
Bilingual Lexicon Induction for Low-Resource Languages
using Graph Matching via Optimal Transport

Anonymous ACL submission

Abstract
Bilingual lexicons form a critical component of001
various NLP applications, including unsuper-002
vised and semisupervised machine translation003
and crosslingual information retrieval. In this004
work, we improve bilingual lexicon induction005
performance across 32 diverse language pairs006
with a graph-matching method based on opti-007
mal transport. The method is especially strong008
with very low amounts of supervision.009

1 Introduction010

Bilingual lexicon induction (BLI) from word em-011

bedding spaces is a popular task with a large body012

of existing literature (e.g. Artetxe et al., 2018; Con-013

neau et al., 2018; Patra et al., 2019; Shi et al.,014

2021; Zhao et al., 2020b). The goal is to ex-015

tract a dictionary of translation pairs given sepa-016

rate language-specific embedding spaces, which017

can then be used to bootstrap downstream tasks018

such as cross-lingual information retrieval and019

unsupervised/semi-supervised machine translation.020

A great challenge across NLP is maintaining021

performance in low-resource scenarios. A com-022

mon criticism of the BLI and low-resource MT023

literature is that while claims are made about di-024

verse and under-resourced languages, research is025

often performed on down-sampled corpora of high-026

resource, highly-related languages on similar do-027

mains (Artetxe et al., 2020). Such corpora are not028

good proxies for true low-resource languages ow-029

ing to data challenges such as dissimilar scripts,030

domain shift, noise, and lack of sufficient bitext031

(Marchisio et al., 2020). These differences can lead032

to dissimilarity between the embedding spaces (de-033

creasing isometry), causing BLI to fail (Søgaard034

et al., 2018; Nakashole and Flauger, 2018; Ormaz-035

abal et al., 2019; Glavaš et al., 2019; Vulić et al.,036

2019; Patra et al., 2019; Marchisio et al., 2020).037

There are two axes by which a language dataset038

is considered “low-resource". First, the language it-039

self may be a low-resource language: one for which040

little bitext and/or monolingual text exists. Even 041

for high-resource languages, the long tail of words 042

may have poorly trained word embeddings due rar- 043

ity in the dataset (Gong et al., 2018; Czarnowska 044

et al., 2019). In the data-poor setting of true 045

low-resource languages, a great majority of words 046

have little representation in the corpus, resulting in 047

poorly-trained embeddings for a large proportion 048

of them. The second axis is low-supervision. Here, 049

there are few ground-truth examples from which to 050

learn. For BLI from word embedding spaces, low- 051

supervision means there are few seeds from which 052

to induce a relationship between spaces, regardless 053

of the quality of the spaces themselves. 054

We bring a new algorithm for graph-matching 055

based on optimal transport (OT) to the NLP and 056

BLI literature. We evaluate using 32 diverse lan- 057

guage pairs under varying amounts of supervision. 058

The method works strikingly well across language 059

pairs, especially in low-supervision contexts. As 060

low-supervision on low-resource languages reflects 061

the real-world use case for BLI, this is an encour- 062

aging development on realistic scenarios. 063

2 Background 064

The typical baseline approach for BLI from word 065

embedding spaces assumes that spaces can be 066

mapped via linear transformation. Such methods 067

typically involve solutions to the Procrustes prob- 068

lem (see Gower et al. (2004) for a review). Alter- 069

natively, a graph-based view considers words as 070

nodes in undirected weighted graphs, where edges 071

are the distance between words. Methods taking 072

this view do not assume a linear mapping of the 073

spaces exists, allowing for more flexible matching. 074

BLI from word embedding spaces Assume 075

separately-trained monolingual word embedding 076

spaces: X ∈ Rn×d, Y ∈ Rm×d where n/m are 077

the source/target language vocabulary sizes and d is 078

the embedding dimension. We build the matrices X 079

1

and Y of seeds from X and Y, respectively, such080

that given s seed pairs (x1, y1), (x2, y2), ...(xs, ys),081

the first row of X is x1, the second row is x2, etc.082

We build Y analogously for the y-component of083

each seed pair. The goal is to recover matches for084

the X \X and/or Y \Y non-seed words.085

Procrustes Many BLI methods use solutions to086

the Procrustes problem (e.g. Artetxe et al., 2019b;087

Conneau et al., 2018; Patra et al., 2019). These088

compute the optimal transform W to map seeds:089

min
W∈Rd×d

||XW −Y||2F (1)090

Once solved for W, then XW and Y live in a091

shared space and translation pairs can be extracted092

via nearest-neighbor search. Constrained to the093

space of orthogonal matrices, Eq. 1 has a simple094

closed-form solution (Schönemann, 1966):095

W = VUT UΣV = SVD(Y
T
X)096

Graph View Here, words are nodes in mono-097

lingual graphs Gx,Gy ∈ Rn×n. , and cells in098

Gx,Gy are edge weights representing distance099

between words. We use cosine similarity, which100

is common in NLP. The objective function is Eq.101

2, where Π is the set of permutation matrices.1102

Intuitively, PGyP
T finds the optimal relabeling103

of Gy to align with Gx. This “minimizes edge-104

disagreements" between Gx and Gy. This graph-105

matching objective is NP-Hard. Eq. 3 is equivalent.106

107

min
P∈Π

||Gx −PGyP
T||2F (2)108

109
max
P∈Π

trace(Gx
TPGyP

T) (3)110

Ex. Take source words x1, x2. We wish to recover111

valid translations yx1 , yx2 . If distance(x1, x2)=112

distance(yx1 , yx2), a solution P can have an edge-113

disagreement of 0 here. We then extract yx1 , yx2114

as translations of x1, x2. In reality, though, it is un-115

likely that distance(x1, x2) = distance(yx1 , yx2).116

Because Eq. 2 finds the ideal P to minimize edge117

disagreements over the entire graphs, we hope that118

nodes paired by P are valid translations. If Gx and119

Gy are isomorphic and there is a unique solution,120

then P correctly recovers all translations.121

Graph-matching is an active research field and122

is computationally prohibitive on large graphs,123

but approximation algorithms exist. BLI involves124

matching large, non-isomorphic graphs—among125

the greatest challenges for graph-matching.126

1A permutation matrix represents a one-to-one mapping:
There is a single 1 in each row and column, and 0 elsewhere.

2.1 FAQ Algorithm for Graph Matching 127

Vogelstein et al. (2015)’s Fast Approximate 128

Quadratic Assignment Problem algorithm (FAQ) 129

uses gradient ascent to approximate a solution to 130

Eq. 2. Motivated by “connectonomics" in neuro- 131

science (the study of brain graphs with biological 132

[groups of] neurons as nodes and neuronal connec- 133

tions as edges), FAQ was designed to perform ac- 134

curately and efficiently on large graphs. 135

FAQ relaxes the search space of Eq. 3 to allow 136

any doubly-stochastic matrix (the set D). Each cell 137

in a doubly-stochastic matrix is a non-negative real 138

number and each row/column sums to 1. The set 139

D thus contains Π but is much larger. Relaxing the 140

search space makes it easier to optimize Eq. 3 via 141

gradient ascent/descent.2 FAQ solves the objective 142

with the Frank-Wolfe method (Frank et al., 1956) 143

then projects back to a permutation matrix. 144

Algorithm 1 is FAQ; f (P) = tr(Gx
TPGyP

T). 145

Step 2 finds a permutation matrix approximation 146

Q{i} to P {i} in the direction of the gradient. Find- 147

ing such a P requires approximation when P is 148

high-dimensional. Here, it is solved via the Hun- 149

garian Algorithm (Kuhn, 1955; Jonker and Vol- 150

genant, 1987), whose solution is a permutation ma- 151

trix. Finally, Pn is projected back onto to the space 152

of permutation matrices. Seeded Graph Matching 153

(SGM; Fishkind et al., 2019) is a variant of FAQ 154

allowing for supervision, and was recently shown 155

to be effective for BLI by Marchisio et al. (2021).

Algorithm 1 FAQ Algorithm for Graph Matching

Let: Gx,Gy ∈ Rn×n, P {0} ∈ D (dbl-stoch.)
while stopping criterion not met do

1. Calculate ∇f(P {i}):
∇f(P {i}) = GxP

{i}GT
y +GT

xP
{i}Gy

2. Q{i} = permutation matrix approx. to ∇f(P {i})
via Hungarian Algorithm

3. Calculate step size:
argmax
α∈[0,1]

f (αP {i} + (1− α)Q{i})

4. Update P {i+1} := αP {i} + (1− α)Q{i}

end while
return permutation matrix approx. to P {n} via Hung. Alg.

156
Strengths/Weaknesses FAQ/SGM perform well 157

solving the exact graph-matching problem: where 158

graphs are isomorphic and a full matching exists. 159

In reality, however, large graphs are rarely isomor- 160

phic. For BLI, languages have differing vocabu- 161

lary size, synonyms/antonyms, and idiosyncratic 162

2“descent" for the Quadratic Assignment Problem, “as-
cent" for the Graph Matching Problem. The optimization ob-
jectives are equivalent: See Vogelstein et al. (2015) for a proof.

2

concepts; it is more natural to assume that an exact163

matching between word spaces does not exist, and164

that multiple matchings may be equally valid. This165

is an inexact graph-matching problem. FAQ gen-166

erally performs poorly finding non-seeded inexact167

matchings (Saad-Eldin et al., 2021).168

2.2 GOAT169

Graph Matching via OptimAl Transport (GOAT)170

(Saad-Eldin et al., 2021) is a new graph-matching171

method which uses advances in OT. Similar to172

SGM, GOAT amends FAQ and can use seeds.173

GOAT has been successful for the inexact graph-174

matching problem on non-isomorphic graphs:175

whereas FAQ rapidly fails on non-isomorphic176

graphs, GOAT maintains strong performance.177

Optimal Transport OT is an optimization prob-178

lem concerned with the most efficient way to trans-179

fer probability mass from distribution µ to distribu-180

tion v . Formally, discrete3 OT is the minimization181

of the inner product of a transportation “plan" ma-182

trix P with a cost matrix C, as in Eq. 4. ⟨·, ·⟩ is the183

Frobenius inner product.184

P ∗ = argmin
P∈U(r,c)

⟨P,C⟩ (4)185

P is an element of the “transportation polytope"186

U(r, c)—the set of matrices whose rows sum to r187

and columns sum to c. The Hungarian Algorithm188

approximately solves OT, but the search space is189

restricted to permutation matrices.190

Sinkhorn: Lightspeed OT Cuturi (2013) intro-191

duce Sinkhorn distance, an approximation of OT192

distance that can be solved quickly and accurately193

by adding an entropy penalty h to Eq. 4. Adding194

h makes the objective easier and more efficient to195

compute, and encourages “intermediary" solutions196

similar to that seen in the Intuition subsection.197

P λ = argmin
P∈U(r,c)

⟨P,C⟩ − 1

λ
h(P) (5)198

As λ → ∞, P λ approaches the ideal transportation199

matrix P ∗. Cuturi (2013) show that Eq. 5 can be200

computed using Sinkhorn’s algorithm (Sinkhorn,201

1967). The interested reader can see details of202

the algorithm in Cuturi (2013); Peyre and Cuturi203

(2019). Unlike the Hungarian Algorithm, Sinkhorn204

has no restriction to a permutation matrix solution205

and can be solved over any U(r, c).206

Sinkhorn in GOAT GOAT uses Cuturi (2013)’s207

algorithm to solve Eq. 5 over U(1, 1), the set208

3As ours is, as we compute over matrices.

of doubly-stochastic matrices D. They call this 209

the “doubly stochastic OT problem", and the algo- 210

rithm that solves it “Lightspeed Optimal Transport" 211

(LOT). Although Sinkhorn distance was created for 212

efficiency, Saad-Eldin et al. (2021) find that using 213

the matrix P λ that minimizes Sinkhorn distance 214

also improves matching performance on large and 215

non-isometric graphs. Algorithm 2 is GOAT.

Algorithm 2 GOAT

Let: Gx,Gy ∈ Rn×n, P {0} ∈ D (dbl-stoch.)
while stopping criterion not met do

1. Calculate ∇f(P {i}):
∇f(P {i}) = GxP

{i}GT
y +GT

xP
{i}Gy

2. Q{i} = dbl-stoch. approx. to ∇f(P {i}) via LOT.
3. Calculate step size:

argmax
α∈[0,1]

f (αP {i} + (1− α)Q{i})

4. Update P {i+1} := αP {i} + (1− α)Q{i}

end while
return permutation matrix approx. to P {n} via Hung. Alg.

