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Abstract

Kernel Density Estimation (KDE) is a fundamental
problem with broad machine learning applications.
In this paper, we investigate the KDE problem un-
der Local Differential Privacy (LDP), a setting in
which users privatize data on their own devices
before sending them to an untrusted server for ana-
lytics. To strike a balance between ensuring local
privacy and preserving high-utility KDE results,
we adopt a relaxed definition of LDP based on met-
rics (mLDP), which is suitable when data points
are represented in a metric space and can be more
distinguishable as their distances increase. To the
best of our knowledge, approximate KDE under
mLDP has not been explored in the existing liter-
ature. We propose the MLDP-KDE framework,
which augments a locality-sensitive hashing-based
sketch method to provide mLDP and answer any
KDE query unbiasedly within an additive error
with high probability in sublinear time and space.
Extensive experimental results demonstrate that
the MLDP-KDE framework outperforms several
existing KDE methods under LDP and mLDP by
achieving significantly better trade-offs between
privacy and utility, with particularly remarkable
advantages on large, high-dimensional data.

1 INTRODUCTION

In today’s digital era, vast amounts of user-generated data
are collected daily by service providers for analysis. Such
data are often of a sensitive nature because analytical results
on them, even in the form of aggregated statistics or pre-
dictions, can leak substantial information about individual
users [Dwork and Roth, 2014, Hu et al., 2022]. Therefore,
while effectiveness and efficiency remain fundamental for
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data analysis tasks, privacy has also emerged as a crucial
concern.

In the realm of privacy-preserving data analysis, local dif-
ferential privacy (LDP) [Duchi et al., 2013] offers a theoret-
ically rigorous definition of privacy that allows an untrusted
server to collect and analyze user data privately with guar-
antees. In particular, LDP is the local model of differential
privacy (DP) [Dwork et al., 2006], the de facto standard of
privacy preservation, wherein users perturb data on their
own devices before sending them to the server. Informally,
a mechanism is locally differentially private if its output is
indistinguishable for any given pair of input values. This
guarantees a level of protection against information leakage
in any individual record measured by the privacy parameter
ε > 0. A smaller value of ε implies a lower level of distin-
guishability and more reliable privacy protection. Despite
providing provably strong privacy guarantees, LDP is mean-
while known to incur considerable losses in the quality of
analytical results [Cormode et al., 2018, Xiang et al., 2020].
Consequently, it has become a prominent challenge to accu-
rately analyze large-scale data sets while maintaining local
privacy [Cormode et al., 2018, Duchi et al., 2013, Kairouz
et al., 2016, Wang et al., 2019, Li et al., 2020].

In this paper, we study the kernel density estimation (KDE)
problem [Parzen, 1962], which is a cornerstone of numerous
machine learning applications, including clustering [Hinneb-
urg and Keim, 2003], anomaly detection [Hu et al., 2020],
and visualization [Chan et al., 2021, 2022], in a local privacy
setting. KDE is an unsupervised technique for estimating
a probability density function from data points, offering
insights into the underlying data distribution and patterns.
Given a data set D ⊆ Rm of n points in an m-dimensional
space and a kernel function k : Rm × Rm 7→ [0, 1], the
kernel density at a query point q ∈ Rm is defined as

KDED(q) =
1

n

∑
x∈D

k(x, q).

Exact computation of KDED(q), requiring O(nm) time
and space, is costly for large, high-dimensional datasets.
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Recent advances have focused on developing methods
for approximate KDE that are more efficient in terms of
time and memory [Muandet et al., 2017, Charikar and
Siminelakis, 2017, Siminelakis et al., 2019, Phillips and
Tai, 2018, Backurs et al., 2019, Coleman and Shrivastava,
2020, Lei et al., 2021]. Particularly noteworthy is the explo-
ration of the intrinsic connection between KDE and locality-
sensitive hashing (LSH) [Charikar and Siminelakis, 2017,
Siminelakis et al., 2019, Backurs et al., 2019]. This connec-
tion has led to several sketch-based methods [Coleman and
Shrivastava, 2020, Lei et al., 2021] to estimate the density
of LSH kernels within sublinear time and memory space
while also providing approximation guarantees. Moreover,
the mergeability of the sketches significantly improves the
applicability of sketch-based methods, especially in dis-
tributed and streaming models [Coleman and Shrivastava,
2020, Lei et al., 2021]. This enables the construction of a
sketch for the entire data setD by seamlessly combining the
sketches created from its disjoint subsets. Although sketch-
based KDE methods do not require storing original data,
they do not inherently guarantee differential privacy. This is
because an adversarial server can potentially recover users’
data from the hash values they send [Fernandes et al., 2021].
In addition, existing differentially private sketches for KDE
[Coleman and Shrivastava, 2021, Wagner et al., 2023] are
tailored for the centralized setting, where user data should
first be gathered by a trusted server, and then a sketch is
constructed with perturbation from the original data to an-
swer KDE queries privately. However, these methods are
not adaptable to the LDP setting, where user data must be
privatized prior to collection.

1.1 MAIN CONTRIBUTIONS

To fill this gap, we first attempt to approximate KDE subject
to LDP constraints. We observe that the conventional LDP
notion, which demands indistinguishability between any
pair of inputs, is too stringent for the KDE problem. It often
leads to prohibitive errors in the KDE query results, even
when a substantial privacy budget is allocated. To strike
a balance between maintaining an adequate level of local
privacy and preserving high-utility KDE results, we opt
for a more relaxed metric-based variant of LDP, known as
local dχ-privacy [Chatzikokolakis et al., 2013, Alvim et al.,
2018]. Specifically, metric-based LDP (mLDP) quantifies
the distinguishability between any two data points x,x′ in
relation to their distance dχ(x,x

′) within a given metric
space χ. A point x becomes more distinguishable from
another point x′ as dχ(x,x′) increases and vice versa. In
this way, mLDP allows the server to collect approximate
information from users while protecting the exact values
of individual data points. This characteristic of mLDP is
particularly compatible with the nature of KDE because
many kernel classes, including common LSH kernels, are
defined directly on metric distances. For example, the l1-

and l2-LSH kernels are derived from the Manhattan and
Euclidean distances [Coleman and Shrivastava, 2020], while
the angular kernel corresponds to the angular distance [Lei
et al., 2021]. Furthermore, mLDP has a distinct advantage
over traditional LDP in preserving data distribution, which
is essential for high-utility KDE results.

To provide mLDP, we design a general framework that aug-
ments sketch-based KDE methods by introducing the gen-
eralized randomized response (GRR) mechanism [Kairouz
et al., 2016] for users to perturb hash values before sending
them to the server. Building on this framework, we introduce
an unbiased estimator that enables the server to accurately
answer KDE queries using the sketch built by aggregating
the perturbed hash values from users. Our theoretical analy-
sis shows that the user-level mechanism for computing the
hash values provides mLDP with high probability. More-
over, any KDE result provided by the server, calculated in
sublinear time and space, has bounded additive errors, also
with high probability. To the best of our knowledge, this is
the first method for approximate KDE under mLDP. The
main contributions are summarized as follows.

• We formally define the problem of approximate kernel
density estimation (KDE) under metric-based local
differential privacy (mLDP). (Section 2)

• We propose a novel MLDP-KDE framework and ana-
lyze its privacy guarantee, approximation bound, and
complexity theoretically. (Section 3)

• We conduct extensive experiments on five real-world
and synthetic data sets to evaluate the performance of
the MLDP-KDE framework. The results confirm its
superiority over existing methods for KDE under LDP
and mLDP by achieving significantly better privacy-
utility trade-offs and demonstrating better scalability
on large, high-dimensional data sets. (Section 4)

1.2 RELATED WORK

Approximate KDE on High-Dimensional Data. The KDE
[Parzen, 1962] problem requires expensive O(nm) time and
space for exact computation. To mitigate this issue, sublinear
methods have emerged for approximating KDE on large,
high-dimensional data, which can be roughly categorized
into sampling- and sketch-based methods.

Sampling-based methods approximate the KDE over ran-
domly sampled subsets to compute the KDE on the entire
dataset. Although Muandet et al. [2017] and subsequent
work [Charikar and Siminelakis, 2017, Cortes and Scott,
2017, Siminelakis et al., 2019, Phillips and Tai, 2018, Back-
urs et al., 2019] have explored efficient sampling methods,
they are not suitable for the local model, as they require the
full data set for computation.

