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Abstract

The recent work of Papyan, Han, and Donoho (2020) presented an intriguing “Neural
Collapse” phenomenon, showing a structural property of interpolating classifiers in the late
stage of training. This opened a rich area of exploration studying this phenomenon. Our
motivation is to study how far understanding Neural Collapse can take us in understanding
deep learning. First, we investigate its role in generalization. We refine the Neural Collapse
conjecture into two separate conjectures: collapse on the train set (an optimization property)
and collapse on the test distribution (a generalization property). We find that while Neural
Collapse often occurs on the train set, it does not occur on the test set. We thus conclude that
Neural Collapse is primarily an optimization phenomenon, with as-yet-unclear connections to
generalization. Second, we investigate the role of Neural Collapse in representation learning.
We show simple, realistic experiments where more collapse leads to worse last-layer features,
as measured by transfer-performance on a downstream task. This suggests that Neural
Collapse is not always desirable for representation learning, as previously claimed. Our work
thus clarifies the phenomenon of Neural Collapse, via more precise definitions that motivate
controlled experiments.

1 Introduction

In science, and in deep learning, novel empirical observations often catalyze deeper scientific understanding
(Kuhn, 1962). When faced with a new or surprising experiment, we can then try to understand the phenomenon
more precisely: How universal is the behavior? In what settings does it hold? Can we describe it quantitatively?
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Figure 1: Failure of Test Collapse. Neu-
ral Collapse for ResNet18 on CIFAR-10.
Collapse appears to occurs on the train set,
but not on test.

What does it teach us more generally? This overall roadmap for
understanding —from observations to quantitative conjectures
& laws— has a long history of success in the natural sciences,
and has also enjoyed recent successes in deep learning.

The recent “Neural Collapse” work of Papyan, Han, and Donoho
(2020) initiated another instance of such a research program
in understanding deep learning. Their work presented a new
experimental observation, along with a partial characterization.
At a high level, Neural Collapse conjectures several structural
properties of deep neural networks when trained past the point
of 0 classification error on the train set. Their most relevant
conjecture to generalization— is “variability collapse (NC1).”
Variability collapse proposes, informally, that when a deep
network is trained on a k-way classification task, the last-layer
representations converge to k discrete points. This is apriori
surprising, since this internal structure is in no way required
to achieve low train loss and high test performance: there exist
networks with identical decision boundaries which do not satisfy
collapse. However, our standard training methods (Stochastic Gradient Descent and variants) on standard
architectures and datasets empirically seem to satisfy some form of collapse, as demonstrated in Papyan et al.
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(2020). This work has since inspired many follow-up works investigating this phenomenon, both theoretically
and empirically.

A motivating factor in this research program is the belief that Neural Collapse is not an isolated phenomenon,
but rather is deeply connected to other important and unsolved aspects of deep learning— in particular
generalization. The problem of generalization, informally, is the study of why a model trained on a finite set
of samples has good performance on out-of-sample inputs. Although this is not apriori related to Neural
Collapse, the original work proposes that collapse “confers important benefits, including better generalization
performance, better robustness, and better interpretability.” And it is stated as a hypothesis that “the benefits
of the interpolatory regime of overparametrized networks are directly related to Neural Collapse” (Papyan
et al., 2020). This postulated connection between Neural Collapse and generalization is implicit in many of
the follow-up works as well, and motivates studying collapse as a phenomenon.

However, the nature of the connection between Neural Collapse and generalization remains muddled. Some
works argue they are closely related (Papyan et al., 2020), while others cast some doubt (Elad et al., 2020;
Zhu et al., 2021; Banburski et al., 2021). There are at least two reasons for this confusion in the literature:
First, it is often not clear whether Neural Collapse refers to a phenomenon on the train set, or on the test
set. The behaviors most relevant to generalization occur on the test set, and yet most experiments and
theorems consider only the train set. Second, the Neural Collapse conjectures do not precisely specify the
role of the sample size, and thus it is not always clear how to connect to generalization— where sample size
is fundamental. This ambiguity is especially problematic because some natural ways to extend the Neural
Collapse conjecture to the test set turn out to be impossible to satisfy, as we will describe.
Our Contributions. We clarify ambiguities in the original Neural Collapse (NC) conjectures, which allows
us to investigate which forms of NC are possible to achieve, both in theory and in practice. Specifically:

1. We propose more precise versions of the Neural Collapse conjectures (“variability collapse”), stating
different versions for the train set and the test set, with both “strong” and “weak” forms. (Section 2)

2. We discuss the theoretical feasibility of these different conjectures. As we will see, strong test collapse
is extremely unlikely, while weak test collapse is in principle possible but does not occur in practice.
(Section 2.1)

3. We empirically confirm the finding of Papyan et al. (2020), that train-collapse occurs in many realistic
settings. However, we find that test-collapse does not occur. (Section 3)

4. We show several settings where increasing train-collapse is anti-correlated with test performance, in
both on-distribution and transfer-learning settings. This demonstrates that train-time neural collapse
is not always desirable— and indeed, can be counterproductive— for many kinds of generalization.
(Section 4).