216

Intuition The critical difference between 217

SGM/FAQ and GOAT is how each calculates step 218

direction based on the gradient. Under the hood, 219

each algorithm maximizes trace(QT∇f(P {i}) to 220

compute Q{i} (the step direction) in Step 2 of their 221

respective algorithms. See Saad-Eldin et al. (2021) 222

or Fishkind et al. (2019) for a derivation. FAQ uses 223

the Hungarian Algorithm and GOAT uses LOT. 224

For ∇f(P {i}) below, there are two valid permu- 225

tation matrices Q1 and Q2 that maximize the trace. 226

When multiple solutions exist, the Hungarian Algo- 227

rithm chooses one arbitrarily. Thus, updates of P 228

in FAQ are constrained to be permutation matrices. 229

∇f(P {i}) =

0 3 0
2 1 2
0 0 0

 230

231

Q1 =

0 1 0
0 0 1
1 0 0

 , Q2 =

0 1 0
1 0 0
0 0 1

 232

233

trace(QT
1 ∇f(P {i})) = trace(QT

2 ∇f(P {i})) = 5 234

Concerningly, Saad-Eldin et al. (2021) find that 235

seed order influences the solution in a popular im- 236

plementation of the Hungarian Algorithm. Since 237

BLI is a high-dimensional many-to-many task, ar- 238

bitrary choices could meaningfully affect the result. 239

GOAT, on the other hand, can step in the direc- 240

tion of a doubly-stochastic matrix. Saad-Eldin et al. 241

(2021) prove that given multiple permutation matri- 242

ces that equally approximate the gradient at P {i}, 243

3

Figure 1: Optimization step of FAQ vs. GOAT. FAQ
arbitrarily chooses the direction of a permutation matrix.
GOAT averages perm. matrices to take a smoother path.

any convex linear combination is a doubly stochas-244

tic matrix that equally approximates the gradient:245

Pλ =
n∑
i

λiPi s.t. λ1+...+λn = 1; λi ∈ [0, 1]246

Pλ is a weighted combination of many valid247

solutions—obviating the need to arbitrarily select248

one for the gradient-based update. LOT’s output249

of a doubly-stochastic matrix in Step 2 is similar250

to finding a Pλ in that it needn’t discretize to a sin-251

gle permutation matrix. In this way, GOAT can252

be thought of as taking a step that incorporates253

many possible permutation solutions. For instance,254

GOAT may select Qds =
1
2Q1 +

1
2Q2, which also255

maximizes trace(QT∇f(P {i}).256

Qds =

0 1 0
1
2 0 1

2
1
2 0 1

2

257

258
trace(QT

ds∇f(P {i})) = 5259

Thus whereas FAQ takes non-deterministic260

“choppy" update steps, GOAT optimizes smoothly261

and deterministically. Figure 1 is an illustration.262

3 Experimental Setup263

We run Procrustes, SGM, and GOAT on 32 lan-264

guage pairs. We also run system combination ex-265

periments similar to Marchisio et al. (2021). We266

evaluate with the standard precision@1 (P@1).267

We induce lexicons using (1) the closed-form268

solution to the orthogonal Procrustes problem of269

Eq. 1, extracting nearest neighbors using CSLS270

(Conneau et al., 2018), (2) SGM, solving the seeded271

version of Eq. 2, and (3) GOAT. Word graphs are272

Gx = XXT, Gy = YYT.273

System Combination We perform system com-274

bination experiments analogous to those of Marchi-275

Figure 2: Combo system: Iter.Proc. & GOAT. (1) run
GOAT in fwd/rev directions (2) intersect hypotheses,
pass to IterProc, (3) run IterProc fwd/rev (4) intersect
hypotheses, pass to Step (1). Repeat N cycles. (End)
Get final translations from fwd GOAT or IterProc.

sio et al. (2021), incorporating GOAT. Figure 2 276

shows the system, which is made of two compo- 277

nents: GOAT run in forward and reverse directions, 278

and “Iterative Procrustes with Stochastic-Add" 279

from Marchisio et al. (2021). This iterative version 280

of Procrustes runs Procrustes in source→target and 281

target→source directions and feeds H random hy- 282

potheses from the intersection of both directions 283

into another run of Procrustes with the gold seeds. 284

The process repeats for I iterations, adding H more 285

random hypotheses each time until all are chosen. 286

We set H = 100 and I = 5, as in the original work. 287

3.1 Data & Software 288

We use publicly-available fastText word embed- 289

dings (Bojanowski et al., 2017)4 which we normal- 290

ize, mean-center, and renormalize (Artetxe et al., 291

2018; Zhang et al., 2019) and bilingual dictionaries 292

from MUSE5 filtered to be one-to-one.6 For lan- 293

guages with 200,000+ embeddings, we use the first 294

200,000. Dictionary and embeddings space sizes 295

are in Appendix Table A1. Each language pair has 296

∼4100-4900 translation pairs post-filtering. We 297

choose 0-4000 pairs in frequency order as seeds 298

for experiments, leaving the rest as the test set.7 299

For SGM and GOAT, we use the publicly-available 300

implementations from the GOAT repository8 with 301

default hyperparameters (barycenter initialization). 302

We set reg=500 for GOAT. For system combination 303

experiments, we amend the code from Marchisio 304

et al. (2021)9 to incorporate GOAT. 305

4https://fasttext.cc/docs/en/pretrained-vectors.html
5https://github.com/facebookresearch/MUSE
6For each source word, keep the first unused target word.

Targets are in arbitrary order, so this is random sampling.
7Ex. En-De with 100 seeds has 4803 test items. With 1000

seeds, the test set contains 3903 items.
8https://github.com/neurodata/goat. Some exps. used

SGM from Graspologic (github.com/microsoft/graspologic;
Chung et al., 2019), but they are mathematically equal.

9https://github.com/kellymarchisio/euc-v-graph-bli

4

Figure 3: Procrustes (Proc) (dashed) vs. SGM (dotted) vs. GOAT (solid), visualized. X-axis: # of seeds (log scale).
Y-axis: Precision@1 (↑ is better). Procrustes grows slowly, needing many seeds. GOAT is typically best.

4 Results306

Results of Procrustes vs. SGM vs. GOAT are in307

Table 2, visualized in Figure 3.308

Procrustes vs. SGM Marchisio et al. (2021) con-309

clude that SGM strongly outperforms Procrustes310

for English→German and Russian→English with311

100+ seeds. We find that the trend holds across di-312

verse language pairs, with the effect even stronger313

with less supervision. SGM performs reasonably314

with only 50 seeds for nearly all language, and315

with only 25 seeds in many. Chinese↔English316

and Japanese↔English perform relatively worse,317

and highly-related languages perform best: French,318

Spanish, and Italian. German↔English per-319

formance is low relative to some less-related320

languages, which have surprisingly strong per-321

formance from SGM: Indonesian↔English and322

Macedonian↔English score P@1≈ 50-60, even323

with low supervision. Procrustes does not perform324

above ∼10 for any language pair with ≤ 100 seeds,325

whereas SGM exceeds P@1 = 10 with only 25326

seeds for 25 of 32 pairs.327

SGM vs. GOAT GOAT improves considerably328

over SGM for nearly all language pairs, and the ef-329

fect is particularly strong with very low amounts330

of seeds and less-related languages. GOAT im-331

proves upon SGM by +19.0, +8.5, and +7.9 on332

English→Bengali with 25, 50, and 75 seeds, re-333

spectively. As the major use case of low-resource334

BLI and MT is dissimilar languages with low su-335

pervision, this is an encouraging result for real-336

world applications. It generally takes 200+ seeds337

EVS GH EVS GH

bn 37.79 0.49 it 22.42 0.20
bs 35.93 0.41 ja 894.20 0.55
de 11.49 0.31 mk 151.02 0.19
es 9.91 0.21 ms 153.42 0.49
et 35.22 0.68 ru 14.19 0.46
fa 86.98 0.39 ta 56.66 0.26
fr 27.92 0.17 vi 256.28 0.42
id 188.98 0.39 zh 519.82 0.61

Table 1: Degree of isomorphism of embedding spaces in
relation to English. EVS = Eigenvector Similarity. GH
= Gromov-Hausdorff Distance. ↓: more isomorphic.

for SGM to achieve similar scores to GOAT with 338

just 25 seeds. For some highly-related languages, 339

GOAT performs well even with no seeds (unsu- 340

pervised), where both SGM and Procrustes fail. 341

GOAT scores 48.8 on English→German, 34.5 on 342

German→English, 62.4 on English→Spanish, and 343

19.6 on Spanish→English with no supervision. 344

4.1 Isomorphism of Embedding Spaces 345

Eigenvector similarity (EVS; Søgaard et al., 346

2018) measures isomorphism of embedding spaces 347

based on the difference of Laplacian eigenvalues. 348

Gromov-Hausdorff distance (GH) measures dis- 349

tance based on nearest neighbors after an optimal 350

orthogonal transformation (Patra et al., 2019). EVS 351

and GH are symmetric, and lower means more iso- 352

metric spaces. Refer to the original papers for math- 353

ematical descriptions. We compute the metrics over 354

the word embedding using scripts from Vulić et al. 355

(2020)10 and show results in Table 1. We observe a 356

moderate correlation between EVS and GH (Spear- 357

man’s ρ = 0.434, Pearson’s r = 0.44). 358

10https://github.com/cambridgeltl/iso-study/scripts

5

en
-b

n
en

-b
s

en
-e

t
en

-f
a

en
-i

d
en

-m
k

en
-m

s
en

-t
a

Se
ed

s
P

S
G

∆
P

S
G

∆
P

S
G

∆
P

S
G

∆
P

S
G

∆
P

S
G

∆
P

S
G

∆
P

S
G

∆
0

0.
0

0.
0

0.
1

(+
0.

1)
0.

0
0.

0
0.

0
(+

0.
0)

0.
0

0.
0

0.
2

(+
0.

2)
0.

0
0.

2
0.

5
(+

0.
3)

0.
0

0.
2

2.
9

(+
2.

7)
0.

1
0.

0
0.

1
(+

0.
1)

0.
0

0.
0

0.
1

(+
0.

1)
0.

0
0.

0
0.

0
(+

0.
0)

25
0.

0
12

.9
31

.9
(+

19
.0

)
0.

1
37

.0
48

.1
(+

11
.1

)
0.

1
37

.5
47

.0
(+

9.
5)

0.
2

35
.2

42
.7

(+
7.

5)
0.

1
49

.2
51

.3
(+

2.
1)

0.
1

51
.0

55
.8

(+
4.

8)
0.

3
24

.9
36

.6
(+

11
.7

)
0.

1
1.

5
1.

8
(+

0.
3)

50
0.

2
24

.7
33

.2
(+

8.
5)

0.
3

39
.6

47
.9

(+
8.

3)
0.

7
39

.1
47

.4
(+

8.
3)

0.
6

37
.0

42
.6

(+
5.

6)
0.

4
46

.8
52

.9
(+

6.
1)

0.
4

51
.2

56
.2

(+
5.

0)
0.

5
29

.3
38

.9
(+

9.
6)

0.
2

21
.5

30
.5

(+
9.

0)
75

0.
5

25
.2

33
.1

(+
7.

9)
0.

6
40

.4
47

.9
(+

7.
5)

1.
3

40
.6

47
.5

(+
6.

9)
0.

9
37

.1
42

.9
(+

5.
8)

1.
1

49
.8

53
.6

(+
3.

8)
1.

0
51

.0
56

.5
(+

5.
5)

1.
2

37
.0

42
.6

(+
5.

6)
0.

7
22

.8
30

.5
(+

7.
7)

10
0

0.
7

27
.8

33
.8

(+
6.

0)
0.

7
40

.7
47

.7
(+

7.
0)

1.
7

41
.2

47
.3

(+
6.

1)
1.

6
36

.7
43

.0
(+

6.
3)

2.
3

51
.1

54
.3

(+
3.

2)
1.

6
52

.0
56

.2
(+

4.
2)

1.
9

39
.1

42
.9

(+
3.

8)
1.

0
23

.6
30

.6
(+

7.
0)

20
0

4.
4

30
.9

35
.4

(+
4.

5)
7.

