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Abstract

Various non-trivial spaces are becoming popular for embedding structured data
such as graphs, texts, or images. Following spherical and hyperbolic spaces, more
general product spaces have been proposed. However, searching for the best con-
figuration of a product space is a resource-intensive procedure, which reduces the
practical applicability of the idea. We generalize the concept of product space and
introduce an overlapping space that does not have the configuration search problem.
The main idea is to allow subsets of coordinates to be shared between spaces of
different types (Euclidean, hyperbolic, spherical). As a result, we often need fewer
coordinates to store the objects. Additionally, we propose an optimization algo-
rithm that automatically learns the optimal configuration. Our experiments confirm
that overlapping spaces outperform the competitors in graph embedding tasks with
different evaluation metrics. We also perform an empirical analysis in a realistic
information retrieval setup, where we compare all spaces by incorporating them
into DSSM. In this case, the proposed overlapping space consistently achieves
nearly optimal results without any configuration tuning. This allows for reducing
training time, which can be essential in large-scale applications.

1 Introduction

Building vector representations of various objects is one of the central tasks of machine learning.
Word embeddings such as Glove [22] and Word2Vec [19] are widely used in natural language
processing; a similar Prod2Vec [7] approach is used in recommendation systems. There are many
algorithms proposed for graph embeddings, e.g., Node2Vec [8] and DeepWalk [23]]. Recommendation
systems often construct embeddings of a bipartite graph that describes interactions between users and
items [[10].

For a long time, embeddings were considered exclusively in R™. However, the hyperbolic space
was shown to be more suitable for graph, word, and image representations due to the underlying
hierarchical structure [[12} 20} 21} 26]. Going beyond spaces of constant curvature, a recent study [9]
proposed product spaces, which combine several copies of Euclidean, spherical, and hyperbolic
spaces. While these spaces demonstrate promising results, the optimal signature (types of combined
spaces and their dimensions) has to be chosen via brute force, which may not be acceptable in
large-scale applications.

In this paper, we propose a more general metric space called overlapping space (OS) together with
an optimization algorithm that trains signature simultaneously with embedding allowing us to avoid
brute-forcing. The main idea is to allow coordinates to be shared between different spaces, which
significantly reduces the number of coordinates needed.
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Importantly, the proposed overlapping space can further be enhanced by adding non-metric approaches
such as weighted inner product [|13] as additional similarity measures complementing metric ones.
Thus, we obtain a flexible hybrid measure OS-Mixed that is no longer a metric space. Our experiments
show that in some cases, non-metric measures outperform metric ones. The proposed OS-Mixed has
advantages of both worlds and thus achieves superior performance.

To validate the usefulness of the proposed overlapping space, we provide an extensive empirical
evaluation for the task of graph embedding, where we consider both distortion-based (i.e., preserving
distances) and ranking-based (i.e., preserving neighbors) objectives. In both cases, the proposed
measure outperforms the competitors. We also compare the spaces in information retrieval and
recommendation tasks, for which we apply them to train embeddings via DSSM [11]]. Our method
works comparable to the best product spaces tested in these cases, while it does not require brute-
forcing for the best signature. Thus, using the overlapping space may significantly reduce the training
time, which can be crucial in large-scale applications.

2 Background and related work

2.1 Embeddings and loss functions

For a graph G = (V, E) an embedding is a mapping f : V — U, where U is a metric space equipped
with a distance dy : U x U — }R+E] On the graph, one can consider a shortest path distance
dg : V x V — R,. In the graph reconstruction task, it is expected that a good embedding preserves
the original graph distances: dg(v,u) = dy(f(v), f(u)). The most commonly used evaluation
metric is distortion, which averages relative errors of distance reconstruction over all pairs of nodes:
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While commonly used in graph reconstruction, distortion is a natural choice for many practical
applications. For example, in recommendation tasks, one usually deals with a partially observed
graph (some positive and negative element pairs), so a huge graph distance between two nodes in the
observed part does not necessarily mean that the nodes are not connected by a short path in the full
graph. Also, often only the order of the nearest elements is essential while predicting distances to
faraway objects is not critical. In such cases, it is more reasonable to consider a local ranking metric,
e.g., the mean average precision (mAP) that measures the relative closeness of the relevant (adjacent)
nodes compared to the others
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Mean average precision cannot be directly optimized since it is not differentiable. In our experiments,
we use the following probabilistic loss function as a proxy

N bl e S Oy (). f())
Loy == 2, logP(() € B) (U%Elgzem o) ) O

weV

Note that when substituting dys (7, y) = c— f(z)T f(y) (assuming that f(z) € R™, so the dot product
is defined), Lyoqy becomes the standard word2vec loss function.