We thus conclude that Neural Collapse is primarily an optimization phenomenon, and its connections to
generalization require further investigation.

1.1 Related Works

The Neural Collapse phenomenon was originally presented in Papyan et al. (2020), and led to a series of
follow-up works investigating and extending it. Many of the subsequent works develop simplified models
in which Neural Collapse on the train set can be theoretically proven and understood. For example, Fang
et al. (2021) develops a “layer-peeled” model of training, and explores neural collapse in class-imbalanced
settings. Mixon et al. (2020) proposes an alternate simplification, an “unconstrained features” model, in
which train collapse also occurs. Wojtowytsch et al. (2020) and Zhu et al. (2021) also investigate the train
collapse under unconstrained features model. Several works Poggio & Liao (2020a;b); Rangamani et al. (2021);
Han et al. (2021) examine the Neural collapse with the square loss under different settings. Specifically,
Poggio & Liao (2020a;b) give theory which predicts the properties of neural collapse for homogeneous,
weight-normalized networks. Rangamani et al. (2021) proves that quasi-interpolating solutions obtained by
gradient descent in the presence of weight decay have Neural collapse properties. Han et al. (2021) proposes
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a generic decomposition of the MSE loss which, under certain assumptions, results in a simplified dynamical
description (the “central path”) which exhibits neural collapse on the train set. Lu & Steinerberger (2020)
extend theoretical analysis of neural collapse to the cross-entropy loss (while previous works mainly considered
MSE loss). They prove neural collapse on the train set in the “unconstrained features” setting. Ergen &
Pilanci (2021) reformulate the last-layers of networks to convex formulations and give an explanation of
Neural Collapse properties. Ji et al. (2021b;a) proposes unconstrained layer-peeled model which captures
the properties of Neural Collapse and prove that gradient flow on this model converges to critical points
exhibiting neural collapse in its global minimizer. Yang et al. (2022) and Pernici et al. (2021) observe that
fixing the parameters (i.e. no back-propagation) in the final classifier as a simplex Equiangular Tight Frame
(ETF) does not basically reduce the performance on the test set.

Liu et al. (2020) investigate the impact of a margin parameter added to softmax/cosine softmax loss in the
setting of few-shot learning and they show that this margin parameter controls the degree of NC. They also
show that a higher margin parameter (larger intra-class variance) leads to higher accuracy on the validation
set, but lower accuracy on unseen classes at training time. Goldblum et al. (2020) study NC in the context of
meta-learning, and the authors find that higher NC is better. They add a regularizer to the loss to increase
NC appears to improve transfer learning results. Doersch et al. (2020) state that supervision collapse is an
obstacle to learning good representations for few-shot learning. The definition of supervision collapse is the
representations “represent only an image’s (training-set) class, and discard information that might help with
out-of-distribution classes”, which is similar with the NC1 (feature collapse) definition. Roth et al. (2020)
propose a strategy to reduce NC, and show that doing so improves the performance of deep metric learning.
Kornblith et al. (2021) examine a variety of loss functions and find that loss functions that produce greater
NC on the ImageNet training set sometimes get higher validation accuracy but transfer worse.

However, all the above papers present results for Neural Collapse on the train set, with an exception of Han
et al. (2021), which gives a preliminary experiment on the test set collapse (see Figure 12 on page 20). They
observe that “the rate of collapse is much slower on the test data compared to that on the train data”, which
agrees with our observations. Rangamani et al. (2021) has a discussion on neural collapse and generalization
and argues that neural collapse is not related to good generalization as “Neural Collapse is a property of the
dynamics independently of the size of the margin which provides an upper bound on the expected error”.
However, there has been no in-depth study on test data collapse and generalization.

One of the few papers focusing on collapse at test time is Galanti et al. (2021). Their work focuses on
neural collapse for transfer learning, under a particular assumption: classes in the source and target tasks
are selected randomly from the same class distributions. In contrast to their work, our transfer-learning
experiment does not obey the assumptions on source/target task required by Galanti et al. (2021), since we
consider a source task which is a “class-superset” of the target task. Another key difference is that Galanti
et al. (2021) use a notion of “collapse” which only requires collapse to occur in the limit of infinite train size.
However, we consider “collapse” to occur if it occurs at finite train size. This finite-sample definition follows
the original framework of Papyan et al. (2020), and is essential to a meaningful definition of collapse. We
elaborate on this important point in Section 2. At first glance, the conclusion in the transfer learning setting
arrived at by Galanti et al. (2021) contradicts to ours results. One reason for this can be the class number in
their pretraining is larger than the downstream tasks, while we are considering a “super-class” setting where
the downstream task has finer labels and larger class number. We pre-train on large datasets while fine-tune
on tasks with limited data. This is a standard transfer learning setting where transfer learning is particularly
useful in practice.