0
44

.5
49

.9
(+

5.
4)

9.
0

46
.0

49
.6

(+
3.

6)
7.

0
40

.0
44

.4
(+

4.
4)

13
.0

54
.1

55
.9

(+
1.

8)
12

.2
53

.3
57

.6
(+

4.
3)

11
.5

43
.3

46
.0

(+
2.

7)
4.

1
26

.7
31

.0
(+

4.
3)

50
0

20
.3

37
.9

39
.7

(+
1.

8)
26

.1
50

.6
52

.7
(+

2.
1)

31
.1

53
.2

54
.4

(+
1.

2)
26

.8
44

.7
46

.8
(+

2.
1)

43
.8

60
.2

59
.2

(-
1.

0)
39

.0
58

.4
60

.3
(+

1.
9)

37
.1

52
.6

51
.5

(-
1.

1)
17

.0
33

.5
33

.9
(+

0.
4)

10
00

30
.6

40
.7

41
.3

(+
0.

6)
39

.1
54

.4
55

.1
(+

0.
7)

45
.5

57
.0

57
.3

(+
0.

3)
40

.9
48

.2
49

.9
(+

1.
7)

58
.0

64
.5

63
.6

(-
0.

9)
51

.0
60

.3
61

.8
(+

1.
5)

48
.9

58
.9

58
.3

(-
0.

6)
26

.9
36

.2
36

.2
(+

0.
0)

20
00

36
.9

45
.9

45
.5

(-
0.

4)
45

.9
58

.1
57

.1
(-

1.
0)

53
.1

63
.4

64
.0

(+
0.

6)
47

.6
54

.1
54

.7
(+

0.
6)

65
.0

70
.7

69
.5

(-
1.

2)
56

.3
63

.9
64

.6
(+

0.
7)

55
.3

65
.0

63
.0

(-
2.

0)
32

.3
40

.6
39

.8
(-

0.
8)

40
00

38
.3

60
.3

59
.0

(-
1.

3)
48

.4
70

.6
69

.8
(-

0.
8)

59
.3

77
.1

77
.4

(+
0.

3)
51

.1
65

.5
65

.9
(+

0.
4)

71
.4

84
.1

84
.3

(+
0.

2)
59

.9
75

.6
75

.5
(-

0.
1)

58
.6

79
.3

79
.1

(-
0.

2)
33

.5
49

.1
48

.5
(-

0.
6)

en
-v

i
en

-z
h

en
-r

u
en

-d
e

en
-f

r
en

-e
s

en
-i

t
en

-j
a

Se
ed

s
P

S
G

∆
P

S
G

∆
P

S
G

∆
P

S
G

∆
P

S
G

∆
P

S
G

∆
P

S
G

∆
P

S
G

∆
0

0.
1

0.
1

0.
0

(-
0.

1)
0.

0
0.

0
0.

0
(+

0.
0)

0.
0

0.
0

0.
0

(+
0.

0)
0.

0
0.

4
48

.8
(+

48
.4

)
0.

0
0.

5
0.

4
(-

0.
1)

0.
0

0.
2

62
.4

(+
62

.2
)

0.
0

0.
1

1.
3

(+
1.

2)
0.

0
0.

0
0.

0
(+

0.
0)

25
0.

2
0.

4
0.

4
(+

0.
0)

0.
3

8.
7

7.
9

(-
0.

8)
0.

4
49

.6
55

.7
(+

6.
1)

0.
3

44
.8

48
.5

(+
3.

7)
0.

4
58

.6
62

.4
(+

3.
8)

0.
3

59
.5

62
.8

(+
3.

3)
0.

4
60

.0
63

.0
(+

3.
0)

0.
0

1.
1

1.
0

(-
0.

1)
50

0.
1

1.
6

4.
0

(+
2.

4)
0.

6
15

.6
15

.0
(-

0.
6)

1.
0

50
.2

55
.6

(+
5.

4)
0.

8
44

.6
48

.7
(+

4.
1)

1.
1

58
.1

62
.6

(+
4.

5)
1.

1
58

.3
62

.4
(+

4.
1)

1.
4

58
.3

62
.4

(+
4.

1)
0.

4
9.

1
9.

3
(+

0.
2)

75
0.

3
13

.8
22

.9
(+

9.
1)

1.
6

17
.4

14
.8

(-
2.

6)
1.

9
50

.5
55

.7
(+

5.
2)

2.
6

45
.3

48
.8

(+
3.

5)
3.

0
59

.2
62

.5
(+

3.
3)

3.
0

60
.2

63
.6

(+
3.

4)
3.

4
61

.7
63

.7
(+

2.
0)

0.
9

10
.3

10
.7

(+
0.

4)
10

0
0.

5
18

.3
30

.2
(+

11
.9

)
3.

1
18

.5
15

.3
(-

3.
2)

3.
1

51
.7

55
.9

(+
4.

2)
3.

6
45

.9
49

.0
(+

3.
1)

5.
8

59
.4

62
.3

(+
2.

9)
5.

0
60

.5
63

.3
(+

2.
8)

5.
9

60
.7

63
.3

(+
2.

6)
1.

3
14

.4
13

.0
(-

1.
4)

20
0

2.
9

34
.8

40
.6

(+
5.

8)
12

.0
22

.7
17

.3
(-

5.
4)

16
.5

54
.3

57
.3

(+
3.

0)
16

.1
47

.5
50

.2
(+

2.
7)

24
.9

60
.9

63
.2

(+
2.

3)
27

.2
62

.1
63

.9
(+

1.
8)

24
.9

63
.2

64
.4

(+
1.

2)
8.

3
20

.7
15

.6
(-

5.
1)

50
0

19
.2

43
.4

47
.9

(+
4.

5)
33

.9
30

.3
22

.5
(-

7.
8)

45
.8

58
.7

59
.4

(+
0.

7)
44

.9
51

.9
52

.4
(+

0.
5)

57
.9

65
.2

65
.4

(+
0.

2)
59

.4
65

.7
66

.1
(+

0.
4)

57
.3

67
.9

67
.5

(-
0.

4)
33

.3
28

.3
20

.5
(-

7.
8)

10
00

37
.4

53
.7

54
.9

(+
1.

2)
44

.4
34

.5
29

.5
(-

5.
0)

58
.3

61
.7

61
.5

(-
0.

2)
57

.2
54

.9
54

.5
(-

0.
4)

67
.9

68
.3

67
.9

(-
0.

4)
69

.6
68

.8
69

.0
(+

0.
2)

69
.8

70
.5

70
.3

(-
0.

2)
47

.8
35

.6
27

.4
(-

8.
2)

20
00

50
.7

60
.7

61
.1

(+
0.

4)
49

.3
45

.6
41

.7
(-

3.
9)

65
.8

67
.4

67
.5

(+
0.

1)
63

.1
61

.4
61

.8
(+

0.
4)

72
.5

72
.9

72
.2

(-
0.

7)
74

.1
75

.2
74

.9
(-

0.
3)

75
.6

75
.9

76
.0

(+
0.

1)
56

.0
45

.1
40

.3
(-

4.
8)

40
00

59
.4

77
.9

77
.7

(-
0.

2)
58

.5
67

.5
67

.5
(+

0.
0)

73
.4

83
.3

81
.8

(-
1.

5)
70

.8
74

.2
74

.1
(-

0.
1)

78
.2

82
.3

82
.3

(+
0.

0)
78

.6
83

.1
82

.7
(-

0.
4)

77
.5

84
.3

83
.9

(-
0.

4)
61

.5
68

.7
68

.9
(+

0.
2)

bn
-e

n
bs

-e
n

et
-e

n
fa

-e
n

id
-e

n
m

k-
en

m
s-

en
ta

-e
n

Se
ed

s
P

S
G

∆
P

S
G

∆
P

S
G

∆
P

S
G

∆
P

S
G

∆
P

S
G

∆
P

S
G

∆
P

S
G

∆
0

0.
0

0.
0

0.
0

(+
0.

0)
0.

0
0.

0
0.

0
(+

0.
0)

0.
0

0.
1

0.
0

(-
0.

1)
0.

0
0.

0
0.

1
(+

0.
1)

0.
0

0.
1

1.
0

(+
0.

9)
0.

0
0.

0
0.

0
(+

0.
0)

0.
0

0.
0

0.
0

(+
0.

0)
0.

0
0.

0
0.

5
(+

0.
5)

25
0.

2
37

.2
44

.4
(+

7.
2)

0.
2

44
.7

54
.6

(+
9.

9)
0.

3
55

.9
63

.2
(+

7.
3)

0.
1

37
.1

45
.1

(+
8.

0)
0.

1
54

.6
58

.0
(+

3.
4)

0.
2

60
.1

63
.2

(+
3.

1)
0.

2
10

.0
38

.6
(+

28
.6

)
0.

2
35

.2
44

.4
(+

9.
2)

50
0.

5
39

.2
45

.0
(+

5.
8)

0.
3

45
.2

54
.6

(+
9.

4)
0.

8
56

.0
63

.3
(+

7.
3)

0.
3

38
.2

45
.3

(+
7.

1)
0.

5
52

.1
57

.1
(+

5.
0)

1.
2

60
.1

63
.5

(+
3.

4)
0.

6
51

.1
57

.2
(+

6.
1)

0.
6

37
.7

45
.1

(+
7.

4)
75

1.
0

39
.9

45
.2

(+
5.

3)
1.

1
47

.7
54

.6
(+

6.
9)

1.
7

57
.9

64
.2

(+
6.

3)
0.

8
39

.7
45

.8
(+

6.
1)

1.
4

52
.3

57
.0

(+
4.

7)
1.

8
60

.5
63

.6
(+

3.
1)

1.
9

51
.9

56
.8

(+
4.

9)
1.

1
40

.2
45

.1
(+

4.
9)

10
0

1.
4

40
.3

45
.5

(+
5.

2)
1.

9
48

.5
55

.5
(+

7.
0)

3.
2

58
.3

64
.3

(+
6.

0)
1.

5
39

.8
45

.6
(+

5.
8)

2.
9

53
.2

57
.8

(+
4.

6)
4.

4
61

.0
64

.4
(+

3.
4)

2.
9

53
.7

57
.7

(+
4.

0)
2.

1
39

.9
45

.4
(+

5.
5)

20
0

7.
6

43
.0

46
.6

(+
3.

6)
6.

8
50

.4
56

.2
(+

5.
8)

12
.6

60
.7

64
.8

(+
4.

1)
9.

9
42

.7
46

.8
(+

4.
1)

13
.3

55
.7

58
.3

(+
2.

6)
16

.5
62

.0
64

.5
(+

2.
5)

15
.5

56
.2

58
.9

(+
2.

7)
7.

4
43

.4
45

.8
(+

2.
4)

50
0

26
.7

48
.1

48
.7

(+
0.

6)
28

.0
55

.4
58

.9
(+

3.
5)

40
.0

64
.4

67
.1

(+
2.

7)
33

.4
46

.6
48

.0
(+

1.
4)

47
.3

60
.1

61
.1

(+
1.

0)
48

.6
65

.2
66

.3
(+

1.
1)

43
.7

58
.6

60
.7

(+
2.

1)
25

.5
47

.0
48

.2
(+

1.
2)

10
00

39
.0

51
.5

51
.3

(-
0.

2)
44

.7
59

.2
61

.6
(+

2.
4)

54
.6

67
.7

70
.0

(+
2.

3)
45

.9
48

.5
49

.6
(+

1.
1)

58
.5

63
.2

64
.1

(+
0.

9)
58

.5
66

.1
67

.9
(+

1.
8)

55
.7

61
.6

62
.3

(+
0.

7)
37

.1
49

.6
50

.3
(+

0.
7)

20
00

45
.2

55
.2

54
.2

(-
1.

0)
54

.5
64

.8
65

.9
(+

1.
1)

62
.6

72
.8

74
.2

(+
1.

4)
50

.3
53

.8
53

.6
(-

0.
2)

66
.0

70
.1

70
.1

(+
0.

0)
62

.6
71

.7
71

.6
(-

0.
1)

60
.2

67
.4

67
.2

(-
0.

2)
45

.2
55

.1
53

.5
(-

1.
6)

40
00

44
.8

65
.9

64
.9

(-
1.

0)
54

.4
83

.7
86

.1
(+

2.
4)

67
.0

86
.4

86
.1

(-
0.