Sketch-based methods leverage LSH schemes to build a
succinct array of counters for a data set, and they approx-



imate the KDE by computing the hash values for a query
point and aggregating the corresponding counters. Coleman
and Shrivastava [2020] proposed Repeated Array-of-Counts
Estimator (RACE), a sketch-based method for KDE. Sub-
sequently, Lei et al. [2021] devised a more efficient KDE
sketch for the angular kernel. Due to their manageability,
they can be adapted to the local model. However, to the best
of our knowledge, they cannot provide any LDP guarantee.

Differentially private KDE (DP-KDE) has also gained
much attention. Some function release mechanisms [Hall
et al., 2013, Aldà and Rubinstein, 2017] can be adapted
for DP-KDE by regarding the kernel function as a gener-
alized linear function. However, they exhibit exponential
time complexity w.r.t. the dimensionality m, rendering them
impractical for high-dimensional data. Efforts have been
made to extend sampling- and sketch-based KDE methods
to satisfy DP [Coleman and Shrivastava, 2021, Wagner et al.,
2023], but they remain limited to a centralized DP setting
and cannot be extended to provide local privacy.

LSH under (Metric-based) LDP. Locally differentially
private LSH schemes also made some progress recently.
Aumüller et al. [2020] and Fernandes et al. [2021] inde-
pendently extended the LSH schemes for Jaccard [Broder
et al., 2000] and angular [Charikar, 2002] distances to sat-
isfy metric-based LDP similar to that used in this work. Hu
et al. [2023] introduced an LDP algorithm using LSH for
federated recommender systems. Our method differs from
them in the following four aspects: (1) we target the KDE
problem, whereas the aforementioned methods focus on
similarity search problems; (2) we address the KDE for Eu-
clidean and more general metric distances beyond Jaccard
and angular distances; (3) our mLDP definition, which will
be given in Section 2, is different from the privacy concept
used in [Aumüller et al., 2020, Hu et al., 2023]; (4) our
method offers theoretical utility guarantees, but the methods
in [Fernandes et al., 2021, Hu et al., 2023] do not.

Data Analytics under Metric-based LDP. The concept of
mLDP, initially proposed to protect location privacy and
termed as local dχ-privacy and geo-indistinguishability
[Andrés et al., 2013, Bordenabe et al., 2014, Zhao et al.,
2023], has broadened its scope. Though first applied to two-
dimensional Euclidean space, it has been expanded to pro-
vide privacy guarantees in higher dimensions or other metric
spaces. Gu et al. [2019] and Xiang et al. [2020] studied the
problem of range counting in multidimensional databases
under mLDP. Moreover, mLDP has been adopted for private
analyses of various types of unstructured data, including
texts [Feyisetan et al., 2020, Yue et al., 2021, Carvalho et al.,
2023, Du et al., 2023], images [Fan, 2019], and audio [Han
et al., 2020]. More recently, Yang et al. [2022] studied k-
means clustering under mLDP. Nevertheless, these methods
are not directly comparable to ours, and we do not notice
any prior work on approximate KDE under mLDP.

2 PRELIMINARIES

This section presents the background of kernel density es-
timation (KDE), locality-sensitive hashing (LSH) kernels,
and metric-based local differential privacy (mLDP), and
formally defines the problem studied in this work.

Kernel Density Estimation. We denote D as a data set of
n data points in an m-dimensional Euclidean space Rm. A
kernel is defined as a function k : Rm × Rm 7→ [0, 1] that
quantifies the similarity of two points in Rm. For any given
query point q ∈ Rm, the kernel density estimation (KDE)
for a data set D, represented as KDED : Rm 7→ [0, 1], is
defined by KDED(q) =

1
n

∑
x∈D k(x, q). Our goal is to

approximate KDED(q) for any q ∈ Rm. We aim to achieve
this through a randomized (α, η)-approximation as below.

Definition 1 ((α, η)-Approximate KDE). Let α, η ∈ (0, 1).
Given a data setD ⊂ Rm, a query point q ∈ Rm, and a ker-
nel function k(·, ·), K̂DED(q) is an (α, η)-approximation
of KDED(q) if Pr[|K̂DED(q)−KDED(q)| ≤ α] ≥ 1−η.

Moreover, the approximation bound to KDED(q), as out-
lined in Definition 1, should be achieved with space and
query time complexities that are sublinear w.r.t. n and poly-
nomial w.r.t. m. This requirement is critical for efficient
processing of large, high-dimensional data sets.

Locality-Sensitive Hashing Kernel. Let d : Rm × Rm 7→
R≥0 be a distance function to measure the dissimilarity be-
tween any two points in Rm. We call d(·, ·) a metric if it sat-
isfies the axioms of non-negativity, identity of indiscernibles,
symmetry, and triangle inequality. An LSH familyH w.r.t. a
metric distance d(·, ·) is a family of hash functions h :
Rm 7→ Z such that for any two points x,x′ ∈ Rm, the prob-
ability that h(x) = h(x′) monotonically decreases with
d(x,x′). Formally, Prh∈H[h(x) = h(x′)] = f(d(x,x′)),
where f(·) is a monotonically decreasing collision probabil-
ity function. In many LSH families, this collision probability
function forms a positive semidefinite radial kernel [Cole-
man and Shrivastava, 2020], which is referred to as an LSH
kernel, i.e., k(x,x′) = f(d(x,x′)). Notable examples of
LSH schemes, including the Signed Random Projection
(SRP) LSH for the angular distance [Charikar, 2002] and
the 1-stable or 2-stable LSH scheme for the Manhattan (l1-)
or Euclidean (l2-) distance [Datar et al., 2004, Huang et al.,
2017], all induce useful LSH kernels.

In this paper, we focus on the l2-LSH kernel for the Eu-
clidean distance.1 Specifically, a hash function in the 2-
stable LSH family [Datar et al., 2004] is defined as h(x) =
⌊a·x+b

ω ⌋, where a is a vector drawn from the standard m-
dimensional Gaussian distribution, b is a scalar drawn from
the uniform distribution U(0, ω), and ω > 0 is the band-
width. Let d(x,x′) = ∥x − x′∥2. The l2-LSH kernel is

1Note that our results can be extended to other LSH kernels,
as shown in Appendix D.



denoted by a complex function as

k(x,x′) = 1− 2Ψ

(
−ω

d(x,x′)

)
− 2d(x,x′)√

2πω

(
1− exp

(
−ω2

2d2(x,x′)

))
, (1)

where Ψ(·) is the cumulative distribution function (CDF) of
the standard Gaussian distribution N (0, 1).

Metric-based Local Differential Privacy. Let V and Y be
the input and output domains of a randomized mechanism
M. Given a parameter ε > 0, the mechanismM : V 7→ Y
satisfies ε-local differential privacy (ε-LDP) if for every
pair of inputs v, v′ ∈ V and measurable output Y ⊂ Y ,
Pr[M(v) ∈ Y ] ≤ eε · Pr[M(v′) ∈ Y ]. This ensures that
M cannot reliably distinguish between v and v′ for any
observed output Y , preventing an adversary from inferring
the original data. A lower value of ε indicates a stronger
level of privacy, as the probability that the output can be
used to infer its corresponding input is reduced.

The GRR [Kairouz et al., 2016] mechanism satisfies ε-
LDP for any finite and discrete domain. To facilitate un-
derstanding, let V,Y represent the input and output do-
mains of the GRR mechanism, both length-R arrays indexed
by [1, 2, · · · , R]. For any input value v ∈ V , the output
MGRR(v) ∈ Y is a random variable sampled as follows:

Pr[MGRR(v) = i] =

{
eε

eε+R−1 if i = v,
1

eε+R−1 otherwise.
(2)

We consider a metric-based variant of LDP (mLDP), also
known as local dχ-privacy [Chatzikokolakis et al., 2013,
Alvim et al., 2018], which relaxes the privacy requirements
by allowing two data points to become more distinguishable
as their distance increases. Formally, a randomized mecha-
nismM : V 7→ Y satisfies local dχ-privacy if for any pair
of inputs v, v′ and any measurable output Y ⊂ Y ,

Pr[M(v) ∈ Y ] ≤ edχ(v,v
′) · Pr[M(v′) ∈ Y ],

where dχ(·, ·) is a distance function in the metric space χ.

We aim to devise a randomized mechanism that provides
mLDP for KDE using LSH kernels, which takes a data
point in Rm as input and an integer array as output. As
an LSH scheme only approximately preserves the origi-
nal distance, we introduce a new metric distance, dχ(·, ·),
into the mLDP definition by allowing extra errors w.r.t. the
original d(·, ·), i.e., dχ(x,x′) = µ · d(x,x′) + δ, where
µ, δ > 0. It is evident that dχ(·, ·) is a metric as long as
d(·, ·) is a metric. Furthermore, given the probabilistic na-
ture of LSH schemes, our privacy guarantee is inherently
satisfied with a certain probability when LSH functions are
chosen randomly, which aligns with the concept of proba-
bilistic differential privacy [Machanavajjhala et al., 2008].
Formally,

Definition 2 ((dχ, η)-mLDP). For any µ, δ > 0 and η ∈
(0, 1), a randomized mechanismM : Rm 7→ ZL provides
(dχ, η)-mLDP iff any two inputs x,x′ ∈ Rm and output

y ∈ ZL, Pr
[

Pr[M(x)=y]
Pr[M(x′)=y] ≤ exp(dχ(x,x

′))
]
≥ 1− η.

