ϕσsys := Rh → Rdsys is defined as σlb + 0.9 ∗ softplus(Dense(·)) ,
σlb is a hyperparameter.

• Hidden to Variational posterior of L0: q(L0
T
new|·) = N

(
ϕµinit(hinit), ϕσinit(hinit)2). ϕµinit :=

Rh → Rl and ϕσinit : Rh → Rl has the same structure as above, but with independent weights.

• ODE block: ϕODE [l, usys, t] → l′, ϕODE := Rdsys+l+1 → Rl, ϕODE is consisted of three dense
layers with nonlinear activation functions in between.

• Decoder: ϕdec[l(t), usys, t]→ x(t), l = N
(
ϕµdec[l(t), usys, t], ϕσ

2
dec[l(t), usys, t]

)
, where ϕµdec and

ϕσdec has the same structure as variational posterior, but with independent weights.

Model Hyperparameters

• Encoder ϕr output dimension r: 50

• Context encoder (ϕr, ϕsys, ϕinit) activation function: SiLU

• Encoder hidden dimension h: 50

• ODE layer (ϕODE) activation function: Tanh

• ODE layer hidden dimension: 50

• Decoder hidden dimension: 50

• Latent ODE state dimension l: 10

• Context to latent dynamics (ϕµsys, ϕσsys) activation function: SiLU

• Context to latent initial (ϕµinit, ϕσinit) condition activation function: SiLU

• Latent dynamics dimension dsys: 45

• Variational posterior q(L0
T
new|·) variance lower bound: σlb = 0.1

• Variational posterior q(usys|·) variance lower bound: σlb = 0.1

• Decoder (ϕdec, ϕµdec
, ϕσdec

) activation function: SiLU

18

Published in Transactions on Machine Learning Research (5/2025)

• ODE solver: Dopri5 with rtol = 1e− 5 and atol = 1e− 5

We use SiLU instead of ReLU as in the original NODEP is to enforce the differentiability, which we elaborate
on in the following subsection.

A.3 On the Differentiability of the Encoder and Decoder

Since the optimization takes the initial condition together with the time as decision variables, we need the
model output to be differentiable w.r.t. these quantities. NODEP overlooked this part and utilized ReLu
activation functions originally, we elaborate that the differentiability requirement practically affects our choice
of activation functions.

Time derivative Without loss of generality, we assume we optimize a function g that takes the output of
the decoder ϕµdec[l(t), usys, t] (defined in Appendix A.2) as its input 8. The derivative of g w.r.t t is:

dg
(
ϕµdec[l(t), usys, t], t

)
dt

= ∇ϕµdec
g

(
∂ϕµdec

∂l(t) · ϕODEs[l(t), usys, t] +
∂ϕµdec

∂t

)
+ ∂g

∂t
, (11)

where ϕODEs = · represents the neural network structure modeling the latent ODEs. It is clear that the
differentiability of model output w.r.t time t needs to be enforced through ∂ϕµdec

∂t , as long as the time t is
taken into account in the decoder part.

Initial Condition Derivative The derivative of the model output w.r.t the initial condition x0 can be
represented as:

dg
(
ϕµdec[l(t), usys, t], t

)
dx(t0)

= ∇ϕµdec
g

(
∂ϕµdec

∂l(t) ·
∂l(t)

∂x(t0) +
∂ϕµdec

∂usys
· ∂usys

∂x(t0)

)

= ∇ϕµdec
g

∂ϕµdec

∂l(t) ·
(

∂l(t0)
∂x(t0) + ·

)
+

∂ϕµdec

∂usys
·

∂
(

ϕµsys(hsys) + diag
(
ϕσsys(hsys)ϵ

))
∂x(t0) ·

... · ∂hsys

∂rsys
· ∂rsys

∂x0

]
, (12)

where rsys and hsys are defined in Appendix A.2, ϕµsys(hsys) + diag
(
ϕσsys(hsys)ϵ

)
represent the reparame-

terization based sampling of the latent variable usys, where ϵ is a random sample from Gaussian prior. Note
that the derivative of the state value w.r.t to initial condition ∂l(t)

∂x(t0) can be obtained through the adjoint
method, a derivation has been provided in Appendix C of Chen et al. (2018), without a full specification
of such cumbersome terms, it is sufficient to indicate the sensibility of having differentiable activation
functions in context encoding

(
∂rsys

∂x0

)
, context to latent representations

(
∂hsys

∂rsys

)
, as well as the decoder(

∂ϕµdec

∂l(t)

)
. For a practical calculation of the gradient of the model w.r.t decision variables in both training

and optimization, we simply leverage the standard backpropagation through the ODE solver (also known as
the "discretize-and-optimize" (e.g. Onken & Ruthotto (2020); Kidger (2022))) to obtain the gradient due to
its speed advantage and minimum implementation effort.

In Figure 6, we also empirically show the necessity of these differentiable choices by inspecting the time and
initial condition derivative with respect to g(·).

8we note that this is sufficient to show that the requirements of time differentiability irrespective to the consideration of
ϕσdec[l(t), usys, t]

19

Published in Transactions on Machine Learning Research (5/2025)

(a) ∂x(t)
∂t

using ReLU. (b) ∂x(t)
∂x(t0) using ReLU. (c) ∂x(t)

∂t
using SiLU. (d) ∂x(t)

∂x(t0) using SiLU.

Figure 6: Initial condition gradient and time derivative w.r.t different activation function choices, the
comparison is conducted with the same model structure but different activation functions.

