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Abstract
Bilingual lexicons form a critical component of001
various NLP applications, including unsuper-002
vised and semisupervised machine translation003
and crosslingual information retrieval. In this004
work, we improve bilingual lexicon induction005
performance across 32 diverse language pairs006
with a graph-matching method based on opti-007
mal transport. The method is especially strong008
with very low amounts of supervision.009

1 Introduction010

Bilingual lexicon induction (BLI) from word em-011

bedding spaces is a popular task with a large body012

of existing literature (e.g. Artetxe et al., 2018; Con-013

neau et al., 2018; Patra et al., 2019; Shi et al.,014

2021; Zhao et al., 2020b). The goal is to ex-015

tract a dictionary of translation pairs given sepa-016

rate language-specific embedding spaces, which017

can then be used to bootstrap downstream tasks018

such as cross-lingual information retrieval and019

unsupervised/semi-supervised machine translation.020

A great challenge across NLP is maintaining021

performance in low-resource scenarios. A com-022

mon criticism of the BLI and low-resource MT023

literature is that while claims are made about di-024

verse and under-resourced languages, research is025

often performed on down-sampled corpora of high-026

resource, highly-related languages on similar do-027

mains (Artetxe et al., 2020). Such corpora are not028

good proxies for true low-resource languages ow-029

ing to data challenges such as dissimilar scripts,030

domain shift, noise, and lack of sufficient bitext031

(Marchisio et al., 2020). These differences can lead032

to dissimilarity between the embedding spaces (de-033

creasing isometry), causing BLI to fail (Søgaard034

et al., 2018; Nakashole and Flauger, 2018; Ormaz-035

abal et al., 2019; Glavaš et al., 2019; Vulić et al.,036

2019; Patra et al., 2019; Marchisio et al., 2020).037

There are two axes by which a language dataset038

is considered “low-resource". First, the language it-039

self may be a low-resource language: one for which040

little bitext and/or monolingual text exists. Even 041

for high-resource languages, the long tail of words 042

may have poorly trained word embeddings due rar- 043

ity in the dataset (Gong et al., 2018; Czarnowska 044

et al., 2019). In the data-poor setting of true 045

low-resource languages, a great majority of words 046

have little representation in the corpus, resulting in 047

poorly-trained embeddings for a large proportion 048

of them. The second axis is low-supervision. Here, 049

there are few ground-truth examples from which to 050

learn. For BLI from word embedding spaces, low- 051

supervision means there are few seeds from which 052

to induce a relationship between spaces, regardless 053

of the quality of the spaces themselves. 054

We bring a new algorithm for graph-matching 055

based on optimal transport (OT) to the NLP and 056

BLI literature. We evaluate using 32 diverse lan- 057

guage pairs under varying amounts of supervision. 058

The method works strikingly well across language 059

pairs, especially in low-supervision contexts. As 060

low-supervision on low-resource languages reflects 061

the real-world use case for BLI, this is an encour- 062

aging development on realistic scenarios. 063

2 Background 064

The typical baseline approach for BLI from word 065

embedding spaces assumes that spaces can be 066

mapped via linear transformation. Such methods 067

typically involve solutions to the Procrustes prob- 068

lem (see Gower et al. (2004) for a review). Alter- 069

natively, a graph-based view considers words as 070

nodes in undirected weighted graphs, where edges 071

are the distance between words. Methods taking 072

this view do not assume a linear mapping of the 073

spaces exists, allowing for more flexible matching. 074

BLI from word embedding spaces Assume 075

separately-trained monolingual word embedding 076

spaces: X ∈ Rn×d, Y ∈ Rm×d where n/m are 077

the source/target language vocabulary sizes and d is 078

the embedding dimension. We build the matrices X 079
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and Y of seeds from X and Y, respectively, such080

that given s seed pairs (x1, y1), (x2, y2), ...(xs, ys),081

the first row of X is x1, the second row is x2, etc.082

We build Y analogously for the y-component of083

each seed pair. The goal is to recover matches for084

the X \X and/or Y \Y non-seed words.085

Procrustes Many BLI methods use solutions to086

the Procrustes problem (e.g. Artetxe et al., 2019b;087

Conneau et al., 2018; Patra et al., 2019). These088

compute the optimal transform W to map seeds:089

min
W∈Rd×d

||XW −Y||2F (1)090

Once solved for W, then XW and Y live in a091

shared space and translation pairs can be extracted092

via nearest-neighbor search. Constrained to the093

space of orthogonal matrices, Eq. 1 has a simple094

closed-form solution (Schönemann, 1966):095

W = VUT UΣV = SVD(Y
T
X)096

Graph View Here, words are nodes in mono-097

lingual graphs Gx,Gy ∈ Rn×n. , and cells in098

Gx,Gy are edge weights representing distance099

between words. We use cosine similarity, which100

is common in NLP. The objective function is Eq.101

2, where Π is the set of permutation matrices.1102

Intuitively, PGyP
T finds the optimal relabeling103

of Gy to align with Gx. This “minimizes edge-104

disagreements" between Gx and Gy. This graph-105

matching objective is NP-Hard. Eq. 3 is equivalent.106

107

min
P∈Π

||Gx −PGyP
T||2F (2)108

109
max
P∈Π

trace(Gx
TPGyP

T) (3)110

Ex. Take source words x1, x2. We wish to recover111

valid translations yx1 , yx2 . If distance(x1, x2)=112

distance(yx1 , yx2), a solution P can have an edge-113

disagreement of 0 here. We then extract yx1 , yx2114

as translations of x1, x2. In reality, though, it is un-115

likely that distance(x1, x2) = distance(yx1 , yx2).116

Because Eq. 2 finds the ideal P to minimize edge117

disagreements over the entire graphs, we hope that118

nodes paired by P are valid translations. If Gx and119

Gy are isomorphic and there is a unique solution,120

then P correctly recovers all translations.121

Graph-matching is an active research field and122

is computationally prohibitive on large graphs,123

but approximation algorithms exist. BLI involves124

matching large, non-isomorphic graphs—among125

the greatest challenges for graph-matching.126

1A permutation matrix represents a one-to-one mapping:
There is a single 1 in each row and column, and 0 elsewhere.

2.1 FAQ Algorithm for Graph Matching 127

Vogelstein et al. (2015)’s Fast Approximate 128

Quadratic Assignment Problem algorithm (FAQ) 129

uses gradient ascent to approximate a solution to 130

Eq. 2. Motivated by “connectonomics" in neuro- 131

science (the study of brain graphs with biological 132

[groups of] neurons as nodes and neuronal connec- 133

tions as edges), FAQ was designed to perform ac- 134

curately and efficiently on large graphs. 135

FAQ relaxes the search space of Eq. 3 to allow 136

any doubly-stochastic matrix (the set D). Each cell 137

in a doubly-stochastic matrix is a non-negative real 138

number and each row/column sums to 1. The set 139

D thus contains Π but is much larger. Relaxing the 140

search space makes it easier to optimize Eq. 3 via 141

gradient ascent/descent.2 FAQ solves the objective 142

with the Frank-Wolfe method (Frank et al., 1956) 143

then projects back to a permutation matrix. 144

Algorithm 1 is FAQ; f (P ) = tr(Gx
TPGyP

T). 145

Step 2 finds a permutation matrix approximation 146

Q{i} to P {i} in the direction of the gradient. Find- 147

ing such a P requires approximation when P is 148

high-dimensional. Here, it is solved via the Hun- 149

garian Algorithm (Kuhn, 1955; Jonker and Vol- 150

genant, 1987), whose solution is a permutation ma- 151

trix. Finally, Pn is projected back onto to the space 152

of permutation matrices. Seeded Graph Matching 153

(SGM; Fishkind et al., 2019) is a variant of FAQ 154

allowing for supervision, and was recently shown 155

to be effective for BLI by Marchisio et al. (2021).