Zhu et al. (2021) and Mixon et al. (2022) provide empirical evidence that neural collapse can happen for
training data with random labels. However, the presence of neural collapse on training data cannot indicate
whether the network generalizes or not. Feng et al. (2021) points out that negligence of valuable intra-
class semantic difference is the reason for worse transferability of existing supervised pre-training methods,
compared with the powerful transferability of self-supervised pre-training. They propose a new supervised
pre-training method based on Leave-One-Out K-Nearest-Neighbor to preserve part of intra-class difference,
i.e. to have less neural collapse. Extensive empirical studies show their method leads to better transferring
to downstream tasks. Their conclusion agrees with ours. Inspired by the property of nearest-class center
decision rule, Galanti (2022) proposes “minimal NCC-depth” to capture the relationship of neural collapse
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and generalization, as they also observe no clear relation between training data collapse and generalization.
Note that the class-distance normalized variance (CNDV) definition used in this paper comes from Galanti
(2022) is from Galanti et al. (2021) and it is essentially the same as the definition in Papyan et al. (2020).
In contrast, our NC1 definitions explicitly consider the dependency on train set size, which is more precise
than the CNDV definition and the original definition of Papyan et al. (2020). Also, we extend the NC1
definition to the test set, with both “strong” and “weak” forms. For the empirical findings, on the difference
between train set and test set collapse, the observations in Figure 1 of Galanti (2022) is similar to ours, i.e.
test-collapse seems to occur to a much less extent than train-collapse. Our main contribution is making this
observation mathematically precise, by considering the asymptotic limit as a function of train samples (which
has not been done in prior work as far as we are aware).

1.2 Notation

Let X be the input space, and Y be the label space. We consider multi-class classification problems, where
Y = [k] for some k ∈ N. Let D be the target distribution over X × Y. Training procedures1 are functions
which map a train set S ∈ (X × Y)n and an iteration count t ∈ N and to a model f . In this work, we will
always consider Stochastic-Gradient-Descent (SGD)-based training procedures, where t is the number of
SGD steps. For a fixed train set S of size n, let f t

S denote the model output by the training procedure after
t iterations. So Train : (S, t) 7→ f t

S , where Train denotes the training procedure. For a given model f t
S , let

the last-hidden-layer feature map be denoted ht
S : X → Rd. This is the feature-map induced by the trained

model, as a map from inputs into Rd.

2 Defining Neural Collapse

We first define two kinds of Neural Collapse: on the train set, and on the test set. Our definitions naturally
extend the definitions in Papyan et al. (2020), but are more precise since we explicitly include the train/test
distinction, and the dependency on training iterations t and train samples n. This is essential to describe the
relevant asymptotic limits in the “collapse”.

Throughout this work, we focus only on the first conjecture from Papyan et al. (2020): “NC1 (Variability
Collapse).” NC1 captures the within-class variance and it is the most relevant one to generalization. Also,
the subsequent Simplex ETF conjecture is particularly meaningful only if NC1 is true, that is features cannot
collapse to a simplex ETF if the variability does not “collapse” at all. When we refer to “neural collapse”
in this work, we specifically are referring to “variability collapse.” We first define collapse on the train set,
which follows closely the definition in Papyan et al. (2020).
Definition 1 (Train-Collapse). For a particular train set S, we say a training procedure T exhibits Train-
Collapse on S if there exists some distinct µ1, µ2, . . . , µk ∈ Rd such that

∀(xi, yi) ∈ S : lim
t→∞

ht
S(xi) = µyi

That is, the trained network converges to representations such that all train points of class k get embedded
to a single point µk (called the “class means” in Papyan et al. (2020)). The conjecture below then states
conditions under which Train-Collapse occurs. This conjecture is meant to capture the original NC1 conjecture
of Papyan et al. (2020), which was demonstrated empirically across many settings.
Conjecture 2 (Train-Collapse Conjecture, informal). For all train sets S containing at least two distinct
labels, and all training procedures T corresponding to SGD on “natural” sufficiently-deep and sufficiently-large
neural network architectures: T exhibits Train-Collapse on S.