B ELBO Derivation and Training Details

B.1 SANODEP ELBO derivation

Note that since the forecasting scenario is a special case of interpolating scenario, below we derive through a
unified representation:

log p
(
XT

new|T C ∪ T C
new, T T

new

)
= log

∫
p
(
XT

new|T T
new, usys, LT

0new

)
p
(
usys|T C ∪ T C

new

)
p
(
LT

0new

)
d{usys, LT

0new
}

=
(

log
∫

p
(
usys|T C ∪ T C

new

)
p
(
LT

0new

) q
(
usys|T C ∪ T C

new ∪ T T
new

)
q (usys|T C ∪ T C

new ∪ T T
new)

q
(
LT

0new
|
(
tC0 , xC

0new

))
q
(
LT

0new
|
(
tC0 , xC

0new

)) · p (XT
new|T T

new, usys, LT
0new

)
d{usys, LT

0new
}

)

≥ Eq(usys|T C∪T C
new∪T T

new)q(LT
0new

|(tC0,xC
0new

))log
(

p
(
usys|T C ∪ T C

new

)
q (usys|T C ∪ T C

new ∪ T T
new)

·
p
(
LT

0new

)
q
(
LT

0new
|
(
tC0 , xC

0new

)) · p (XT
new|T T

new, usys, LT
0new

))
≈ Eq(usys|T C∪T C

new∪T T
new)q(LT

0new
|(tC0,xC

0new
))log p

(
XT

new|T T
new, usys, LT

0new

)
−KL

[
q
(
usys|T C ∪ T C

new ∪ T T
new

)
||q
(
usys|T C ∪ T C

new

)]
−KL

[
q
(
LT

0new
|
(
tC0 , xC

0new

))
||p
(
LT

0new

)]

. (13)

We note the variational posterior q(usys|T C ∪ T C
new), q

(
LT

0new
|
(
tC0 , xC

0new

))
has been obtained through the

encoder in an amortized approach similar in Garnelo et al. (2018b).

B.2 Learning and Prediction Process of SANOEP

The practical learning process of SANODEP is summarized in Algorithm. 1, with parameters listed in
section. F as well. In all of our subsequent experiments, we use Mmin = 0, Mmax = 10, Nx0 = 100, Nsys = 20,
Ngrid = 100, mmin = 1, mmax = 10, nmin = 0, nmax = 45. We note that all the loops have been practically
implemented in batch, and all the subsampling approach has been implemented practically through masking
in Jax.

Challenges to incorporate attention Finally, we remark that meta-learning of ODE systems is computa-
tionally challenging with models having an attention block. With lines 15-16 of Algorithm. 1, the training
model takes a batch dataset of Nsys

∑Nx0
j=1 |T j| points simultaneously, while the data are subsampled as

context and target data separately. This is handled with a mask. Contemporary deep learning libraries
(e.g., Jax) cannot leverage sparse masks to reduce attention computation complexity inherently. Hence, it is

20

Published in Transactions on Machine Learning Research (5/2025)

infeasible to calculate self or cross-attention over keys with the number
∑Nx0

j=1 |Tj |, which in our cases is tens
of thousands. Generally, it is well recognized (e.g., Feng et al. (2023)) that utilizing attention blocks in neural
processes with large data is computationally intensive. Additionally, lines 6 of Algorithm. 2 preferably require
a dynamic update of C with the initial condition, which is also computationally intensive for self attention.

C Time Delay Constraint Optimization

C.1 Acquisition Functions

We advocate that the framework is agnostic to the acquisition function forms as long as it can be written as
expected utility form and satisfy the property mentioned in Lemma. C.1, we however mention the acquisition
function form we specifically utilized for performing few-shot BO in Section 6.2 as:

α
(
x0, t1, ..., tN , pθ(XT|C, T T, x0)

)
≈ 1

NMC

NMC∑
i=1

HVI
(
ϕµdec[li(T T), usysi, T T], T T,F∗) . (14)

In practice, we infer the current Pareto frontier F∗ from SANODEP as well from the M context trajectories
T C. We use NMC = 32 as the MC sample size to approximate the expected hypervolume improvement in all
our experiments.

Acquisition Function Optimization We note the acquisition optimizer of both initial condition (Eq. (9)),
as well as optimal time scheduling (Eq. (10)) involves constraint optimization. We utilize trust region-based
constraint optimization available in Scipy9 to optimize acquisition function in both optimization problems
starting with a uniform time scheduling (i.e., linspace(t0, t1, N)) . Note that for the initial stage
optimization, we additionally leverage a (10 instances) multi-start procedure on the initial condition decision
variable only to boost the optimization performance.

C.2 Search Space Reduction

Proof of the search space reduction We prove that the search space can be reduced, without eliminating
the global maximum in acquisition function optimization processes (Eq. (9)).
Lemma C.1. For batch acquisition function α defined as expected utility α = Ep(x)(u(x)) where the utility
function u() is monotonic w.r.t set inclusion (S ⊆ T ⇒ u(T) ≥ u(S)), the aquisition function is also
monotonic w.r.t set inclusion: α(T) ≥ α(S).

Proof. Let T = S ∪ T/S, then α(T) − α(S) = Ep(S)Ep(T/S|S)(u(T)) − Ep(S)Ep(T/S|S)(u(S)) =
Ep(S)Ep(T/S|S) (u(T)− u(S)) ≥ 0, hence prove complete.

Corollary C.1.1. Assume that the utility function u(·) is monotonic with respect to the inclusion of the
set in each set separately: Let X = {X1, X2, . . . , Xn} and Y = {Y1, Y2, . . . , Yn} be two collections of sets, if
Xi ⊆ Yi ∀i ∈ {1..., n} then u(X) ≤ u(Y). Then, the batch acquisition function defined as α = Ep(X)(u(X))
satisfies α(Y) ≥ α(X).
Lemma C.2. qEHVI is a monotonic acquisition function with respect to set inclusion

Proof. Using Corollary. C.1.1, Lemma C.2 and the well-acknowledged fact that the hypervolume indicator is
monotonic with respect to set inclusion on each output dimensionality, the proof is straightforward. We note
that the above property is asymptotically hold when qEHVI is monte carlo approximated.