Algorithm 1 FAQ Algorithm for Graph Matching

Let: Gx,Gy ∈ Rn×n, P {0} ∈ D (dbl-stoch.)
while stopping criterion not met do

1. Calculate ∇f(P {i}):
∇f(P {i}) = GxP

{i}GT
y +GT

xP
{i}Gy

2. Q{i} = permutation matrix approx. to ∇f(P {i})
via Hungarian Algorithm

3. Calculate step size:
argmax
α∈[0,1]

f (αP {i} + (1− α)Q{i})

4. Update P {i+1} := αP {i} + (1− α)Q{i}

end while
return permutation matrix approx. to P {n} via Hung. Alg.

156
Strengths/Weaknesses FAQ/SGM perform well 157

solving the exact graph-matching problem: where 158

graphs are isomorphic and a full matching exists. 159

In reality, however, large graphs are rarely isomor- 160

phic. For BLI, languages have differing vocabu- 161

lary size, synonyms/antonyms, and idiosyncratic 162

2“descent" for the Quadratic Assignment Problem, “as-
cent" for the Graph Matching Problem. The optimization ob-
jectives are equivalent: See Vogelstein et al. (2015) for a proof.
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concepts; it is more natural to assume that an exact163

matching between word spaces does not exist, and164

that multiple matchings may be equally valid. This165

is an inexact graph-matching problem. FAQ gen-166

erally performs poorly finding non-seeded inexact167

matchings (Saad-Eldin et al., 2021).168

2.2 GOAT169

Graph Matching via OptimAl Transport (GOAT)170

(Saad-Eldin et al., 2021) is a new graph-matching171

method which uses advances in OT. Similar to172

SGM, GOAT amends FAQ and can use seeds.173

GOAT has been successful for the inexact graph-174

matching problem on non-isomorphic graphs:175

whereas FAQ rapidly fails on non-isomorphic176

graphs, GOAT maintains strong performance.177

Optimal Transport OT is an optimization prob-178

lem concerned with the most efficient way to trans-179

fer probability mass from distribution µ to distribu-180

tion v . Formally, discrete3 OT is the minimization181

of the inner product of a transportation “plan" ma-182

trix P with a cost matrix C, as in Eq. 4. ⟨·, ·⟩ is the183

Frobenius inner product.184

P ∗ = argmin
P∈U(r,c)

⟨P,C⟩ (4)185

P is an element of the “transportation polytope"186

U(r, c)—the set of matrices whose rows sum to r187

and columns sum to c. The Hungarian Algorithm188

approximately solves OT, but the search space is189

restricted to permutation matrices.190

Sinkhorn: Lightspeed OT Cuturi (2013) intro-191

duce Sinkhorn distance, an approximation of OT192

distance that can be solved quickly and accurately193

by adding an entropy penalty h to Eq. 4. Adding194

h makes the objective easier and more efficient to195

compute, and encourages “intermediary" solutions196

similar to that seen in the Intuition subsection.197

P λ = argmin
P∈U(r,c)

⟨P,C⟩ − 1

λ
h(P ) (5)198

As λ → ∞, P λ approaches the ideal transportation199

matrix P ∗. Cuturi (2013) show that Eq. 5 can be200

computed using Sinkhorn’s algorithm (Sinkhorn,201

1967). The interested reader can see details of202

the algorithm in Cuturi (2013); Peyre and Cuturi203

(2019). Unlike the Hungarian Algorithm, Sinkhorn204

has no restriction to a permutation matrix solution205

and can be solved over any U(r, c).206

Sinkhorn in GOAT GOAT uses Cuturi (2013)’s207

algorithm to solve Eq. 5 over U(1, 1), the set208

3As ours is, as we compute over matrices.

of doubly-stochastic matrices D. They call this 209

the “doubly stochastic OT problem", and the algo- 210

rithm that solves it “Lightspeed Optimal Transport" 211

(LOT). Although Sinkhorn distance was created for 212

efficiency, Saad-Eldin et al. (2021) find that using 213

the matrix P λ that minimizes Sinkhorn distance 214

also improves matching performance on large and 215

non-isometric graphs. Algorithm 2 is GOAT.

Algorithm 2 GOAT

Let: Gx,Gy ∈ Rn×n, P {0} ∈ D (dbl-stoch.)
while stopping criterion not met do

1. Calculate ∇f(P {i}):
∇f(P {i}) = GxP

{i}GT
y +GT

xP
{i}Gy

2. Q{i} = dbl-stoch. approx. to ∇f(P {i}) via LOT.
3. Calculate step size:

argmax
α∈[0,1]

f (αP {i} + (1− α)Q{i})

4. Update P {i+1} := αP {i} + (1− α)Q{i}

end while
return permutation matrix approx. to P {n} via Hung. Alg.

216

Intuition The critical difference between 217

SGM/FAQ and GOAT is how each calculates step 218

direction based on the gradient. Under the hood, 219

each algorithm maximizes trace(QT∇f(P {i}) to 220

compute Q{i} (the step direction) in Step 2 of their 221

respective algorithms. See Saad-Eldin et al. (2021) 222

or Fishkind et al. (2019) for a derivation. FAQ uses 223

the Hungarian Algorithm and GOAT uses LOT. 224

For ∇f(P {i}) below, there are two valid permu- 225

tation matrices Q1 and Q2 that maximize the trace. 226

When multiple solutions exist, the Hungarian Algo- 227

rithm chooses one arbitrarily. Thus, updates of P 228

in FAQ are constrained to be permutation matrices. 229

∇f(P {i}) =

0 3 0
2 1 2
0 0 0

 230

231

Q1 =

0 1 0
0 0 1
1 0 0

 , Q2 =

0 1 0
1 0 0
0 0 1

 232

233

trace(QT
1 ∇f(P {i})) = trace(QT

2 ∇f(P {i})) = 5 234

Concerningly, Saad-Eldin et al. (2021) find that 235

seed order influences the solution in a popular im- 236

plementation of the Hungarian Algorithm. Since 237

BLI is a high-dimensional many-to-many task, ar- 238

bitrary choices could meaningfully affect the result. 239

GOAT, on the other hand, can step in the direc- 240

tion of a doubly-stochastic matrix. Saad-Eldin et al. 241

(2021) prove that given multiple permutation matri- 242

ces that equally approximate the gradient at P {i}, 243
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Figure 1: Optimization step of FAQ vs. GOAT. FAQ
arbitrarily chooses the direction of a permutation matrix.
GOAT averages perm. matrices to take a smoother path.