On the basis of all the concepts above, we formally define
the problem studied in this paper.

Definition 3 (Approximate KDE under mLDP). For a data
set D ⊂ Rm and the l2-LSH kernel k(·, ·) with a bandwidth
ω > 0, build a sketch SD to offer an (α, η)-approximate
K̂DED(q) for any q ∈ Rm under (dχ, η)-mLDP.2

3 OUR ALGORITHM

This section introduces MLDP-KDE, an LSH-based frame-
work for KDE under mLDP, and analyzes it theoretically.

3.1 THE MLDP-KDE FRAMEWORK

Overview. Coleman and Shrivastava [2020] and Lei et al.
[2021] have developed LSH-based sketches for approximate
density estimation on LSH kernels. They are adaptable to a
local computing model, where users independently calcu-
late hash values and send them to a central server, which
then aggregates all of them into a comprehensive sketch for
KDE. However, this approach does not inherently provide
local differential privacy, as the server can potentially infer
individual user data from the transmitted hash values.

To address this and align LSH-based sketches with mLDP in
Definition 2, we show that it suffices to perturb hash values
using GRR [Kairouz et al., 2016] with a specific privacy
parameter on the user side before sending them to the server.
Remarkably, the sketch composed of perturbed hash values
can provide an unbiased KDE at any query point within a
bounded additive error with high probability.

Sketch Construction. Algorithm 1 depicts the MLDP-
KDE sketch construction procedure. Initially, the server
randomly selects L LSH functions from the 2-stable LSH
scheme [Datar et al., 2004] and sends the hash parameters
to users. Then a user with the data point x ∈ D generates L
integers by hashing x with L LSH functions, which are then
rehashed into the range of [1, R] using a scheme consistent
across the server and all users. The user independently runs
the GRR mechanism on each hash value using the same pa-
rameter γ determined by the input privacy budget ε, radius
r, confidence parameter η, and height and width L,R of
the sketch (see Theorem 1 and Corollary 1 in Section 3.2
for the determination of γ). After obtaining the perturbed
hash values Ĥ(x), the user sends them back to the server.
This procedure is called the LSH+GRR mechanism since

2The two η’s in the privacy and approximation bounds can take
different values but are kept the same in our analysis for simplicity.



Algorithm 1: MLDP-KDE Sketch Construction
Input: Data set D, bandwidth ω, privacy budget ε,

radius r, confidence parameter η, sketch height
L and width R

Output: Sketch SD
▷ Server side
for i = 1 to L do

Draw a vector of m random variables from N (0, 1)
as ai and a random variable from U(0, ω) as bi;

Send the LSH parameters A = [a1, · · · ,aL] and
B = [b1, · · · , bL] to each user;

▷ User side with a data point x ∈ D
on receiving A and B

Set γ ← ε/( 0.8rL(R−1)
ωR +

√
L ln(1/η)

2 ) or by
Corollary 1;

for i = 1 to L do
hi(x)← Rehash

(
⌊ai·x+bi

ω ⌋, R
)
;

ĥi(x)←MGRR(hi(x)) with parameter γ;

Report Ĥ(x) = [ĥ1(x), · · · , ĥL(x)] to the server;

▷ Server side
Initialize sketch SD ← 0L×R;
foreach x ∈ D do

for i = 1 to L do
SD[i, ĥi(x)]← SD[i, ĥi(x)] + 1;

return SD;

it applies the LSH computation [Coleman and Shrivastava,
2020] and the GRR mechanism [Kairouz et al., 2016] in a
sequential manner.

When receiving the perturbed hash values from all users, the
server builds the sketch SD similarly to that of the RACE
sketch [Coleman and Shrivastava, 2020]. It initializes an
array L×R of all zeros. For each sequence Ĥ(x) of the hash
values for x ∈ D, it increments the counter SD[i, ĥi(x)] for
each i ∈ {1, · · · , L}. After processing all data points in D,
it returns the sketch SD.

KDE Query Processing. Algorithm 2 presents how the
server processes a KDE query using the sketch SD. Upon
receiving a query point q ∈ Rm, the server first calculates
a sequence of hash values h1(q), · · · , hL(q) employing
an identical sequence of L hash functions and rehashing
scheme outlined in Algorithm 1. Then, we provide an ap-
proximation K̂DED(q) of KDED(q) through the L corre-
sponding counters SD[1, h1(q)], · · · ,SD[L, hL(q)]. Subse-
quently, we analyze how the output distribution is affected
by the rehashing scheme and the GRR mechanism to de-
rive an unbiased estimator of ŜD[i,hi(q)]

n from SD[i, hi(q)]
for each i ∈ {1, · · · , L} (see Lemma 3 in Section 3.2 for
how the estimator is attained). This process produces L

Algorithm 2: MLDP-KDE Query Processing
Input: Sketch SD, query point q, the same hash and

privacy parameters as Algorithm 1, group
parameter L′

Output: Approximation K̂DED(q) of KDED(q)

for i = 1 to L do
hi(q)← Rehash

(
⌊ai·q+bi

ω ⌋, R
)
;

K̂ ← 0L′
;

for l = 1 to L′ do
for j = 1 to L

L′ do
i← (l − 1)L′ + j;
ŜD[i, hi(q)]← eγ+R−1

(eγ−1)(R−1) ·
(SD[i, hi(q)] ·R− n);
K̂[l]← K̂[l] + L′

nL · ŜD[i, hi(q)];

return K̂DED(q)← Median(K̂[1], · · · , K̂[L′]);

unbiased estimators for KDED(q) from SD. Finally, these
estimators are divided into L′ groups, each containing L/L′

estimators. For each group, we compute the mean value
K̂[l] for l ∈ {1, · · · , L′} and return the median value as an
approximation K̂DED(q) for KDED(q).

3.2 THEORETICAL ANALYSIS

Next, we analyze the privacy guarantee, approximation
bound, and complexity of MLDP-KDE. Note that all proofs
are omitted from the main paper due to space limitations
and are provided in Appendix B.

Privacy Analysis. We start by defining the distance dhash :
[1, R]L× [1, R]L 7→ [0, L] for two sequences of hash values
as the count of different positions. Obviously, dhash(·, ·) is
metric because it is nonnegative, symmetric, and satisfies
the triangle inequality. The following lemma shows that the
GRR mechanism on any sequence of hash values provides
mLDP on dhash(·, ·).

Lemma 1. The GRR mechanism MGRR with a privacy
parameter γ > 0 provides (γdhash, 0)-mLDP on a sequence
of L integers in the range of [1, R].

For each x ∈ D, the LSH+GRR mechanism to produce
Ĥ(x) in Algorithm 1 is also (γdhash, 0)-mLDP because
H(x) must be an input forMGRR in Lemma 1. Formally,
for any x,x′ ∈ Rm and y ∈ [1, R]L,

Lx,x′ = ln
( Pr[Ĥ(x)=y]

Pr[Ĥ(x′)=y]

)
≤ γdhash

(
H(x), H(x′)

)
. (3)

Then, we define a random variable X for the distribution of
dhash(H(x), H(x′)) over all possible LSH functions in the
2-stable LSH scheme, and show that X is binomial.



Lemma 2. Define a random variable X = dhash(H(x),
H(x′)), where the L LSH functions are drawn indepen-
dently from the 2-stable LSH scheme. Then, X follows a
binomial distribution B(L, R−1

R · (1− k(x,x′))).

According to Eq. 3 and Lemma 2, the LSH+GRR mecha-
nism is shown to provide mLDP by applying the Chernoff
bound [Chernoff, 1952].

Theorem 1. The LSH+GRR mechanism in Algorithm 1
provides (dχ, η)-mLDP, where dχ(x, x

′) = γcL(R−1)
ωR ·

d(x,x′) + γ
√

L ln(1/η)
2 for any c ≥ 0.8 and η ∈ (0, 1).