Crucially, we state Conjecture 2 for train sets of all sizes. This dependency on train set size is implicit, but
omitted from Papyan et al. (2020) — it will become especially important when we discuss generalization, and
this makes the biggest difference from the CDNV definition given by Galanti et al. (2021), which assume
infinite train size. This behavior is called a “collapse” because regardless of the train set size, any big-enough

1We can consider randomized training procedures by allowing an additional random string as input. We omit this randomness
throughout, for notational clarity.
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network that enables neural collapse converge to this discrete limiting structure. We replicated this finding in
most of our experiments. However, for completeness we acknowledge that this conjecture does not hold fully
universally, and there are subtleties in practice2. Nevertheless, we believe the NC1 conjecture captures the
right qualitative behavior in many realistic settings.

We also acknowledge that Conjecture 2, while more precise than the conjectures in Papyan et al. (2020), is
still not fully formal. For example, it only applies to “natural” architectures and not all architectures, and
does not quantify what “sufficiently large” means. In our experiments, we also apply weight decay, batch
normalization (BN), tune different learning rates for each model. Rangamani & Banburski-Fahey (2022)
shows that neural collapse does not necessarily happen when training without weight decay and without
biases. Ergen & Pilanci (2021) study the connection between NC and BN. Also, Galanti (2022) shows that
depth also matters for NC to happen. This restriction to “natural” architectures is a known obstacle to
formalism in deep learning theory (e.g. Nakkiran (2021)) and is necessary to avoid pathologies such as Abbe
& Sandon (2020). Nevertheless, our definitions take a step towards greater formalism, and this precision will
be useful in understanding connections to generalization. Refining our definitions and conjectures further is
an area for future work.

The notion of train-collapse described above (and in Papyan et al. (2020)) is an optimization notion: it
involves only behavior of a model on its train set, and not behavior at test time. Thus, it is a priori unclear
whether this notion is related to generalization aspects of models. To explore this, we first extend the
definition of Neural Collapse to the test set, and then investigate whether this test-collapse occurs in practice.
The most immediate way to formulate test collapse is to use the exact same formulation and quantifier on
sample size n with Train-Collapse. We call this similar formulation with Train-Collapse Strong Test-collapse.
Definition 3 (Strong Test-Collapse). A training procedure T exhibits Strong Test-Collapse on distribution D
if for all sample sizes n ∈ N, the following holds with probability 1 over sampling S ∼ Dn: there exists some
distinct µ1, µ2, . . . , µk ∈ Rd such that

with prob 1 over (x, y) ∼ D : lim
t→∞

ht
S(x) = µy∗(x)

where y∗(x) := arg maxy pD(y|x) is the Bayes-optimal classification under distribution D.

Strong Test-Collapse requires that test points x map to their “correct” embedding point µi, where i is the
Bayes-optimal class for x. However, unless n is large enough that we are able to learn the Bayes-optimal
classifier exactly, Strong Test-Collapse will not occur. Since this natural extension from Train-Collapse is
hard to happen, we define a “weak” version of test set collapse which is likely to happen. It requires only
that test points embed as one of k discrete points µ1, µ2, . . . µk, without requiring that all points of class i
map to µi.
Definition 4 (Weak Test-Collapse). A training procedure T exhibits Weak Test-Collapse on distribution D
if for all sample sizes n ∈ N, the following holds with probability 1 over sampling S ∼ Dn: there exists some
distinct µ1, µ2, . . . , µk ∈ Rd such that

with prob 1 over (x, y) ∼ D : lim
t→∞

ht
S(x) ∈ {µi}i∈[k]

There are several important differences between the notions of test-collapse and train-collapse. First, for
test-collapse we require that the train set S is not arbitrary, but sampled from some distribution D. And
we check for limiting behavior with respect to new samples from D, as opposed to train samples from S.
However, both train and test collapse require the collapse to occur for all finite sample sizes n, letting only
time t → ∞. This is the meaningful asymptotic, since taking limit of samples n → ∞ would obscure almost
all aspects of learning, which is most interesting at finite-sample sizes.

With the dependency on train set size, which is crucial when discussing generalization, our definitions are a
natural extension of definitions given in Papyan et al. (2020) and Galanti et al. (2021), and they are a step
forward to evaluate the correlation of neural collapse and generalization.

2For example, we found in some settings training variability does not collapse to negligible value, such as CIFAR-10 and
STL-10 dataset with VGG architectures (see Figure 3) . In some preliminary experiments we also found that adding stochasticity
(such as dropout noise) often accelerated collapse, which is consistent with the theoretical model in Papyan et al. (2020).
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2.1 Remarks on Feasibility

With the above definitions, we can see that strong test-collapse is too strong a property to apply in realistic
settings. We discuss this infeasibility here, and then corroborate this with experiments in the following
section.