2.2 Spaces, distances, and similarities

In the previous section, we assumed that diy : U x U — R is an arbitrary distance. In this section,
we discuss particular choices often considered in the literature.

"Note that any discrete metric space corresponds to a weighted graph, so graph terminology is not restrictive.
2For mAP, the relevance labels are assumed to be binary (unweighted graphs). If a graph is weighted, then we

say that IV, consists of the closest element to v (or several closest elements if the distances to them are equal).
3See Tablein Appendix for the comparison of other ways of converting distance to probability.



For many years, Euclidean space was the primary choice for structured data embeddings [6]. For two

1/2
d
points x,y € RY, Euclidean distance is defined as dg(z,y) = <Z (z; — y7)2> .
i=1

Spherical spaces were also found to be suitable for some applications [18,[24]|30]. Indeed, in practice,
vector representations are often normalized, so cosine similarity between vectors is a natural way to
measure their similarity. This naturally corresponds to a spherical space S; = {z € R¥*! : ||z||3 =
1} equipped with a distance dg(z,y) = arccos(z’y).

In recent years, hyperbolic spaces also started to gain popularity. Hyperbolic embeddings have
shown their superiority over Euclidean ones in a number of tasks, such as graph reconstruction
and word embedding [20, 21} 25| 26]]. To represent the points, early approaches used the Poincaré
model of the hyperbolic space [20]], but later it has been shown that the hyperboloid (Lorentz)
model may lead to more stable results [21]. In this work, we also adopt the hyperboloid model
Hy = {x € R |(z,2);, = 1,21 > 0} equipped with a distance dgr = arccosh((z,¥)s), where
d+1
(T,9)n = 2191 — 22 TiYi-

Going even further, a recent paper [9]] proposed more complex product spaces that combine several
copies of Euclidean, spherical, and hyperbolic spaces. Namely, the overall dimension d is split
k
into k parts (smaller dimensions): d = > d;, d; > 0. Each part is associated with a space
i=1
D; € {Eg,,Sq,,Hg,} and scale coefficient w; € R,. Varying scale coefficients corresponds to
changing curvature of hyperbolic and spherical spaces, while in Euclidean space this coefficient is
not used (w; = 1). Then, the distance in the product space Dq X ... X Dy is defined as:

k
dp(z,y) = | D widp, (x[tiy +1: til,yltioa +1: 4:])2,
=1

where tg = 0,t; = t;_1 + d;, and x[s : €] is a subvector (s, ...,7.) € R5TL If k = 1, we get a
standard Euclidean, spherical, or hyperbolic space.

In [9], it is proposed to learn an embedding and scale coefficients w; simultaneously. However,
choosing the optimal signature (how to split d into d; and which types of spaces to choose) is
challenging. A heuristics proposed in [9] allows to guess types of spaces if d;’s are given. If
d1 = do = 5, this heuristics agrees well with the experiments on three considered datasets. The
generalizability of this idea to other datasets and configurations is unclear. In addition, it cannot be
applied if a dataset is partially observed and graph distances cannot be computed (e.g., when there
are several known positive and negative pairs). Hence, in practice, it is more reliable to choose a
signature via the brute-force, which can be infeasible on large datasets.

Another way to measure objects’ similarity, which is rarely compared with metric methods but is
frequently used in practical applications, is via the dot product of vectors 27y or its weighted version
2T Wy with a diagonal matrix W, which is also known as a weighted inner product [13]]. Such
measures cannot be converted to a metric distance via a monotone transformation. However, they can
be used to predict similarity or dissimilarity between objects, which is often sufficient in practice,
especially when ranking metrics are used.

In this paper, we stress that when comparing different methods, both metric and non-metric variants
should be used because different methods are better for different tasks. In particular, the dot product
similarity allows one to easily differentiate between more popular and less popular items (the vector
norm can be considered a measure of popularity). This feature is also attributed to hyperbolic spaces,
where more popular items are placed closer to the origin.