Based on Theorem 1, we indicate how to decide the value
of γ in Algorithm 1 w.r.t. a privacy budget ε > 0. Since the
level of privacy in mLDP varies with d(x,x′), we should
calibrate it with a radius r > 0. That is, we require the
privacy level to be at most ε for any d(x,x′) ≤ r. As
such, it guarantees that a point x is ε-indistinguishable from
any point x′ within a ball of radius r centered at x. To
achieve this, we need to ensure that dχ(x,x′) ≤ ε when
d(x,x′) ≤ r. According to Theorem 1, the value of γ in
Algorithm 1 should be

γ ≤ ε/
( 0.8rL(R−1)

ωR +
√

L ln(1/η)
2

)
. (4)

By applying the Chernoff bound with the Kullback–Leibler
(KL) divergence, we obtain another mLDP guarantee for
the LSH+GRR mechanism.

Corollary 1. Let p = R−1
R · (1 − k(x,x′)). For any 0 <

s < 1 − p, the LSH+GRR mechanism provides (dχ, η)-
mLDP, where dχ(x,x′) = γL

( c(R−1)
ωR · d(x,x′) + s

)
, η =

exp
(
− L ·DKL(p+ s ∥ p)

)
, and c ≥ 0.8.

Fixing dχ(x,x
′) = r, we can solve the two equations for

dχ(x,x
′) and η in Corollary 1 using Newton’s method to

approximate the values of s and γ. In practice, we compute
the two γ’s according to Eq. 4 and Corollary 1 and use the
larger one in Algorithm 1.

Finally, we present a worst-case privacy guarantee of the
LSH+GRR mechanism that does not depend on the random-
ness of the 2-stable LSH scheme.

Corollary 2. The LSH+GRR mechanism provides γL-LDP.

Approximation Analysis. According to [Coleman and Shri-
vastava, 2020], each initial counter provided by the sketch
is an unbiased estimator for LSH kernels. However, this
unbiasedness is no longer retained after rehashing and per-
forming the GRR mechanism since the data distribution is
changed. To provide an unbiased KDE, we need to analyze
how the rehashing scheme and the GRR mechanism affect
the collision probability of a query point q and any data
point x, as well as the distribution of each counter, and try

to recover the original estimator, as outlined in Algorithm 2.
Next, we show that the estimator is unbiased and provides
an upper bound of its variance.

Lemma 3. For the estimator ŜD[i, hi(q)] in Algorithm 2,
it holds that E

[
ŜD[i, hi(q)]

]
= nKDED(q) and

Var
[
ŜD[i, hi(q)]

]
≤

(
eγ+R−1
eγ−1

)2( R
R−1

)2(√
eγ

eγ+R−1 −
1
RK̃(q) + 1√

R

)2
, (5)

where K̃(q) =
∑

x∈D
√
k(x, q).

By applying Chebyshev’s inequality and the Chernoff bound
to the output K̂DED(q) of Algorithm 2, which uses a com-
mon median-of-means technique for estimation, we obtain
the following theorem for its approximation bound.

Theorem 2. For the sketch SD constructed by Algorithm 1
with L = O

(
( e

γ+R−1
eγ−1 )2 · log(1/η)α2

)
independent rows, the

output K̂DED(q) of Algorithm 2 is guaranteed to be an
(α, η)-approximation of KDED(q).

We note that the restrictions on the values of γ and L in
Eq. 4 for the privacy guarantee and in Theorem 2 for the
approximation bound may not be satisfiable at the same
time when the privacy parameter ε is too small. This is
because Eq. 4 restricts the upper bound of γ, but, in the
meantime, Theorem 2 limits its lower bound. Consequently,
the required ranges of γ by Eq. 4 and Theorem 2 may not
overlap each other. To eliminate the circular dependence on
γ and L and thus reconcile Eq. 4 and Theorem 2, we further
establish the following approximation bound.

Theorem 3. For the privacy parameter ε = O( log(1/η)α2 )

and the sketch parameters L = O( log(1/η)α2 ) and R = O(1),
the output K̂DED(q) of Algorithm 2 is guaranteed to be an
(α, η)-approximation of KDED(q).

Theorem 3 implies that the approximation bound of MLDP-
KDE might not hold when ε = o( log(1/η)α2 ). In practice,
we adopt a privacy-first strategy that determines the values
of γ and L based on Eq. 4 or Corollary 1 to ensure the
satisfaction of mLDP, albeit this may result in a smaller L
than required by the approximation bound in Theorem 2.
This strategy achieves reasonable empirical performance, as
the practical number of rows needed to estimate KDEs with
small errors is much lower than the theoretical upper bound
due to the conservatism of probability inequalities.

Complexity Analysis. In Algorithm 1, the server generates
LSH parameters in O(mL) time. Each user then computes
and perturbs the hash values in O(mL) time, followed by
the server aggregating these sequences to build SD in O(nL)
time. Therefore, the server and each user take O

(
(m+n)L

)



(or simply O(nL) as n ≫ m) and O(mL) time to build
SD, respectively. The total communication cost is O(mnL).
The spaces used to run Algorithm 1 are O(nL) and O(mL),
and the size of SD is O(LR).

On receiving a query q, Algorithm 2 spends O(mL) time
to compute K̂DED(q). The sketch size and query time in
the MLDP-KDE framework are both sublinear w.r.t. n be-
cause L and R are independent of n. For comparison, a non-
sketch-based KDE method with LDP or mLDP takes shorter
O(n) and O(m) pre-processing times on the server and user
sides and has a lower communication cost of O(nm) in the
local computation model. However, the time and space com-
plexities of processing each query without the sketch both
increase significantly to O(nm).

4 EXPERIMENTS

This section presents the empirical evaluation of MLDP-
KDE on real-world and synthetic data sets.

4.1 EXPERIMENTAL SETUP

Data Sets. We employ the following four publicly available
real-world data sets and one synthetic data set for perfor-
mance evaluation.

• CodRNA [Uzilov et al., 2006] is a collection of RNA
genomic sequences.

• CovType [Blackard, 1998] comprises different car-
tographic features of areas located in the Roosevelt
National Forest.

• RCV1 [Lewis et al., 2004] is an archive of catego-
rized newswire stories from Reuters. We embed all the
documents into a 100-dimensional Euclidean space.

• Yelp3 includes reviews from users on Yelp. We rep-
resent users as 100-dimensional vectors, which are
derived from a user-business rating matrix using NMF.

• SYN, created by make_blobs in the scikit-learn li-
brary,4 comprises isotropic Gaussian blobs. We spec-
ify 10 centroids, each randomly drawn in the range
[−2, 2]m, and the standard deviation of each blob to
0.01. We vary the number of data points (n from 104

to 106) and the dimensions (m from 5 to 50) to test
scalability. By default, we set n = 105 and m = 50.

These data sets are commonly used to benchmark (non-
private or private) KDE and clustering methods in the ex-
isting literature [Coleman and Shrivastava, 2021, Wagner
et al., 2023]. We also note that they are not tailored to local
privacy settings and that specialized data sets for KDE with

3https://www.yelp.com/dataset
4https://scikit-learn.org/

local privacy are still absent. Table 1 presents the statistics
of these data sets where ω is the bandwidth of the l2-LSH
kernel, and r is the calibration radius in the privacy calcula-
tion. According to [Coleman and Shrivastava, 2020, Wagner
et al., 2023], we set ω based on the average distance d be-
tween two points in the data set, which is adjusted so that
the average kernel density is around 0.1. Following the com-
mon practice of mLDP [Fernandes et al., 2021], the value of
r is determined by computing the average distance d̃ from a
point to its 100-th nearest neighbor and rounding it to two
significant figures. We also provide additional experiments
to evaluate how the value of r affects the performance of
MLDP-KDE in Appendix C.1.

Table 1: Statistics of data sets used in the experiments.

Data Set n m ω r

CodRNA 488, 565 8 0.25 0.1
CovType 581, 012 55 0.5 0.1

RCV1 804, 414 100 0.25 0.2
Yelp 1, 986, 079 100 0.5 0.0025
SYN 104–106 5–50

√
m 0.015 ·

√
m

Algorithms and Implementations. We compare MLDP-
KDE with the following five algorithms: RACE [Coleman
and Shrivastava, 2020] is a non-private sketch method for
the KDE problem; DM [Duchi et al., 2013], PM [Wang
et al., 2019], and SW [Li et al., 2020] are LDP methods
for numerical data publication and distribution estimation;
GI [Andrés et al., 2013, Alvim et al., 2018] is a method
to preserve location privacy in two-dimensional Euclidean
space, which is extended to support higher-dimensional Eu-
clidean distance by Fernandes et al. [2021]. Since SW only
supports one-dimensional data, we extend it to multidimen-
sional data by independently perturbing each dimension of
a point using a privacy budget of ε

m . For DM, PM, SW, and
GI, which are not customized for KDE, we employ the fol-
lowing adaptation: Each client perturbs their data points and
sends them to the server; the server computes the KDE for
a query point using these perturbed points. We refer to the
above methods with this adapted procedure as DM-KDE,
PM-KDE, SW-KDE, and GI-KDE, respectively. DP-
KDE methods [Aldà and Rubinstein, 2017, Coleman and
Shrivastava, 2021, Wagner et al., 2023] are not compared
since they are limited to centralized settings.