3)
52

.1
65

.5
64

.8
(-

0.
7)

73
.2

80
.5

80
.5

(+
0.

0)
65

.3
88

.4
88

.8
(+

0.
4)

63
.1

77
.4

77
.1

(-
0.

3)
48

.4
73

.8
73

.3
(-

0.
5)

vi
-e

n
zh

-e
n

ru
-e

n
de

-e
n

fr
-e

n
es

-e
n

it-
en

ja
-e

n
Se

ed
s

P
S

G
∆

P
S

G
∆

P
S

G
∆

P
S

G
∆

P
S

G
∆

P
S

G
∆

P
S

G
∆

P
S

G
∆

0
0.

0
0.

0
0.

1
(+

0.
1)

0.
0

0.
0

0.
0

(+
0.

0)
0.

0
0.

4
2.

8
(+

2.
4)

0.
0

0.
6

34
.5

(+
33

.9
)

0.
0

0.
2

1.
1

(+
0.

9)
0.

0
0.

6
19

.6
(+

19
.0

)
0.

0
0.

1
0.

4
(+

0.
3)

0.
1

0.
0

0.
0

(+
0.

0)
25

0.
1

1.
0

3.
3

(+
2.

3)
0.

1
6.

8
9.

3
(+

2.
5)

0.
3

49
.1

54
.4

(+
5.

3)
0.

2
30

.3
34

.1
(+

3.
8)

0.
3

62
.5

65
.3

(+
2.

8)
0.

4
61

.4
64

.4
(+

3.
0)

0.
4

63
.6

66
.9

(+
3.

3)
0.

2
8.

0
31

.2
(+

23
.2

)
50

0.
2

27
.4

41
.7

(+
14

.3
)

0.
6

13
.1

12
.5

(-
0.

6)
1.

0
49

.5
54

.8
(+

5.
3)

0.
6

42
.5

47
.6

(+
5.

1)
1.

4
62

.8
65

.5
(+

2.
7)

2.
4

61
.9

65
.0

(+
3.

1)
1.

3
63

.5
67

.0
(+

3.
5)

1.
6

22
.0

30
.5

(+
8.

5)
75

0.
3

29
.8

45
.2

(+
15

.4
)

1.
3

12
.6

14
.1

(+
1.

5)
2.

1
49

.9
54

.8
(+

4.
9)

1.
5

42
.6

47
.0

(+
4.

4)
4.

6
62

.5
65

.7
(+

3.
2)

4.
7

62
.8

64
.9

(+
2.

1)
3.

1
64

.2
67

.5
(+

3.
3)

3.
0

24
.1

31
.1

(+
7.

0)
10

0
0.

5
34

.4
47

.1
(+

12
.7

)
2.

4
15

.2
14

.9
(-

0.
3)

4.
1

50
.4

55
.1

(+
4.

7)
3.

0
41

.9
47

.6
(+

5.
7)

6.
8

63
.0

65
.9

(+
2.

9)
7.

8
63

.5
65

.0
(+

1.
5)

7.
2

64
.9

67
.9

(+
3.

0)
5.

7
27

.9
31

.9
(+

4.
0)

20
0

1.
7

41
.3

48
.6

(+
7.

3)
12

.0
19

.8
16

.1
(-

3.
7)

16
.6

52
.5

55
.2

(+
2.

7)
10

.6
45

.0
48

.3
(+

3.
3)

26
.8

64
.2

66
.4

(+
2.

2)
32

.6
65

.0
65

.9
(+

0.
9)

28
.2

66
.6

68
.7

(+
2.

1)
19

.1
34

.6
34

.2
(-

0.
4)

50
0

8.
5

45
.7

51
.7

(+
6.

0)
33

.0
27

.9
25

.0
(-

2.
9)

45
.3

55
.6

57
.3

(+
1.

7)
39

.5
49

.1
50

.3
(+

1.
2)

62
.4

67
.7

68
.5

(+
0.

8)
61

.5
67

.1
68

.2
(+

1.
1)

61
.9

69
.8

70
.4

(+
0.

6)
38

.3
39

.9
37

.2
(-

2.
7)

10
00

29
.1

52
.4

57
.2

(+
4.

8)
44

.5
33

.2
31

.9
(-

1.
3)

56
.6

58
.1

60
.3

(+
2.

2)
52

.8
53

.1
53

.3
(+

0.
2)

71
.4

70
.1

70
.4

(+
0.

3)
69

.5
69

.8
70

.6
(+

0.
8)

71
.6

71
.8

73
.0

(+
1.

2)
47

.7
42

.7
38

.9
(-

3.
8)

20
00

56
.3

64
.1

66
.3

(+
2.

2)
50

.8
41

.5
41

.8
(+

0.
3)

62
.7

67
.1

68
.5

(+
1.

4)
60

.7
60

.5
60

.4
(-

0.
1)

76
.2

75
.3

74
.8

(-
0.

5)
72

.9
74

.5
73

.9
(-

0.
6)

76
.3

75
.6

75
.8

(+
0.

2)
54

.0
48

.6
47

.6
(-

1.
0)

40
00

70
.3

81
.9

82
.1

(+
0.

2)
58

.4
66

.2
66

.2
(+

0.
0)

67
.9

89
.3

89
.3

(+
0.

0)
63

.6
71

.4
71

.0
(-

0.
4)

82
.7

90
.0

89
.6

(-
0.

4)
74

.4
86

.3
85

.8
(-

0.
5)

81
.8

86
.8

87
.2

(+
0.

4)
54

.5
72

.3
70

.5
(-

1.
8)

Ta
bl

e
2:

P@
1

of
Pr

oc
ru

st
es

(P
),

SG
M

(S
)o

rG
O

A
T

(G
).
∆

is
th

e
ga

in
/lo

ss
of

G
O

A
T

ov
er

SG
M

.

6

Figure 4: X-axis: Eigenvector Similarity (EVS) /
Gromov-Hausdorff (GH) Distance of language com-
pared to English. Y-axis: Precision@1 from Procrustes
& GOAT with 200 seeds. ↓ EVS/GH = ↑ isomorphic.

Figure 4 shows the relationship between relative359

isomorphism of each language vs. English, and per-360

formance of Procrustes/GOAT at 200 seeds. Trends361

indicate that higher isomorphism varies with higher362

precision from Procrustes and GOAT. GH shows363

a moderate to strong negative Pearson’s correla-364

tion with performance from Procrustes and GOAT:365

r = −0.47 and r = −0.53, respectively, for *-366

to-en and -0.55 and -0.61 for en-to-*. EVS corre-367

lates weakly negatively with performance from Pro-368

crustes (*-to-en: -0.06, en-to-*: -0.28) and strongly369

negatively with GOAT (*-to-en: -0.67, en-to-*: -370

0.75). As higher GH/EVS indicates less isomor-371

phism, negative correlations imply that lower de-372

grees of isomorphism correlate with lower scores373

from Procrustes/GOAT.374

4.2 System Combination375

System combination results are in Table 3. Sim-376

ilar to Marchisio et al. (2021)’s findings for their377

combined Procrustes/SGM system, we find (1) our378

combined Procrustes/GOAT system outperforms379

Procrustes and GOAT alone, (2) ending with the It-380

erative Procrustes is best for moderate amounts of381

seeds, (3) ending with GOAT is best for very low382

or very high number of seeds.383

Whether we end with Iterative Procrustes vs.384

GOAT is critically important for the lowest seed385

sizes: -EndGOAT (-EG) usually fails with 25 seeds;386

all language pairs except German↔English and387

Russian↔English score P@1 < 15.0, and most388

score P@1< 2.0. Simply switching the order of389

processing in the combination system, however,390

boosts performance dramatically: ex. from 0.6391

for StartProc-EndGOAT to 61.5 for StartGOAT- 392

EndProc for Bosnian→English with 25 seeds. 393

There are some language pairs such as 394

English→Persian and Russian↔English where a 395

previous experiment with no seeds had reasonable 396

performance, but the combined system failed. It is 397

worth investigating where this discrepancy arises. 398

5 Discussion 399

We have seen GOAT’s strength in low-resource sce- 400

narios and in non-isomorphic embedding spaces. 401

As the major use case of low-resource BLI and 402

MT is dissimilar languages with low supervision, 403

GOAT’s strong performance is an encouraging 404

result for real-world applications. Furthermore, 405

GOAT outperforms SGM. As the graph-matching 406

objective is NP-hard so all algorithms are approx- 407

imate, GOAT does a better job by making a bet- 408

ter calculation of step direction. Chinese↔English 409

and Japanese↔English are outliers, which is wor- 410

thy of future investigation. Notably, these lan- 411

guages have very poor isomorphism scores in rela- 412

tion to English. 413

Why might GOAT work? The goal for Pro- 414

crustes is to find the ideal linear transformation 415

Wideal ∈ Rdxd to map the spaces, where d is the 416

word embedding dimension. Seeds in Procrustes 417

solve Eq. 1 to find an approximation W to Wideal. 418

Accordingly, the seeds can be thought of as sam- 419

ples from which one deduces the optimal linear 420

transformation. This is a supervised learning prob- 421

lem, so when there are few seeds/samples, it is dif- 422

ficult to estimate Wideal. Furthermore, the entire 423

space X is mapped by W to a shared space with 424

Y meaning that every point in X is subject to a 425

potentially inaccurate mapping W : the mapping 426

extrapolates to the entire space. GOAT does not 427

suffer this issue, and can induce non-linear rela- 428

tionships. Graph methods can be thought of as a 429

semi-supervised learning problem: even words that 430

don’t serve as seeds are incorporated in the match- 431

ing process. The graph manifold provides addition 432

information that can be exploited. 433

Secondly, the dimension of the relationship be- 434

tween words in GOAT is much lower than for 435

Procrustes. For GOAT, the relationship is one- 436

dimensional: distance. As words for the Procrustes 437

method are embedded in d-dimensional Euclidean 438

space, their relationships have a magnitude and a 439

direction: they are {d+1}-dimensional. It is possi- 440

ble that the lower dimension in GOAT makes it ro- 441

7

Prev -EP -EG Prev -EP -EG Prev -EP -EG Prev -EP -EG Prev -EP -EG Prev -EP -EG
Seeds en-bn bn-en en-bs bs-en en-de de-en
0 0.1 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 48.8 61.8 0.0 34.5 59.2 0.3
25 31.9 44.3 0.5 44.4 53.1 6.2 48.1 58.4 0.4 54.6 61.5 0.6 48.5 61.7 59.1 34.1 59.3 56.8
75 33.1 44.7 39.5 45.2 53.5 49.1 47.9 58.1 55.1 54.6 61.7 57.2 48.8 62.3 59.7 47.0 59.4 57.1
100 33.8 45.3 39.7 45.5 53.9 48.1 47.7 58.1 55.4 55.5 61.3 57.5 49.0 62.2 59.7 47.6 59.4 56.8
2000 45.9 48.7 49.3 55.2 56.6 56.3 58.1 59.9 60.5 65.9 66.6 69.1 63.1 66.3 69.4 60.7 65.1 67.9
4000 60.3 50.5 61.2 65.9 55.2 68.9 70.6 63.4 71.8 86.1 69.7 85.7 74.2 72.9 79.5 71.4 67.2 77.6

en-et et-en en-fa fa-en en-id id-en
0 0.2 0.2 0.0 0.1 0.0 0.0 0.5 0.5 0.0 0.1 0.1 0.0 2.9 4.4 0.0 1.0 1.2 0.0
25 47.0 60.4 5.9 63.2 70.2 15.0 42.7 54.4 4.5 45.1 55.1 2.0 51.3 65.8 0.6 58.0 66.7 1.8
75 47.5 60.6 58.6 64.2 69.8 66.5 42.9 54.1 51.9 45.8 55.3 52.0 53.6 66.0 63.3 57.0 66.7 64.2
100 47.3 61.1 59.0 64.3 70.2 66.7 43.0 54.3 52.3 45.6 55.5 52.7 54.3 66.2 63.2 57.8 67.1 63.9
2000 64.0 66.6 67.4 74.2 74.1 75.0 54.7 58.0 58.4 53.8 57.5 56.9 70.7 72.1 74.2 70.1 72.5 72.9
4000 77.4 71.7 80.2 86.4 80.7 87.2 65.9 62.4 67.4 65.5 60.1 67.0 84.3 76.8 86.2 80.5 78.2 83.7