Finally, we start the proof of Theorem. 1:

Proof. when N ∈
[
1, ⌈Nmax

2 ⌉
]
, ∃i ∈

[
1, ⌈Nmax

2 ⌉
]

s.t. ti− ti−1 ≥ 2∆t meaning that one can insert a new batch
point in between, forming an augmented set T as input, with Lemma C.2 and Corollary. C.1.1, the proof
hence complete.

9https://docs.scipy.org/doc/scipy/reference/optimize.minimize-trustconstr.html

21

https://docs.scipy.org/doc/scipy/reference/optimize.minimize-trustconstr.html

Published in Transactions on Machine Learning Research (5/2025)

We finally remark that, with Lemma. C.1, a large series of batch improvement-based acquisition functions
(e.g., parallel Expected Improvement, parallel Probability of Improvement, and parallel information-theoretic
acquisition functions that can be written as expected utility form and also preserve the set inclusion
monotonicity property (e.g., Qing et al. (2023))) also embrace the same search space reduction benefit.

D Experimental Details and Additional Results

D.1 Meta Training Data Definition

Lotka-Voterra

2D Cases

dx

dt
=
[
αx1 − βx1x2
δx1x2 − γx2

]
. (15)

The initial condition is sample from x(t0) ∼ U(0.1, 3)2, the dynamics F are sampled from α ∼ U(1
3 , 1),

β ∼ U(1, 2), δ ∼ U(0.5, 1.5), γ ∼ U(0.5, 1.5), tmax = 15. We run the meta-learn on this system distribution
with 300 epochs.

3D cases
dx
dt

=

αx1 − βx1x2 − ϵx1x3
δx2x1 − γx2 − ζx2x3

ηx3x2 − θx3

 . (16)

The initial condition is sampled from x(t0) ∼ U(0.1, 3)3. The dynamics F are sampled from α ∼ U
(1

3 , 1
)
,

β ∼ U(1, 2), δ ∼ U(0.5, 1.5), γ ∼ U(0.5, 1.5), ϵ ∼ U(0.5, 1.5), ζ ∼ U(0.5, 1.5), η ∼ U(0.5, 1.5), and
θ ∼ U(0.5, 1.5), with tmax = 15. We run the meta-learning algorithm on this system distribution for 300
epochs.

Brusselator Prigogine & Lefever (1968)

dx

dt
=
[
A + x2

1x2 − (B + 1)x1
Bx1 − x2

1x2

]
. (17)

we leverage A ∼ U(0, 1), B ∼ U(0.1, 3), x0 ∼ U(0.1, 2.0)2, tmax = 15. We run the meta-learning algorithm
on this system distribution for 300 epochs.

SIR model

dS

dt
= −βSI,

dI

dt
= βSI − γI,

dR

dt
= γI . (18)

The initial condition is sampled from S(t0) ∼ U(1.0, 3.0), I(t0) = 0.01, R(t0) = 0, and β ∼ U(0.1, 2),
γ ∼ U(0.1, 10). tmax = 1. We run the meta-learning algorithm on this system distribution for 300 epochs.

SIRD model
dS

dt
= −βSI,

dI

dt
= βSI − γI − µI,

dR

dt
= γI,

dD

dt
= µI . (19)

where S(t0) ∼ U(10, 30), I(t0) = 0.01, R(t0) = D(t0) = 0. tmax = 1, β ∈ [0.5, 2.0], γ ∈ [0.1, 10], and
µ ∈ [0.1, 5.0]. We run the meta-learn on this system distribution with 300 epochs.

GP Vector Field
dx

dt
= f(x) . (20)

We assume a vector-valued GP as the non-parametric prior for the vector field f ∼ GP(0, K(x, x′)), with
no correlations between each output as the most generic cases. To sample the vector field, we leverage the

22

Published in Transactions on Machine Learning Research (5/2025)

parametric approximation of GPs through the random Fourier feature approximation of the RBF kernel
Rahimi & Recht (2007) as a Bayesian linear model, which is a common approach (e.g. Qing et al. (2022)) to
obtain differentiable GP samples, the vector fields in practice are generated from kernel lengthscale 0.8 and
signal variance 1. The implementation also utilizes the parametric sampling approach of the GPJax (Pinder
& Dodd, 2022) library.

D.2 Additional Experimental Results

We report all model’s performance on interpolating tasks and forecasting tasks, averaged over known trajectory
ranges M , in Table. 2 and Table. 3.

Table 2: Model comparison (mean-squared-error ×10−2) for a range of dynamical systems.

Models Lotka-Volterra (2d) Brusselator (2d) Selkov (2d) SIR (3d) Lotka-Volterra (3d) SIRD (4d)
Forecasting

GP 87.2± 31.9 39.3± 61.0 31.8± 6.72 1769.93± 980.6 41.4± 15.8 1322.845± 489.4
NODEP-λ = 0 102.9± 6.85 105.2± 10.8 16.1± 1.14 6367.784± 161.8 64.8± 2.56 3368.685± 189.5
NP-λ = 0.0 48.6± 3.1 21.6± 0.56 1.6± 0.0916 952.3± 73.6 32.8 ± 0.85 724.2± 168.8
NP-λ = 0.5 47.3 ± 1.34 22.4± 1.47 1.7± 0.0882 1057.981± 207.2 34.8± 1.53 573.0± 88.3
SANODEP-λ = 0 48.4± 2.09 20.1± 0.816 1.22 ± 0.0376 861.6 ± 89.0 36.2± 1.17 426.4± 44.0
SANODEP-λ = 0.5 50.6± 6.4 18.8 ± 0.467 1.28± 0.0459 873.1± 82.4 35.5± 0.824 410.5 ± 27.3