All these algorithms were implemented in Python 3. All
methods were conducted on a desktop with an Intel® Core™

i7-10700K CPU @3.0GHz and 32GB RAM. Each method
was run on a single thread in each experiment. Our code and
data are publicly available at https://github.com/
yz2022/mldp-kde.

Performance Measures. For each data set, we randomly
choose 100 points to form the query set Q and use the rest
as the data set D. We evaluate the KDE quality of each
method by the mean squared error (MSE) across all queries

https://www.yelp.com/dataset
https://scikit-learn.org/
https://github.com/yz2022/mldp-kde
https://github.com/yz2022/mldp-kde
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Figure 1: MSEs for KDE under LDP/mLDP with varying privacy budget ε ∈ {1, 2.5, 5, · · · , 20}.
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Figure 2: MSEs of RACE and MLDP-KDE for privacy budgets ε = 1, 5, 20 with varying sketch size L×R.

inQ, that is, MSE = 1
|Q|

∑
q∈Q(K̂DED(q)−KDED(q))

2.
Given the stochastic nature of these methods, we run each
experiment ten times with distinct (yet fixed) seeds and
report the average result for each measure.

Parameter Settings. The values of various parameters were
set as follows: (1) privacy budget ε ∈ {1, 2.5, 5, · · · , 20};
(2) sketch height L from 1 to 1, 000 and width R from
2 to 100; (3) bandwidth ω and radius r on each data set
according to Table 1; (4) confidence parameter η = 0.1 and
group parameter L′ = 1. To decide the default values of L
and R, we run MLDP-KDE with different sketch sizes and
use the ones with the lowest MSE for each privacy budget ε.

4.2 EXPERIMENTAL RESULTS

Utility vs. Privacy. We evaluate the performance of different
algorithms in terms of the balance between the level of
privacy and the quality of KDE. Figure 1 shows the MSE of
the KDE query results returned by each algorithm, with the
privacy budget ε ranging from 1 to 20. For MLDP-KDE,
we report the lowest MSE across different sketch sizes for
each ε value on every data set. For RACE, which does not
involve data perturbation, we fix L = 1, 000 and R = 100
and represent its result as a horizontal line in each plot. The
difference between MLDP-KDE and RACE highlights the
impact of the LSH+GRR mechanism on the quality of KDE.

In general, we observe that all LDP and mLDP algorithms
exhibit a reduction in MSEs as the privacy budget ε in-
creases, indicating more accurate KDEs. MLDP-KDE sig-
nificantly and consistently outperforms all baselines in terms
of privacy-utility trade-offs. A key factor is that MLDP-
KDE provides LDP for each point w.r.t. other points within

a distance of r, which better preserves the original data
distribution and thus produces approximate KDE results
of higher quality than the LDP baselines that should pro-
vide much more stringent LDP guarantee w.r.t. all possible
points. The fact that MLDP-KDE significantly outperforms
GI-KDE, which provides the same mLDP guarantee, indi-
cates that adding noise to the hash values rather than the
original data greatly reduces the privacy budget required to
achieve the same level of utility. We find that the KDE qual-
ity of GI-KDE is highly dependent on the dimensionality
m. This limitation comes from the exponential growth of
the expected perturbation distance with increasing m, which
makes the perturbed point further from the original point
and thus spoils the data distribution. For higher-dimensional
data sets such as RCV1 and Yelp, the MSEs of GI-KDE
decrease more slowly, eventually resulting in estimates that
are no better than those of the LDP methods.

Utility vs. Sketch Size. We test the effect of the sketch
size (L × R) on the KDE quality of RACE and MLDP-
KDE, sampling 1, 000 data points per data set for sketch
construction and performing the same 100 KDE queries as
in previous experiments. Figure 2 illustrates the MSEs of
RACE and MLDP-KDE with privacy budgets ε = 1, 5, 20
with sketch sizes L × R from 101 to 104 (to 106 on the
Yelp and SYN data sets). As L × R increases, the MSE
decreases significantly for both MLDP-KDE and RACE
across all data sets. However, RACE and MLDP-KDE
also show some differences: For RACE, the MSE finally
stabilizes at a low level with increasing sketch sizes; but
for MLDP-KDE, the MSE rebounds when the sketch size
is too large, as the variances from GRR and the correction
process outweigh the benefits of using more estimators and
wider hash ranges. Furthermore, with small sketch sizes,
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Figure 3: MSEs for KDE on the SYN data set with varying data set size n from 104 to 106 and dimension m from 5 to 50.

the MSEs of both algorithms are comparable due to the
correction process during KDE query processing. Finally,
for MLDP-KDE, using a larger sketch size leads to more
benefits when the privacy budget is higher.

Scalability Test. We test the scalability of all methods on the
SYN data sets, illustrating the MSE results for privacy bud-
gets ε = 1, 5, 20 in Figure 3. The MSEs of all methods are
stable regardless of n, indicating that the KDE quality is in-
sensitive to the size of the data set. This confirms the results
of Lemma 3 and Theorem 2, which indicate that the variance
of MLDP-KDE is independent of n. With varying dimen-
sionality m, MLDP-KDE exhibits slightly higher MSEs
than RACE but outperforms other baselines in all cases
and remains stable of different dimensions, indicating that
MLDP-KDE can scale well to large-scale high-dimensional
data sets. GI-KDE and PM-KDE can achieve a relatively
low MSE for very small m but cannot provide reasonable
KDE results when m > 5.

Extended experimental results are omitted in the main paper
due to space limits and will be provided in Appendix C.

5 CONCLUSION

In this paper, we address the challenge of answering KDE
queries under LDP, where users privatize their data locally
before sending them to an untrusted server. To ensure local
privacy while preserving high-utility KDE results, we adopt
a relaxed definition of LDP based on metrics called mLDP.
Then, we propose a novel MLDP-KDE framework, which
augments an LSH-based sketch method to provide unbiased
estimations to KDE queries within a bounded additive error
in sublinear time and space with high probability subject to
mLDP. Experimental results on five data sets demonstrate
the superiority of MLDP-KDE over existing KDE methods
under both LDP and mLDP, especially showing significant
advantages on large, high-dimensional data.

A current limitation of MLDP-KDE is that it tends to yield
less promising KDE results in the high privacy regime, as
indicated in Theorem 3 that MLDP-KDE might not achieve
any approximation bound when ε = o( log(1/η)α2 ) and evi-
denced in Section 4 that MLDP-KDE provides KDEs with
high errors when ε ≤ 1. For future work, we intend to
find better privacy and approximation bounds to improve its
performance under tighter privacy budgets.
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A NOTATION TABLE

We summarize the symbols frequently used throughout the main paper in Table 2.

Table 2: List of frequently used symbols.

Symbol Description
D, x Data set in Rm and data point in D
n, m Size and dimensionality of D
d(·, ·) (Metric) distance function
H, h(·) LSH scheme for d(·, ·) and LSH function drawn fromH

ω Bandwidth parameter in (l2-LSH function) h(·)
k(·, ·) LSH kernel function defined onH

KDED(q) Kernel density of D at query point q
K̂DED(q) Approximation of KDED(q)

ε Privacy budget
dχ(·, ·) Metric distance function for mLDP derived from d(·, ·)

α Error parameter in approximation bound
η Confidence parameter in approximation and privacy bounds
SD Sketch built on D for KDE queries
L, R Number & range of LSH functions (height & width of SD)
H, Ĥ Sequences of hash values before and after perturbation

B MISSING PROOFS

We provide the proofs of theorems and lemmas that are missing from the main paper.

B.1 PROOF OF LEMMA 1

Proof. Let H = [h1, · · · , hL], H ′ = [h′
1, · · · , h′

L] ∈ [1, R]L be two length-L integer sequences and y = [y1, · · · , yL] ∈
[1, R]L be any possible output sequence ofMGRR. We define a function ϕ(h, h′) to indicate whether two integers in the
same position of H and H ′ are equal, that is,

ϕ(h, h′) =

{
1 if h ̸= h′,

0 otherwise.

Based on the procedure of the GRR mechanism, we have

Pr[MGRR(H) = y] =

L∏
i=1

p1−ϕ(yi,hi)qϕ(yi,hi),

Pr[MGRR(H
′) = y] =

L∏
i=1

p1−ϕ(yi,h
′
i)qϕ(yi,h

′
i),

where p = eγ

eγ+R−1 and q = 1
eγ+R−1 .