any convex linear combination is a doubly stochas-244

tic matrix that equally approximates the gradient:245

Pλ =
n∑
i

λiPi s.t. λ1+...+λn = 1; λi ∈ [0, 1]246

Pλ is a weighted combination of many valid247

solutions—obviating the need to arbitrarily select248

one for the gradient-based update. LOT’s output249

of a doubly-stochastic matrix in Step 2 is similar250

to finding a Pλ in that it needn’t discretize to a sin-251

gle permutation matrix. In this way, GOAT can252

be thought of as taking a step that incorporates253

many possible permutation solutions. For instance,254

GOAT may select Qds =
1
2Q1 +

1
2Q2, which also255

maximizes trace(QT∇f(P {i}).256

Qds =

0 1 0
1
2 0 1

2
1
2 0 1

2

257

258
trace(QT

ds∇f(P {i})) = 5259

Thus whereas FAQ takes non-deterministic260

“choppy" update steps, GOAT optimizes smoothly261

and deterministically. Figure 1 is an illustration.262

3 Experimental Setup263

We run Procrustes, SGM, and GOAT on 32 lan-264

guage pairs. We also run system combination ex-265

periments similar to Marchisio et al. (2021). We266

evaluate with the standard precision@1 (P@1).267

We induce lexicons using (1) the closed-form268

solution to the orthogonal Procrustes problem of269

Eq. 1, extracting nearest neighbors using CSLS270

(Conneau et al., 2018), (2) SGM, solving the seeded271

version of Eq. 2, and (3) GOAT. Word graphs are272

Gx = XXT, Gy = YYT.273

System Combination We perform system com-274

bination experiments analogous to those of Marchi-275

Figure 2: Combo system: Iter.Proc. & GOAT. (1) run
GOAT in fwd/rev directions (2) intersect hypotheses,
pass to IterProc, (3) run IterProc fwd/rev (4) intersect
hypotheses, pass to Step (1). Repeat N cycles. (End)
Get final translations from fwd GOAT or IterProc.

sio et al. (2021), incorporating GOAT. Figure 2 276

shows the system, which is made of two compo- 277

nents: GOAT run in forward and reverse directions, 278

and “Iterative Procrustes with Stochastic-Add" 279

from Marchisio et al. (2021). This iterative version 280

of Procrustes runs Procrustes in source→target and 281

target→source directions and feeds H random hy- 282

potheses from the intersection of both directions 283

into another run of Procrustes with the gold seeds. 284

The process repeats for I iterations, adding H more 285

random hypotheses each time until all are chosen. 286

We set H = 100 and I = 5, as in the original work. 287

3.1 Data & Software 288

We use publicly-available fastText word embed- 289

dings (Bojanowski et al., 2017)4 which we normal- 290

ize, mean-center, and renormalize (Artetxe et al., 291

2018; Zhang et al., 2019) and bilingual dictionaries 292

from MUSE5 filtered to be one-to-one.6 For lan- 293

guages with 200,000+ embeddings, we use the first 294

200,000. Dictionary and embeddings space sizes 295

are in Appendix Table A1. Each language pair has 296

∼4100-4900 translation pairs post-filtering. We 297

choose 0-4000 pairs in frequency order as seeds 298

for experiments, leaving the rest as the test set.7 299

For SGM and GOAT, we use the publicly-available 300

implementations from the GOAT repository8 with 301

default hyperparameters (barycenter initialization). 302

We set reg=500 for GOAT. For system combination 303

experiments, we amend the code from Marchisio 304

et al. (2021)9 to incorporate GOAT. 305

4https://fasttext.cc/docs/en/pretrained-vectors.html
5https://github.com/facebookresearch/MUSE
6For each source word, keep the first unused target word.

Targets are in arbitrary order, so this is random sampling.
7Ex. En-De with 100 seeds has 4803 test items. With 1000

seeds, the test set contains 3903 items.
8https://github.com/neurodata/goat. Some exps. used

SGM from Graspologic (github.com/microsoft/graspologic;
Chung et al., 2019), but they are mathematically equal.

9https://github.com/kellymarchisio/euc-v-graph-bli
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Figure 3: Procrustes (Proc) (dashed) vs. SGM (dotted) vs. GOAT (solid), visualized. X-axis: # of seeds (log scale).
Y-axis: Precision@1 (↑ is better). Procrustes grows slowly, needing many seeds. GOAT is typically best.

4 Results306

Results of Procrustes vs. SGM vs. GOAT are in307

Table 2, visualized in Figure 3.308

Procrustes vs. SGM Marchisio et al. (2021) con-309

clude that SGM strongly outperforms Procrustes310

for English→German and Russian→English with311

100+ seeds. We find that the trend holds across di-312

verse language pairs, with the effect even stronger313

with less supervision. SGM performs reasonably314

with only 50 seeds for nearly all language, and315

with only 25 seeds in many. Chinese↔English316

and Japanese↔English perform relatively worse,317

and highly-related languages perform best: French,318

Spanish, and Italian. German↔English per-319

formance is low relative to some less-related320

languages, which have surprisingly strong per-321

formance from SGM: Indonesian↔English and322

Macedonian↔English score P@1≈ 50-60, even323

with low supervision. Procrustes does not perform324

above ∼10 for any language pair with ≤ 100 seeds,325

whereas SGM exceeds P@1 = 10 with only 25326

seeds for 25 of 32 pairs.327

SGM vs. GOAT GOAT improves considerably328

over SGM for nearly all language pairs, and the ef-329

fect is particularly strong with very low amounts330

of seeds and less-related languages. GOAT im-331

proves upon SGM by +19.0, +8.5, and +7.9 on332

English→Bengali with 25, 50, and 75 seeds, re-333

spectively. As the major use case of low-resource334

BLI and MT is dissimilar languages with low su-335

pervision, this is an encouraging result for real-336

world applications. It generally takes 200+ seeds337

EVS GH EVS GH

bn 37.79 0.49 it 22.42 0.20
bs 35.93 0.41 ja 894.20 0.55
de 11.49 0.31 mk 151.02 0.19
es 9.91 0.21 ms 153.42 0.49
et 35.22 0.68 ru 14.19 0.46
fa 86.98 0.39 ta 56.66 0.26
fr 27.92 0.17 vi 256.28 0.42
id 188.98 0.39 zh 519.82 0.61

Table 1: Degree of isomorphism of embedding spaces in
relation to English. EVS = Eigenvector Similarity. GH
= Gromov-Hausdorff Distance. ↓: more isomorphic.

for SGM to achieve similar scores to GOAT with 338

just 25 seeds. For some highly-related languages, 339

GOAT performs well even with no seeds (unsu- 340

pervised), where both SGM and Procrustes fail. 341

GOAT scores 48.8 on English→German, 34.5 on 342

German→English, 62.4 on English→Spanish, and 343

19.6 on Spanish→English with no supervision. 344

4.1 Isomorphism of Embedding Spaces 345

Eigenvector similarity (EVS; Søgaard et al., 346

2018) measures isomorphism of embedding spaces 347

based on the difference of Laplacian eigenvalues. 348

Gromov-Hausdorff distance (GH) measures dis- 349

tance based on nearest neighbors after an optimal 350

orthogonal transformation (Patra et al., 2019). EVS 351

and GH are symmetric, and lower means more iso- 352

metric spaces. Refer to the original papers for math- 353

ematical descriptions. We compute the metrics over 354

the word embedding using scripts from Vulić et al. 355

(2020)10 and show results in Table 1. We observe a 356

moderate correlation between EVS and GH (Spear- 357

man’s ρ = 0.434, Pearson’s r = 0.44). 358

10https://github.com/cambridgeltl/iso-study/scripts
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Figure 4: X-axis: Eigenvector Similarity (EVS) /
Gromov-Hausdorff (GH) Distance of language com-
pared to English. Y-axis: Precision@1 from Procrustes
& GOAT with 200 seeds. ↓ EVS/GH = ↑ isomorphic.