Infeasibility of Strong Test-Collapse. First, note that both train-collapse and test-collapse definitions
require that collapse occurs for all train set sizes n ∈ N. This property is easy to satisfy for train-collapse, but
is an extremely strong property for test-collapse. In particular, the “strong” form of test collapse (Definition 3)
is too strong to hold in practice: it implies that a Bayes-optimal classifier can be extracted from the trained
model features, even if the model is trained on only e.g. n = 10 samples. Even with large but finite n, it’s
hard to learn Bayes-optimal classifier exactly (and it is unlikely to happen in most realistic settings). This is
because, according to Definition 3, the representation must map test inputs to their “correct” cluster, and
thus the correct label can be extracted from the cluster identity.

However, the “weak” form of NC1-test (Definition 4) still has hope of holding, since it does not imply learning
a Bayes-optimal classifier. Nevertheless, note that even the “weak” form is a fairly strong condition for
neural networks: it implies that trained networks (on any size train set) learn feature-maps h such that the
push-forward h∗(D) is a discrete measure. Mapping the continuous measure D to a discrete measure is a
strong property, and one that is unlikely to hold for standard neural networks.

Feasibility of Weak-Collapse. While weak-collapse is unlikely to hold for neural networks trained with
SGD, the definition itself is non-vacuous: there exist learning methods which are “reasonable” (asymptotically
consistent) and exhibit weak test-collapse. To see this, consider the following modified training procedure:
first, train a neural network as usual to get a network f : X → Y. Then, construct another network f ′

such that the last-layer representation of f ′ is a one-hot encoding of the classification decision of f . That
is, the representation h′(x) ∈ Rk satisfies h′(x) := e⃗f(x) where {e⃗i} are standard basis vectors. This can be
constructed by, for example, adding post-processing layers to f . Now, the training procedure which outputs f ′

will satisfy weak test-collapse of its representations, since its representations are always one of the k standard
basis vectors by construction.

Desirability of Neural Collapse for Generalization. Armed with these definitions, we can now consider
whether train or test collapse are necessary or sufficient for on-distribution generalization. First, neither train
nor test collapse are strictly necessary for good generalization: As discussed, it is possible to construct models
with identically good generalization performance, but which satisfy neither train nor test collapse. There
are even natural, non-contrived examples of this: models trained for less than one epoch (the “Ideal World”
in the terminology of Nakkiran et al. (2020)) will not exhibit train collapse, because they are not trained
to fit their train set. And yet, as demonstrated in Nakkiran et al. (2020), they can match the performance
of interpolating models. This “one epoch” regime is also relevant in practice, where models are trained on
massive data sources such as internet scrapes, often for less than one epoch (Brown et al., 2020; Raffel et al.,
2020; Komatsuzaki, 2019).

Further, neither train collapse (Definition 1) nor weak test-collapse (Definition 4) are sufficient for generaliza-
tion. It is possible to construct models which satisfy train collapse perfectly, but which are random functions
at test time. Likewise, it is possible to construct models which satisfy weak test-collapse, but have random
classification decisions.

Strong test-collapse (Definition 3) is sufficient for good test performance, since it implies that test inputs map
to the “correct” cluster in representation-space. However, as we discussed, strong test-collapse is infeasible,
and impossible in practice.

3 Experiments: Train and Test Collapse

Here we complement our theoretical discussion by measuring both train and test collapse in realistic settings,
following the experiments of Papyan et al. (2020). We find that train-collapse occurs in many settings, while
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test-collapse (both strong and weak) does not. We also show the dependency on the train set size: larger
train sets lead to stronger test collapse, but weaker train collapse. Note that we say stronger collapse or
more collapse when the feature variance is smaller. This further highlights the importance of distinguishing
between the two forms of collapse, since they can be anti-correlated. Also, stronger train set collapse can
lead to worse test performance, which means that stronger collapse on train set itself is not correlated with
better generalization.

3.1 Measuring Collapse

It is not possible to measure collapse strictly according to Definitions 1, 3 and 4, since they involve a
t → ∞ limit. Instead, we follow exactly the experimental procedure of Papyan et al. (2020), and measure
approximations which capture the “degree of collapse.” We restate their procedure here for convenience.
Measuring collapse require finding the vectors µ1, µ2, . . . µk ∈ Rd, which embeddings collapse to. The choice
of these vectors depends on the setting, as below.

Train Collapse. For the train set, µi is defined as the train class-means:

µ̂i := E(x,y)∈S [hT
S (x) | y = i]

where T is the maximum train time in the experiment. Define the global mean as µ̂ :=
∑

i µ̂i/|Y|. Then, the
“degree of train collapse” is measured as:

TrainVariance(t) :=
E(x,y)∈S [||ht

S(x) − µ̂y||2]
Ei[||µ̂i − µ̂||2]

Smaller values of this quantity indicate more “collapse.” The numerator here is the “within-class variance” and
it is normalized by the “between-class variance”, in the terminology of Papyan et al. (2020). This definition
follows the experimental measurements in Papyan et al. (2020).