2.3 Optimization

Gradient optimization in Euclidean space is straightforward, while for spherical or hyperbolic
embeddings, we also have to control that the points belong to a surface. In previous works, Riemann-
SGD was used to solve this problem [2]]. In short, it projects Euclidean gradients on the tangent space
at a point and then uses a so-called exponential map to move the point along the surface according



to the gradient projection. For product spaces, a generalization of the exponential map has been
proposed [J5, 127].

In [29]], the authors compare RSGD with the retraction technique, where points are moved along
the gradients in the ambient space and are projected onto the surface after each update. From their
experiment, the retraction technique requires from 2% to 46% more iterations, depending on the
learning rate. However, the exponential update step takes longer. Hence, the advantage of RSGD in
terms of computation time depends on the specific implementation.

3 Overlapping spaces

3.1 Overlapping metric spaces

In this section, we propose a new concept of overlapping spaces This approach generalizes product
spaces and allows us to make the signature (types and dimensions of combined spaces) trainable. Our
main idea is to divide the embedding vector into several overlapping (unlike product spaces) segments,
each segment corresponding to its own space. Then, instead of discrete signature brute-forcing, we
optimize the weights of the signature elements.

Importantly, we allow the same coordinates of an embedding vector to be included in distances
computations for spaces of different geometry. For this purpose, we first need to map a vector 2 € R¢
(for any d > 1) to a point in Euclidean, hyperbolic, and spherical space. Let us denote this mapping by
M. Obviously, for Euclidean space, we may take Mg (x) = x. We may use the vector normalization
for the spherical spaces, and for H; we use a projection from a hyperplane to a hyperboloid:

..,xq | € Hyg. “)

Note that for such parametrization a d-dimensional vector x is mapped into Euclidean and hyperbolic
spaces of dimension d and into a spherical space of dimension d — 1. Hence, in standard implementa-
tions of product spaces, a sphere Sy is parametrized by a (d + 1)-dimensional vector [9]]. However,
this requires more coordinates to be stored for each spherical space. Hence, to make a fair comparison
of all spaces, we use the hyperspherical coordinates for S:

COSX1 +COSTg * ...  COSTy_q + COSTq
A COST1 - COSXY + ... COSTg_1 - SinTy
Mg(z) = COST1 - COSTy ... SiNxg_1 €5, 5)
sin z1
Now we are ready to define an overlapping space. Consider two vectors x,y € R%. Let pq, . .., pi
denote some subsets of coordinates, i.e., p; C {1,...,d}. We assume that together these subsets
cover all coordinates, i.e., U¥_ p; = {1,...,d}. By x[p;] we denote a subvector of z induced by

pi. Let D; € {E, S, H}. We define d;(x,y) := dp, (Mp, (z[p:]), Mp,(y[p:])) and aggregate these
distances with arbitrary positive weights w ... wg € R4:

dllxy Zwl (z,y)

1/2
de (z,y) (Z w;d ) .

Definition 1. O, = {z € R?} equipped with a distance d or d3 defined in (6) is called an
overlapping space. This space is defined by p;, D;, and w;.

(6)

Note that it is sufficient to assume that spherical and hyperbolic spaces have curvatures 1 and —1,
respectively, since changing the curvature is equivalent to changing scale, which is captured by w;.
The following statement follows from the definition above and the fact that dg, dg, and dy are
distances (see Appendix [C|for the proof).

*We refer to Appendix @] for additional simple illustrations of the proposed idea.



Statement 1. IfUY_ p; = {1,...,d} and wy ... wy, € Ry, then d3, le2 are distances on R% x R4,
i.e., they satisfy the metric axioms.

It is easy to see that overlapping spaces generalize product spaces. Indeed, if we assume p; N p; = ()
for all 4 # j, then an overlapping space reduces to a product space. However, the fact that we allow
pi N p; # 0 gives us a significantly larger expressive power for the same dimension d.

3.2 Generalization with WIPS: OS-Mixed measure

It is known that for ranking loss functions, methods based on weighted and standard dot products
can have good performance [13]. Let us note that such similarity measures cannot be converted to
a distance via a monotone transformation. In our experiments, we notice that in some cases, such
non-metric methods can successfully be used for graph embeddings even with the distortion loss,
when the model approximates metric distances.

To close the gap between metric and non-metric methods, we propose a generalization of the
overlapping spaces that also includes the weighted inner product similarity (WIPS).