Figure 4 shows the relationship between relative359

isomorphism of each language vs. English, and per-360

formance of Procrustes/GOAT at 200 seeds. Trends361

indicate that higher isomorphism varies with higher362

precision from Procrustes and GOAT. GH shows363

a moderate to strong negative Pearson’s correla-364

tion with performance from Procrustes and GOAT:365

r = −0.47 and r = −0.53, respectively, for *-366

to-en and -0.55 and -0.61 for en-to-*. EVS corre-367

lates weakly negatively with performance from Pro-368

crustes (*-to-en: -0.06, en-to-*: -0.28) and strongly369

negatively with GOAT (*-to-en: -0.67, en-to-*: -370

0.75). As higher GH/EVS indicates less isomor-371

phism, negative correlations imply that lower de-372

grees of isomorphism correlate with lower scores373

from Procrustes/GOAT.374

4.2 System Combination375

System combination results are in Table 3. Sim-376

ilar to Marchisio et al. (2021)’s findings for their377

combined Procrustes/SGM system, we find (1) our378

combined Procrustes/GOAT system outperforms379

Procrustes and GOAT alone, (2) ending with the It-380

erative Procrustes is best for moderate amounts of381

seeds, (3) ending with GOAT is best for very low382

or very high number of seeds.383

Whether we end with Iterative Procrustes vs.384

GOAT is critically important for the lowest seed385

sizes: -EndGOAT (-EG) usually fails with 25 seeds;386

all language pairs except German↔English and387

Russian↔English score P@1 < 15.0, and most388

score P@1< 2.0. Simply switching the order of389

processing in the combination system, however,390

boosts performance dramatically: ex. from 0.6391

for StartProc-EndGOAT to 61.5 for StartGOAT- 392

EndProc for Bosnian→English with 25 seeds. 393

There are some language pairs such as 394

English→Persian and Russian↔English where a 395

previous experiment with no seeds had reasonable 396

performance, but the combined system failed. It is 397

worth investigating where this discrepancy arises. 398

5 Discussion 399

We have seen GOAT’s strength in low-resource sce- 400

narios and in non-isomorphic embedding spaces. 401

As the major use case of low-resource BLI and 402

MT is dissimilar languages with low supervision, 403

GOAT’s strong performance is an encouraging 404

result for real-world applications. Furthermore, 405

GOAT outperforms SGM. As the graph-matching 406

objective is NP-hard so all algorithms are approx- 407

imate, GOAT does a better job by making a bet- 408

ter calculation of step direction. Chinese↔English 409

and Japanese↔English are outliers, which is wor- 410

thy of future investigation. Notably, these lan- 411

guages have very poor isomorphism scores in rela- 412

tion to English. 413

Why might GOAT work? The goal for Pro- 414

crustes is to find the ideal linear transformation 415

Wideal ∈ Rdxd to map the spaces, where d is the 416

word embedding dimension. Seeds in Procrustes 417

solve Eq. 1 to find an approximation W to Wideal. 418

Accordingly, the seeds can be thought of as sam- 419

ples from which one deduces the optimal linear 420

transformation. This is a supervised learning prob- 421

lem, so when there are few seeds/samples, it is dif- 422

ficult to estimate Wideal. Furthermore, the entire 423

space X is mapped by W to a shared space with 424

Y meaning that every point in X is subject to a 425

potentially inaccurate mapping W : the mapping 426

extrapolates to the entire space. GOAT does not 427

suffer this issue, and can induce non-linear rela- 428

tionships. Graph methods can be thought of as a 429

semi-supervised learning problem: even words that 430

don’t serve as seeds are incorporated in the match- 431

ing process. The graph manifold provides addition 432

information that can be exploited. 433

Secondly, the dimension of the relationship be- 434

tween words in GOAT is much lower than for 435

Procrustes. For GOAT, the relationship is one- 436

dimensional: distance. As words for the Procrustes 437

method are embedded in d-dimensional Euclidean 438

space, their relationships have a magnitude and a 439

direction: they are {d+1}-dimensional. It is possi- 440

ble that the lower dimension in GOAT makes it ro- 441
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Prev -EP -EG Prev -EP -EG Prev -EP -EG Prev -EP -EG Prev -EP -EG Prev -EP -EG
Seeds en-bn bn-en en-bs bs-en en-de de-en
0 0.1 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 48.8 61.8 0.0 34.5 59.2 0.3
25 31.9 44.3 0.5 44.4 53.1 6.2 48.1 58.4 0.4 54.6 61.5 0.6 48.5 61.7 59.1 34.1 59.3 56.8
75 33.1 44.7 39.5 45.2 53.5 49.1 47.9 58.1 55.1 54.6 61.7 57.2 48.8 62.3 59.7 47.0 59.4 57.1
100 33.8 45.3 39.7 45.5 53.9 48.1 47.7 58.1 55.4 55.5 61.3 57.5 49.0 62.2 59.7 47.6 59.4 56.8
2000 45.9 48.7 49.3 55.2 56.6 56.3 58.1 59.9 60.5 65.9 66.6 69.1 63.1 66.3 69.4 60.7 65.1 67.9
4000 60.3 50.5 61.2 65.9 55.2 68.9 70.6 63.4 71.8 86.1 69.7 85.7 74.2 72.9 79.5 71.4 67.2 77.6

en-et et-en en-fa fa-en en-id id-en
0 0.2 0.2 0.0 0.1 0.0 0.0 0.5 0.5 0.0 0.1 0.1 0.0 2.9 4.4 0.0 1.0 1.2 0.0
25 47.0 60.4 5.9 63.2 70.2 15.0 42.7 54.4 4.5 45.1 55.1 2.0 51.3 65.8 0.6 58.0 66.7 1.8
75 47.5 60.6 58.6 64.2 69.8 66.5 42.9 54.1 51.9 45.8 55.3 52.0 53.6 66.0 63.3 57.0 66.7 64.2
100 47.3 61.1 59.0 64.3 70.2 66.7 43.0 54.3 52.3 45.6 55.5 52.7 54.3 66.2 63.2 57.8 67.1 63.9
2000 64.0 66.6 67.4 74.2 74.1 75.0 54.7 58.0 58.4 53.8 57.5 56.9 70.7 72.1 74.2 70.1 72.5 72.9
4000 77.4 71.7 80.2 86.4 80.7 87.2 65.9 62.4 67.4 65.5 60.1 67.0 84.3 76.8 86.2 80.5 78.2 83.7

en-mk mk-en en-ms ms-en en-ru ru-en
0 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.1 2.8 4.4 0.0
25 55.8 63.9 8.0 63.2 68.8 0.6 36.6 62.6 0.9 38.6 65.3 0.2 55.7 67.7 66.1 54.4 63.9 62.0
75 56.5 64.3 63.3 63.6 68.8 67.9 42.6 62.6 59.8 56.8 65.6 62.8 55.7 68.1 67.0 54.8 63.9 61.6
100 56.2 64.1 64.2 64.4 69.4 67.5 42.9 63.0 58.6 57.7 65.8 63.1 55.9 67.9 66.4 55.1 63.8 61.3
2000 64.6 66.8 67.9 71.7 71.0 73.1 65.0 67.0 68.5 67.4 69.4 69.7 67.5 72.6 74.2 68.5 69.3 72.5
4000 75.6 68.9 77.1 88.8 74.1 91.1 79.3 70.7 79.5 77.4 70.0 79.1 83.3 79.3 86.5 89.3 77.4 89.3