Interpolating
GP 52.2± 20.2 9.62± 19.0 11.7± 2.76 173.7 ± 296.8 16.8 ± 13.7 280.7± 137.3
NODEP-λ = 0 38.9± 0.517 15.6± 0.379 7.12± 0.559 367.5± 58.0 26.8± 1.53 188.1± 21.8
NP-λ = 0.0 33.2± 2.59 10.4± 0.523 0.742± 0.0436 286.2± 29.7 24.7± 0.557 302.0± 110.9
NP-λ = 0.5 33.2± 1.48 11.0± 0.477 0.807± 0.0638 378.3± 143.0 25.9± 1.39 244.6± 54.3
SANODEP-λ = 0 32.1 ± 0.556 8.74± 1.09 0.53 ± 0.03 257.5± 60.3 25.2± 1.84 139.5 ± 13.5
SANODEP-λ = 0.5 36.6± 7.73 8.06 ± 0.265 0.573± 0.0247 307.8± 53.5 25.2± 0.464 143.8± 14.0

Table 3: Model comparison (negative log-likelihood ×102) for a range of dynamical systems.

Models Lotka-Volterra (2d) Brusselator (2d) Selkov (2d) SIR (3d) Lotka-Volterra (3d) SIRD (4d)
Forecasting

GP 18.2± 7.71 30.2± 25.7 17.1± 4.95 11143.352± 31169.575 19.3 ± 5.75 27321.033± 57173.003
NODEP-λ = 0 119.3± 21.7 79.1± 13.9 136.4± 32.1 1086.616± 331.3 625.5± 174.2 447.7± 86.0
NP-λ = 0.0 98.9± 52.2 17.7 ± 4.41 4.28 ± 1.34 162.6 ± 78.6 491.2± 122.1 197.5± 151.7
NP-λ = 0.5 200.9± 88.0 37.7± 18.5 5.93± 0.836 279.7± 198.2 961.1± 454.1 75.7± 42.8
SANODEP-λ = 0 15.5 ± 6.9 22.6± 2.98 7.98± 1.39 206.9± 79.4 277.5± 77.9 48.7± 17.4
SANODEP-λ = 0.5 27.0± 13.0 23.7± 4.55 8.55± 1.42 219.4± 139.7 329.0± 103.8 48.3 ± 11.0

Interpolating
GP 3.27± 1.24 1.88± 2.0 5.27± 1.87 718.0± 2426.002 2.69 ± 1.61 1045.453± 3397.646
NODEP-λ = 0 32.6± 6.73 12.7± 2.89 13.9± 2.94 66.4± 18.2 67.1± 22.9 22.9± 8.44
NP-λ = 0.0 18.7± 7.46 0.254 ± 0.61 −2.29 ± 0.215 22.4 ± 10.1 65.8± 11.2 30.1± 23.1
NP-λ = 0.5 34.8± 14.0 2.88± 2.01 −1.97± 0.147 40.1± 28.4 122.1± 49.6 12.5± 6.12
SANODEP-λ = 0 2.88 ± 1.59 1.24± 0.568 −1.74± 0.308 28.1± 10.5 41.3± 17.7 7.17 ± 2.39
SANODEP-λ = 0.5 6.08± 3.63 1.13± 0.596 −1.5± 0.284 31.3± 19.3 47.3± 14.6 7.4± 1.97

D.3 Model Prediction Visual Comparison

We provide the prediction comparison of different models on a specific realization of ODE systems in Fig. 9,
12, 10, 11, 13.

D.4 Optimization Problem Definition

The definitions of the optimization problem are provided in Table. 4.

23

Published in Transactions on Machine Learning Research (5/2025)

0 5 10

10 1

100

Lotka-Voterra (2d)

0 5 10

10 1

100

Brusselator (2d)

0 5 10

10 2

10 1

100
Selkov (2d)

0 5 10

100

101

102

SIR (3d)

0 5 10
10 2

10 1

100

Lotka-Voterra (3d)

0 5 10

100

101

102
SIRD (4d)

0 5 10

10 2

10 1

100

0 5 10

10 1

100

0 5 10

10 2

10 1

0 5 10

100

101

0 5 10

0.2
0.3
0.4
0.50.60.7

0 5 10

100

101

M
SE

Number of Context Trajectories
SANODEP-\x0- = 0.5 NP- = 0 NP- = 0.5 NODEP SANODEP- = 0.0 SANODEP- = 0.5 GP

Figure 7: Sequential model evaluation performance including GPs. The first row corresponds to forecasting
performance (prediction with only the initial condition known), and the second row represents an interpolating
setting.

0 5 10
-103
-101

0
101
103
105

0

Lotka-Voterra (2d)

0 5 10
-103
-101

0
101
103
105

0

Brusselator (2d)

0 5 10
-103
-101

0
101
103
105

0

Selkov (2d)

0 5 10

-103-1010
101
104
107

0

SIR (3d)

0 5 10

-103
-101

0
101
104

0

Lotka-Voterra (3d)

0 5 10

-103-1010
101
104
107

0

SIRD (4d)

0 5 10
-103
-101

0
101
103
105

0

0 5 10
-103
-101

0
101
103
105

0

0 5 10
-103
-101

0
101
103
105

0

0 5 10

-103-1010
101
104
107

0

0 5 10
-103
-101

0
101
103
105

0

0 5 10

-103-1010
101
105
109

0

NL
L

Number of Context Trajectories
SANODEP-\x0- = 0.5 NP- = 0 NP- = 0.5 NODEP SANODEP- = 0.0 SANODEP- = 0.5 GP

Figure 8: Sequential model evaluation performance in terms of Negative-Log-Likelihood (NLL) including
GPs. The first row corresponds to forecasting performance (prediction with only the initial condition known),
and the second row represents an interpolating setting.