First, let us motivate our choice of WIPS. One may extend the list of base distance functions
{dg,ds,dy} with a dissimilarity measure dgoy = ¢ — 27y that is not a metric distance. By using
such “distance’ for all possible subsets p; € 2{1+@} and applying [1-aggregation (@), we get WIPS

d
measure dyy = ¢ — Y, W;x;y;, where ¢ and w; are trainable values.
i=1

Thus, instead of using an extended set of base distances {dg, dg, d, dao } together, as shown in
equation (0), we suggest to simply use dos—rrizea(®,y) = do(x,y) + dw (z,y) where do is a
metric overlapping space. We show that this design gives excellent results for both distortion and
ranking objectives in the graph reconstruction task. We further refer to this approach as OS-Mixed.

4 Optimization in overlapping spaces

4.1 Binary tree signature

Overlapping spaces defined in Section[3|are flexible and allow capturing various geometries. However,
similarly to product spaces, they need a signature (p; and D;) to be chosen in advance. This section
describes a particular signature, which is still flexible, does not suffer from the brute-force problem,
and shows promising empirical results on the datasets we experimented with.

Let t > 0 denote the depth (complexity) of the signature for a d-dimensional embedding.
Each layer I, 0 < | < t, of the signature consists of 2! subsets of coordinates: p,i- =
{[d(i—1)/2"] +1,...,[di/2']} , 1 <i<2'. Eachp! is associated with Euclidean, spherical,

and hyperbolic spaces simultaneously. The corresponding weights are denoted by wiE , wi’s7 wi’H .

Then, the distance is computed according to (). See Figure[T] for an illustration of the procedure for
d=10andt = 1.

Informally, assume that we have two vectors z,y € R%. To compute the distance between them in the
proposed overlapping space, we first compute Euclidean, spherical, and hyperbolic distances between
x and y. Then, we split the coordinates into two halves, and for each half, we also compute all three
distances, and so on. Finally, all the obtained distances are averaged with the weight coefficient
according to (6). Note that we have 3(2+! — 1) different weights in our structure in general, but
with [2-aggregation this value may be reduced to 2(2¢+! — 1) + 2! since for the Euclidean space, the
distances between subvectors at the upper layers can be split into terms corresponding to smaller
subvectors, so we essentially need only the last layer with 2¢ terms.

Recall that in a product space, the weights correspond to curvatures of the combined hyperbolic and
spherical spaces. In our case, they also play another important role: the weights allow us to balance
between different spaces. Indeed, for each subset of coordinates, we simultaneously compute the
distance between the points assuming each of the combined spaces. Varying the weights, we can
increase or decrease the contribution of a particular space to the distance. As a result, our signature
allows us to learn the optimal combination, which does not have to be a product space since all
weights can be non-zero. Interestingly, when we analyzed the optimized weights, we observed that
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Figure 1: Overlapping space with d = 10, ¢ = 1, and /1 (sum) aggregation

often some of them are close to zero. Thus, unnecessary weights can be detected and removed after
the training. See Appendix [B.3]for more details.

Note that the procedure described in this section naturally extends to OS-Mixed by adding the
corresponding ‘distance’ to Euclidean, hyperbolic, and spherical as described in Section[3.2]

4.2 Optimization

In this section, we describe how we embed into the overlapping space. Although Riemann-SGD
(see Section 2.3)) is a good solution from the theoretical point of view, in practice, due to errors
in storing and processing real numbers, it may cause some problems. Indeed, a point that we
assume to lie on a surface (sphere or hyperboloid) does not numerically lie on it usually. Due to
the accumulation of numerical errors, with each iteration of RSGD, a point may move away from
the surface. Therefore, in practice, after each step, all embeddings are explicitly projected onto the
surface, which may slow down the algorithm. Moreover, RSGD is not applicable if one needs to
process the output of a neural network, which cannot be required to belong to a given surface (e.g.,
to satisfy (x,z), = 1 < x € Hy). As aresult, before finding the hyperbolic distance between two
outputs of a neural network in the Siamese [3]] setup, one first needs to map them to a hyperboloid.