en-ta ta-en en-vi vi-en en-zh zh-en
0 0.0 0.0 0.1 0.5 0.6 0.0 0.1 0.0 0.1 0.1 0.1 0.9 0.0 0.1 0.0 0.0 0.0 0.0
25 1.8 2.2 0.6 44.4 51.4 2.4 0.4 0.4 0.2 3.3 5.3 0.2 8.7 52.7 1.7 9.3 48.1 0.8
75 30.5 40.4 35.7 45.1 52.4 46.9 22.9 55.0 1.2 45.2 59.6 54.4 17.4 51.6 46.4 14.1 51.1 48.0
100 30.6 40.2 36.8 45.4 52.5 47.9 30.2 55.6 36.2 47.1 59.3 56.3 18.5 51.6 47.3 15.2 51.0 48.0
2000 40.6 42.7 44.2 55.1 55.3 56.2 61.1 67.3 65.8 66.3 73.5 71.5 49.3 58.0 57.7 41.8 57.6 56.8
4000 49.1 44.0 51.7 73.8 65.3 71.6 77.9 73.0 80.5 82.1 80.1 84.3 67.5 66.4 75.1 66.2 65.3 73.3

Table 3: P@1 of Combination Exps. -EP starts with GOAT, ends with IterProc. -EG: IterProc, ends with GOAT.
Prev is previous best of prior experiments. Some seed sizes omitted for brevity (see Appendix).

bust to noise, explaining why GOAT outperforms442

Procrustes in low-resource settings. This hypothe-443

sis should be investigated in follow-up studies.444

6 Related Work445

BLI Recent years have seen a proliferation of the446

BLI literature (e.g. Ruder et al., 2018; Aldarmaki447

et al., 2018; Joulin et al., 2018; Doval et al., 2018;448

Artetxe et al., 2019a; Huang et al., 2019; Patra449

et al., 2019; Zhang et al., 2020; Biesialska and Ruiz450

Costa-Jussà, 2020). Many use Procrustes-based so-451

lutions, which assume that embedding spaces are452

roughly isomorphic. Wang et al. (2021) argue that453

the mapping can only be piece-wise linear, and454

induce multiple mappings. Ganesan et al. (2021)455

learn an “invertible neural network" as a non-linear456

mapping of spaces, and Cao and Zhao (2018)457

align spaces using point set registration. Many458

approaches address only high-resource languages.459

The tendency to evaluate on similar languages with460

high-quality data from similar domains hinders ad-461

vancement in the field (Artetxe et al., 2020).462

BLI with OT Most similar to ours are BLI ap-463

proaches which incorporate OT formulations us-464

ing the Sinkhorn and/or Hungarian algorithms (e.g.465

Alvarez-Melis and Jaakkola, 2018; Alaux et al.,466

2018). Grave et al. (2019) optimize “Procrustes in467

Wasserstein Distance", iteratively updating a lin- 468

ear transformation and permutation matrix using 469

Frank-Wolfe on samples from embedding spaces 470

X and Y. Zhao et al. (2020b) and Zhang et al. 471

(2017) also use an iterative procedure. Ramírez 472

et al. (2020) combine Procrustes and their Itera- 473

tive Hungarian algorithms. Xu et al. (2018) use 474

Sinkhorn distance in the loss function, and (Zhang 475

et al., 2017) use Sinkhorn to minimize distance be- 476

tween spaces. Haghighi et al. (2008) use the Hun- 477

garian Algorithm for BLI from text. Lian et al. and 478

Alaux et al. (2018) align all languages to a common 479

space for multilingual BLI. The latter use Sinkhorn 480

to approximate a permutation matrix in their for- 481

mulation. Zhao et al. (2020a) incorporate OT for 482

semi-supervised BLI. 483

7 Conclusion 484

We perform bilingual lexicon induction from word 485

embedding spaces of 32 diverse language pairs, uti- 486

lizing the newly-developed GOAT algorithm for 487

graph-matching. Performance is strong across all 488

pairs, especially on dissimilar languages with low- 489

supervision. As the major use case of low-resource 490

BLI and MT is dissimilar languages with low su- 491

pervision, the strong performance of GOAT is an 492

encouraging result for real-world applications. 493
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and Marin Soljačić. 2020. On a novel application of 678
wasserstein-procrustes for unsupervised cross-lingual 679
learning. arXiv preprint arXiv:2007.09456. 680

Sebastian Ruder, Ryan Cotterell, Yova Kementched- 681
jhieva, and Anders Søgaard. 2018. A discriminative 682
latent-variable model for bilingual lexicon induction. 683
In Proceedings of the 2018 Conference on Empiri- 684
cal Methods in Natural Language Processing, pages 685
458–468, Brussels, Belgium. Association for Com- 686
putational Linguistics. 687

Ali Saad-Eldin, Benjamin D Pedigo, Carey E Priebe, 688
and Joshua T Vogelstein. 2021. Graph matching via 689
optimal transport. arXiv preprint arXiv:2111.05366. 690

Peter H Schönemann. 1966. A generalized solution of 691
the orthogonal procrustes problem. Psychometrika, 692
31(1):1–10. 693

Haoyue Shi, Luke Zettlemoyer, and Sida I. Wang. 2021. 694
Bilingual lexicon induction via unsupervised bitext 695
construction and word alignment. In Proceedings 696
of the 59th Annual Meeting of the Association for 697
Computational Linguistics and the 11th International 698
Joint Conference on Natural Language Processing 699
(Volume 1: Long Papers), pages 813–826, Online. 700
Association for Computational Linguistics. 701

Richard Sinkhorn. 1967. Diagonal equivalence to ma- 702
trices with prescribed row and column sums. The 703
American Mathematical Monthly, 74(4):402–405. 704

Anders Søgaard, Sebastian Ruder, and Ivan Vulić. 2018. 705
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Appendix779

*-to-en en-to-*
Full 1-1 Full 1-1 # Embs

bn 7588 4299 8467 4556 145350
bs 6164 4294 8153 4795 166505
de 10866 4451 14677 4903 200000
en n/a n/a n/a n/a 200000
es 8667 4445 11977 4866 200000
et 6509 4352 8261 4738 200000
fa 8510 4582 8869 4595 200000
fr 8270 4548 10872 4827 200000
id 9677 4563 9407 4573 200000
it 7364 4478 9657 4815 200000
ja 6819 4112 7135 4351 200000
mk 7197 4259 10075 4820 176947
ms 8140 4650 7394 4454 155629
ru 7452 4084 10887 4812 200000
ta 6850 4225 8091 4744 200000
vi 7251 4775 6353 4507 200000
zh 8891 4450 8728 4381 200000

Table A1: Size of train/test sets before (Full) & after
making one-to-one (1-1), with # of embeddings used.

en-de ru-en

Seeds Rand. Bary. Rand. Bary.
100 45.7 45.9 49.6 50.4
200 47.4 47.5 52.5 52.5
500 52.3 51.9 55.4 55.6

1000 54.6 54.9 58.3 58.1
2000 61.5 61.4 67.1 67.1
4000 74.2 74.2 89.3 89.3

Table A2: SGM with barycenter vs. randomized initial-
ization for languages used in Marchisio et al. (2021).
The difference is negligible.