Table 4: Optimization problem formulations

Problem Lotka-Volterra (2d) Brusselator (2d) Selkov (2d) SIR model (3d) Lotka-Volterra (3d) SIRD (4d)

g formulation x1 x1 x2 x1/
∑3

i=1 xi − 0.05
∑3

i=1 xi x1 x1/
∑3

i=1 xi − 0.05
∑3

i=1 xi

Design space
τ ∈ [0, 15],

xdec ∈ [0.1, 2.0]2
x0 = xdec

τ ∈ [0, 15],
xdec ∈ [0.1, 2]2

x0 = xdec

τ ∈ [0, 10],
xdec ∈ [0.1, 0.5]2

x0 = xdec

τ ∈ [0, 1],
xdec ∈ [10, 30]

x0 = [xdec, 0.1× xdec, 0]

τ ∈ [0, 15],
xdec ∈ [0.0, 2]3

x0 = xdec

τ ∈ [0, 1]
xdec ∈ [10, 30]

x0 = [xdec, 0.1× xdec, 0, 0]
∆t 1.5 1.5 1 0.1 1.5 0.1

Optimization
ODE

definition

α = 0.5,
β = 1.2,
δ = 1.0,
γ = 1.5

A = 0.8,
B = 1.5

a = 0.25,
b = 0.45

β = 1.5
γ = 5

α = 0.5
β = 1.2
δ = 1.0
γ = 1.5
ϵ = 0.5
ζ = 1.2
η = 1.0
θ = 1.5

β = 1
γ = 0.5
µ = 1

Reference point [−1.771, 12.686] [−1.467, 3.887] [−0.474, 5.440] [0.51151, 0.79646] [−1.7557, 13.1687] [0.52198, 1.04]

D.5 Inference Time

We provide the parameter counts, training time and prediction time comparison of SANODEP vs. baselines in
Table. 5, we note that all the models have the same latent dimensionality for a fair performance comparison,
which is regarded as the key bottleneck of the latent variable typed meta-learning model (Kim et al., 2019).

24

Published in Transactions on Machine Learning Research (5/2025)

0.0 0.5 1.0 1.5
2.5

0.0

2.5

5.0

7.5

Lotka-Voterra (2d)

0.0 0.5 1.0 1.5
2

0

2

4

6

Brusselator (2d)

0.0 0.5 1.0
0

1

2

3
Selkov (2d)

0.0 0.5 1.0

0

10

20

30

SIR (3d)

0.0 0.5 1.0 1.5

0

5

10
Lotka-Voterra (3d)

0.0 0.5 1.0

0

10

20

SIRD (4d)

0.0 0.5 1.0 1.5

0.0

2.5

5.0

7.5

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0
0

1

2

3

0.0 0.5 1.0

0

10

20

30

0.0 0.5 1.0 1.5

0

2

4

6

0.0 0.5 1.0
0

10

20

State 1 Prediction
State 2 Prediction

State 3 Prediction
State 4 Prediction

new

Real State 1 Value
Real State 2 Value
Real State 3 Value

Real State 4 Value

Figure 9: Neural Processes (λ = 0.5) podel merformance on test system in different meta-learning ODE
problems.

0.0 0.5 1.0 1.5

0

2

4

6
Lotka-Voterra (2d)

0.0 0.5 1.0 1.5
0

2

4

Brusselator (2d)

0.0 0.5 1.0
0

1

2

3
Selkov (2d)

0.0 0.5 1.0

0

10

20

30
SIR (3d)

0.0 0.5 1.0 1.5

0

5

10

Lotka-Voterra (3d)

0.0 0.5 1.0

0

10

20

SIRD (4d)

0.0 0.5 1.0 1.5

0

2

4

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0
0

1

2

3

0.0 0.5 1.0

0

10

20

30

0.0 0.5 1.0 1.5
2

0

2

4

6

0.0 0.5 1.0
0

10

20

State 1 Prediction
State 2 Prediction

State 3 Prediction
State 4 Prediction

new

Real State 1 Value
Real State 2 Value
Real State 3 Value

Real State 4 Value

Figure 10: SANODEP-(λ = 0.5) model performance on test system in different meta-learning ODE problems.

The parameter increase of SANODEP compared to NODEP is the additional encoder ϕr to handle the
augmented state variable.

Table 5: Comparison of the number of parameters and prediction time of different models. We measure
run time on the Lotka-Voterra (d = 2) problem using an NVIDIA A40 GPU, We note training time and
prediction time is per mini-batch, the optimization query time is per querying one observations.

Model Number of Parameters Training Time (s) Prediction Time (s) Optimization Query Time (s)
GP NA NA NA 23.81± 43.94
NP 21814 0.3016± 0.0791 0.2551± 0.2337 18.04± 18.36
NODEP 30286 0.3792± 0.1892 0.3421± 0.2412 34.71± 20.62
SANODEP 35514 0.3813± 0.2423 0.3482± 0.2731 39.47± 37.30

25

Published in Transactions on Machine Learning Research (5/2025)

0.0 0.5 1.0 1.5

0

20

40

Lotka-Voterra (2d)

0.0 0.5 1.0 1.5

0

2

4

6
Brusselator (2d)

0.0 0.5 1.0
10

5

0

5

10
Selkov (2d)

0.0 0.5 1.0
0

10

20

30
SIR (3d)

0.0 0.5 1.0 1.5
5

0

5

10

15
Lotka-Voterra (3d)

0.0 0.5 1.0

0

10

20

30
SIRD (4d)

0.0 0.5 1.0 1.5

0

5

10

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0
0

1

2

3

0.0 0.5 1.0

0

10

20

30

0.0 0.5 1.0 1.5

0

5

10

0.0 0.5 1.0
0

10

20

State 1 Prediction
State 2 Prediction

State 3 Prediction
State 4 Prediction

new

Real State 1 Value
Real State 2 Value
Real State 3 Value

Real State 4 Value

Figure 11: PI-SANODEP-(λ = 0.5) model performance on test system in different meta-learning ODE
problems.