Instead of RSGD, we store the embedding vectors in Euclidean space and calculate distances
between them using the mappings (@) to the corresponding surfaces. Thus, we can evaluate the
distances between the outputs of neural networks and also use conventional optimizers. To optimize
embeddings, we first map Euclidean vectors into the corresponding spaces, calculate distances and
loss function, and then backpropagate through the projection functions. To improve the convergence,
we use Adam [[14] instead of the standard SGD. Similar technique using SGD with momentum is used
in [[15]. Applying this to product spaces, we achieve the results similar to the original paper [9] (see
Table[7)in Appendix), where RSGD was used with the learning rate brute-forcing, custom learning
rate for curvature coefficients, and other tricks.



Table 1: Datasets for graph reconstruction

\ USCA312 CSPhDs Power Facebook WLA6 EuCore
Nodes 312 1025 4941 4039 3227 986
Edges | 48516 (weighted) 1043 6594 88234 3604 16687

Table 2: Distortion graph reconstruction, top results are highlighted, top metric results are underlined

Signature | USCA312 CSPhDs Power Facebook WLA6 EuCore
Eqo 0.00318 0.0475  0.0408 0.0487 0.0530  0.1242
Hio 0.01104 0.0443 0.0348 0.0483 0.0279  0.1144
S1o 0.01065 0.0519  0.0453 0.0561 0.0608  0.1260

H? = Hs x Hs 0.00573 0.0345 0.0255 0.0372 0.0279  0.1106
S2 =S5 x Ss 0.00700 0.0501 0.0438 0.0552 0.0584  0.1251

Hs x S5 0.00541 0.0341 0.0254 0.0346 0.0310  0.1195
H3 0.00592 0.0344 0.0273 0.0439 0.0356  0.1163
S5 0.00604 0.0464 0.0416 0.0512 0.0543  0.1244
HZ x FEy x S3 0.00537 0.0344 0.0302 0.0406 0.0437  0.1193
Ou1,t=0 0.00324 0.0368 0.0281 0.0458 0.0286  0.1141
On,t=1 0.00325 0.0300 0.0231 0.0371 0.0272  0.1117
Op,t=1 0.00530 0.0328 0.0246 0.0324 0.0278  0.1127
c — dot 0.04005 0.0412 0.0461 0.0236 0.0296  0.1085
¢ — wips 0.06468 0.0358 0.0442 0.0161 0.0238  0.1016
ce™ 0.08142 0.0424 0.0505 0.0192 0.0270  0.1048

Omig—11,t =1 0.00277 0.0243 0.0235 0.0172 0.0187  0.1026
Omiz—i12,t =1 0.00464 0.0220 0.0258 0.0163 0.0198  0.1028

S Experiments

5.1 Compared spaces

In this section, we provide a thorough analysis to compare all metric spaces discussed in the paper,
including product spaces with all signatures from [9]] and the proposed overlapping space. For the
non-metric dissimilarity functions, we consider d(z,y) = ¢ — 2Ty, d(z,y) = ¢ — > w;x;y; (WIPS),
d(z,y) = cexp(—xTy) with trainable parameters ¢, w; € R, and the proposed OS-Mixed measure.
We add non-metric measures even to the distortion setup to see whether they are able to approximate
graph distances. Similarly to [9], we fix the dimension d = 10. However, for a fair comparison, we
fix the number of stored values for each embedding and use the hypersperical parametrization (3))
instead of storing d + 1 coordinatesE] The training details are given in Appendix Al The code of our
experiments is available [’

5.2 Graph reconstruction

Graph datasets We use the following graph datasets: the USCA312 dataset of distances between
North American cities [4] (weighted complete graph), a graph of computer science Ph.D. advisor-
advisee relationships [[L], a power grid distribution network with backbone structure [28]], a dense
social network from Facebook [17]], and EuCore dataset generated using email data from a large
European research institution [[16]]. We also collected a new dataset by launching the breadth-first
search on the Wikipedia category graph, starting from the “Linear Algebra” category with search
depth limited to 6. Further, we refer to this dataset as WLA6; more details are given in Appendix
This graph is very close to being a tree, although it has some cycles. We expect the hyperbolic space
to give a significant profit for this graph, and we observe that product spaces give almost no additional
advantage. The purpose of using this additional dataset is to evaluate overlapping spaces on a dataset
where product spaces do not provide quality gains. Table |l|lists the properties of all considered
datasets.