Iterative Results of Iterative Procrustes (Iter-780

Proc), Iterative SGM (IterSGM), and Iterative781

GOAT (IterGOAT) are in Table A3. We run the It-782

erative Procrustes and Iterative SGM procedures of783

Marchisio et al. (2021) with stochastic-add. Here,784

Procrustes [or SGM] is run in source↔target di-785

rections, hypotheses are intersected, and H random786

hypotheses are added to the gold seeds and fed into787

subsequent runs of Procrustes [SGM]. The next it-788

eration adds 2H hypotheses, repeating until all hy-789

potheses are chosen. We set H = 100 and create790

an analogous iterative algorithm for GOAT, which791

we call Iterative GOAT.792

IterSGM/GOAT perform similarly across con-793

ditions, with a few exceptions where either per-794

forms very strongly with no supervision: Iter-795

GOAT scores 49.2, 45.2, 34.4, 58.2, and 55.9796

for En-De, En-Fa, De-En, Id-En, and Ru-En, re-797

spectively, and IterSGM scores 57.3 for En-Ru.798

On Chinese↔English, IterGOAT underperforms799

IterSGM, similar to GOAT’s underperformance of800

SGM in the single run.801

Similar to Marchisio et al. (2021), we find that 802

IterProc compensates for an initial poor first run 803

and outperforms IterSGM with a moderate amount 804

of seeds (100+). Extending to the very lowest seeds 805

sizes (0-75), however, IterSGM/IterGOAT are supe- 806

rior. With 25 seeds, IterProc fails for all language 807

pairs except En↔De and En↔Ru, scoring P@1 < 808

5. IterSGM and IterGOAT, however, perform rea- 809

sonably well for most language pairs with 25 seeds, 810

suggesting that the graph-based framing is the bet- 811

ter approach for low-seed levels. At the highest su- 812

pervision level (2000+ seeds), IterSGM/IterGOAT 813

again tends to be superior. 814

Differences are minor btwn using GOAT or 815

SGM in the iterative or system combination experi- 816

ments. This results suggests that mixing Procrustes 817

and graph-based framings is helpful for BLI, re- 818

gardless of which algorithm one picks. It is inter- 819

esting to contemplate what other problems might 820

benefit from examination from multiple mathemat- 821

ical framings in one solution, as each may have 822

complementary benefits. 823
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IP IS IG IP IS IG IP IS IG IP IS IG IP IS IG IP IS IG
Seeds en-bn bn-en en-bs bs-en en-de de-en
0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.3 49.2 0.1 0.3 34.4
25 0.6 37.3 35.6 3.2 47.3 46.8 0.2 52.3 51.2 0.1 56.5 56.1 61.5 49.8 49.7 58.8 47.6 47.2
50 1.6 37.8 35.8 24.3 47.5 47.2 48.3 52.2 51.4 4.2 57.2 56.2 61.5 49.9 49.6 59.0 47.8 47.9
75 38.8 37.3 36.7 51.9 48.3 47.6 54.7 52.3 51.5 58.4 57.1 56.4 61.5 50.4 49.9 59.0 48.5 47.9
100 44.4 37.7 36.5 53.2 48.2 47.9 54.6 52.5 51.1 59.0 57.1 56.8 62.1 50.2 50.0 59.4 48.4 48.1
200 43.3 38.9 37.2 52.1 48.0 48.1 55.1 52.9 52.4 59.3 58.8 57.7 62.0 50.9 50.4 59.7 49.3 48.8
500 43.9 40.3 39.5 51.8 49.7 48.8 53.7 54.4 53.0 59.8 60.1 59.7 62.8 52.3 52.0 60.4 50.2 50.1
1000 43.4 42.2 41.3 50.8 51.1 51.4 53.4 55.9 55.0 58.8 61.4 61.4 63.5 54.5 54.2 61.4 53.8 53.6
2000 42.8 45.7 45.2 49.8 54.6 54.4 52.3 57.8 57.4 59.8 65.9 65.7 65.2 61.8 61.2 64.0 60.5 60.4
4000 40.3 60.3 58.8 45.2 65.9 66.6 51.9 70.4 69.9 56.8 83.7 86.4 71.7 74.1 74.4 64.5 71.4 71.2
Seeds en-et et-en en-fa fa-en en-id id-en
0 0.0 0.9 0.4 0.0 0.0 0.0 0.0 0.1 45.2 0.0 0.2 0.1 0.0 0.0 15.5 0.1 0.4 58.2
25 4.2 51.8 51.3 3.1 66.4 65.9 1.0 46.7 45.4 1.3 47.6 46.7 0.8 55.9 54.8 1.4 59.5 58.5
50 59.3 52.8 51.6 66.3 66.2 66.0 52.9 46.5 45.7 9.3 47.7 47.0 64.7 56.6 55.4 65.4 59.0 58.5
75 58.8 52.8 51.6 66.6 66.2 66.2 53.1 46.8 46.0 54.0 47.7 47.1 64.9 57.0 55.9 65.8 59.6 58.7
100 59.3 53.1 51.9 66.3 66.6 65.9 53.0 47.3 46.2 54.1 47.8 47.0 65.2 57.0 55.7 66.0 59.2 58.8
200 59.0 53.4 51.9 66.3 66.5 66.7 53.3 47.2 46.3 54.2 47.9 47.6 64.9 57.3 56.8 66.5 60.1 59.5
500 59.4 55.4 54.1 67.1 68.5 68.0 53.3 48.4 48.2 54.3 48.3 48.4 66.4 60.2 59.1 67.4 62.6 61.9
1000 60.1 58.3 57.7 67.6 69.8 70.4 52.9 49.8 49.9 54.2 49.8 49.4 67.8 63.6 62.6 67.6 64.2 64.0
2000 59.6 64.2 63.2 67.3 74.1 74.2 53.3 54.8 54.6 54.5 54.5 54.2 68.7 69.6 69.2 69.3 70.2 70.2
4000 61.7 77.0 77.0 67.0 86.4 86.4 52.1 65.5 65.5 53.4 65.3 64.1 72.1 84.1 83.8 72.8 80.5 80.6
Seeds en-mk mk-en en-ms ms-en en-ru ru-en
0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.2 0.0 0.0 0.1 0.0 57.3 0.1 0.0 1.1 55.9
25 1.0 59.4 58.6 1.0 65.2 64.8 0.7 46.1 43.8 0.7 59.4 58.6 66.2 57.7 57.0 63.0 55.9 55.5
50 62.1 59.2 58.6 66.3 65.6 65.4 58.3 46.4 43.7 64.3 59.4 58.7 66.5 58.2 57.3 63.4 56.0 56.0
75 61.7 59.1 59.1 66.8 65.4 65.5 59.9 47.0 45.3 64.0 58.7 58.5 66.7 58.3 57.6 62.7 55.9 56.1
100 61.8 59.3 59.3 66.2 65.6 65.5 60.9 47.7 45.6 64.1 59.5 58.7 66.8 57.8 57.6 62.7 56.3 55.6
200 62.3 60.0 59.2 67.0 66.0 65.7 60.6 48.5 47.2 64.5 59.5 58.9 66.6 58.9 57.8 63.1 56.4 56.5
500 62.2 60.5 60.6 66.7 66.9 66.5 60.6 52.6 51.0 65.0 61.4 61.1 67.7 60.0 59.3 63.7 58.0 58.0
1000 62.0 62.5 62.5 66.6 68.0 67.9 61.1 58.5 57.4 65.0 62.5 63.2 68.3 62.0 61.8 64.0 60.3 61.1
2000 61.8 65.0 64.8 66.1 71.4 71.8 60.4 63.9 62.6 64.9 67.5 67.5 69.5 67.2 67.6 65.7 68.2 68.5
4000 62.1 75.7 75.6 64.5 88.4 88.0 59.9 79.7 79.5 64.8 77.8 77.5 74.5 81.9 82.4 69.0 89.3 89.3
Seeds en-ta ta-en en-vi vi-en en-zh zh-en
0 0.0 0.0 0.0 0.0 0.2 0.9 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.3 0.0 0.0 0.1 0.1
25 0.3 5.8 4.3 0.9 45.8 46.1 0.1 0.3 0.3 0.2 23.5 44.1 3.3 13.7 7.3 2.0 14.6 7.9
50 5.5 33.6 32.5 18.0 46.6 46.4 0.3 22.0 42.6 1.0 48.9 46.3 52.9 19.0 12.3 52.5 17.2 11.6
75 38.3 33.8 32.4 50.0 46.9 46.2 44.6 46.5 43.3 8.4 49.4 48.7 53.5 19.7 13.7 51.9 17.0 12.9
100 39.5 33.3 32.5 50.5 47.2 46.8 3.4 47.8 43.8 59.4 49.6 48.8 53.2 20.5 13.1 52.1 18.3 13.4
200 40.2 34.0 32.8 50.8 47.0 47.1 57.8 49.1 45.9 60.1 50.9 49.7 53.4 22.4 15.0 52.6 20.2 15.0
500 40.0 35.4 34.0 50.0 49.0 48.1 59.2 52.8 50.6 61.4 54.5 53.1 53.3 29.3 22.1 52.8 28.3 24.4
1000 38.2 37.0 36.0 49.7 50.5 50.3 59.7 57.1 56.4 64.3 58.8 58.9 54.2 34.1 29.6 54.3 34.4 30.8
2000 38.2 40.7 38.8 49.3 54.3 53.8 60.6 61.5 62.1 68.0 65.8 66.3 56.0 44.5 42.4 54.5 42.2 41.3
4000 34.1 48.8 49.6 48.9 72.9 73.3 62.5 77.7 78.3 73.2 82.3 82.3 59.1 67.2 66.9 58.4 66.4 65.8