Consequently, we have

ln
( Pr[MGRR(H)=y]
Pr[MGRR(H′)=y]

)
= ln

( L∏
i=1

(pq )
ϕ(yi,h

′
i)−ϕ(yi,hi)

)
≤ ln

( L∏
i=1

eγ·ϕ(hi,h
′
i)
)
= ln(eγdhash(H,H′)) = γdhash(H,H ′)

because ϕ(yi, h
′
i) − ϕ(yi, hi) ≤ ϕ(hi, h

′
i) for any i ∈ {1, · · · , L} and dhash(H,H ′) =

∑L
i=1 ϕ(hi, h

′
i). Therefore, we

prove thatMGRR on any integer sequence of length L and range R provides (γdhash, 0)-mLDP.



B.2 PROOF OF LEMMA 2

Proof. According to [Datar et al., 2004], the collision probability of x and x′ under the 2-stable LSH scheme is k(x,x′) in
Eq. 1. After rehashing the original hash values randomly in the range [1, R], the probability that two non-colliding hash
values collide is 1

R . Meanwhile, any colliding hash values must still collide after rehashing. Consequently, the collision
probability of h(x) and h(x′) after rehashing is k(x,x′) + 1

R (1 − k(x,x′)). For the hash values h(x) and h(x′) after
rehashing, we have Prh∼H[h(x) ̸= h(x′)] = R−1

R · (1−k(x,x′)). That is, a random variable that indicates if h(x) ̸= h(x′)

follows a Bernoulli distribution with success probability R−1
R · (1− k(x,x′)). Based on the definition of dhash(·, ·) and the

fact that the LSH functions are independent of each other, X follows a binomial distribution B
(
L, R−1

R ·(1−k(x,x′))
)
.

B.3 PROOF OF THEOREM 1

Proposition 1 (Chernoff Bound [Chernoff, 1952]). Let X be a random variable drawn from a binomial distribution
B(L, p). Then, for all 0 < s < 1 − p, we have Pr [X ≥ L(p+ s)] ≤ exp

(
− L ·DKL(p + s ∥ p)

)
≤ exp(−2Ls2),

where DKL(p+ s ∥ p) = (p+ s) ln p+s
p + (1− p− s) ln 1−p−s

1−p .

Proof. Since X ∼ B
(
L, R−1

R · (1− k(x,x′))
)

by Lemma 2, we have the following inequality from Proposition 1:

Pr
[
X ≥ L

(
R−1
R · (1− k(x,x′)) + s

)]
≤ exp(−2Ls2). (6)

By setting s =
√

ln(1/η)
2L in Eq. 6 for any η ∈ (0, 1), we have Pr[γX ≥ γL(R−1

R · (1− k(x,x′)) +
√

ln(1/η)
2L )] ≤ η. Since

1− k(x,x′) ≤ cd(x,x′)
ω for any c ≥ 0.8, we further have

Pr
[
γX ≥ γL

( c(R−1)d(x,x′)
ωR +

√
ln(1/η)

2L

)]
≤ η. (7)

Since Lx,x′ ≤ γX as shown in Eq. 3, we obtain that

Pr
[
Lx,x′ ≥ γcL(R−1)d(x,x′)

ωR + γ
√

L ln(1/η)
2

]
≤ η. (8)

Based on Definition 2, we prove that the LSH+GRR mechanism provides (dχ, η)-mLDP, where dχ(x,x
′) = γcL(R−1)

ωR ·

d(x,x′) + γ
√

L ln(1/η)
2 , for any c ≥ 0.8 and η ∈ (0, 1).

B.4 PROOF OF COROLLARY 1

Proof. When applying the Chernoff bound with the Kullback–Leibler divergence in Proposition 1 to X , we have

Pr[X ≥ L(p+ s)] ≤ exp
(
− L ·DKL(p+ s ∥ p)

)
. (9)

By applying the same procedure as for the proof of Theorem 1 on Eq. 9, we obtain

Pr[Lx,x′ ≥ γL( c(R−1)d(x,x′)
ωR + s)] ≤ exp(−L ·DKL(p+ s ∥ p))

and conclude the proof.

B.5 PROOF OF COROLLARY 2

Proof. For any x,x′ ∈ Rd, we have dhash(H(x), H(x′)) ≤ L. According to [Chatzikokolakis et al., 2013], if a mechanism
provides (γdhash, 0)-mLDP, then it will also provide γmaxH,H′ dhash(H,H ′)-LDP. Therefore, the LSH+GRR mechanism
satisfies γL-LDP, which equals the total privacy budget of using the GRR mechanism with a privacy parameter γ sequentially
L times.



B.6 PROOF OF LEMMA 3

Proof. Due to the relationships between the 2-stable LSH scheme and the l2-LSH kernel, the original collision probability
p0(x, q) of x and q before rehashing is exactly k(x, q). As already analyzed in the proof of Lemma 2, the collision
probability p1(x, q) of x and q after rehashing becomes

p1(x, q) = k(x, q) + 1
R (1− k(x, q)). (10)

Next, if x and q collide, their collision probability after performing the GRR mechanism will be eγ

eγ+R−1 ; otherwise, their
probability of collision after performing the GRR mechanism will be 1

eγ+R−1 . Therefore, the collision probability p2(x, q)
of x and q after performing the GRR mechanism is

p2(x, q) =
p1(x,q)·eγ
eγ+R−1 + 1−p1(x,q)

eγ+R−1 . (11)

Based on Eqs. 10 and 11, we have

k(x, q) =
( (eγ+R−1)·p2(x,q)−1

eγ−1 − 1
R

)
· R
R−1

= (eγ+R−1)(R·p2(x,q)−1)
(eγ−1)(R−1) .

(12)

According to the sketch construction procedure, it is obvious that E[SD[i, hi(q)]] =
∑

x∈D p2(x, q). By replacing p2(x, q)
in Eq. 12 with SD[i, hi(q)], summing up the results for all x ∈ D, and considering Algorithm 2, we have

E
[
ŜD[i, hi(q)]

]
=

∑
x∈D k(x, q) = nKDED(q). (13)

According to Algorithm 2, we have

Var
[
ŜD[i, hi(q)]

]
=

( (eγ+R−1)R
(eγ−1)(R−1)

)2 ·Var[SD[i, hi(q)]
]
. (14)

To compute Var
[
SD[i, hi(q)]

]
, we define a random variable I(x, q) to indicate if ĥi(x) = hi(q), that is,

I(x, q) =

{
1 if ĥi(x) = hi(q),

0 otherwise.
(15)

We can see that I(x, q) is a Bernoulli variable with success probability p2(x, q) and SD[i, hi(q)] =
∑

x∈D I(x, q). Since
Var[X] = E[X2]− E[X]2 for any random variable X ,

Var
[
SD[i, hi(q)]

]
≤ E

[
(
∑

x∈D I(x, q))2
]
. (16)

Then, we acquire that
E
[
(
∑

x∈D I(x, q))2
]
=

∑
x∈D

∑
x′∈D E

[
I(x, q)I(x′, q)

]
≤

∑
x∈D

∑
x′∈D

√
E
[
I2(x, q)

]
E
[
I2(x′, q)

]
=

∑
x∈D

∑
x′∈D

√
E
[
I(x, q)

]
E
[
I(x′, q)

]
=

(∑
x∈D

√
p2(x, q)

)2
,

(17)

where the inequality follows from the Cauchy-Schwarz inequality. By combining Eqs. 16 and 17, we have

Var
[
SD[i, hi(q)]

]
≤

(∑
x∈D

√
p2(x, q)

)2
. (18)

According to Eq. 12, we have
p2(x, q) =

(
eγ

eγ+R−1 −
1
R

)
· k(x, q) + 1

R . (19)

By taking Eq. 19 into Eq. 18 and letting t1 = eγ

eγ+R−1 −
1
R and t2 = 1

R , we further obtain that

Var
[
SD[i, hi(q)]

]
≤

(∑
x∈D

√
t1 · k(x, q) + t2

)2
≤

(√
t1 · K̃(q) +

√
t2
)2
,

(20)

where K̃(q) =
∑

x∈D
√
k(x, q). By combining Eq. 20 with Eq. 14, we finally acquire Eq. 5 and conclude the proof.