3In Appendix B.2|, we evaluate spherical spaces without this modification to compare with [9].
Shttps://github.com/shevkunov/overlapping-spaces-for-compact-graph-representations
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Table 3: mAP graph reconstruction, top results are highlighted, top metric results are underlined

Signature \ USCA312 CSPhDs Power Facebook WLA6 EuCore
Evo 0.9290 0.9487 0.9380 0.7876 0.7199  0.6108
Hio 0.9173 0.9399 0.9385 0.7997 0.9617  0.6670
S1o 0.9183 0.9519 0.9445 0.7768 0.7289  0.6037
H? 0.9247 0.9481 0.9415 0.8084 0.9682  0.6783
S2 0.9316 0.9600 0.9482 0.7790 0.7307  0.6116
Hs x S5 0.9397 0.9538 0.9505 0.7947 0.9751  0.6847
Hj 0.9364 0.9671 0.9508 0.7979 0.8597  0.6611
S5 0.9439 0.9656 0.9511 0.7800 0.7358  0.6169
H3 x B2 x S3 0.9519 0.9638 0.9507 0.7873 0.7794  0.6492
On,t=0 0.9538 0.9879 0.9728 0.8093 0.6759  0.6580
On,t=1 0.9522 0.9904 0.9762 0.8185 0.9598  0.6691
Op,t=1 0.9522 0.9938 0.9907 0.8326 0.9694  0.7078
¢ — dot 1 1 0.9983 0.8745 0.9990  0.7409
¢ — wips 1 1 1 0.8704 1 0.7742
Omiz—11,t =1 1 1 0.9994 0.8806 0.9997  0.7860
Omiz—i2,t =1 1 1 1 0.9021 1 0.8405

Distortion loss We start with the standard graph reconstruction task with distortion loss (I). The
goal is to embed all nodes of a given graph into a d-dimensional space approximating the pairwise
graph distances between them. In this setup, all models are trained to minimize distortion (I}, the
results are shown in Table[2] It can be seen that the overlapping spaces outperform other metric
spaces, and the best overlapping space (among considered) is the one with /1 aggregation and
complexity t = 1[] Interestingly, the performance of such overlapping space is often better than the
best considered product space.

We note that standard non-metric distance functions show highly unstable results for this task: for the
USCA312 dataset, the obtained distortion is orders of magnitude worse than the best one. However,
on some datasets (Facebook and WLAG6), the performance is quite good, and for Facebook, these
simple non-metric similarities have much better performance than all metric solutions. Thus, we
conclude that such functions are worth trying for graph reconstruction with the distortion loss, but
their performance is unstable. In contrast, the overlapping spaces show good and stable results on all
datasets, and the proposed OS-Mixed modification (see Section [3.2)) outperforms all other approaches.

Ranking loss As discussed in Section [2.1] in many practical applications, only the order of the
nearest neighbors matters. In this case, it is more reasonable to use mAP (2). In previous work [9],
mAP was also reported, but the models were trained to minimize distortion. In our experiments, we
observe that distortion optimization weakly correlates with mAP optimization. Hence, we minimize
the proxy-loss defined in equation (3)). The results are shown in Table 3] and the obtained values for
mAP are indeed much better than the ones obtained with distortion optimization [9]], i.e., it is essential
to use an appropriate loss function. According to Table [3] among the metric spaces, the best results
are achieved with the overlapping spaces (especially for [2-aggregation with ¢ = 1). Importantly, in
contrast to distortion loss, ranking based on the dot-product outperforms all metric spaces. However,
using the OS-Mixed measure allows us to improve these results even further.

5.3 Information retrieval

From a practical perspective, it is also important to analyze whether an embedding can generalize to
unseen examples. For instance, an embedding can be made via a neural network based on objects’
characteristics, such as text descriptions or images. This section analyzes whether it is reasonable to
use complex geometries, including product spaces and overlapping spaces, in such a scenario.

"In Appendixwe also analyze ¢ > 1 and show that performance improves as ¢ increases.
8The gap between Fas6 and Hass may seem suspicious, but in Table 5 of [9] a similar pattern is observed.