Table A3: P@1 of Iterative Procrustes (IP), Iterative SGM (IS), and Iterative GOAT (IG). Highest per row.
IterSGM/IterGOAT are italicized when outperforming IterProc but are not highest in row.
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en-to-* *-to-en en-to-* *-to-en
SGM GOAT SGM GOAT SGM GOAT SGM GOAT

Seeds Prev -PP -PS -PP -PG Prev -PP -PS -PP -PG Prev -PP -PS -PP -PG Prev -PP -PS -PP -PG
bn mk

0 0.1 0.0 0.1 0.0 0.1 0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.1
25 37.3 44.0 0.5 44.3 0.5 47.3 52.8 8.4 53.1 6.2 59.4 64.4 1.2 63.9 8.0 65.2 68.7 1.1 68.8 0.6
50 37.8 43.1 2.0 44.3 3.1 47.5 52.1 14.4 53.0 48.2 62.1 64.0 63.6 63.9 62.8 66.3 68.4 68.1 68.5 67.8
75 38.8 44.7 38.8 44.7 39.5 51.9 53.2 49.2 53.5 49.1 61.7 63.8 63.7 64.3 63.3 66.8 69.2 67.3 68.8 67.9
100 44.4 44.3 40.4 45.3 39.7 53.2 52.4 48.5 53.9 48.1 61.8 64.4 65.1 64.1 64.2 66.2 69.3 68.2 69.4 67.5
200 43.3 45.4 40.9 45.2 40.8 52.1 53.8 50.4 54.0 50.6 62.3 64.1 64.5 64.9 64.2 67.0 69.5 67.8 69.7 68.0
500 43.9 46.8 43.9 46.8 43.2 51.8 54.3 50.3 55.1 51.4 62.2 65.3 65.7 65.3 65.5 66.9 69.6 69.1 70.0 68.9
1000 43.4 47.1 45.4 47.1 45.3 51.5 55.3 53.2 55.5 53.9 62.5 65.8 66.5 65.5 66.5 68.0 69.8 69.9 69.9 69.5
2000 45.9 48.9 49.3 48.7 49.3 55.2 56.6 57.2 56.6 56.3 65.0 67.0 68.2 66.8 67.9 71.8 71.2 72.5 71.0 73.1
4000 60.3 52.0 61.2 50.5 61.2 66.6 55.2 68.9 55.2 68.9 75.7 69.0 77.2 68.9 77.1 88.8 74.1 91.1 74.1 91.1

bs ms
0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0
25 52.3 57.4 0.2 58.4 0.4 56.5 61.7 0.8 61.5 0.6 46.1 62.1 0.4 62.6 0.9 59.4 65.6 0.5 65.3 0.2
50 52.2 57.4 25.7 57.4 53.8 57.2 61.2 6.0 61.9 42.3 58.3 61.8 6.4 62.7 58.8 64.3 65.6 63.0 65.6 63.1
75 54.7 57.5 54.6 58.1 55.1 58.4 61.6 57.9 61.7 57.2 59.9 62.4 59.0 62.6 59.8 64.0 65.5 64.0 65.6 62.8
100 54.6 57.4 55.0 58.1 55.4 59.0 61.8 59.0 61.3 57.5 60.9 62.6 59.7 63.0 58.6 64.1 66.0 63.9 65.8 63.1
200 55.1 57.8 56.9 58.6 56.4 59.3 61.9 58.9 62.4 58.3 60.6 63.1 60.6 63.1 59.6 64.5 66.7 64.3 66.4 63.9
500 54.4 58.5 57.1 59.1 56.7 60.1 63.1 61.1 63.8 61.0 60.6 63.4 61.1 64.1 61.0 65.0 67.4 65.9 66.8 65.8
1000 55.9 59.8 59.1 59.6 58.7 61.6 63.6 63.4 64.7 62.9 61.1 65.9 64.8 66.0 64.4 65.0 67.3 67.0 67.7 66.9
2000 57.8 59.2 60.7 59.9 60.5 65.9 66.9 68.8 66.6 69.1 65.0 67.4 68.8 67.0 68.5 67.5 69.1 69.8 69.4 69.7
4000 70.4 63.0 72.2 63.4 71.8 86.4 69.7 84.7 69.7 85.7 79.7 70.9 79.7 70.7 79.5 77.8 70.3 79.2 70.0 79.1