0.0 0.5 1.0 1.5
0

2

4

6

Lotka-Voterra (2d)

0.0 0.5 1.0 1.5

0.0

0.5

1.0

1.5

2.0
Brusselator (2d)

0.0 0.5 1.0
0

1

2

3
Selkov (2d)

0.0 0.5 1.0
0

10

20

30
SIR (3d)

0.0 0.5 1.0 1.5

0

2

4

Lotka-Voterra (3d)

0.0 0.5 1.0
0

10

20

SIRD (4d)

0.0 0.5 1.0 1.5
0

2

4

6

0.0 0.5 1.0 1.5

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0
0

1

2

3

0.0 0.5 1.0
0

10

20

30

0.0 0.5 1.0 1.5

0

2

4

0.0 0.5 1.0
0

10

20

State 1 Prediction
State 2 Prediction

State 3 Prediction
State 4 Prediction

new

Real State 1 Value
Real State 2 Value
Real State 3 Value

Real State 4 Value

Figure 12: NODEP (λ = 0) model performance on the test system in different meta-learning ODE problems.

E Investigation of the prior strength, F

E.1 Strong Prior information: Physics-Informed SANODEP

When f is a realization of F and we know the parametric form of the kinetic model, we can easily integrate this
kinetic form in SANODEP’s model structure. We call this model variant Physical Informed (PI)-SANODEP.

As a concrete example, consider f as a realization of the Lotka-Volterra (LV) problem with unknown
parameters. Under the SANODEP framework, we can replace fnn in Eq. (3) with the following physics-
informed form:

d

dt

[
x1
x2

]
=
[
αθx1 − βθx1x2
δθx1x2 − γθx2

]
. (21)

26

Published in Transactions on Machine Learning Research (5/2025)

0.0 0.5 1.0 1.5
4

2

0

2

4

Lotka-Voterra (2d)

0.0 0.5 1.0 1.5
1

0

1

2

Brusselator (2d)

0.0 0.5 1.0
4

2

0

2

4

Selkov (2d)

0.0 0.5 1.0
10

0

10

20

30

SIR (3d)

0.0 0.5 1.0 1.5
2

0

2

Lotka-Voterra (3d)

0.0 0.5 1.0
10

0

10

20

SIRD (4d)

0 1

2

0

2

4

0 1

0

1

2

0.0 0.5 1.0

2

0

2

0.0 0.5 1.0
0

10

20

30

0 1

0

2

0.0 0.5 1.0

0

10

20

Predicted State 1 Value
Predicted State 2 Value

Predicted State 3 Value
Predicted State 4 Value

new

Real State 1 Value
Real State 2 Value
Real State 3 Value

Real State 4 Value

Figure 13: Performance of the GP model on the test system in different meta-learning ODE problems.

In this form, usys = [αθ, βθ, δθ, γθ], and l(t0) = x0 and l(t) = x(t)10. Since the parameters of the LV system
are strictly positive. We use log-normal distributions for the conditional prior and variational posterior for
usys in the encoder. For PI-SANODEP’s training loss function L′

θ, since these parameters are known during
meta-training, we augment our loss (Eq. (8)) by incorporating a likelihood term for these parameters, leading
to the following expression:

0.0 0.5 1.0 1.5
0
1
2
3
4
5

Va
lu

e

SANODEP

0.0 0.5 1.0 1.5
0
1
2
3
4
5

PI-SANODEP

0 1 2

De
ns

ity

0 1 2 0 1 2 0 1 2

State 1 Prediction State 2 Prediction new Real State 1 Value Real State 2 Value

Figure 14: Model Comparison of SANODEP vs Physics Informed (PI) SANODEP, PI-SANODEP provides
remarkable better prediction accuracy. In addition, PI-SANODEP provides a reasonable estimation (curve)
on system parameters (dashed line).

log p
(
XT

new, usys|T C ∪ T C
new, T T

new

)
= log p

(
XT

new|usys, T C ∪ T C
new, T T

new

)
+ log p

(
usys|T C ∪ T C

new, T T
new

)
.

(22)
Since usys is known during meta-training, we use the encoder (described in Appendix A.2) as an inference
network to calculate its likelihood p

(
usys|T C ∪ T C

new, T T
new

)
= N

(
usys; ϕµsys(hsys), diag

(
ϕσsys(hsys)2)).

Regarding p
(
XT

new|usys, T C ∪ T C
new, T T

new

)
, we however omit the dependence of usys and still make use of

Eq. (8) to calculate. Thus, the final loss function for PI-SANODEP extends the original SANODEP loss
with an added likelihood term log p

(
usys|T C ∪ T C

new, T T
new

)
, capturing both the dynamics and parameter

estimation.

10In PI-SANODEP, since the ODE is explicitly defined as the kinetic form (e.g., Eq. 21) the decoder is only used to predict
variance.