Strong Test Collapse. For test collapse, µi is defined as the test class-means:

µ̄i := E(x,y)∼D[hT
S (x) | y = i]

The global mean is µ̄ :=
∑

i µ̄i/|Y|. Then, the “degree of strong test collapse” is measured as:

StrongTestVariance(t) :=
E(x,y)∼D[||ht

S(x) − µ̄y||2]
Ei[||µ̄i − µ̄||2]

Weak Test Collapse. For weak test-collapse (Definition 4), we do not require that representations collapse
to their class means, but simply to some µi. Thus, we define {µ̃i} as the result of k-means clustering on the
following set of vectors: {hT

S (x)}x∈TestSet. The global mean is µ̃ :=
∑

i µ̃i/|Y|. And the “degree of weak test
collapse” is measured as:

WeakTestVariance(t) :=
E(x,y)∼D[arg mini∈[k] ||ht

S(x) − µ̃i||2]
Ei[||µ̃i − µ̃||2]

3.2 Experimental Results

Setup. We consider image classification tasks with MNIST, FashionMNIST, CIFAR-10, SVHN and STL-10
datasets. We train Resnet, DenseNet and VGG networks with stochastic gradient descent (SGD) to minimize
the cross-entropy loss. All tasks were trained on a single GPU with batch size 128 and 80000 SGD iterations.
See Appendix A for more details and references about the datasets, architectures and training mechanisms.

In the following of this section we show that the test collapse does not occur with experiments on a wide
range of datasets and model architecture combinations. We show that train collapse and test collapse can be
anti-correlated and more train collapse can lead to worse test performance. Considering the dependency on
train set size is fundamental to generalization.
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Figure 3: Failure of Test Collapse. Training and test variance vs. SGD iterations, for various dataset and
architecture combinations. All test sets (black line) do not collapse to negligible variance, and have much less
collapse than the train sets (purple line).
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Figure 2: Neural Collapse on
CIFAR-10. Collapse occurs on the
train set, but not on the test set (nei-
ther Strong nor Weak).

Failure of Test Collapse. In Figure 2, we train a single model
(ResNet-18 on CIFAR-10) and measure TrainVariance, WeakTestVari-
ance, and StrongTestVariance as a function of train time t. That is, we
measure the degree of train and test collapse over increasing time. We
see that train collapse appears to occur, while test variance does not
decrease to negligible value. In particular, there is a “generalization
gap” in the Train vs. Test Variances: the TrainVariance appears to
converge to 0 as t → ∞, while TestVariance (both weak and strong)
do not. For the remainder of the experimental results, we plot only
“strong” test collapse, since we generally observe that both strong
and weak collapse have similar behavior.

In Figure 3, we train different models on various datasets and measure
TrainVariance and StrongTestVariance as a function of train time t.
We train all models to get 0 training error and continue training to
achieve close to 0 training loss3. We see Strong Test-Collapse does not
occur on all settings, and has a large gap with Train Collapse. Again,
the results show that Neural Collapse is mainly an optimization
phenomenon and not a generalization one: test set does not collapse to negligible value in any setting, together
with our theoretical argument of infeasibility of Strong Test-Collapse in 2.1, we claim a failure of test collapse.

3We use “close to 0” to mean when the loss is below 10−5.
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Figure 4: Train vs. Test Anti-Correlation. The numbers up the dots are corresponding test accuracy
of different train set size (N). We observe that train and test collapse are anti-correlated and small train
variance has worse test accuracy. That is neural collapse can hurt generalization. Top: ResNet18 trained on
subsets of CIFAR-10. Bottom: VGG11 trained on subsets of FashionMNIST.

Train vs. Test Anti-Correlation. In Figure 4 we train a ResNet18 on CIFAR-10, and vary the size of
the train set from N = 12500, 25000, 30000, 40000 to N = 50000. We also report results on training a VGG11
network with batch normalization on different subsets of FashionMNIST. For each train set size N , we have 5
runs with different random seeds (the subset of each run is different because of random selection), and report
the average of the variance and plot the error bar.