en-mk mk-en en-ms ms-en en-ru ru-en
0 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.1 2.8 4.4 0.0
25 55.8 63.9 8.0 63.2 68.8 0.6 36.6 62.6 0.9 38.6 65.3 0.2 55.7 67.7 66.1 54.4 63.9 62.0
75 56.5 64.3 63.3 63.6 68.8 67.9 42.6 62.6 59.8 56.8 65.6 62.8 55.7 68.1 67.0 54.8 63.9 61.6
100 56.2 64.1 64.2 64.4 69.4 67.5 42.9 63.0 58.6 57.7 65.8 63.1 55.9 67.9 66.4 55.1 63.8 61.3
2000 64.6 66.8 67.9 71.7 71.0 73.1 65.0 67.0 68.5 67.4 69.4 69.7 67.5 72.6 74.2 68.5 69.3 72.5
4000 75.6 68.9 77.1 88.8 74.1 91.1 79.3 70.7 79.5 77.4 70.0 79.1 83.3 79.3 86.5 89.3 77.4 89.3

en-ta ta-en en-vi vi-en en-zh zh-en
0 0.0 0.0 0.1 0.5 0.6 0.0 0.1 0.0 0.1 0.1 0.1 0.9 0.0 0.1 0.0 0.0 0.0 0.0
25 1.8 2.2 0.6 44.4 51.4 2.4 0.4 0.4 0.2 3.3 5.3 0.2 8.7 52.7 1.7 9.3 48.1 0.8
75 30.5 40.4 35.7 45.1 52.4 46.9 22.9 55.0 1.2 45.2 59.6 54.4 17.4 51.6 46.4 14.1 51.1 48.0
100 30.6 40.2 36.8 45.4 52.5 47.9 30.2 55.6 36.2 47.1 59.3 56.3 18.5 51.6 47.3 15.2 51.0 48.0
2000 40.6 42.7 44.2 55.1 55.3 56.2 61.1 67.3 65.8 66.3 73.5 71.5 49.3 58.0 57.7 41.8 57.6 56.8
4000 49.1 44.0 51.7 73.8 65.3 71.6 77.9 73.0 80.5 82.1 80.1 84.3 67.5 66.4 75.1 66.2 65.3 73.3

Table 3: P@1 of Combination Exps. -EP starts with GOAT, ends with IterProc. -EG: IterProc, ends with GOAT.
Prev is previous best of prior experiments. Some seed sizes omitted for brevity (see Appendix).

bust to noise, explaining why GOAT outperforms442

Procrustes in low-resource settings. This hypothe-443

sis should be investigated in follow-up studies.444

6 Related Work445

BLI Recent years have seen a proliferation of the446

BLI literature (e.g. Ruder et al., 2018; Aldarmaki447

et al., 2018; Joulin et al., 2018; Doval et al., 2018;448

Artetxe et al., 2019a; Huang et al., 2019; Patra449

et al., 2019; Zhang et al., 2020; Biesialska and Ruiz450

Costa-Jussà, 2020). Many use Procrustes-based so-451

lutions, which assume that embedding spaces are452

roughly isomorphic. Wang et al. (2021) argue that453

the mapping can only be piece-wise linear, and454

induce multiple mappings. Ganesan et al. (2021)455

learn an “invertible neural network" as a non-linear456

mapping of spaces, and Cao and Zhao (2018)457

align spaces using point set registration. Many458

approaches address only high-resource languages.459

The tendency to evaluate on similar languages with460

high-quality data from similar domains hinders ad-461

vancement in the field (Artetxe et al., 2020).462

BLI with OT Most similar to ours are BLI ap-463

proaches which incorporate OT formulations us-464

ing the Sinkhorn and/or Hungarian algorithms (e.g.465

Alvarez-Melis and Jaakkola, 2018; Alaux et al.,466

2018). Grave et al. (2019) optimize “Procrustes in467

Wasserstein Distance", iteratively updating a lin- 468

ear transformation and permutation matrix using 469

Frank-Wolfe on samples from embedding spaces 470

X and Y. Zhao et al. (2020b) and Zhang et al. 471

(2017) also use an iterative procedure. Ramírez 472

et al. (2020) combine Procrustes and their Itera- 473

tive Hungarian algorithms. Xu et al. (2018) use 474

Sinkhorn distance in the loss function, and (Zhang 475

et al., 2017) use Sinkhorn to minimize distance be- 476

tween spaces. Haghighi et al. (2008) use the Hun- 477

garian Algorithm for BLI from text. Lian et al. and 478

Alaux et al. (2018) align all languages to a common 479

space for multilingual BLI. The latter use Sinkhorn 480

to approximate a permutation matrix in their for- 481

mulation. Zhao et al. (2020a) incorporate OT for 482

semi-supervised BLI. 483

7 Conclusion 484

We perform bilingual lexicon induction from word 485

embedding spaces of 32 diverse language pairs, uti- 486

lizing the newly-developed GOAT algorithm for 487

graph-matching. Performance is strong across all 488

pairs, especially on dissimilar languages with low- 489

supervision. As the major use case of low-resource 490

BLI and MT is dissimilar languages with low su- 491

pervision, the strong performance of GOAT is an 492

encouraging result for real-world applications. 493

8

References494

Jean Alaux, Edouard Grave, Marco Cuturi, and Armand495
Joulin. 2018. Unsupervised hyper-alignment for mul-496
tilingual word embeddings. In International Confer-497
ence on Learning Representations.498

Hanan Aldarmaki, Mahesh Mohan, and Mona Diab.499
2018. Unsupervised word mapping using structural500
similarities in monolingual embeddings. Transac-501
tions of the Association for Computational Linguis-502
tics, 6:185–196.503

David Alvarez-Melis and Tommi Jaakkola. 2018.504
Gromov-Wasserstein alignment of word embedding505
spaces. In Proceedings of the 2018 Conference on506
Empirical Methods in Natural Language Processing,507
pages 1881–1890, Brussels, Belgium. Association508
for Computational Linguistics.509

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2018.510
A robust self-learning method for fully unsupervised511
cross-lingual mappings of word embeddings. In Pro-512
ceedings of the 56th Annual Meeting of the Associa-513
tion for Computational Linguistics (Volume 1: Long514
Papers), pages 789–798, Melbourne, Australia. As-515
sociation for Computational Linguistics.516

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2019a.517
Bilingual lexicon induction through unsupervised ma-518
chine translation. In Proceedings of the 57th Annual519
Meeting of the Association for Computational Lin-520
guistics, pages 5002–5007, Florence, Italy. Associa-521
tion for Computational Linguistics.522

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2019b.523
An effective approach to unsupervised machine trans-524
lation. In Proceedings of the 57th Annual Meeting of525
the Association for Computational Linguistics, pages526
194–203, Florence, Italy. Association for Computa-527
tional Linguistics.528

Mikel Artetxe, Sebastian Ruder, Dani Yogatama, Gorka529
Labaka, and Eneko Agirre. 2020. A call for more530
rigor in unsupervised cross-lingual learning. In Pro-531
ceedings of the 58th Annual Meeting of the Asso-532
ciation for Computational Linguistics, pages 7375–533
7388, Online. Association for Computational Lin-534
guistics.535

Magdalena Marta Biesialska and Marta Ruiz Costa-536
Jussà. 2020. Refinement of unsupervised cross-537
lingual word embeddings. In ECAI 2020, 24th Eu-538
ropean Conference on Artificial Intelligence: 29539
August–8 September 2020, Santiago de Compostela,540
Spain: including 10th Conference on Prestigious Ap-541
plications of Artificial Intelligence (PAIS 2020): pro-542
ceedings, pages 1–4. Ios Press.543

Piotr Bojanowski, Edouard Grave, Armand Joulin, and544
Tomas Mikolov. 2017. Enriching word vectors with545
subword information. Transactions of the Associa-546
tion for Computational Linguistics, 5:135–146.547

Hailong Cao and Tiejun Zhao. 2018. Point set registra-548
tion for unsupervised bilingual lexicon induction. In549
IJCAI, pages 3991–3997.550

Jaewon Chung, Benjamin D Pedigo, Eric W Bridgeford, 551
Bijan K Varjavand, Hayden S Helm, and Joshua T 552
Vogelstein. 2019. Graspy: Graph statistics in python. 553
Journal of Machine Learning Research, 20(158):1–7. 554

Alexis Conneau, Guillaume Lample, Marc’Aurelio Ran- 555
zato, Ludovic Denoyer, and Hervé Jégou. 2018. 556
Word translation without parallel data. In 6th Inter- 557
national Conference on Learning Representations, 558
ICLR 2018, Vancouver, BC, Canada, April 30 - May 559
3, 2018, Conference Track Proceedings. OpenRe- 560
view.net. 561

Marco Cuturi. 2013. Sinkhorn distances: Lightspeed 562
computation of optimal transport. Advances in neu- 563
ral information processing systems, 26:2292–2300. 564

Paula Czarnowska, Sebastian Ruder, Édouard Grave, 565
Ryan Cotterell, and Ann Copestake. 2019. Don’t for- 566
get the long tail! a comprehensive analysis of mor- 567
phological generalization in bilingual lexicon induc- 568
tion. In Proceedings of the 2019 Conference on Em- 569
pirical Methods in Natural Language Processing and 570
the 9th International Joint Conference on Natural 571
Language Processing (EMNLP-IJCNLP), pages 974– 572
983. 573

Yerai Doval, Jose Camacho-Collados, Luis Espinosa- 574
Anke, and Steven Schockaert. 2018. Improving cross- 575
lingual word embeddings by meeting in the middle. 576
In Proceedings of the 2018 Conference on Empiri- 577
cal Methods in Natural Language Processing, pages 578
294–304, Brussels, Belgium. Association for Com- 579
putational Linguistics. 580

Donniell E Fishkind, Sancar Adali, Heather G Patsolic, 581
Lingyao Meng, Digvijay Singh, Vince Lyzinski, and 582
Carey E Priebe. 2019. Seeded graph matching. Pat- 583
tern recognition, 87:203–215. 584

Marguerite Frank, Philip Wolfe, et al. 1956. An algo- 585
rithm for quadratic programming. Naval research lo- 586
gistics quarterly, 3(1-2):95–110. 587

Ashwinkumar Ganesan, Francis Ferraro, and Tim Oates. 588
2021. Learning a reversible embedding mapping us- 589
ing bi-directional manifold alignment. In Findings of 590
the Association for Computational Linguistics: ACL- 591
IJCNLP 2021, pages 3132–3139, Online. Associa- 592
tion for Computational Linguistics. 593

Goran Glavaš, Robert Litschko, Sebastian Ruder, and 594
Ivan Vulić. 2019. How to (properly) evaluate cross- 595
lingual word embeddings: On strong baselines, com- 596
parative analyses, and some misconceptions. In Pro- 597
ceedings of the 57th Annual Meeting of the Associa- 598
tion for Computational Linguistics, pages 710–721, 599
Florence, Italy. Association for Computational Lin- 600
guistics. 601

Chengyue Gong, Di He, Xu Tan, Tao Qin, Liwei 602
Wang, and Tie-Yan Liu. 2018. Frage: Frequency- 603
agnostic word representation. arXiv preprint 604
arXiv:1809.06858. 605

9

https://doi.org/10.1162/tacl_a_00014
https://doi.org/10.1162/tacl_a_00014
https://doi.org/10.1162/tacl_a_00014
https://doi.org/10.18653/v1/D18-1214
https://doi.org/10.18653/v1/D18-1214
https://doi.org/10.18653/v1/D18-1214
https://doi.org/10.18653/v1/P18-1073
https://doi.org/10.18653/v1/P18-1073
https://doi.org/10.18653/v1/P18-1073
https://doi.org/10.18653/v1/P19-1494
https://doi.org/10.18653/v1/P19-1494
https://doi.org/10.18653/v1/P19-1494
https://doi.org/10.18653/v1/P19-1019
https://doi.org/10.18653/v1/P19-1019
https://doi.org/10.18653/v1/P19-1019
https://doi.org/10.18653/v1/2020.acl-main.658
https://doi.org/10.18653/v1/2020.acl-main.658
https://doi.org/10.18653/v1/2020.acl-main.658
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://openreview.net/forum?id=H196sainb
https://doi.org/10.18653/v1/D18-1027
https://doi.org/10.18653/v1/D18-1027
https://doi.org/10.18653/v1/D18-1027
https://doi.org/10.18653/v1/2021.findings-acl.276
https://doi.org/10.18653/v1/2021.findings-acl.276
https://doi.org/10.18653/v1/2021.findings-acl.276
https://doi.org/10.18653/v1/P19-1070
https://doi.org/10.18653/v1/P19-1070
https://doi.org/10.18653/v1/P19-1070
https://doi.org/10.18653/v1/P19-1070
https://doi.org/10.18653/v1/P19-1070