27

Published in Transactions on Machine Learning Research (5/2025)

0.0 0.5 1.0 1.5
0

1

2

Va
lu

e
Brusselator (2d)

 SANODEP

0.0 0.5 1.0 1.5
0

1

2

Brusselator (2d)
 PI-SANODEP

0.0 0.5 1.0

D
en

si
ty

A

0 2

B

0.0 0.5 1.0
0

2

Va
lu

e

Selkov (2d)
 SANODEP

0.0 0.5 1.0
0

2

Selkov (2d)
 PI-SANODEP

0.0 0.2 0.4 0.6

D
en

si
ty

a

0.5 1.0

b

0.0 0.5 1.0
0

20

Va
lu

e

SIR (3d)
 SANODEP

0.0 0.5 1.0

0

20

SIR (3d)
 PI-SANODEP

0 1 2

D
en

si
ty

0 5 10

0.0 0.5 1.0 1.5

0

5

Va
lu

e

Lotka-Voterra (3d)
 SANODEP

0.0 0.5 1.0 1.5

0

10

Lotka-Voterra (3d)
 PI-SANODEP

0.5 1.0

D
en

si
ty

1.0 1.5 2.0 0.5 1.0 1.5 0.5 1.0 1.5

0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5

0.0 0.5 1.0
0

20

Va
lu

e

SIRD (4d)
 SANODEP

0.0 0.5 1.0
0

10

20

SIRD (4d)
 PI-SANODEP

1 2

D
en

si
ty

0 5 10 0 2 4

State 1 Prediction
State 2 Prediction

new

Real State 1 Value
Real State 2 Value Posterior

State 3 Prediction
Real State 3 Value

State 4 Prediction
Real State 4 Value

Figure 15: Additional experiments for meta-parameter estimation based on PI-SANODEP, the shaded area
represents the meta-training parameter support S = supp(P). It can be seen that PI-SANODEP not only
improves upon SANODEP over prediction (e.g., in the SIR example) but also provides a reasonable parameter
estimation of the test system. Parameter estimation tends to become difficult when the number of parameters
is high as can been seen from the 3-dimensional Lotka-Voterra system.

We demonstrate PI-SANODEP’s performance with SANODEP on Lotka-Voterra problem in Figure 14, and
on the rest of the problem in Figure 15. we note PI-SANODEP also demonstrates the potential of concurrent
few-shot prediction together with parameter estimation of dynamical systems. Compared with Bayesian
inference-based parameter estimation strategies (e.g. Wu & Lysy (2024)), which may take minutes to perform

28

Published in Transactions on Machine Learning Research (5/2025)

estimation, PI-SANODEP shares the same advantage as simulation-based inference (Cranmer et al., 2020)
and can estimate almost instantly since it only requires a forward pass of the encoder.

E.2 Weaker Prior of F : Cross-domain generalization possibility

What if we know nothing about F? From meta-learning perspective, to still frame the problem as in-
distribution evaluation, this demands an extremely flexible prior for F to be utilizable in the target dynamical
system. To our best of knowledge, meta-learning dynamical systems to be leveraged in cross-domain scenarios
is still an open direction. Certain approaches have resorted to incorporating additional dynamical system
properties (e.g., energy conserving system Song & Jeong (2023)) which limit the scope of system types. We
propose and leverage a vector valued GP prior for F as a flexible task distribution.

Sample f(x)1 Sample f(x)1 Sample f(x)1 Sample f(x)1 Sample f(x)1 Sample f(x)1

Sample f(x)2 Sample f(x)2 Sample f(x)2 Sample f(x)2 Sample f(x)2 Sample f(x)2

Vector Field Vector Field Vector Field Vector Field Vector Field Vector Field

Time

St
at

e
Va

lu
e

Sample Trajectory

Time

St
at

e
Va

lu
e

Sample Trajectory

Time

St
at

e
Va

lu
e

Sample Trajectory

Time

St
at

e
Va

lu
e

Sample Trajectory

Time

St
at

e
Va

lu
e

Sample Trajectory

Time
St

at
e

Va
lu

e

Sample Trajectory

0.0 0.5 1.0

5

0

5
NP prediction

0.0 0.5 1.0

0.5

0.0

0.5

NP prediction

0.0 0.5 1.0

0.5
0.0
0.5
1.0

NP prediction

0.0 0.5 1.0

0.25

0.50

0.75

NP prediction

0.0 0.5 1.0
3

2

1

0

NP prediction

0.0 0.5 1.0

2.5

0.0

2.5

NP prediction

0.0 0.5 1.0
Time

5

0

5
SANODEP prediction

0.0 0.5 1.0
Time

0.5

0.0

0.5

SANODEP prediction

0.0 0.5 1.0
Time

0.5
0.0
0.5
1.0

SANODEP prediction

0.0 0.5 1.0
Time

0.25

0.50

0.75

SANODEP prediction

0.0 0.5 1.0
Time

3

2

1

0

SANODEP prediction

0.0 0.5 1.0
Time

2.5

0.0

2.5

SANODEP prediction

Figure 16: Task distribution generated by vector-valued Gaussian Process (GP) priors. The first two rows
display samples from parametric GP priors. The third and fourth rows show the sampled vector fields and
the resulting trajectories starting from sampled initial conditions. The last two rows depict the meta-model
predictions on these trajectories. It can be seen that while the GP-based vector field has introduced a very
flexible task distribution, both meta-learn models tend to underfit on these trajectories.