de ru
0 49.2 0.1 0.1 61.8 0.0 34.5 0.5 0.2 59.2 0.3 57.3 0.0 0.0 0.1 0.1 55.9 0.0 0.0 4.4 0.0
25 61.5 61.9 59.3 61.7 59.1 58.8 59.5 56.7 59.3 56.8 66.2 67.8 66.3 67.7 66.1 63.0 64.4 62.6 63.9 62.0
50 61.5 62.1 59.9 62.1 59.3 59.0 59.6 56.5 59.1 56.5 66.5 67.6 66.0 67.5 66.5 63.4 64.4 62.5 63.7 61.5
75 61.5 62.0 59.6 62.3 59.7 59.0 59.5 56.6 59.4 57.1 66.7 67.8 66.6 68.1 67.0 62.7 64.2 62.6 63.9 61.6
100 62.1 62.3 60.1 62.2 59.7 59.4 59.5 57.1 59.4 56.8 66.8 68.3 67.2 67.9 66.4 62.7 64.0 61.6 63.8 61.3
200 62.0 62.5 60.7 62.4 60.3 59.7 60.0 58.1 60.0 57.6 66.6 68.7 67.5 68.6 67.1 63.1 64.5 62.2 64.4 61.9
500 62.8 63.8 61.9 63.8 61.8 60.4 61.1 59.3 61.0 59.5 67.7 69.0 68.8 68.9 68.2 63.7 65.0 63.8 64.8 64.1
1000 63.5 64.1 63.0 64.1 63.1 61.4 62.3 61.4 62.3 61.9 68.3 70.3 69.9 70.4 69.8 64.0 66.5 67.1 66.7 66.5
2000 65.2 66.6 69.6 66.3 69.4 64.0 65.4 68.2 65.1 67.9 69.5 72.2 74.0 72.6 74.2 68.5 69.5 72.7 69.3 72.5
4000 74.4 73.2 79.7 72.9 79.5 71.4 67.0 77.6 67.2 77.6 83.8 78.3 86.5 79.3 86.5 89.3 77.4 89.3 77.4 89.3

et ta
0 0.9 0.0 0.0 0.2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.9 0.1 0.0 0.6 0.0
25 51.8 60.0 2.6 60.4 5.9 66.4 69.4 8.9 70.2 15.0 5.8 2.1 0.5 2.2 0.6 46.1 51.0 2.0 51.4 2.4
50 59.3 61.0 59.2 60.9 58.4 66.3 69.4 66.2 70.2 66.6 33.6 40.5 2.1 40.2 10.5 46.6 50.7 47.9 52.0 46.3
75 58.8 60.7 58.7 60.6 58.6 66.6 68.8 66.4 69.8 66.5 38.3 40.0 33.5 40.4 35.7 50.0 52.0 47.6 52.4 46.9
100 59.3 61.0 58.3 61.1 59.0 66.6 69.8 66.7 70.2 66.7 39.5 40.5 35.2 40.2 36.8 50.5 51.5 48.2 52.5 47.9
200 59.0 61.3 60.4 61.5 59.9 66.7 70.2 67.7 70.5 67.3 40.2 40.3 36.6 40.5 36.2 50.8 52.2 48.1 52.9 49.3
500 59.4 62.9 61.3 63.2 60.3 68.5 70.8 69.7 71.5 69.0 40.0 41.5 38.7 40.9 39.1 50.0 53.0 51.4 53.0 50.9
1000 60.1 64.3 63.9 64.3 63.4 70.4 72.5 69.9 72.5 70.1 38.2 41.3 41.7 41.6 40.7 50.5 53.0 52.3 53.7 51.2
2000 64.2 66.0 67.7 66.6 67.4 74.2 73.5 74.8 74.1 75.0 40.7 43.5 43.7 42.7 44.2 55.1 55.6 56.6 55.3 56.2
4000 77.4 72.5 80.2 71.7 80.2 86.4 80.7 87.2 80.7 87.2 49.6 43.7 52.4 44.0 51.7 73.8 64.4 71.6 65.3 71.6

fa vi
0 45.2 0.1 0.0 0.5 0.0 0.2 0.2 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.1 0.1 0.4 0.1 0.9
25 46.7 54.3 1.0 54.4 4.5 47.6 55.1 1.8 55.1 2.0 0.4 0.4 0.1 0.4 0.2 44.1 1.3 0.3 5.3 0.2
50 52.9 54.0 51.6 53.8 51.2 47.7 55.2 51.6 54.9 52.3 42.6 2.4 0.2 5.2 0.4 48.9 58.8 1.2 59.1 2.1
75 53.1 54.5 52.0 54.1 51.9 54.0 55.4 52.7 55.3 52.0 46.5 54.5 8.8 55.0 1.2 49.4 59.3 28.0 59.6 54.4
100 53.0 54.2 52.5 54.3 52.3 54.1 55.0 52.5 55.5 52.7 47.8 55.4 22.3 55.6 36.2 59.4 59.1 56.6 59.3 56.3
200 53.3 54.3 52.3 54.8 52.2 54.2 55.2 53.0 54.6 51.9 57.8 58.0 55.4 57.8 56.0 60.1 60.7 58.7 61.2 57.7
500 53.3 55.5 53.4 55.5 53.1 54.3 55.7 53.4 56.1 52.7 59.2 59.6 59.0 60.0 58.3 61.4 63.4 61.9 63.5 60.8
1000 52.9 56.0 54.8 56.3 54.8 54.2 55.7 54.2 55.6 54.1 59.7 63.5 61.2 63.6 61.2 64.3 67.1 65.8 68.1 65.3
2000 54.8 57.7 58.6 58.0 58.4 54.5 56.9 57.7 57.5 56.9 62.1 66.7 66.7 67.3 65.8 68.0 73.2 71.8 73.5 71.5
4000 65.9 62.9 67.2 62.4 67.4 65.6 61.0 67.7 60.1 67.0 78.3 72.8 80.3 73.0 80.5 82.3 81.0 84.6 80.1 84.3

id zh
0 15.5 0.6 0.0 4.4 0.0 58.2 0.0 0.0 1.2 0.0 0.3 0.2 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0
25 55.9 65.9 1.4 65.8 0.6 59.5 66.8 0.4 66.7 1.8 13.7 52.2 1.7 52.7 1.7 14.6 51.7 0.8 48.1 0.8
50 64.7 65.8 63.4 66.0 63.2 65.4 66.6 64.4 67.0 64.0 52.9 52.6 47.6 52.6 46.2 52.5 51.7 48.0 50.5 47.3
75 64.9 66.1 64.0 66.0 63.3 65.8 66.6 64.1 66.7 64.2 53.5 52.3 48.3 51.6 46.4 51.9 51.2 48.5 51.1 48.0
100 65.2 66.6 63.6 66.2 63.2 66.0 67.0 64.4 67.1 63.9 53.2 51.9 49.4 51.6 47.3 52.1 51.1 48.1 51.0 48.0
200 64.9 66.7 64.8 66.8 65.0 66.5 67.4 64.9 67.3 65.0 53.4 52.7 49.6 52.6 49.2 52.6 51.6 49.3 51.4 48.9
500 66.4 68.0 66.8 68.0 66.7 67.4 68.9 67.1 69.1 67.2 53.3 54.0 52.0 53.1 51.1 52.8 53.0 50.9 52.6 50.4
1000 67.8 69.9 69.8 70.1 69.7 67.6 70.0 68.9 70.0 68.3 54.2 54.9 53.2 55.4 52.2 54.3 54.7 53.0 54.3 52.0
2000 70.7 72.2 74.9 72.1 74.2 70.2 72.2 73.0 72.5 72.9 56.0 59.2 59.1 58.0 57.7 54.5 57.6 57.8 57.6 56.8
4000 84.3 77.1 86.2 76.8 86.2 80.6 78.0 84.0 78.2 83.7 67.5 66.9 74.5 66.4 75.1 66.4 65.8 72.9 65.3 73.3

Table A4: Full Results: P@1 of Combination Experiments. SGM-PP starts with SGM, ends with Procrustes. SGM-
PS: IterProc then SGM. GOAT-PP: start GOAT, end Proc. GOAT-PG: IterProc then GOAT. Previous best of all other
experiments is in the Prev column. Prev here includes iterative results from Table A3.
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