John C Gower, Garmt B Dijksterhuis, et al. 2004. Pro-606
crustes problems, volume 30. Oxford University607
Press on Demand.608

Edouard Grave, Armand Joulin, and Quentin Berthet.609
2019. Unsupervised alignment of embeddings with610
wasserstein procrustes. In The 22nd International611
Conference on Artificial Intelligence and Statistics,612
pages 1880–1890. PMLR.613

Aria Haghighi, Percy Liang, Taylor Berg-Kirkpatrick,614
and Dan Klein. 2008. Learning bilingual lexicons615
from monolingual corpora. In Proceedings of ACL-616
08: HLT, pages 771–779, Columbus, Ohio. Associa-617
tion for Computational Linguistics.618

Jiaji Huang, Qiang Qiu, and Kenneth Church. 2019.619
Hubless nearest neighbor search for bilingual lexicon620
induction. In Proceedings of the 57th Annual Meet-621
ing of the Association for Computational Linguistics,622
pages 4072–4080, Florence, Italy. Association for623
Computational Linguistics.624

Roy Jonker and Anton Volgenant. 1987. A shortest aug-625
menting path algorithm for dense and sparse linear626
assignment problems. Computing, 38(4):325–340.627

Armand Joulin, Piotr Bojanowski, Tomas Mikolov,628
Hervé Jégou, and Edouard Grave. 2018. Loss in629
translation: Learning bilingual word mapping with a630
retrieval criterion. In Proceedings of the 2018 Con-631
ference on Empirical Methods in Natural Language632
Processing, pages 2979–2984, Brussels, Belgium.633
Association for Computational Linguistics.634

Harold W Kuhn. 1955. The hungarian method for the635
assignment problem. Naval research logistics quar-636
terly, 2(1-2):83–97.637

Xin Lian, Kshitij Jain, Jakub Truszkowski, Pascal638
Poupart, and Yaoliang Yu. Unsupervised multilin-639
gual alignment using wasserstein barycenter.640

Kelly Marchisio, Kevin Duh, and Philipp Koehn. 2020.641
When does unsupervised machine translation work?642
In Proceedings of the Fifth Conference on Machine643
Translation, pages 571–583, Online. Association for644
Computational Linguistics.645

Kelly Marchisio, Youngser Park, Ali Saad-Eldin, An-646
ton Alyakin, Kevin Duh, Carey Priebe, and Philipp647
Koehn. 2021. An analysis of Euclidean vs. graph-648
based framing for bilingual lexicon induction from649
word embedding spaces. In Findings of the Associ-650
ation for Computational Linguistics: EMNLP 2021,651
pages 738–749, Punta Cana, Dominican Republic.652
Association for Computational Linguistics.653

Ndapa Nakashole and Raphael Flauger. 2018. Charac-654
terizing departures from linearity in word translation.655
In Proceedings of the 56th Annual Meeting of the As-656
sociation for Computational Linguistics (Volume 2:657
Short Papers), pages 221–227, Melbourne, Australia.658
Association for Computational Linguistics.659

Aitor Ormazabal, Mikel Artetxe, Gorka Labaka, Aitor 660
Soroa, and Eneko Agirre. 2019. Analyzing the limi- 661
tations of cross-lingual word embedding mappings. 662
In Proceedings of the 57th Annual Meeting of the As- 663
sociation for Computational Linguistics, pages 4990– 664
4995, Florence, Italy. Association for Computational 665
Linguistics. 666

Barun Patra, Joel Ruben Antony Moniz, Sarthak Garg, 667
Matthew R. Gormley, and Graham Neubig. 2019. 668
Bilingual lexicon induction with semi-supervision 669
in non-isometric embedding spaces. In Proceedings 670
of the 57th Annual Meeting of the Association for 671
Computational Linguistics, pages 184–193, Florence, 672
Italy. Association for Computational Linguistics. 673

Gabriel Peyre and Marco Cuturi. 2019. Computational 674
optimal transport. Foundations and Trends in Ma- 675
chine Learning, 11(5-6):355–607. 676

Guillem Ramírez, Rumen Dangovski, Preslav Nakov, 677
and Marin Soljačić. 2020. On a novel application of 678
wasserstein-procrustes for unsupervised cross-lingual 679
learning. arXiv preprint arXiv:2007.09456. 680

Sebastian Ruder, Ryan Cotterell, Yova Kementched- 681
jhieva, and Anders Søgaard. 2018. A discriminative 682
latent-variable model for bilingual lexicon induction. 683
In Proceedings of the 2018 Conference on Empiri- 684
cal Methods in Natural Language Processing, pages 685
458–468, Brussels, Belgium. Association for Com- 686
putational Linguistics. 687

Ali Saad-Eldin, Benjamin D Pedigo, Carey E Priebe, 688
and Joshua T Vogelstein. 2021. Graph matching via 689
optimal transport. arXiv preprint arXiv:2111.05366. 690

Peter H Schönemann. 1966. A generalized solution of 691
the orthogonal procrustes problem. Psychometrika, 692
31(1):1–10. 693

Haoyue Shi, Luke Zettlemoyer, and Sida I. Wang. 2021. 694
Bilingual lexicon induction via unsupervised bitext 695
construction and word alignment. In Proceedings 696
of the 59th Annual Meeting of the Association for 697
Computational Linguistics and the 11th International 698
Joint Conference on Natural Language Processing 699
(Volume 1: Long Papers), pages 813–826, Online. 700
Association for Computational Linguistics. 701

Richard Sinkhorn. 1967. Diagonal equivalence to ma- 702
trices with prescribed row and column sums. The 703
American Mathematical Monthly, 74(4):402–405. 704

Anders Søgaard, Sebastian Ruder, and Ivan Vulić. 2018. 705
On the limitations of unsupervised bilingual dictio- 706
nary induction. In Proceedings of the 56th Annual 707
Meeting of the Association for Computational Lin- 708
guistics (Volume 1: Long Papers), pages 778–788, 709
Melbourne, Australia. Association for Computational 710
Linguistics. 711

Joshua T Vogelstein, John M Conroy, Vince Lyzin- 712
ski, Louis J Podrazik, Steven G Kratzer, Eric T 713
Harley, Donniell E Fishkind, R Jacob Vogelstein, and 714
Carey E Priebe. 2015. Fast approximate quadratic 715

10

https://aclanthology.org/P08-1088
https://aclanthology.org/P08-1088
https://aclanthology.org/P08-1088
https://doi.org/10.18653/v1/P19-1399
https://doi.org/10.18653/v1/P19-1399
https://doi.org/10.18653/v1/P19-1399
https://doi.org/10.18653/v1/D18-1330
https://doi.org/10.18653/v1/D18-1330
https://doi.org/10.18653/v1/D18-1330
https://doi.org/10.18653/v1/D18-1330
https://doi.org/10.18653/v1/D18-1330
https://aclanthology.org/2020.wmt-1.68
https://aclanthology.org/2021.findings-emnlp.64
https://aclanthology.org/2021.findings-emnlp.64
https://aclanthology.org/2021.findings-emnlp.64
https://aclanthology.org/2021.findings-emnlp.64
https://aclanthology.org/2021.findings-emnlp.64
https://doi.org/10.18653/v1/P18-2036
https://doi.org/10.18653/v1/P18-2036
https://doi.org/10.18653/v1/P18-2036
https://doi.org/10.18653/v1/P19-1492
https://doi.org/10.18653/v1/P19-1492
https://doi.org/10.18653/v1/P19-1492
https://doi.org/10.18653/v1/P19-1018
https://doi.org/10.18653/v1/P19-1018
https://doi.org/10.18653/v1/P19-1018
https://doi.org/10.18653/v1/D18-1042
https://doi.org/10.18653/v1/D18-1042
https://doi.org/10.18653/v1/D18-1042
https://doi.org/10.18653/v1/2021.acl-long.67
https://doi.org/10.18653/v1/2021.acl-long.67
https://doi.org/10.18653/v1/2021.acl-long.67
https://doi.org/10.18653/v1/P18-1072
https://doi.org/10.18653/v1/P18-1072
https://doi.org/10.18653/v1/P18-1072

programming for graph matching. PLOS one,716
10(4):e0121002.717

Ivan Vulić, Goran Glavaš, Roi Reichart, and Anna Ko-718
rhonen. 2019. Do we really need fully unsuper-719
vised cross-lingual embeddings? In Proceedings of720
the 2019 Conference on Empirical Methods in Natu-721
ral Language Processing and the 9th International722
Joint Conference on Natural Language Processing723
(EMNLP-IJCNLP), pages 4407–4418, Hong Kong,724
China. Association for Computational Linguistics.725

Ivan Vulić, Sebastian Ruder, and Anders Søgaard. 2020.726
Are all good word vector spaces isomorphic? In727
Proceedings of the 2020 Conference on Empirical728
Methods in Natural Language Processing (EMNLP),729
pages 3178–3192, Online. Association for Computa-730
tional Linguistics.731

Haozhou Wang, James Henderson, and Paola Merlo.732
2021. Multi-adversarial learning for cross-lingual733
word embeddings. In Proceedings of the 2021 Con-734
ference of the North American Chapter of the Asso-735
ciation for Computational Linguistics: Human Lan-736
guage Technologies, pages 463–472, Online. Associ-737
ation for Computational Linguistics.738

Ruochen Xu, Yiming Yang, Naoki Otani, and Yuexin739
Wu. 2018. Unsupervised cross-lingual transfer of740
word embedding spaces. In Proceedings of the 2018741
Conference on Empirical Methods in Natural Lan-742
guage Processing, pages 2465–2474, Brussels, Bel-743
gium. Association for Computational Linguistics.744

Meng Zhang, Yang Liu, Huanbo Luan, and Maosong745
Sun. 2017. Earth mover’s distance minimization for746
unsupervised bilingual lexicon induction. In Pro-747
ceedings of the 2017 Conference on Empirical Meth-748
ods in Natural Language Processing, pages 1934–749
1945, Copenhagen, Denmark. Association for Com-750
putational Linguistics.751

Mozhi Zhang, Yoshinari Fujinuma, Michael J. Paul, and752
Jordan Boyd-Graber. 2020. Why overfitting isn’t753
always bad: Retrofitting cross-lingual word embed-754
dings to dictionaries. In Proceedings of the 58th An-755
nual Meeting of the Association for Computational756
Linguistics, pages 2214–2220, Online. Association757
for Computational Linguistics.758

Mozhi Zhang, Keyulu Xu, Ken-ichi Kawarabayashi, Ste-759
fanie Jegelka, and Jordan Boyd-Graber. 2019. Are760
girls neko or shōjo? cross-lingual alignment of non-761
isomorphic embeddings with iterative normalization.762
In Proceedings of the 57th Annual Meeting of the As-763
sociation for Computational Linguistics, pages 3180–764
3189, Florence, Italy. Association for Computational765
Linguistics.766

Xu Zhao, Zihao Wang, Hao Wu, and Yong Zhang.767
2020a. Semi-supervised bilingual lexicon induction768
with two-way interaction. In Proceedings of the 2020769
Conference on Empirical Methods in Natural Lan-770
guage Processing (EMNLP), pages 2973–2984, On-771
line. Association for Computational Linguistics.772

Xu Zhao, Zihao Wang, Yong Zhang, and Hao Wu. 773
2020b. A relaxed matching procedure for unsuper- 774
vised BLI. In Proceedings of the 58th Annual Meet- 775
ing of the Association for Computational Linguistics, 776
pages 3036–3041, Online. Association for Computa- 777
tional Linguistics. 778