Table 4: DSSM embeddings, top three results are highlighted

Signature Test mAP

Ero 0.4459 Signature Test mAP
Hio 0.4047 Foase 0.717
Sho 0.4364 Hose 0.412f
H? 0.4492 S255 0.588
Sz 0.4573 Hzg 0.547
Hs x Ss 0.3295 S3ar 0.662
H25 0.3681 H128 X 5'127 0.501
K 0.4616 H2 x Hsy 0.621
H2 x E2 x 82 0.3526 Sao X Ss1 0.701
¢ — dot 0.4194 ¢ — dot 0.738
O;1,t=0 0.4562 O;1,t =0 0.677
On,t=1 0.4498 On,t=1 0.662
Op,t=1 0.4456 Omiz—11,t =1 0.663
Omiz_i1,t =1 0.4447 Omiz—12,t =1 0.655

Omio—i2,t =1 04483

For this purpose, we trained a classic DSSM modeﬂ [[L1] on a private Wikipedia search dataset
consisting of 491044 pairs (search query, relevant page), examples are given in Table|l I{in Appendix.
All queries are divided into train, validation, and test sets, and for each signature, the optimal iteration
was selected on the validation set. Table ] compares all models for two embedding sizes. For short
embeddings, we see that a product space based on spherical geometry is useful, and overlapping
spaces have comparable quality. However, for large “industrial size” dimensions, the best results are
achieved with the standard dot product, questioning the utility of complex geometries in the case of
large dimensions.

Note that in DSSM-like models, the most time-consuming task is model training. Hence, training
multiple models for choosing the best configuration can be infeasible. Therefore, for small dimensions,
overlapping spaces can be preferable over product spaces since they are universal and do not require
parameter tuning. Moreover, calculating element embeddings is usually more time-consuming than
calculating distances. Hence, even though calculating distances in the overlapping space has larger
complexity than in simpler spaces, it does not have a noticeable effect in real applications.

5.4 Synthetic bipartite graph reconstruction

Let us additionally illustrate that some graph structures are hard to embed into (considered) metric
spaces. Our intuition is that the dot product is suitable for modelling popularity of items since it can
be naturally reflected using vector norms. Thus, we consider a situation when there are a few objects
that are more popular than the other ones. To model this, we consider a synthetic bipartite graph
with two sets of sizes 20 and 700 with 5% edge probability (isolated nodes were removed, and the
remaining graph is connected). Clearly, in the obtained graph, there are a few popular nodes and many
nodes of small degrees. Figure [2] visualizes the obtained graph. Table[5|compares the performance of
the best metric space with the dot-product performance. As we can see, this experiment confirms our
intuition that some specific graphs are hard to embed into metric spaces, even with distortion loss.
We also see that our OS-Mixed approach gives the best result with a margin. Thus, this experiment
additionally confirms the universality of the proposed approach. We also observe that the optimization
of WIPS is highly unstable on this dataset, see Table [6]for details.

9We changed dense layers sizes in order to achieve the required embedding length and used more complex
text tokenization with char bigrams, trigrams, and words, instead of just char trigrams.



Table 6: WIPS distortion (5 restarts; best learning rate)
| avg.  worst best  std

¢ — wips 0.092 0.100 0.078 0.0078
Omiz—12,t =11 0.071 0.074 0.069 0.0018

Table 5: Bipartite graph reconstruction

| mAP  distortion

FE1o 0.777 0.094

Hyg 0.794 0.095

S10 0.796 0.096

H? 0.799 0.090

Sz 0.796  0.094

Hs x Ss 0.798 0.090

HS 0.761 0.086

S5 0.773 0.092

H2 x Ey x S3 0.796 0.089

On,t= 0.824 0.094

Op,t=1 0.803 0.082

Op,t=1 0.814 0.092

best metric space | 0.824 0.082

¢ — dot 0.863 0.079

e wps ! 0.091 Figure 2: Graph visualization. Red (big) nodes
Omig—11,t =1 0.986 0.083 belong to the smaller part
Omin_tost =1 |1 0.070 g part.

6 Conclusion

This paper proposed the new concept of overlapping spaces that do not require signature brute-
forcing and have better or comparable performance relative to the best product space in the graph
reconstruction task. Improvements are observed for both global distortion and local mAP loss
functions. An important advantage of our method is that it allows us to easily incorporate new
distances or similarities as building blocks. The obtained overlapping-mixed non-metric measure
achieves the best results for both distortion and mAP. We also evaluated the proposed overlapping
spaces in the DSSM setup, and in the case of short embeddings, product space gives a better result
than standard spaces, and the OS is comparable to it. In the case of long embeddings, no profit from
complex spaces was found.
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