We train all models past the point of 0 training loss and stop training when the training loss decreases to 10−6 in
each run. Figure 4 plots the train collapse (TrainVariance) compared to the test collapse (StrongTestVaraince)
at the end of training, for different train set sizes. We also report the corresponding test accuracy right up the
dots in Figure 4. We find that as the train set size increases, the train variation increases (less train collapse),
however, the test accuracy gets higher and the test variation decreases (more test collapse). This illustrates
that test and train collapse are not always correlated, and thus it is important to distinguish between the
two: “better” optimization behavior (train set collapse) accompanies worse generalization behavior. Also, by
considering the dependency on train set size, we see that stronger train set collapse itself does not imply
good generalization. If you look at the train variance in x-axis and the accuracies up in the dots in Figure
4, it shown that solutions that does not exhibit train collapse (larger train variance) actually have good
generalization (better test accuracy). Also, this observation matches the claim in Nakkiran et al. (2020) which
say “1-epoch" CIFAR models have similar performance as multi-epoch models but the “1-epoch" models do
not exhibit train collapse.

One limitation of this experiment is that we evaluate collapse at finite train time, and not at t = ∞. Indeed,
at t = ∞ we expect the train variation to be identically 0 for all data sizes (by the definition of collapse), but
the test variation to decay with larger data sizes. This situation is analogous to measuring train/test error
itself for overparameterized models: for large enough models, train error will always be 0, but test error will
decay with the data size. This experiment thus highlights the importance of measuring both train & test
quantities, and the subtlety involved in measuring collapse at finite time.

We also acknowledge that in this experiment, increasing the size of the train set is correlated with both
better test collapse, and better generalization. However, we caution that this should not be seen as evidence
that test collapse is mechanistically related to generalization. First, because the test variance does not truly
“collapse”, it just reduces, as already discussed. And second, because this reduction in test variance is in
some sense necessary for any model with improved test error— since high test variance would produce noisy
classification decisions. Thus, the correlation of test variance and generalization in this experiment should not
be surprising. We are cautious to make the claim on the correlation of test set collapse and generalization,
and we think this needs more careful study. We think it’s better to leave this question in a separate work, as
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this work mainly focuses on the correlation of train set collapse and generalization and most previous works
on neural collapse focus on the train set.

4 Collapsed Features Transfer Worse

In the previous section, we showed that train-time collapse can be anti-correlated with generalization
performance, when measuring generalization on-distribution. We consider the standard transfer learning
setting where the pre-trained models are usually trained on massive datasets and fine-tune the model for
tasks that are short of data resources. Transfer learning is particularly useful under this situation and we
think it is a reasonable transfer learning setup. Now we investigate generalization on downstream tasks, to
understand the role of Neural Collapse in transfer-learning and representation learning.

4.1 Test Collapse implies Bad Representations

We first observe that, using our definition of test collapse, a model which has fully test-collapsed will have
representations that are bad for most downstream tasks. To see this, consider the following example. Suppose
we have a distribution D with ten types of images (as in CIFAR-10), but we group them into two superclasses,
such as “animals” and “objects.” We then train a classifier on this binary problem (e.g. CIFAR-10 images
with these binary labels). Let the feature map of the fully-trained model (that is, the limiting model as
t → ∞) be denoted h. If this model exhibits even weak test collapse, then there exist vectors {µ1, µ2} such
that the representations satisfy:

Pr
x∼D

[h(x) ∈ {µ1, µ2}] = 1. (1)

That is, the representations will by definition “collapse”: every input x ∼ D will map to exactly one of two
points µ1, µ2. This property is clearly undesirable for representation learning. For example, suppose we use
these representations for learning on a related task: the original 10-way classification problem. It is clear
that no classifier using the fixed representations (linear probing scheme) from h can achieve more than 20%
test accuracy on the original 10-way task: each group of 5 classes will collapse to a single point after passing
through h (by Equation (1)), and will become impossible to disambiguate among these 5 classes. Even if we
do not fix the pre-trained representations and fine-tune all the parameters (fine-tuning scheme), as shown in
our experimental results 4.2, fully collapsed features (less within-class variance) lead to worse down-stream
task performance. The results in Feng et al. (2021) show similar observations with ours and their proposed
method to enlarge within-class variance actually improves test performance. This shows that test collapse is
undesirable for even an extremely simple transfer learning task (where we transfer to the same distribution,
with finer label structure). In the following sections, we will demonstrate our experimental results.

4.2 Experiments

There are many relevant settings in transfer learning, especially in practice. For example, in practice, we often
pre-train on a “generic” task with massive datasets, and then fine-tune on a specific task with limited data.
This specific task may involve finer-grained labels than the generic task, which parallels our experimental
setup. We train a 3 hidden layer fully-connected networks with 1024 units per layer on MNIST, and a standard
Resnet18 on CIFAR-10. For pre-training, we use a subset of the train set and perform 2-class classification
(via super-classing). For fine-tuning, we use the weights pre-trained as initialization of the weights other than
the last classification layer, and do standard (10-class for MNIST, and 8-class for CIFAR-10) classification
with a much smaller held-out subset. We do not report results with linear probing, as it gives much worse
transfer-performance than fine-tuning scheme. See more details in Appendix B.