B.7 PROOF OF THEOREM 2

Proof. The median-of-mean technique has been widely used to estimate the expected value of a random variable X within
an additive error α > 0 with a failure probability of at most η ∈ (0, 1). By applying Chebyshev’s inequality and the Chernoff
bound, we find that when L = O

(Var[X]·log(1/η)
α2

)
samples are drawn from the distribution of X , the median-of-mean

estimator X̂ will satisfy that Pr
[
|X̂ − E[X]| ≤ α

]
≥ 1− η. Based on Lemma 3, we find that the expected value of each

1
n · ŜD[i, hi(q)] is KDED(q) and its variance is bounded. In addition, since 0 <

√
eγ

eγ+R−1 −
1
R < 1, 0 ≤ K̃(q) ≤ n, and

1√
R

< 1 (for R > 1), the variance of 1
n · ŜD[i, hi(q)] can be simplified as

Var[ 1n · ŜD[i, hi(q)]] ≤ ( (eγ+R−1)R
(eγ−1)(R−1) )

2 · (n+1
n )2.

Then, since ( R
R−1 )

2 ≤ 4 and (n+1
n )2 ≤ 4, we have

Var[ 1n · ŜD[i, hi(q)]] = O(( e
γ+R−1
eγ−1 )2).

Therefore, we conclude that the median of means of L = O(( e
γ+R−1
eγ−1 )2 · log(1/η)α2 ) independent estimators in the form of

1
n · ŜD[i, hi(q)] is an (α, η)-approximation of KDED(q).

B.8 PROOF OF THEOREM 3

Proof. First, by simplifying Eq. 4, we get γ = ε

O(L+
√

L log(1/η))
, since r and ω are data-dependent constants and 0.5 ≤

R−1
R < 1. Taking ε = O( log(1/η)α2 ) and L = O( log(1/η)α2 ) into the above equation, we have

γ =
O( log(1/η)α2 )

O( log(1/η)α2 ) +O( log(1/η)α )
=

O( log(1/η)α2 )

O( log(1/η)α2 )
= O(1) (21)

Given that γ = O(1) and R = O(1), we can also simplify L = O( log(1/η)α2 ) in Theorem 2. This means that Eq. 4 and
Theorem 2 hold at the same time when ε = O( log(1/η)α2 ), L = O( log(1/η)α2 ), and R = O(1) and the circular dependence on γ
and L is resolved.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 EFFECT OF PRIVACY RADIUS ON MLDP-KDE

We tested two schemes to decide the value of r in the existing literature on mLDP: (1) setting r to the maximum of the x-th
percentile distance of a point from its neighbors for some x ∈ (0, 100] [Chatzikokolakis et al., 2015] and (2) setting r to the
average distance from a point to its t-nearest neighbors for some t ∈ Z+ [Fernandes et al., 2021].

Initially, we set r as the maximum of the 10th percentile distance between a point and its neighbors. Unfortunately, as
presented in Table 3, such settings of r resulted in sub-par KDE quality on most data sets, which is attributable to their
highly skewed distributions, where a few outliers are distant from most other points and substantially increase the value
of r. We then shifted our focus to adjust the value of r based on the average, rather than the maximum, distance from a
point to its t-nearest neighbors for t = 1, 10, 100, 1000, 10000. This yields more promising results, as detailed in Table 3.
These findings suggest that MLDP-KDE can achieve high-quality KDE results while offering a reasonable level of privacy
protection where each point is, on average, indistinguishable from 100–10, 000 other points in the data set. By default, we
set the value of r w.r.t. t = 100 on each data set in the remaining experiments.

C.2 TIME EFFICIENCY

The first row of Figure 4 presents the construction time of each method on five data sets by varying the privacy budget from
1 to 20. We observe that RACE generally has the longest construction time. Compared to non-sketch methods, RACE



Table 3: MSEs of MLDP-KDE when the privacy radius r is set to the average distance from a point to its t-nearest neighbors
for t ∈ {1, 10, 100, 1000, 10000} (rounded to two or three significant figures) or the maximum of the 10th percentile
distance of a point from its neighbors.

Data Set t r
MSE

ε = 1 ε = 5 ε = 20

CodRNA

1 0.01 0.0021 0.0006 0.0003
10 0.055 0.0018 0.0007 0.0003

100 0.1 0.0016 0.0009 0.0005
1,000 0.15 0.0044 0.00095 0.0006

10,000 0.2 0.0044 0.00142 0.0006
(max of 10th percentile) 0.8494 0.0268 0.00174 0.0009

CovType

1 0.01 0.0003 0.0002 6×10−5

10 0.06 0.0003 0.0001 8×10−5

100 0.1 0.0023 0.0001 8×10−5

1,000 0.3 0.0065 0.0004 0.0001
10,000 0.5 0.0144 0.0005 0.0001

(max of 10th percentile) 1.7803 0.0520 0.0085 0.0012

RCV1

1 0.01 0.0008 0.0006 0.0002
10 0.055 0.0013 0.0007 0.0002

100 0.2 0.0058 0.0008 0.0006
1,000 0.35 0.006 0.0008 0.0006

10,000 0.5 0.022 0.0013 0.0007
(max of 10th percentile) 0.8565 0.013 0.0013 0.0008

Yelp

1 0.001 0.0008 0.00034 0.00018
10 0.00175 0.0014 0.00038 7×10−5

100 0.0025 0.0016 0.00056 7×10−5

1,000 0.00375 0.0013 0.00041 8×10−5

10,000 0.005 0.0015 0.00073 0.0001
(max of 10th percentile) 8.4035 0.0295 0.0154 0.0101

SYN

1 0.072 0.0034 0.00027 0.0001
10 0.088 0.0036 0.00035 0.0001

100 0.107 0.0037 0.0008 0.0001
1,000 0.142 0.0036 0.0008 0.0001

10,000 0.177 0.0037 0.0004 0.0001
(max of 10th percentile) 11.2314 0.0082 0.0038 0.0024

takes a longer time for L = 1, 000 LSH computations than m ≤ 100 perturbation operations per point. RACE also builds
sketches much slower than MLDP-KDE in most cases because its sketch sizes are much larger than those of MLDP-KDE.
MLDP-KDE exhibits only a longer construction time than other algorithms when the privacy budget is higher and the
sketch size is larger. Due to the additional GRR procedure, MLDP-KDE becomes slower than RACE when L > 400
(resp. L = 1, 000 for RACE). DM-KDE, PM-KDE, SW-KDE, and GI-KDE take less construction time than sketch-based
methods, which are barely affected by ε because their perturbation procedures are the same for all values of ε.

The second row of Figure 4 depicts the query time of each method for ε = 1 to 20. MLDP-KDE shows a substantial
improvement in query efficiency compared to other algorithms. Its query time is more than four orders of magnitude faster
than that of DM-KDE, PM-KDE, SW-KDE, and GI-KDE, which compute the KDE by evaluating the kernel functions
for all perturbed points. Compared to RACE, MLDP-KDE exhibits a query time of almost an order of magnitude faster
on all data sets except Yelp because it uses much smaller values of L in the sketch and requires fewer LSH computations.
On the Yelp data set, the query efficiency of MLDP-KDE is lower than RACE when ε > 30 since the values of L in their
sketches are close to each other but MLDP-KDE requires additional computations for correction.

In summary, although MLDP-KDE may not always have a notable advantage in construction time compared to other
algorithms, its query time efficiency is exceptionally high, which aligns with the complexity analysis outlined in Section 3.2.
Given that the sketch and other data structures are constructed just once, trading a longer construction time for a significantly
lower query time is justifiable.
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Figure 4: Construction time and query time of all algorithms for KDE under LDP/mLDP with varying privacy budget
ε ∈ {1, 2.5, 5, · · · , 20}.

C.3 SKETCH SIZE AND COMMUNICATION COST

We show the sketch size and communication cost of MLDP-KDE with different privacy budgets on each data set in Figure 5.
We find that both measures increase with the privacy budget ε. The size of the MLDP-KDE sketch increases naturally
with ε according to our privacy analysis in Section 3. For comparison, the RACE sketch size is always 8× 105 bytes. The
communication cost, which includes the transmission of the LSH parameters from the server to all clients and the hash
sequences from all clients to the server, also increases with the privacy budget ε, since it is linear to the value of L. The
communication costs of non-sketch methods are equal to the data set sizes listed in Table 1. As can be seen, sketch methods
incur higher overhead in communication than non-sketch ones for L > m.
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Figure 5: Sketch size and communication cost of MLDP-KDE with varying privacy budget ε ∈ {1, 5, 10, 15, 20}.