11

https://doi.org/10.18653/v1/D19-1449
https://doi.org/10.18653/v1/D19-1449
https://doi.org/10.18653/v1/D19-1449
https://doi.org/10.18653/v1/2020.emnlp-main.257
https://doi.org/10.18653/v1/2021.naacl-main.39
https://doi.org/10.18653/v1/2021.naacl-main.39
https://doi.org/10.18653/v1/2021.naacl-main.39
https://doi.org/10.18653/v1/D18-1268
https://doi.org/10.18653/v1/D18-1268
https://doi.org/10.18653/v1/D18-1268
https://doi.org/10.18653/v1/D17-1207
https://doi.org/10.18653/v1/D17-1207
https://doi.org/10.18653/v1/D17-1207
https://doi.org/10.18653/v1/2020.acl-main.201
https://doi.org/10.18653/v1/2020.acl-main.201
https://doi.org/10.18653/v1/2020.acl-main.201
https://doi.org/10.18653/v1/2020.acl-main.201
https://doi.org/10.18653/v1/2020.acl-main.201
https://doi.org/10.18653/v1/P19-1307
https://doi.org/10.18653/v1/P19-1307
https://doi.org/10.18653/v1/P19-1307
https://doi.org/10.18653/v1/P19-1307
https://doi.org/10.18653/v1/P19-1307
https://doi.org/10.18653/v1/2020.emnlp-main.238
https://doi.org/10.18653/v1/2020.emnlp-main.238
https://doi.org/10.18653/v1/2020.emnlp-main.238
https://doi.org/10.18653/v1/2020.acl-main.274
https://doi.org/10.18653/v1/2020.acl-main.274
https://doi.org/10.18653/v1/2020.acl-main.274

Appendix779

-to-en en-to-
Full 1-1 Full 1-1 # Embs

bn 7588 4299 8467 4556 145350
bs 6164 4294 8153 4795 166505
de 10866 4451 14677 4903 200000
en n/a n/a n/a n/a 200000
es 8667 4445 11977 4866 200000
et 6509 4352 8261 4738 200000
fa 8510 4582 8869 4595 200000
fr 8270 4548 10872 4827 200000
id 9677 4563 9407 4573 200000
it 7364 4478 9657 4815 200000
ja 6819 4112 7135 4351 200000
mk 7197 4259 10075 4820 176947
ms 8140 4650 7394 4454 155629
ru 7452 4084 10887 4812 200000
ta 6850 4225 8091 4744 200000
vi 7251 4775 6353 4507 200000
zh 8891 4450 8728 4381 200000

Table A1: Size of train/test sets before (Full) & after
making one-to-one (1-1), with # of embeddings used.

en-de ru-en

Seeds Rand. Bary. Rand. Bary.
100 45.7 45.9 49.6 50.4
200 47.4 47.5 52.5 52.5
500 52.3 51.9 55.4 55.6

1000 54.6 54.9 58.3 58.1
2000 61.5 61.4 67.1 67.1
4000 74.2 74.2 89.3 89.3

Table A2: SGM with barycenter vs. randomized initial-
ization for languages used in Marchisio et al. (2021).
The difference is negligible.

Iterative Results of Iterative Procrustes (Iter-780

Proc), Iterative SGM (IterSGM), and Iterative781

GOAT (IterGOAT) are in Table A3. We run the It-782

erative Procrustes and Iterative SGM procedures of783

Marchisio et al. (2021) with stochastic-add. Here,784

Procrustes [or SGM] is run in source↔target di-785

rections, hypotheses are intersected, and H random786

hypotheses are added to the gold seeds and fed into787

subsequent runs of Procrustes [SGM]. The next it-788

eration adds 2H hypotheses, repeating until all hy-789

potheses are chosen. We set H = 100 and create790

an analogous iterative algorithm for GOAT, which791

we call Iterative GOAT.792

IterSGM/GOAT perform similarly across con-793

ditions, with a few exceptions where either per-794

forms very strongly with no supervision: Iter-795

GOAT scores 49.2, 45.2, 34.4, 58.2, and 55.9796

for En-De, En-Fa, De-En, Id-En, and Ru-En, re-797

spectively, and IterSGM scores 57.3 for En-Ru.798

On Chinese↔English, IterGOAT underperforms799

IterSGM, similar to GOAT’s underperformance of800

SGM in the single run.801

Similar to Marchisio et al. (2021), we find that 802

IterProc compensates for an initial poor first run 803

and outperforms IterSGM with a moderate amount 804

of seeds (100+). Extending to the very lowest seeds 805

sizes (0-75), however, IterSGM/IterGOAT are supe- 806

rior. With 25 seeds, IterProc fails for all language 807

pairs except En↔De and En↔Ru, scoring P@1 < 808

5. IterSGM and IterGOAT, however, perform rea- 809

sonably well for most language pairs with 25 seeds, 810

suggesting that the graph-based framing is the bet- 811

ter approach for low-seed levels. At the highest su- 812

pervision level (2000+ seeds), IterSGM/IterGOAT 813

again tends to be superior. 814

Differences are minor btwn using GOAT or 815

SGM in the iterative or system combination experi- 816

ments. This results suggests that mixing Procrustes 817

and graph-based framings is helpful for BLI, re- 818

gardless of which algorithm one picks. It is inter- 819

esting to contemplate what other problems might 820

benefit from examination from multiple mathemat- 821

ical framings in one solution, as each may have 822

complementary benefits. 823

12

IP IS IG IP IS IG IP IS IG IP IS IG IP IS IG IP IS IG
Seeds en-bn bn-en en-bs bs-en en-de de-en
0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.3 49.2 0.1 0.3 34.4
25 0.6 37.3 35.6 3.2 47.3 46.8 0.2 52.3 51.2 0.1 56.5 56.1 61.5 49.8 49.7 58.8 47.6 47.2
50 1.6 37.8 35.8 24.3 47.5 47.2 48.3 52.2 51.4 4.2 57.2 56.2 61.5 49.9 49.6 59.0 47.8 47.9
75 38.8 37.3 36.7 51.9 48.3 47.6 54.7 52.3 51.5 58.4 57.1 56.4 61.5 50.4 49.9 59.0 48.5 47.9
100 44.4 37.7 36.5 53.2 48.2 47.9 54.6 52.5 51.1 59.0 57.1 56.8 62.1 50.2 50.0 59.4 48.4 48.1
200 43.3 38.9 37.2 52.1 48.0 48.1 55.1 52.9 52.4 59.3 58.8 57.7 62.0 50.9 50.4 59.7 49.3 48.8
500 43.9 40.3 39.5 51.8 49.7 48.8 53.7 54.4 53.0 59.8 60.1 59.7 62.8 52.3 52.0 60.4 50.2 50.1
1000 43.4 42.2 41.3 50.8 51.1 51.4 53.4 55.9 55.0 58.8 61.4 61.4 63.5 54.5 54.2 61.4 53.8 53.6
2000 42.8 45.7 45.2 49.8 54.6 54.4 52.3 57.8 57.4 59.8 65.9 65.7 65.2 61.8 61.2 64.0 60.5 60.4
4000 40.3 60.3 58.8 45.2 65.9 66.6 51.9 70.4 69.9 56.8 83.7 86.4 71.7 74.1 74.4 64.5 71.4 71.2
Seeds en-et et-en en-fa fa-en en-id id-en
0 0.0 0.9 0.4 0.0 0.0 0.0 0.0 0.1 45.2 0.0 0.2 0.1 0.0 0.0 15.5 0.1 0.4 58.2
25 4.2 51.8 51.3 3.1 66.4 65.9 1.0 46.7 45.4 1.3 47.6 46.7 0.8 55.9 54.8 1.4 59.5 58.5
50 59.3 52.8 51.6 66.3 66.2 66.0 52.9 46.5 45.7 9.3 47.7 47.0 64.7 56.6 55.4 65.4 59.0 58.5
75 58.8 52.8 51.6 66.6 66.2 66.2 53.1 46.8 46.0 54.0 47.7 47.1 64.9 57.0 55.9 65.8 59.6 58.7
100 59.3 53.1 51.9 66.3 66.6 65.9 53.0 47.3 46.2 54.1 47.8 47.0 65.2 57.0 55.7 66.0 59.2 58.8
200 59.0 53.4 51.9 66.3 66.5 66.7 53.3 47.2 46.3 54.2 47.9 47.6 64.9 57.3 56.8 66.5 60.1 59.5
500 59.4 55.4 54.1 67.1 68.5 68.0 53.3 48.4 48.2 54.3 48.3 48.4 66.4 60.2 59.1 67.4 62.6 61.9
1000 60.1 58.3 57.7 67.6 69.8 70.4 52.9 49.8 49.9 54.2 49.8 49.4 67.8 63.6 62.6 67.6 64.2 64.0
2000 59.6 64.2 63.2 67.3 74.1 74.2 53.3 54.8 54.6 54.5 54.5 54.2 68.7 69.6 69.2 69.3 70.2 70.2
4000 61.7 77.0 77.0 67.0 86.4 86.4 52.1 65.5 65.5 53.4 65.3 64.1 72.1 84.1 83.8 72.8 80.5 80.6
Seeds en-mk mk-en en-ms ms-en en-ru ru-en
0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.2 0.0 0.0 0.1 0.0 57.3 0.1 0.0 1.1 55.9
25 1.0 59.4 58.6 1.0 65.2 64.8 0.7 46.1 43.8 0.7 59.4 58.6 66.2 57.7 57.0 63.0 55.9 55.5
50 62.1 59.2 58.6 66.3 65.6 65.4 58.3 46.4 43.7 64.3 59.4 58.7 66.5 58.2 57.3 63.4 56.0 56.0
75 61.7 59.1 59.1 66.8 65.4 65.5 59.9 47.0 45.3 64.0 58.7 58.5 66.7 58.3 57.6 62.7 55.9 56.1
100 61.8 59.3 59.3 66.2 65.6 65.5 60.9 47.7 45.6 64.1 59.5 58.7 66.8 57.8 57.6 62.7 56.3 55.6
200 62.3 60.0 59.2 67.0 66.0 65.7 60.6 48.5 47.2 64.5 59.5 58.9 66.6 58.9 57.8 63.1 56.4 56.5
500 62.2 60.5 60.6 66.7 66.9 66.5 60.6 52.6 51.0 65.0 61.4 61.1 67.7 60.0 59.3 63.7 58.0 58.0
1000 62.0 62.5 62.5 66.6 68.0 67.9 61.1 58.5 57.4 65.0 62.5 63.2 68.3 62.0 61.8 64.0 60.3 61.1
2000 61.8 65.0 64.8 66.1 71.4 71.8 60.4 63.9 62.6 64.9 67.5 67.5 69.5 67.2 67.6 65.7 68.2 68.5
4000 62.1 75.7 75.6 64.5 88.4 88.0 59.9 79.7 79.5 64.8 77.8 77.5 74.5 81.9 82.4 69.0 89.3 89.3
Seeds en-ta ta-en en-vi vi-en en-zh zh-en
0 0.0 0.0 0.0 0.0 0.2 0.9 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.3 0.0 0.0 0.1 0.1
25 0.3 5.8 4.3 0.9 45.8 46.1 0.1 0.3 0.3 0.2 23.5 44.1 3.3 13.7 7.3 2.0 14.6 7.9
50 5.5 33.6 32.5 18.0 46.6 46.4 0.3 22.0 42.6 1.0 48.9 46.3 52.9 19.0 12.3 52.5 17.2 11.6
75 38.3 33.8 32.4 50.0 46.9 46.2 44.6 46.5 43.3 8.4 49.4 48.7 53.5 19.7 13.7 51.9 17.0 12.9
100 39.5 33.3 32.5 50.5 47.2 46.8 3.4 47.8 43.8 59.4 49.6 48.8 53.2 20.5 13.1 52.1 18.3 13.4
200 40.2 34.0 32.8 50.8 47.0 47.1 57.8 49.1 45.9 60.1 50.9 49.7 53.4 22.4 15.0 52.6 20.2 15.0
500 40.0 35.4 34.0 50.0 49.0 48.1 59.2 52.8 50.6 61.4 54.5 53.1 53.3 29.3 22.1 52.8 28.3 24.4
1000 38.2 37.0 36.0 49.7 50.5 50.3 59.7 57.1 56.4 64.3 58.8 58.9 54.2 34.1 29.6 54.3 34.4 30.8
2000 38.2 40.7 38.8 49.3 54.3 53.8 60.6 61.5 62.1 68.0 65.8 66.3 56.0 44.5 42.4 54.5 42.2 41.3
4000 34.1 48.8 49.6 48.9 72.9 73.3 62.5 77.7 78.3 73.2 82.3 82.3 59.1 67.2 66.9 58.4 66.4 65.8

Table A3: P@1 of Iterative Procrustes (IP), Iterative SGM (IS), and Iterative GOAT (IG). Highest per row.
IterSGM/IterGOAT are italicized when outperforming IterProc but are not highest in row.