Here we show transfer learning results on MNIST and CIFAR-10. To see the correlation between neural
collapse (on test set) and generalization, we plot the degree of test set collapse during pre-training and test
performance in down-stream tasks. We report the average of 5 runs with different random seeds, and give
the error bars, as illustrated in Figure 5. We see that for both MNIST and CIFAR-10, the checkpoints with
more Test Collapse gives worse transfer-performance on downstream tasks. That is, in these settings more
Test Collapse actually leads to learning worse features. This demonstrates that neural collapse does not
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Figure 5: Collapsed Features Transfer Worse. We save different checkpoints during pre-training, and
use them to initialize the downstream models. We fine-tune all the parameters of the model. The x-axis
shows the StrongTestVariance of those checkpoints on the pre-training test set, and y-axis shows the test
accuracy after fine-tuning on downstream tasks. We find that stronger test collapse (i.e. lower variance) is
correlated with lower downstream test accuracy. Left: MNIST with a 3 hidden layer fully-connected network.
Right: CIFAR-10 with a standard Resnet18.

always lead to good representation learning— when the class number in pre-training is less than the number
of downstream tasks. collapse actually harms representation quality.

5 Conclusion

We show that Neural Collapse is primarily an optimization phenomenon, and does not always correlate with
better generalization. We propose more precise definitions— “strong” and “weak” Neural Collapse for both
the train set and the test set— which disentangle generalization and optimization behaviors. We believe
these more precise definitions aid in clarifying the literature around neural collapse, and will help guide
further study. By investigating the train and test collapse on various dataset and architectures, we show that
while train collapse reliably occurs in many settings, test collapse does not. Our theoretical formulations and
empirical observations suggest that while neural collapse continues to be an intriguing phenomenon and a
promising optimization research program, its relevance to generalization requires further study.
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A Experimental setup for Figure 3

Datasets. We consider image classification tasks with MNIST LeCun et al. (1998), FashionMNIST Xiao
et al. (2017), CIFAR-10 Krizhevsky et al. (2009), SVHN Netzer et al. (2011) and STL-10 datasets Coates
et al. (2011). SVHN was sub-sampled to N = 4600 samples per class as training set and N = 1500 samples
per class for test set. Other datasets are following the standard setup. No data argumentation was done and
we pre-process the images pixel-wise by subtracting the mean and dividing by the standard deviation.

Models. We train standard Resnet18 and DenseNet201 for MNIST, FashionMNIST, CIFAR10 and SVHN.
Resnet50 and DenseNet201 were trained for STL10. For all datasets we also train VGG11 with batch
normalization. All models were trained from scratch with open source code from torchvision models.

Optimization mechenism. We use stochastic gradient descent (SGD) with momentum 0.9 and minimize
the cross-entropy loss. All tasks were trained on a single GPU with batch size 128 and 80000 SGD iterations.
Initial learning rate is 0.1 for Resnet18 and Resnet50 and 0.01 for DenseNet201 and VGG architectures. We
decay the learning rate with cosine annealing scheme.

B Experimental setup for transfer learning

Super-class pre-training. For MNIST, we set all odd numbers as one class and all even numbers as the
other class. We train the model with the first N = 1000 training samples as train set and the first N = 200
test samples as test set. For CIFAR-10, we combine samples of ‘airplane, automobile, ship, truck’ as one
(objects) class and ‘bird, cat, frog, horse’ as the other (animals) class. The two classes are balanced and have
40000 training samples, and 8000 test samples. We use a subset with N = 20000 training samples (to keep
each class balanced, we randomly choose 2500 samples from each original class) and N = 4000 (500 samples
from each original class) test samples for pre-training. The learning rate for MNIST with fully-connected
networks is 0.001 while for CIFAR-10 with ResNet18 is 0.1. We decay learning rate with cosine annealing
scheme. The models were trained minimizing the cross-entropy loss using SGD with momentum 0.9 for
100000 SGD iterations.

Fine-tuning. We initialize the weights (other than the last classification layer) of the downstream task
with the pre-trained weights and fine-tune the whole network. For MNIST, we do the standard 10-class
classification, while we sample another 500 samples from training set for training and 100 samples from the
test set for inference. For CIFAR-10 we implement a 8-class classification (‘airplane, automobile, ship, truck,
bird, cat, frog, horse’) with another 10000 training samples as train set and another 2000 test samples as test
set. The optimization methodology is the same as in pre-training, other than the learning rate. We search
over 0.0005 to 0.25 in fine-tuning for both MNIST and CIFAR-10 and report the best test accuracy of all
swept learning rates.
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