Inspired by the recent approach of using Gaussian Processes (GPs) to model vector fields (e.g., Heinonen
et al. (2018)), we propose to use vector-valued GP as the non-parametric prior for the vector field, denoted
by f ∼ GP(0, K(x, x′)), as task distributions for meta-learning for dynamical systems. Further details on
the data used for meta-training are provided in Appendix D.1. The dynamical systems sampled from this

29

Published in Transactions on Machine Learning Research (5/2025)

0.0 0.5 1.0 1.5
5.0
2.5
0.0
2.5
5.0

Lotka-Voterra (2d)

0.0 0.5 1.0 1.5

2

0

2

Brusselator (2d)

0.0 0.5 1.0 1.5
4
2
0
2
4

Selkov (2d)

0.0 0.5 1.0 1.5
5.0
2.5
0.0
2.5
5.0

Lotka-Voterra (2d)

0.0 0.5 1.0 1.5

2

0

2

Brusselator (2d)

0.0 0.5 1.0 1.5
4
2
0
2
4

Selkov (2d)

0.0 0.5 1.0 1.5
2.5
0.0
2.5
5.0
7.5

0.0 0.5 1.0 1.5

0

1

2

0.0 0.5 1.0 1.5
0

1

2

3

0.0 0.5 1.0 1.5
2.5
0.0
2.5
5.0
7.5

0.0 0.5 1.0 1.5

0

1

2

0.0 0.5 1.0 1.5
0

1

2

3

NP SANODEP

State 1 Prediction State 2 Prediction new Real State 1 Value Real State 2 Value

Figure 17: Cross domain generalization exploration: SANODEP and NP meta trained on GP-ODE seems to
be able to capture the trajectories from Bruseelator system.

vector-valued GP prior, as illustrated in Figure 16, demonstrate its ability to represent a broad distribution
of dynamical systems. Additionally, we offer a visual comparison of SANODEP and NP on the sampled
trajectories. This comparison reveals a trade-off between fitting accuracy and trajectory flexibility for both
models. Specifically, both models tend to significantly underfit trajectories that involve oscillations, indicating
the noticable complicity of this meta-learning problem.

We also explore whether this flexible task distribution facilitates cross-domain generalization. To this end, we
employ the trained model on different dynamical systems that share the same state variable dimensionality,
as shown in Figure 17. Both meta-learned models demonstrate some potential for cross-domain generalization
particularly from the Brusselator system. However, generalization to systems involving oscillatory behaviors
proves to be especially challenging.

30

Published in Transactions on Machine Learning Research (5/2025)

F Notations

Table 6: Nomenclature Table

Notation Meaning
x State variable vector
dx Dimension of the state space
t0 Initial time for the dynamical system
ti Trajectory time samples, sampled irregularly
t Termination time for a trajectory
C Context Sets
f Vector field governing the dynamics
g(·) Aggregation function used in optimization
L0 Latent initial condition
LD Dynamics of the system
ϕr Context encoding
r Context representation vector
l0 Realizations of latent initial conditions
l(t) Latent states at time t
u(usys) Realizations of the control term representing latent dynamics
fnn Neural network parameterized vector field
θode Parameterisation of the ODE system
fevolve Numerical solver implementation of the vector field
h Instantenous time variable in continuous dynamics
dl Dimension of the latent state space
T Target Sets
T T Target times for predictions
XT Target state values
F Distribution of dynamical systems
P Parametric Task distribution, often stochastic
Xx State variable space
X0 Initial condition space
τ Time domain for the system evolution
M Number of context trajectories
Nl Number of context elements in trajectory l
T C Context observations from M trajectories
T C

l Context observations from the lth trajectory
Tnew A new trajectory which augments the context set C
T C

new Context observations from the new trajectory
T T

new Target observations from the new trajectory
Dsys Latent variable conditioned on M + 1 trajectories
usys Realization of system-aware latent dynamics
rsys System context representation vector
ϕrsys Context encoding augmented with the initial state
XT

new Target state values for the new trajectory
T T

new Target times for the new trajectory
xnew

C
i State vector samples from the new trajectory

tnew
C
i Time samples from the new trajectory

K Number of observations in the new trajectory
Lθ SANODEP’s multi scenario loss function parametrised by θ
pθ SANODEP prediction parametrised by θ
1forecast Bernoulli Indicator
λ Parameter for Bernoulli distribution in decision-making process

31

Published in Transactions on Machine Learning Research (5/2025)

Table 6: Nomenclature Table (Continued)

Notation Meaning
Nopt Search space of the number of observations in the trajectory
∆t Minimum delay between observations
tmax Maximum time observation
Nmax Maximum number of observations per trajectory
α(·) Batch acquisition function
HVI Hypervolume improvement based on the Pareto frontier
F∗ Pareto frontier
Mmin Minimum number of context trajectories observed in a system
Mmax Maximum number of context trajectories observed in a system
Nx0 Sampled number of initial conditions within a system
Nsys Number of dynamical system samples per training iteration
Ngrid Number of points in the time grid for trajectory evaluation
mmin, mmax Min and max context points within a trajectory
nmin, nmax Min and max target points beyond context in a trajectory
S The support set of the stochastic parameters for meta-task distribution
Tgrid Time grid used for trajectory evaluations

32

	Introduction
	Problem Statement and Background
	State Optimization
	Neural ODE Processes (NODEP)

	System Aware Neural ODE Process
	Set-based Dynamical System Representation
	Bi-scenario Loss Function

	Time Delay Constraint Process Bayesian Optimization
	Initial Condition Identification
	Choose the next query time

	Related Work
	Experiments
	Modeling Comparison
	Few-Shot Bayesian Optimization

	Discussion
	 Appendix
	Problem Setting and Model Structures
	Problem Setting Illustrations
	Model Structure
	On the Differentiability of the Encoder and Decoder

	ELBO Derivation and Training Details
	SANODEP ELBO derivation
	Learning and Prediction Process of SANOEP

	Time Delay Constraint Optimization
	Acquisition Functions
	Search Space Reduction

	Experimental Details and Additional Results
	Meta Training Data Definition
	Additional Experimental Results
	Model Prediction Visual Comparison
	Optimization Problem Definition
	Inference Time

	Investigation of the prior strength, F
	Strong Prior information: Physics-Informed SANODEP
	Weaker Prior of F: Cross-domain generalization possibility

	Notations