13

en-to-* *-to-en en-to-* *-to-en
SGM GOAT SGM GOAT SGM GOAT SGM GOAT

Seeds Prev -PP -PS -PP -PG Prev -PP -PS -PP -PG Prev -PP -PS -PP -PG Prev -PP -PS -PP -PG
bn mk

0 0.1 0.0 0.1 0.0 0.1 0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.1
25 37.3 44.0 0.5 44.3 0.5 47.3 52.8 8.4 53.1 6.2 59.4 64.4 1.2 63.9 8.0 65.2 68.7 1.1 68.8 0.6
50 37.8 43.1 2.0 44.3 3.1 47.5 52.1 14.4 53.0 48.2 62.1 64.0 63.6 63.9 62.8 66.3 68.4 68.1 68.5 67.8
75 38.8 44.7 38.8 44.7 39.5 51.9 53.2 49.2 53.5 49.1 61.7 63.8 63.7 64.3 63.3 66.8 69.2 67.3 68.8 67.9
100 44.4 44.3 40.4 45.3 39.7 53.2 52.4 48.5 53.9 48.1 61.8 64.4 65.1 64.1 64.2 66.2 69.3 68.2 69.4 67.5
200 43.3 45.4 40.9 45.2 40.8 52.1 53.8 50.4 54.0 50.6 62.3 64.1 64.5 64.9 64.2 67.0 69.5 67.8 69.7 68.0
500 43.9 46.8 43.9 46.8 43.2 51.8 54.3 50.3 55.1 51.4 62.2 65.3 65.7 65.3 65.5 66.9 69.6 69.1 70.0 68.9
1000 43.4 47.1 45.4 47.1 45.3 51.5 55.3 53.2 55.5 53.9 62.5 65.8 66.5 65.5 66.5 68.0 69.8 69.9 69.9 69.5
2000 45.9 48.9 49.3 48.7 49.3 55.2 56.6 57.2 56.6 56.3 65.0 67.0 68.2 66.8 67.9 71.8 71.2 72.5 71.0 73.1
4000 60.3 52.0 61.2 50.5 61.2 66.6 55.2 68.9 55.2 68.9 75.7 69.0 77.2 68.9 77.1 88.8 74.1 91.1 74.1 91.1

bs ms
0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0
25 52.3 57.4 0.2 58.4 0.4 56.5 61.7 0.8 61.5 0.6 46.1 62.1 0.4 62.6 0.9 59.4 65.6 0.5 65.3 0.2
50 52.2 57.4 25.7 57.4 53.8 57.2 61.2 6.0 61.9 42.3 58.3 61.8 6.4 62.7 58.8 64.3 65.6 63.0 65.6 63.1
75 54.7 57.5 54.6 58.1 55.1 58.4 61.6 57.9 61.7 57.2 59.9 62.4 59.0 62.6 59.8 64.0 65.5 64.0 65.6 62.8
100 54.6 57.4 55.0 58.1 55.4 59.0 61.8 59.0 61.3 57.5 60.9 62.6 59.7 63.0 58.6 64.1 66.0 63.9 65.8 63.1
200 55.1 57.8 56.9 58.6 56.4 59.3 61.9 58.9 62.4 58.3 60.6 63.1 60.6 63.1 59.6 64.5 66.7 64.3 66.4 63.9
500 54.4 58.5 57.1 59.1 56.7 60.1 63.1 61.1 63.8 61.0 60.6 63.4 61.1 64.1 61.0 65.0 67.4 65.9 66.8 65.8
1000 55.9 59.8 59.1 59.6 58.7 61.6 63.6 63.4 64.7 62.9 61.1 65.9 64.8 66.0 64.4 65.0 67.3 67.0 67.7 66.9
2000 57.8 59.2 60.7 59.9 60.5 65.9 66.9 68.8 66.6 69.1 65.0 67.4 68.8 67.0 68.5 67.5 69.1 69.8 69.4 69.7
4000 70.4 63.0 72.2 63.4 71.8 86.4 69.7 84.7 69.7 85.7 79.7 70.9 79.7 70.7 79.5 77.8 70.3 79.2 70.0 79.1

de ru
0 49.2 0.1 0.1 61.8 0.0 34.5 0.5 0.2 59.2 0.3 57.3 0.0 0.0 0.1 0.1 55.9 0.0 0.0 4.4 0.0
25 61.5 61.9 59.3 61.7 59.1 58.8 59.5 56.7 59.3 56.8 66.2 67.8 66.3 67.7 66.1 63.0 64.4 62.6 63.9 62.0
50 61.5 62.1 59.9 62.1 59.3 59.0 59.6 56.5 59.1 56.5 66.5 67.6 66.0 67.5 66.5 63.4 64.4 62.5 63.7 61.5
75 61.5 62.0 59.6 62.3 59.7 59.0 59.5 56.6 59.4 57.1 66.7 67.8 66.6 68.1 67.0 62.7 64.2 62.6 63.9 61.6
100 62.1 62.3 60.1 62.2 59.7 59.4 59.5 57.1 59.4 56.8 66.8 68.3 67.2 67.9 66.4 62.7 64.0 61.6 63.8 61.3
200 62.0 62.5 60.7 62.4 60.3 59.7 60.0 58.1 60.0 57.6 66.6 68.7 67.5 68.6 67.1 63.1 64.5 62.2 64.4 61.9
500 62.8 63.8 61.9 63.8 61.8 60.4 61.1 59.3 61.0 59.5 67.7 69.0 68.8 68.9 68.2 63.7 65.0 63.8 64.8 64.1
1000 63.5 64.1 63.0 64.1 63.1 61.4 62.3 61.4 62.3 61.9 68.3 70.3 69.9 70.4 69.8 64.0 66.5 67.1 66.7 66.5
2000 65.2 66.6 69.6 66.3 69.4 64.0 65.4 68.2 65.1 67.9 69.5 72.2 74.0 72.6 74.2 68.5 69.5 72.7 69.3 72.5
4000 74.4 73.2 79.7 72.9 79.5 71.4 67.0 77.6 67.2 77.6 83.8 78.3 86.5 79.3 86.5 89.3 77.4 89.3 77.4 89.3

et ta
0 0.9 0.0 0.0 0.2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.9 0.1 0.0 0.6 0.0
25 51.8 60.0 2.6 60.4 5.9 66.4 69.4 8.9 70.2 15.0 5.8 2.1 0.5 2.2 0.6 46.1 51.0 2.0 51.4 2.4
50 59.3 61.0 59.2 60.9 58.4 66.3 69.4 66.2 70.2 66.6 33.6 40.5 2.1 40.2 10.5 46.6 50.7 47.9 52.0 46.3
75 58.8 60.7 58.7 60.6 58.6 66.6 68.8 66.4 69.8 66.5 38.3 40.0 33.5 40.4 35.7 50.0 52.0 47.6 52.4 46.9
100 59.3 61.0 58.3 61.1 59.0 66.6 69.8 66.7 70.2 66.7 39.5 40.5 35.2 40.2 36.8 50.5 51.5 48.2 52.5 47.9
200 59.0 61.3 60.4 61.5 59.9 66.7 70.2 67.7 70.5 67.3 40.2 40.3 36.6 40.5 36.2 50.8 52.2 48.1 52.9 49.3
500 59.4 62.9 61.3 63.2 60.3 68.5 70.8 69.7 71.5 69.0 40.0 41.5 38.7 40.9 39.1 50.0 53.0 51.4 53.0 50.9
1000 60.1 64.3 63.9 64.3 63.4 70.4 72.5 69.9 72.5 70.1 38.2 41.3 41.7 41.6 40.7 50.5 53.0 52.3 53.7 51.2
2000 64.2 66.0 67.7 66.6 67.4 74.2 73.5 74.8 74.1 75.0 40.7 43.5 43.7 42.7 44.2 55.1 55.6 56.6 55.3 56.2
4000 77.4 72.5 80.2 71.7 80.2 86.4 80.7 87.2 80.7 87.2 49.6 43.7 52.4 44.0 51.7 73.8 64.4 71.6 65.3 71.6

fa vi
0 45.2 0.1 0.0 0.5 0.0 0.2 0.2 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.1 0.1 0.4 0.1 0.9
25 46.7 54.3 1.0 54.4 4.5 47.6 55.1 1.8 55.1 2.0 0.4 0.4 0.1 0.4 0.2 44.1 1.3 0.3 5.3 0.2
50 52.9 54.0 51.6 53.8 51.2 47.7 55.2 51.6 54.9 52.3 42.6 2.4 0.2 5.2 0.4 48.9 58.8 1.2 59.1 2.1
75 53.1 54.5 52.0 54.1 51.9 54.0 55.4 52.7 55.3 52.0 46.5 54.5 8.8 55.0 1.2 49.4 59.3 28.0 59.6 54.4
100 53.0 54.2 52.5 54.3 52.3 54.1 55.0 52.5 55.5 52.7 47.8 55.4 22.3 55.6 36.2 59.4 59.1 56.6 59.3 56.3
200 53.3 54.3 52.3 54.8 52.2 54.2 55.2 53.0 54.6 51.9 57.8 58.0 55.4 57.8 56.0 60.1 60.7 58.7 61.2 57.7
500 53.3 55.5 53.4 55.5 53.1 54.3 55.7 53.4 56.1 52.7 59.2 59.6 59.0 60.0 58.3 61.4 63.4 61.9 63.5 60.8
1000 52.9 56.0 54.8 56.3 54.8 54.2 55.7 54.2 55.6 54.1 59.7 63.5 61.2 63.6 61.2 64.3 67.1 65.8 68.1 65.3
2000 54.8 57.7 58.6 58.0 58.4 54.5 56.9 57.7 57.5 56.9 62.1 66.7 66.7 67.3 65.8 68.0 73.2 71.8 73.5 71.5
4000 65.9 62.9 67.2 62.4 67.4 65.6 61.0 67.7 60.1 67.0 78.3 72.8 80.3 73.0 80.5 82.3 81.0 84.6 80.1 84.3

id zh
0 15.5 0.6 0.0 4.4 0.0 58.2 0.0 0.0 1.2 0.0 0.3 0.2 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0
25 55.9 65.9 1.4 65.8 0.6 59.5 66.8 0.4 66.7 1.8 13.7 52.2 1.7 52.7 1.7 14.6 51.7 0.8 48.1 0.8
50 64.7 65.8 63.4 66.0 63.2 65.4 66.6 64.4 67.0 64.0 52.9 52.6 47.6 52.6 46.2 52.5 51.7 48.0 50.5 47.3
75 64.9 66.1 64.0 66.0 63.3 65.8 66.6 64.1 66.7 64.2 53.5 52.3 48.3 51.6 46.4 51.9 51.2 48.5 51.1 48.0
100 65.2 66.6 63.6 66.2 63.2 66.0 67.0 64.4 67.1 63.9 53.2 51.9 49.4 51.6 47.3 52.1 51.1 48.1 51.0 48.0
200 64.9 66.7 64.8 66.8 65.0 66.5 67.4 64.9 67.3 65.0 53.4 52.7 49.6 52.6 49.2 52.6 51.6 49.3 51.4 48.9
500 66.4 68.0 66.8 68.0 66.7 67.4 68.9 67.1 69.1 67.2 53.3 54.0 52.0 53.1 51.1 52.8 53.0 50.9 52.6 50.4
1000 67.8 69.9 69.8 70.1 69.7 67.6 70.0 68.9 70.0 68.3 54.2 54.9 53.2 55.4 52.2 54.3 54.7 53.0 54.3 52.0
2000 70.7 72.2 74.9 72.1 74.2 70.2 72.2 73.0 72.5 72.9 56.0 59.2 59.1 58.0 57.7 54.5 57.6 57.8 57.6 56.8
4000 84.3 77.1 86.2 76.8 86.2 80.6 78.0 84.0 78.2 83.7 67.5 66.9 74.5 66.4 75.1 66.4 65.8 72.9 65.3 73.3

Table A4: Full Results: P@1 of Combination Experiments. SGM-PP starts with SGM, ends with Procrustes. SGM-
PS: IterProc then SGM. GOAT-PP: start GOAT, end Proc. GOAT-PG: IterProc then GOAT. Previous best of all other
experiments is in the Prev column. Prev here includes iterative results from Table A3.

14