C.4 ADDITIONAL SCALABILITY TEST

We test the scalability of different methods on the SYN data sets with numbers of points n ranging from 104 to 106 (and
m = 50) and dimensionalities m ranging from 5 to 50 (and n = 105). Figure 6 shows the results for construction and
query time. Since the construction time and query time of all methods except MLDP-KDE are not affected by ε, their
results for ε = 1, 5, 20 are combined in Figure 6. The construction time of each method increases almost linearly with n. In
terms of query time, MLDP-KDE and RACE are not affected by n, whereas non-sketch methods exhibit a linear increase
with n. For different values of m, MLDP-KDE also outperforms all competitors in terms of construction and query time.
Moreover, the time efficiency of MLDP-KDE depends mainly on the value of ε but does not show obvious changes in
different dimensions.

C.5 VISUALIZED RESULTS

To verify that the KDE distributions generated by MLDP-KDE closely approximate the exact distributions, we performed
some visualizations and showed the visualized results for the KDE distributions. We draw 2D heat maps of KDE distributions
utilizing t-SNE for dimensionality reduction. These heat maps, presented in Figure 7, indicate that GI-KDE completely fails
to preserve the exact KDE distributions in all cases, but MLDP-KDE generally preserves the exact KDE distributions in
most cases when ε = 5 and always does when ε = 20. These results further substantiate the effectiveness of MLDP-KDE
over GI-KDE.
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Figure 6: Construction and query time of all methods on the SYN data set with varying data set size n from 104 to 106 and
dimensionality m from 5 to 50.
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Figure 7: 2D heat maps for the KDE distributions provided by different methods on each data set, where t-SNE is used for
dimensionality reduction.

D GENERALIZATIONS TO OTHER LSH KERNELS

We discuss how to extend MLDP-KDE to support other LSH kernels beyond the l2-LSH kernel for the Euclidean distance.

l1-LSH Kernel. By replacing the 2-stable LSH scheme with the 1-stable LSH scheme [Datar et al., 2004], where the random
vector a in each LSH function is drawn from the Cauchy distribution instead of the Gaussian distribution, the MLDP-KDE
framework can be applied directly to the l1-LSH kernel for the Manhattan distance. The approximation bound and the
complexity of MLDP-KDE are not affected after adaptation.

For the privacy analysis on the l1-LSH kernel, denoted as

kl1(x,x
′) =

2

π
arctan

( ω

∥x− x′∥1
)
− ∥x− x′∥1

πω
ln
(
1 +

ω2

∥x− x′∥21

)
,



where ∥x− x′∥1 is the l1-distance of x and x′, we have a slightly weaker bound 1− kl1(x,x
′) ≤ c1

ω · ∥x− x′∥1 + c2 for
any c1 ≥ 1.2 and c2 ≥ 0.1. Accordingly, the term c(R−1)

ωR · d(x,x′) in Theorem 1 and Corollary 1 should be replaced by
c1(R−1)

ωR · d(x,x′) + c2(R−1)
R so that the LSH+GRR mechanism still provides mLDP.

Angular Kernel. To extend MLDP-KDE to the angular kernel [Coleman and Shrivastava, 2020, Lei et al., 2021], we
replace the 2-stable LSH scheme with the SRP-LSH scheme. A function hsrp : Rm 7→ {+1,−1} in the SRP-LSH family
is defined as hsrp(x) = sign(a · x), where a is also drawn from the standard m-dimensional Gaussian distribution. The
angular kernel is defined as kang(x,x

′) = 1 − θ(x,x′)
π , where θ(x,x′) is the angle between x and x′. We can see that,

unlike l1- and l2-LSH functions, the output of each SRP-LSH function is binary. As such, by mapping the output values
{−1,+1} to the range [1, 2], rehashing is not needed. Accordingly, the GRR mechanism is reduced to the special case of
R = 2, i.e., the randomized response (RR) mechanism.

For privacy analysis, by removing rehashing and due to kang(x,x
′) = 1− θ(x,x′)

π , we refine Theorem 1 for the angular

kernel as follows: The LSH+RR mechanism provides (dχ, η)-mLDP, where dχ(x,x
′) = γL

π · θ(x,x
′) + γ

√
L ln(1/η)

2 .

Corollary 1 holds by setting p = θ(x,x′)
π and replacing the term c(R−1)

ωR · d(x,x′) with θ(x,x′)
π . Then, the unbiased estimator

in Algorithm 2 for the angular kernel becomes

ŜD[i, hi(q)] =
(eγ+1)·SD[i,hi(q)]−1

eγ−1 ,

with its variance being bounded by (
eγ+1
eγ−1

)2 · (√ eγ−1
eγ+1K̃(q) +

√
1

eγ+1

)2
.

Moreover, the number of independent rows required to guarantee an (α, η)-approximate KDE in Theorem 2 remains
L = O

(
( e

γ+1
eγ−1 )

2 · log(1/η)
α2

)
. Finally, the complexity of MLDP-KDE does not change after performing all the above

adaptations.

General LSH Kernel. We finally analyze how MLDP-KDE can support KDE on general LSH kernels. Consider an LSH
kernel defined by an LSH familyH on a metric distance d(·, ·), where each h ∈ H maps a data point x to an integer h(x).
The range of h(·) can be bounded or unbounded, which is rehashed to the range of [1, R]. The basic property ofH is that
closer data points have a higher probability of mapping to the same hash value, which is formalized as follows.

Definition 4 ((r1, r2, p1, p2)-LSH family [Indyk and Motwani, 1998]). A hash family H is (r1, r2, p1, p2)-LSH w.r.t. a
metric distance d(·, ·), where r1 < r2 and p1 > p2, if for two points x and x′:

• If d(x,x′) ≤ r1, then Prh∈H[h(x) = h(x′)] ≥ p1;

• If d(x,x′) ≥ r2, then Prh∈H[h(x) = h(x′)] ≤ p2.

According to [Coleman and Shrivastava, 2020], the only additional requirement for any (r1, r2, p1, p2)-LSH family to form
a positive semi-definite radial kernel in the form of k(x,x′) = f(d(x,x′)) based on the collision probability function f(·)
is that f(·) is monotonically decreasing. Intuitively, by applying any (r1, r2, p1, p2)-LSH family, MLDP-KDE can be used
for the corresponding LSH kernel. Due to the definition of the LSH kernel, the approximation bounds of MLDP-KDE
are naturally satisfied. For privacy analysis, unlike for a specific LSH kernel, since the relationship between k(x,x′) and
d(x,x′) is unavailable, we can only provide probabilistic LDP bounds when d(x,x′) is in the ranges of (0, r1], (r1, r2],
and (r2,+∞). Assuming that PrH[h(x) = h(x′)] = p1 when d(x,x′) = r1 and PrH[h(x) = h(x′)] = p2 when
d(x,x′) = r2, we have

Pr
[
Lx,x′ ≥ γL(R−1

R (1− p1) + s)
]
≤ exp(−2Ls2);

Pr
[
Lx,x′ ≥ γL(R−1

R (1− p2) + s)
]
≤ exp(−2Ls2).

when d(x,x′) ≤ r1 and d(x,x′) ≤ r2. In this way, similar results to those of Theorem 1 and Corollary 1 can be obtained
by replacing s with the corresponding values. When d(x,x′) ≥ r2, MLDP-KDE still provides γL-LDP by Corollary 2.

D.1 EXPERIMENTAL EVALUATION FOR OTHER LSH KERNELS

To demonstrate the generalizability of MLDP-KDE, we evaluate the MSEs of different methods for the l1-LSH kernel and
the angular kernel with privacy budgets ε ∈ {1, 2.5, 5, · · · , 20}.



For the l1-LSH kernel, we ran all methods except GI-KDE, which is specific to the Euclidean distance, on the CovType data
set. The values of ω and r are set to 2.5 and 0.05 for the l1-LSH kernel because the average Manhattan distance between the
points is about five times greater than the average Euclidean distance. As shown in the first plot of Figure 8, we can see that
MLDP-KDE performs consistently and significantly better than other algorithms. However, its MSEs for the l1-LSH kernel
are generally higher because of larger constants in the privacy bound.

For the angular kernel, we carried out experiments on the Yelp data set and compared all methods with two additional
baselines, FKM-LL-RACE and FKM-LR-RACE, which integrate the two LSH schemes under mLDP in [Fernandes et al.,
2021] with RACE. From the second plot in Figure 8, we still observe that MLDP-KDE outperforms all other algorithms by a
large margin. The advantage of MLDP-KDE over FKM-LL-RACE and FKM-LR-RACE further confirms its effectiveness
for KDE problems compared to general LSH methods under mLDP.

These results support our justification for the generalization of MLDP-KDE to other LSH kernels.
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Figure 8: MSEs of different algorithms on the CovType data set for the l1-LSH kernel and the Yelp data set for the angular
kernel with varying privacy budgets ε ∈ {1, 2.5, 5, · · · , 20}.
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